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Preface: On Unifying Approaches in Ecology

The vigorous growth of ecology from its origins in the late 19th century and early 20th century has been accompanied by its gradual fission into several distinct subdisciplines. The unified view of ecology that was present in a book like Lotka’s Elements of Physical Biology (1925), which introduced many of the theoretical approaches that are still followed today, has given way to more specialized research programs. Although specialization is to some extent inevitable to make science more precise and predictive, it also creates problems. The conceptual frameworks of the various areas tend to become increasingly divergent over time, hampering communication across the discipline as a whole. This divergence is nowhere more apparent than between two of the major subdisciplines of ecology, i.e., community ecology and ecosystem ecology. These two subdisciplines have grown largely independently, each having its own concepts, theories, and methodologies. Community ecology is to a large extent an outgrowth of population ecology. It is mainly concerned with the dynamics, evolution, diversity, and complexity of the biological components of ecosystems; its starting point is the population and its interactions with other populations. Ecosystem ecology is mainly concerned with the functioning of the overall system composed of biological organisms and their abiotic environment; its starting point is the flow of matter or energy among functional compartments.

The separation of these subdisciplines is understandable insofar as they partly address issues at different hierarchical levels and different spatial and temporal scales. But it is harmful insofar as it is an obstacle to their unity and mutual enrichment. In the real world, populations and communities do not exist in isolation; they are parts of ecosystems, and, as such, they are subjected to constraints arising from ecosystem functioning, such as energy dissipation and nutrient cycling. These constraints can deeply alter species interactions and community properties, as we shall see in this book. On the other hand, ecosystems do not exist without their biological components; the latter impose their own constraints on ecosystem processes, as the disruptions generated by some biological invasions attest.

In a way, community ecology and ecosystem ecology provide two different perspectives on the same material reality. Real ecological systems are not either “communities” or “ecosystems,” they are both one and the other at the same time—it is just the way we look at them that makes them communities or ecosystems. There is today a clear need for integration of the two subdisciplines. Reunifying these perspectives is an important scientific challenge, not only to progress our fundamental understanding of natural and managed ecosystems but also to allow human societies to develop appropriate responses to the global ecological crisis we are entering as a result of growing human environmental impacts on the Earth system. These impacts include destruction and fragmentation of natural habitats, pollution, climate change, overexploitation of biological resources, homogenization of biota, and biodiversity loss, and affect indistinctly the composition, dynamics, and functioning of ecosystems.

Ecosystem ecology, with its emphasis on higher-level complex systems, has also traditionally been divorced from evolutionary biology, with its emphasis on individual fitness and selection. Yet, ecosystem functioning is shaped by evolution, just as evolution is shaped by the constraints that arise from ecosystem functioning. Fully understanding the functioning of ecosystems and predicting their responses to environmental changes require incorporation of an evolutionary perspective, just as a complete theory of evolution cannot be achieved without consideration of ecosystem functioning.

The need for integration of population, community, ecosystem, and evolutionary ecology has been increasingly recognized during the last 20 years. There have been a number of attempts at doing so from a variety of perspectives, such as those provided by hierarchy theory (O’Neill et al. 1986), linking nutrient cycling and food webs (DeAngelis 1992), linking species and ecosystems (Jones and Lawton 1995), complex systems theory (Levin 1999; Solé and Bascompte 2006), linking biodiversity and ecosystem functioning (Kinzig et al. 2001; Loreau et al. 2002b), ecological stoichiometry across levels of biological organization (Sterner and Elser 2002), and the metabolic theory of ecology (Brown et al. 2004). Each of these perspectives has contributed to addressing part of the problem. But a broader synthesis of the various subdisciplines of ecology is still lacking.

But is such a synthesis possible, and what does it involve? There seems to be a proliferation of “unified theories” in ecology currently, which raises the question whether this is a feasible, or even desirable, enterprise. As a matter of fact, there are a number of different unifying approaches in ecology, each of which has both merits and limitations.

First are approaches that seek generalizations across hierarchical levels of organization based on elementary physical and biochemical constraints. Although there is a limited set of fundamental physical and biochemical laws that constrain all biological and ecological systems, their number is sufficiently large that a variety of unifying approaches have been developed historically. These include approaches based on energy and thermodynamics (energy budgets, entropy, metabolism, temperature, etc.), materials and biochemistry (ecological stoichiometry), structure and topology (fractals, network theory, etc.), and dynamics (complex systems theory, catastrophe theory, self-organized criticality, etc.). Each of them has made important contributions to ecology and other sciences by uncovering similarities in patterns and processes among vastly different systems, scales, and hierarchical levels of organization. Their limitations match up to their success. By focusing on one specific constraint or set of constraints, they explore that part of reality that can be explained by these specific constraints. For instance, the metabolic theory of ecology is able to account for a range of macroecological patterns related to body size and temperature (Peters 1983; Brown et al. 2004). This suggests that elementary physiological constraints related to body size and temperature are powerful enough to govern a number of large-scale ecological patterns. All patterns in ecology, however, cannot be reduced to the influence of body size, temperature, or physiology. Ecology is the science of the complex interactions that bind the organisms and their environment together. Simple physical and physiological laws cannot be expected to provide a full understanding of these complex interactions since they express general constraints that are independent of this complexity. Other forces and constraints govern many other ecological patterns and processes over a wide range of spatial and temporal scales.

Simplifying theories that link previously unrelated properties within a hierarchical level represent a second type of unifying approach in ecology. The “unified neutral theory of biodiversity and biogeography” developed recently by Hubbell (2001) and others is an example of such an approach. This theory radically simplifies the description of communities by assuming all species to be equivalent, and thereby obtains simultaneous predictions for a range of community properties that were previously described by different models. Its strength is that it provides a consistent set of testable predictions that can serve as null hypotheses in community ecology. Its corresponding weakness is that it deliberately ignores the many demographic and functional traits that determine the ecology of species, and hence it remains confined within a specific description of reality.

A third type of unifying approach in ecology, and in science in general, consists in merging the principles and perspectives of different disciplines to create a synthesis that goes beyond the boundaries of each discipline. This is the approach that I champion in this book, based on previous efforts by DeAngelis (1992) and others. In many ways this approach is orthogonal, and hence potentially complementary, to the previous ones. Instead of seeking generalizations within or across hierarchical levels based on a specific perspective and a specific set of constraints, I seek to lay bridges between different perspectives and different sets of constraints. Such an approach also has limitations since it cannot pretend to build a single unified theory of ecology. But I accept this limitation happily. In fact, I believe that a monolithic unified theory of ecology is neither feasible nor desirable. Natural systems are too complex to be reducible to a unique description. My goal is to generate new principles, perspectives, and questions at the interface between different subdisciplines and thereby contribute to the emergence of a new ecological synthesis that transcends traditional boundaries. Working along these lines leads to a range of theories on different topics, although these theories obviously have to be compatible and complementary.

Accordingly, this book is the expression of an evolving research program. In this book, I synthesize a decade or so of theoretical work at the interface between population, community, ecosystem, and evolutionary ecology and set it within a coherent framework. Many questions have found answers in this work, but many new questions have also emerged from these answers. The book addresses both the answers and the questions.

I start by revisiting the basic principles that underlie the approaches of population and ecosystem ecology in chapter 1 and show how mass and energy budgets can be used as a basis for unification of these approaches in building community and ecosystem models. Chapter 2 provides a synthesis of the many existing theories of species coexistence, with a focus on their often overlooked implications for community-level functional properties. This chapter covers a relatively classical topic in ecology, but it does so from a slightly different perspective than usual, and the material it contains serves as a basis for several subsequent chapters. The functional consequences of species coexistence are further discussed in chapter 3, which examines how species diversity within a trophic level—a community property that is increasingly threatened by human environmental impacts—affects ecosystem functioning. The relationship between biodiversity and ecosystem functioning has emerged as a vibrant new research field during the last 15 years or so and has greatly contributed to fostering the integration of community ecology and ecosystem ecology that I champion. As a result, this theme runs through the whole book.

Many of the studies on this topic, however, have considered artificially simple systems with a single trophic level, thus ignoring the vast complexity of real ecosystems with their myriad trophic and nontrophic interactions between species. Chapter 4 provides some theoretical foundations to start to address this complexity. It analyzes the relationships between species interactions, biodiversity, and ecosystem functioning in food webs and interaction webs. There has been a long-standing debate in ecology over the relationships between the stability and diversity or complexity of ecosystems. This debate has resurfaced recently within the context of biodiversity and ecosystem functioning research. Chapter 5 provides new perspectives on this topic by explicitly distinguishing and linking stability properties at the population and ecosystem levels.

Up to chapter 5, only part of ecosystem functioning is considered—usually biomass and productivity of one or several trophic levels. Chapter 6 extends the scope of analysis to the overall functioning of ecosystems. It presents a coherent theory of material cycling and of its role in ecosystem functioning and shows how and when an indirect mutualism between autotrophs and heterotrophs arises from nutrient cycling at the ecosystem level. Chapter 7 puts all these results into a spatial context. It examines how biodiversity, ecosystem functioning, and the relationship between them are affected by spatial flows of nutrients and individuals across ecosystem boundaries, and the constraints that arise from these flows in metacommunities and metaecosystems. Last, I explore the evolutionary dimensions of ecosystem functioning in chapter 8. This final chapter discusses how natural selection leads to evolution of ecosystems and ecosystem properties and provides rigorous bases for the development of a much needed evolutionary ecosystem ecology.

Throughout the book I make use of relatively simple mathematical models to build and support my theories. I limit myself to their most salient, clearly interpretable results, leaving more detailed treatment to specialized publications. As a result of this choice, I have decided to leave aside some important issues, such as the interactions between several limiting nutrients and their consequences for ecosystem functioning. Although I take an active interest in this topic, its theoretical treatment requires more complex, stoichiometrically explicit models, which are beyond the scope of this book. Sterner and Elser’s (2002) book provides a comprehensive overview of ecological stoichiometry, albeit from a more empirical perspective.

The book covers a wide range of topics. But these topics are strongly related to each other and follow a logical progression, from competitive communities, which are small subsets of ecosystems, to entire ecosystems, and from small scales to larger spatial and temporal scales. My book does not pretend to provide a comprehensive treatment of all the issues related to these topics, let alone a final resolution of these issues. Its main purpose is to show that merging the principles of population, community, evolutionary, and ecosystem ecology opens up new ways to look at reality, thereby offering new insights into a wide range of key issues in ecology and new theoretical weapons to face the mounting ecological crisis. I am convinced that we need a more synthetic ecology and hence a more synthetic ecological theory. If this book contributes to spread this conviction, I shall regard it as successful.


CHAPTER 1
Population and Ecosystem
Approaches in Ecology

Building a theory that merges population, community, and ecosystem ecology requires at the very least that the fundamental descriptions of reality provided by the various subdisciplines be compatible with each other. But meeting this basic requirement is far from being a trivial issue given the widely different conceptual foundations and formalisms used by population and community ecology on the one hand and by ecosystem ecology on the other. In this introductory chapter, I first briefly revisit the foundations and formalisms of the population and ecosystem approaches in ecology. I then show how mass and energy budgets can bridge the gap between them. Last, I present a minimal ecosystem model to illustrate how an approach based on mass and energy budgets can be used to build simple models that combine the flexibility of demographic models and the physical realism of ecosystem models. The approach developed in this chapter will be the basis for most of the models presented in the rest of the book.

THE FORMALISM OF POPULATION DYNAMICS: EXPONENTIAL AND DENSITY-DEPENDENT GROWTH

A population is a set of organisms from the same biological species in a given area. Since all individuals belonging to the same species are very similar to each other when considered over a whole life cycle, classical approaches to population ecology ignore variability among individuals and assume that these are identical. As a consequence, population dynamics focuses on changes in the number or density of individuals that make up the population. Thus, population ecology fundamentally has a demographic approach to reality, in which the basic unit of measurement is the individual.

Population dynamics is implicitly or explicitly based on the following balance equation, which tracks the fate of individuals from time t to time t + 1: In this equation, Nt is the number of individuals at time t, and B, I, D, and E are the numbers of births, immigrants, deaths, and emigrants, respectively, during the time interval from t to t + 1. The time unit is arbitrary; it may be a day, a year, or a generation, depending on the kind of organisms considered. This demographic balance equation simply states that the population at time t + 1 is the population at time t, plus the individuals that have been added to the population by birth or immigration, minus the individuals that have been removed from the population by death or emigration.
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In the simplest case, assume a closed population (no immigration or emigration), a constant environment, and density-independent growth; i.e., the per capita demographic parameters are independent of population density. In this case, I = E = 0, B = bNt, and D = dNt, where b and d are constant per capita birth and death rates, respectively. Equation (1.1) then reduces to the familiar equation

[image: ]

where λ = 1 + b − d is the finite rate of increase of the population.

This equation says that population size is multiplied by a factor A during each time unit. Starting from t = 0 and iterating the process over t time units yields
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Thus, the population is predicted to grow geometrically at a rate λ per time unit.

An identical prediction is obtained assuming that demographic processes are continuous instead of discrete in time, which leads to the following differential equation:
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where β, δ, and r are instantaneous per capita rates of birth, death, and population growth, respectively. This equation can be integrated to give
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which is identical to equation (1.3) with λ = er.
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FIGURE 1.1. Exponential and logistic population growth. Populations tend to grow exponentially in the absence of environmental constraints, but logistically up to a carrying capacity when resources are finite. The difference between the two growth curves (gray area) can be interpreted as the resistance of the environment to unlimited growth. The carrying capacity, however, is a phenomenological abstraction that stands for a wealth of undefined ecological factors.

This fundamental equation of population dynamics, which is also known as Malthus’s (1798) law, describes the inherent capacity of all organisms for exponential or geometric population growth (figure 1.1). Exponential population growth is a remarkably robust property as long as population processes are density-independent. It holds irrespective of spatial and temporal variations in demographic processes and population structure. If demographic processes vary in space or time, the finite and instantaneous population growth rates λ and r are simply replaced by appropriate spatial or temporal averages in equations (1.3) and (1.5). If age or stage structure is explicitly considered, the finite population growth rate A is obtained from the projection matrix that describes transitions of individuals among age or stage classes (Caswell 1989). Exponential growth has been shown in numerous laboratory and natural populations under conditions of unlimited resource availability or low population density. The global human population itself is roughly experiencing exponential growth. More details on this topic can be found in theoretical ecology textbooks (e.g., Case 2000).

The propensity of populations to grow exponentially is an expression of the autocatalytic nature of biological systems and represents a fundamental source of instability in ecological systems. Basically, all organisms multiply as much as they can—until something prevents them from continuing to do so. And that is where ecology comes into play. All organisms are embedded in a complex web of interactions with their environment, which includes other organisms as well as abiotic factors. As populations grow, they modify their own environment through these multiple interactions, which feeds back on their capacity to grow further.

Classical population ecology makes the simplest possible assumption regarding these environmental feedbacks: it assumes that they can be reduced to a dependence of demographic processes on the population’s own density. As the population grows, it progressively exhausts resources such as space, food, and nutrients, and as a result it decreases its potential to grow further. This convenient assumption eliminates the need to consider the complex web of interactions that organisms maintain with their environment and focuses on their net effect on the population variable under consideration. Density dependence is formally defined as a dependence of the per capita population growth rate on population density. In the continuous formalism of equation (1.4), which is the formalism that I shall use in most of this book, density dependence is expressed as
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with f’(N) ≤ 0; i.e., the per capita growth rate monotonically decreases as population size increases.

The simplest form for the density-dependence function f(N) is a linear form, which yields the classical logistic equation proposed by Verhulst (1838):
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In this equation, r, which is known as the intrinsic rate of natural increase, represents the maximum instantaneous population growth rate when population density is very low (close to zero), and K is known as the carrying capacity.

The logistic equation predicts a sigmoid growth pattern with a nearly exponential growth at low population size and a nearly exponential approach to a stable equilibrium population size equal to the carrying capacity (figure 1.1). This can be seen easily by noting that when population size is very small compared with the carrying capacity (N << K), the term in parentheses in equation (1.7) vanishes, and equation (1.4) describing exponential growth is recovered. On the other hand, when N approaches K, a first-order Taylor expansion of the right-hand side of equation (1.7) around K yields
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where n = N − K is a perturbation from the equilibrium value K. Thus, the logistic equation predicts an exponential decline of perturbations in the vicinity of the carrying capacity at the same rate as the exponential growth of population size at low density. In other words, density dependence stabilizes the population by counteracting its inherent tendency toward exponential growth and instability.

Logistic growth has been shown in numerous populations, especially in the laboratory under resource limitation. The reason why the logistic equation works so well under controlled laboratory conditions is simple: the linear density-dependence function in the logistic equation may be viewed as a first-order approximation to any form of density dependence. Logistic growth, however, is much less robust than density-independent exponential growth. Departures from the implicit assumptions of continuous demographic processes, constant environmental conditions, instantaneous operation of density dependence, and lack of population structure, can lead to periodic or chaotic population dynamics under logistic growth. These dynamical behaviors are qualitatively different from the stable equilibrium point predicted by the classical model. Again, more details on this topic can be found in theoretical ecology textbooks (e.g., Case 2000).

A more fundamental problem—from the perspective developed in this book—is that the density dependence included in the logistic equation in the form of the carrying capacity is a phenomenological abstraction. Parameter K is a condensed substitute for a wealth of factors and interactions that limit population growth, such as resources, competitors, mutualists, predators, parasites, and diseases. It is not even possible to disentangle the contributions of birth and death processes to density dependence in equation (1.7) since these are lumped into the parameters r and K.

Despite these limitations, the logistic equation has served as a basis for much of theoretical community ecology. The famous Lotka-Volterra models for interspecific competition or mutualism are direct extensions of the logistic equation in which the density-dependence function f(N) in equation (1.6) is simply expanded to become a linear function of the population sizes of other interacting species. The classical Lotka-Volterra model for predation does not include direct density dependence but is built on the same principle; i.e., per capita growth rates are linear functions of population sizes.

Although many refinements and developments have been added to the theoretical corpus of community ecology, community ecology is largely an outgrowth of population ecology in its conceptual and methodological foundations. Most dynamical models in community ecology are based on a demographic approach that implicitly takes into account demographic balance constraints of the kind encapsulated in equation (1.1), but they ignore explicit physical constraints such as mass and energy balance (although there are exceptions, of course). As a result, community ecology has a strong focus on the structure, dynamics, and complexity of ecological systems, but it generally does not consider their overall functioning.

THE FORMALISM OF ECOSYSTEM FUNCTIONING:
MASS AND ENERGY FLOWS

Ecosystem ecology does not have a simple fundamental law equivalent to the Malthusian law of exponential growth in population dynamics. Consequently, the approaches developed to model ecosystems have been somewhat more variable than in population ecology. The simplest and most common approach, however, has been that of compartmental modeling, which was pioneered by Lotka (1925). Ecosystem ecology is mainly concerned with the stocks and fluxes of materials or energy through the system as a whole, and this is explicitly what compartmental models represent. A compartmental model describes a set of compartments, the size of which is measured by the stock of materials or energy they contain, which are connected by fluxes of materials or energy. Mass or energy balance is explicitly taken into account in the description of these fluxes.

The basic building block of these models is a single-compartment model open to material or energy exchanges with the outside world. As an example borrowed from DeAngelis (1992), take a water body with a constant volume V that contains a solute of concentration C, and through which water flows at a constant rate q’ per unit time, and let CI be the solute concentration in the inflowing water. The principle of conservation of mass states that the rate of change of the mass of solute in the compartment equals the rate at which mass enters that compartment minus the rate at which mass leaves that compartment. Since the mass of solute in the compartment is CV, this principle is expressed in the following dynamical equation:
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Dividing both sides by the constant volume V and rescaling the water flow rate as q = q′/V yields
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which has the solution
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This solution shows that the solute concentration in the water body tends asymptotically to the concentration in the inflowing water (the second term on the right-hand-side tends to zero as time goes to infinity, which leaves C = CI) and that the deviation between the initial (Co) and final (CI) concentrations declines exponentially with time at a rate q. Thus, this system smoothly approaches a stable equilibrium concentration set by the inflowing water, at a rate governed by water flow. The water flow rate q sets the characteristic time of the system. It measures the rate at which the system approaches its equilibrium, which is one common measure of resilience (DeAngelis 1992). It also determines the mean residence time of the solute in the compartment, also called the turnover time of the system, which is obtained as the ratio of the equilibrium mass of solute (CIV) over the equilibrium mass flow of solute (q’CI = qCIV), i.e., 1/q.

This single-compartment model can easily be generalized to an arbitrary number of compartments coupled by material or energy flows. Take, for example, an ecosystem with two compartments 1 and 2, in which compartment 1 (say, plants) receives an input of a material such as carbon, part of the carbon contained in compartment 1 is transferred to compartment 2 (say, animal consumers) through some trophic interaction, and both compartments lose carbon to the external world through respiration or some other interaction (figure 1.2). Call Xi the carbon stock of compartment i, fij the rate at which a unit of carbon is transferred from i to j, with 0 standing for the external world, and I01 the input of carbon to compartment 1 per unit time. The principle of conservation of mass then yields the following system of differential equations:
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This system can be rewritten in matrix form as
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FIGURE 1.2. An abstract two-compartment ecosystem model. Circles represent energy or material stocks, while arrows represent energy or material flows.

where
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It is not difficult to show that this coupled system has similar properties as the previous single-compartment system. The equilibrium values (which will be denoted by an asterisk in this book following common usage) of the carbon stocks of the two compartments are easily obtained by setting the time derivatives equal to zero in equations (1.12) and solving for X*1 and X*2:
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These equilibrium stocks are proportional to the carbon input into the system as before. The stability of the system is now governed by the eigenvalues of matrix F, which contains the rate constants of carbon flows (except for the carbon input, which is independent of the system’s dynamics). These eigenvalues can be shown to be both real and negative, thereby ensuring that the equilibrium is asymptotically stable (May 1973; Puccia and Levins 1985).

In contrast to population dynamical models, compartmental models used to describe mass and energy flows in ecosystems seem to be particularly stable and well behaved. This is, however, a consequence of the implicit or explicit assumptions about the physical constraints that govern these systems. For instance, the above single-compartment model is really a physical model based on the assumption that water flow drives the dynamics of the solute. The two-compartment ecosystem model assumes that carbon flows are either constant (driven from outside) or linear functions of internal carbon stocks, which erases the complexity of biological interactions that might be involved in these transfers. Thus, the smooth behavior of ecosystem models is often a consequence of the perspective adopted by ecosystem modelers. Ecosystem ecology has traditionally been concerned with predictable whole-system functional processes, ignoring much of the diversity and dynamical complexity of the organisms that constitute them. Some have even argued that linearity is an intrinsic property of ecosystem processes (Patten 1975), but this is a viewpoint that cannot be taken at face value. We shall return to this issue of the stability and predictability of ecosystem processes with new insights derived from more rigorous theory in chapter 5.

MASS AND ENERGY BUDGETS AS A BASIS FOR UNIFYING
POPULATION AND ECOSYSTEM APPROACHES

The demographic and functional perspectives offered by population and ecosystem ecology are rooted in different concepts and principles. But, clearly, population dynamics has to be compatible with the physical principles of conservation of mass and energy, just as ecosystem functioning has to be compatible with the demographic law of exponential growth. How, then, can we lay a bridge between these two approaches?

Ecosystem ecology is essentially a physiology of ecological systems. It analyzes the functioning of an ecosystem in ways similar to those of physiology for individual organisms. In particular, ecosystem ecology and eco-physiology share the concepts of mass and energy budgets as tools for understanding the acquisition, allocation, and disposal of materials and energy in the metabolism and life cycle of both organisms and ecosystems. On the other hand, growth and reproduction are the two processes at the individual level that are responsible for population growth, and these processes place high demands on energy and materials in the metabolism of individual organisms. Thus, the unification of population and ecosystem approaches should be rooted in the ecophysiology of organisms, in particular, in the constraints that govern the acquisition, allocation, and disposal of materials and energy.

The realization that generic physiological constraints should act across all levels of biological organization is the basis for the recent development of two successful areas of ecology, i.e., ecological stoichiometry and metabolic theory. Ecological stoichiometry studies the balance among the chemical elements that make up living organisms (in particular, carbon, nitrogen, and phosphorus) and the constraints it generates for the functioning of biological systems, from cells to ecosystems (Sterner and Elser 2002). It is based on simple, fundamental physical and physiological laws, i.e., the conservation of mass and the homeostasis of living beings. The metabolic theory of ecology (Brown et al. 2004) is a quantitative theory that seeks to explain how metabolism varies with body size and temperature (essentially at macroecological scales) and constrains ecological processes at all levels of organization, from individuals to ecosystems. It is also based on simple constraints that govern the allocation of energy and materials in organisms.

The processing of energy and materials by individual organisms similarly constrains demographic processes at the population level. In principle, it should be possible to trace demography back to the mass and energy budgets of the individual organisms that make up the population. Energy budgets have been widely studied, especially in animals (Petrusewicz and Macfadyen 1970; Kooijman 2000). I am not so much interested here in the details of these budgets as in establishing simple approximate relationships between the parameters of classical population models and the components of these budgets. There have been several attempts to do so in the past (see Yodzis and Innes 1992 and references therein).

Here I start with a typical animal energy budget, which has the form (Petrusewicz and Macfadyen 1970)
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The amount of energy ingested by the organism (consumption, C) during some time period can be divided into a part that is assimilated (assimilation, A) and a part that is not. Nonassimilated energy is rejected without being digested (egestion, Eg) and corresponds to feces in animals. Assimilated energy is used for production of new tissues (growth) and new individuals (reproduction) (combined in production, P), respiration (R), and excretion of urine or other metabolic products (Ex). These elements of the energy budget are commonly used to define three measures of an organism’s energetic efficiency: assimilation efficiency (A/C), gross production efficiency (P/C), and net production efficiency (P/A).

All the elements of the energy budget do not respond in the same way to increased food consumption (C). Part of the energy dissipated in respiration, and to a lesser extent in excretion and egestion, is used for basal metabolism, i.e., for the fixed energy costs of a living organism. Therefore, it is essentially constant. When food consumption is insufficient to match basal metabolism, the organism loses weight and eventually dies. Its production is then negative. When food consumption is greater than basal metabolism, the excess energy is used in positive production and active metabolism. These then increase roughly in proportion to consumption above the threshold consumption necessary to compensate for basal metabolism (Warren 1971).

These empirical relationships can be expressed mathematically as follows. Call B biomass and μ. the mass-specific basal metabolic rate. Then if consumption is insufficient to match basal metabolism (C ≤ μB), R + Ex + Eg = μB, and by the conservation equation (1.15),
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On the other hand, if food consumption is greater than basal metabolism (C > μB), the excess, C − μB, is used in active metabolism, a fraction of which is invested in production. Then
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where ɛ is the gross production efficiency for that part of consumption in excess of basal metabolism.

Since energy production is used for building new biomass, whether in the form of individual growth or reproduction, the contribution of the individual organism to the growth of biomass at the population level is P/γ, where γ is the energetic content of a unit biomass. Equation (1.17) can be scaled up to the population level if we make the simplifying assumption that all individuals are identical, as in classical population dynamical models. Subtracting losses due to mortality then yields
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where δ is the mass-specific death rate. In this equation I assume that C > μB, and hence production is positive, which holds as long as the population is not abruptly declining from starvation.

Consumption itself is a dynamical function of resource availability, which is described traditionally by the consumer functional response (Holling 1959). Let the consumer functional response to variations in the biomass of their resources, R, be defined here in the form of a mass-specific function f(R). Further assume for simplicity that resources have the same energetic content γ as consumers. Energy consumption by the consumer population is then γf(R)B. Substituting this expression into equation (1.18) yields
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where m = ɛμ/γ + δ is a mass-specific loss rate which measures the long-term maintenance cost of a unit biomass, including both basal metabolism and mortality. This equation has the same form as that used in classical population dynamics to describe the dynamics of a consumer population. Therefore, it provides an explicit link between the functional approach used in ecosystem ecology and the demographic approach used in population and community ecology.

This simple equation provides a number of valuable insights. In particular, note that it has a structure similar to that of equation (1.4). Thus, it predicts exponential growth of the consumer population as long as its resources are abundant and roughly constant. Population regulation, however, is included indirectly in this equation through the consumer functional response since resource biomass R is a variable that decreases as the consumer population increases. There is no need to add density dependence in the form of a carrying capacity: density dependence arises spontaneously through the dynamics of the resources.

Equation (1.19) also yields insights into the functional meaning of traditional demographic parameters. Of special interest is parameter m, the mass-specific loss rate, which is often interpreted as a mortality rate. This rate, however, includes both death due to starvation (failure to meet basal metabolism) and natural death from other causes. Population or community ecologists sometimes assume implicitly that the per capita death rate in their models represents natural death, but this rate may differ by several orders of magnitude from the rate at which individuals die once they are deprived of food. For instance, in humans, the life expectancy of well-fed individuals is about 70 years, but that of starved individuals is only a few weeks—a difference of more than three orders of magnitude! This shows that a functional perspective is important to avoid misinterpreting demographic parameters.

Note also, for terminological clarity, that the coefficient ɛ in equation (1.19) has often been interpreted as the consumer’s energy assimilation efficiency in the ecological literature (e.g., DeAngelis 1975; Yodzis and Innes 1992). The above derivation, however, shows that it actually represents its gross production efficiency for that part of consumption in excess of basal metabolism. I shall call it “production efficiency” in short in later chapters, although it does not correspond exactly to the definition of production efficiency in the energy budget literature.

As with any model, the great strength of a simple equation such as (1.19) is that it provides simple predictions and clear interpretations. Its corresponding weakness, of course, is that it does not provide a complete description of reality. Two important limitations need to be discussed here because they can have significant consequences for the dynamics of the model populations, communities, and ecosystems built on this equation.

First, equation (1.19) is based on the simplifying assumption that functional and demographic processes in the consumer population, such as consumption and mortality, are proportional to consumer biomass. Some authors (e.g., Owen-Smith 2002) have argued that the rate of death due to starvation should be a nonlinear function of food consumption because mortality increases steeply as food consumption decreases. In fact, a comparison of equations (1.16) and (1.17) shows that both the growth and loss terms in equation (1.19) should increase by roughly a factor 1/e when most of the population starves. Although the assumption of a constant mass-specific loss rate is obviously a simplification—as is any other feature of equation (1.19) or of any other model—it is nevertheless a reasonable one at the population level as long as starvation is not acute, because the dependence of net population growth on resource availability is already captured in the consumption term. When resource availability R is insufficient for consumption to compensate for maintenance costs [ɛf(R) < m], the net population growth rate becomes negative, which amounts to an abrupt switching from growth to decline at the population level. A much stronger assumption is the lack of dependence of the mass-specific rates on population density or biomass in equation (1.19), which amounts to assuming that there is no interference among consumers, whether in the consumption or in the mortality process. There is no doubt that mutual interference does exist and can affect the dynamics of populations and communities qualitatively (DeAngelis et al. 1975; Arditi and Ginzburg 1989). Its prevalence and strength in nature, however, are controversial (Abrams and Ginzburg 2000), and its incorporation in population or ecosystem models complicates their analysis considerably. For the sake of simplicity, I shall accept in most of this book the traditional assumption that interference is negligible in trophic interactions.

Second, I have made explicit above another important assumption that is implicit in simple population dynamical models; i.e., all individuals are identical. This assumption is made for convenience because populations, or even whole functional groups (groups of species with similar functional roles in the ecosystem), will often be the basic unit in my representation of communities and ecosystems. This assumption is valid only to the extent that variation among individuals within a species or functional group is smaller than variation among species or functional groups. Alternative approaches when variation among individuals is significant include individual-based models (Huston et al. 1988; DeAngelis and Gross 1992) and physiologically structured population models (Metz and Diekmann 1986; De Roos et al. 2003). These approaches have greater realism and flexibility, but they are also more complex and parameter-rich. Accordingly, they are generally applied to more specific situations in which detailed information on individual behavior and ontogeny is available and plays an important role in population dynamics. I shall ignore individual variability within populations in the rest of this book.

Last, I have provided a functional derivation and interpretation of the demographic equation (1.19) above based on animal energy budgets. Most of the models that I shall present in this book, however, will involve plants as the basal living compartment of ecosystems and will be based on mass budgets tracking the fate of limiting nutrients. It is straightforward to generalize the above approach to these situations. Plant energy budgets are traditionally defined differently than animal energy budgets, but they comprise essentially the same elements. Evapotranspiration is the part of the absorbed energy that is not assimilated by plants and thus is the functional equivalent of egestion in animals. Gross primary production and net primary production in plants correspond to assimilation and production, respectively, in animal energy budgets. Excretion is often ignored in plant energy budgets; it is implicitly regarded as a loss to net primary production.

Mass budgets have been less studied than energy budgets. For elements other than carbon, the main difference is that there is no equivalent for respiration. Otherwise, similar derivations of population-level dynamical equations are possible in principle for nutrients just as for energy. Primary production is thought to be limited by nitrogen or phosphorus in most ecosystems. Since nitrogen and phosphorus are not directly involved in the chemical reactions of photosynthesis and respiration, I shall assume in the rest of this book that the uptake of limiting nutrients by plants is proportional to net primary production, which is the equivalent of production (plus excretion) in animal energy budgets since these nutrients are used for growth and reproduction. Mass and energy transfers are simultaneous in animals since consumed food contains both energy and materials. Therefore, equations similar to equation (1.19) can be derived for the dynamics of nutrient stocks in animal populations.

A MINIMAL ECOSYSTEM MODEL

The above population dynamical model based on mass or energy budgets suggests a simple way to build ecosystem models that satisfy both the physical laws of conservation of mass and energy and the demographic law of exponential growth at low population density or high resource availability: use the formalism of compartmental models but allow the dynamics of each compartment to be nonlinear functions of compartment sizes. All the complexity of biological interactions can be included in ecosystem models using this simple rule.

As the simplest possible application of this approach, consider a nutrient-limited ecosystem in which there is a single plant compartment with size P and an inorganic nutrient compartment with size N (H. T. Odum 1983). The size of each compartment is here measured by its nutrient stock. Assume that the ecosystem has a closed nutrient cycle (no input or output of nutrient) and that nutrient uptake by plants follows the law of mass action, i.e., is proportional to the product of P and N, as in standard Lotka-Volterra models (which corresponds to the linear part of a Holling type-1 functional response). The dynamics of the system can be written as
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where u is the rate of nutrient uptake by plants per unit time per unit mass of nutrient, and m is the turnover rate of nutrient in plants due to basal metabolism and mortality.

Since the nutrient cycle is closed, any inflow to one compartment is an outflow from the other compartment, so that the equations for P and N are mirror images of each other. Summing the two equations, we see that the total quantity of nutrient in the system, P + N, is a constant, which I call Q:
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This conservation equation can now be used to substitute Q − P for N in the first of equations (1.20), yielding
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where r = uK, and K = Q − mlu.

This is nothing else than the familiar logistic equation of population dynamics. Thus, we see that the logistic equation can be obtained as the result of explicit nutrient limitation in a closed ecosystem. On a more technical note, notice how the mass conservation constraint in a closed ecosystem reduces the effective dimensionality of the corresponding dynamical system (here, from two- to one-dimensional). Although incorporation of explicit ecosystem-level constraints may make population and community models look more complex at first sight, it may actually simplify their analysis under some conditions, just as incorporation of explicit resource dynamics may simplify the analysis of models of exploitation competition (Tilman 1982; Grover 1997). The reduction in dimensionality that results from incorporation of ecosystem-level mass-balance constraints is a trick that has been used in a number of theoretical studies in community and ecosystem ecology (e.g., Grover 1994; Holt et al. 1994; Loreau 1995).
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FIGURE 1.3. A minimal open, nutrient-limited ecosystem model. Circles represent nutrient stocks, while arrows represent nutrient flows.

The assumption of complete ecosystem closure to material exchanges with the outside world is of course unrealistic. A minimal ecosystem model that accounts for nutrient exchanges across ecosystem boundaries can be constructed as follows (figure 1.3). Assume that the inorganic nutrient pool is supplied with a constant input / of nutrient per unit time through processes such as water flow, dry deposition, and rock weathering and loses nutrient at a rate q per unit time through processes such as water flow, leaching, and volatilization. A fraction A of nutrient is also lost from the ecosystem once released by plants, either before (e.g., through fire) or during (e.g., through leaching) the decomposition process. Let f(N) denote the functional response of plants to nutrient availability and let m denote the rate at which they release nutrient because of basal metabolism and mortality as before. The resulting ecosystem model is a nonlinear version of the abstract two-compartment model depicted in figure 1.2.

The diagram depicting these processes (figure 1.3) translates into mathematical equations by applying the principle of mass conservation and setting the time derivative of compartment size equal to the sum of inflows minus the sum of outflows for each compartment. This provides the set of equations
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In the long run, this dynamical system reaches an equilibrium. This occurs when inflows balance outflows for each compartment, and hence the time derivatives in equations (1.23) vanish. Solving the resulting mass-balance equations provides the equilibrium nutrient stocks (denoted by an asterisk as before)
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where f−1 denotes the inverse function of f, the plant functional response. It is easy to check, using standard graphical or mathematical analyses, that this equilibrium is always stable (May 1973; Puccia and Levins 1985).

Although the dynamics of this system can no longer be reduced to a simple logistic equation for plants as with model (1.20), indirect density dependence of plant growth also occurs through nutrient limitation in this case, leading to regulation of plant nutrient stock (and hence biomass) around an equilibrium value or “carrying capacity.” This carrying capacity [equation (1.24)] is now determined by the parameters that govern the plant-nutrient interaction and by the parameters that govern nutrient exchanges across ecosystem boundaries.

Model (1.23) also allows analysis and prediction of primary production. Since net primary production generally increases in proportion to plant nutrient uptake, the nutrient flow corresponding to plant nutrient uptake, f(N)P, can be used to measure net primary production, Φp At equilibrium, the latter is simply
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This equation is easily interpreted. The numerator on the right-hand side of this equation is the excess of inflow of inorganic nutrient over its outflow at equilibrium; therefore it represents the net supply of nutrient in inorganic form available to plants at equilibrium. The denominator measures the fraction of nutrient lost from the plant compartment. Thus, equilibrium primary production is the product of two terms: (1) the net supply of the limiting nutrient, and (2) the efficiency with which this limiting nutrient is conserved by plants within the ecosystem (as measured by the inverse of λ). Equilibrium plant biomass [equation (1.24)] is then obtained simply by dividing primary production by the turnover rate of nutrient in plants. The implications of these equations will be further discussed in chapter 6.

CONCLUSION

Although the conceptual and formal foundations of population dynamics and ecosystem functioning are very different, both are related, directly or indirectly, to the mass and energy budgets of individual organisms. The dynamics of a species’ biomass is determined by the way individuals allocate the nutrients and energy they consume to various physiological and behavioral processes, which allows the demographic parameters of population dynamics to be given a functional interpretation in terms of mass and energy flows. In turn, the flows of mass and energy in an ecosystem are determined by the population dynamics and interactions of its component species, which makes it possible to incorporate the complexity of demographic processes in the functions that govern mass and energy flows. Consistent models that merge the community and ecosystem perspectives can then be obtained by coupling the formalism of compartmental models borrowed from ecosystem ecology and the versatility of nonlinear functions that determine mass and energy flows borrowed from population and community ecology.

Armed with these principles and methods, we may now examine more thoroughly the processes involved in the organization of ecosystems, and the causes and consequences of community-level processes such as biodiversity changes and species interactions within ecosystems.


CHAPTER 2
The Maintenance and Functional
Consequences of Species Diversity

The core of community ecology is concerned with the question: why are there so many species on Earth? The tremendous diversity of life despite common constraints on the physiology and ecology of organisms is one of the hallmarks of living systems. Community ecology seeks to explain the maintenance of species diversity within ecological systems very much like population genetics seeks to explain the maintenance of genetic diversity within species. A large part of this diversity can be explained by geographical differences in environmental conditions across the globe and by historical circumstances. Many species and genetic variants, however, coexist in any given place and at any given time. Why do so many species and types coexist?

There are two main components to local species diversity, which I shall call vertical and horizontal, respectively. Vertical diversity is the diversity of functionally different types of organisms as defined by their trophic relationships or by other, nontrophic interactions (trophic levels, guilds, functional groups). The term “vertical” comes from the traditional representation of food chains in the form of vertical chains with plants at the bottom and carnivores at the top. By contrast, horizontal diversity is the diversity of species within trophic levels or functional groups. Vertical diversity concerns food webs and interaction networks and will be addressed in chapter 4. In this chapter I shall focus on the maintenance of horizontal diversity within ecological communities.

Explaining the coexistence of species with similar functional roles, or ecological niches, is the subject of competition theory. Competition theory is initially an extension of the theory of density dependence in population dynamics, in which intraspecific competitive interactions among individuals of a single species are extended to include interspecific competition among individuals of different species. This theory, however, has expanded considerably during the last 40 years to become a huge research field which has itself proliferated into a diversity of often competing theories.

My objective in this chapter is not to provide an exhaustive review of these theories, an enterprise that would be beyond the scope of this book. My objective is rather to examine their foundations in order to make sense of their commonalities and differences and understand their consequences for the functioning of communities and ecosystems. Competition theory is key to establishing a transition from populations to ecosystems because it deals with the first step in this transition; i.e., it links populations and aggregate community properties within functional groups. The second step in this transition is to link functional groups and overall ecosystem functioning, a step that will be made later in chapters 4 and 6. Therefore, although the present chapter does not deal with ecosystem functioning strictly speaking, the material it contains serves as a basis for subsequent chapters. In particular, it serves as a direct introduction to the next chapter, which examines the relationship between biodiversity and ecosystem functioning in simple systems with a single trophic level.

NICHE THEORY AND THE COEXISTENCE OF SPECIES IN HOMOGENEOUS ENVIRONMENTS

PHENOMENOLOGICAL MODELS

Phenomenological models are models that describe a phenomenon without explicit consideration of the mechanisms that generate this phenomenon. These models may be very apt at reproducing an observation, but they usually have limited predictive power outside the conditions that gave rise to this observation. The classical Lotka-Volterra competition model (Lotka 1925; Volterra 1926) is an example of this phenomenological approach. Although this model can be given a number of different mechanistic interpretations (some of which will be presented later in this chapter), it is not tailored to represent any specific mechanism a priori. In fact, it is a straightforward extension of the logistic equation to interspecific competition. Just like the logistic equation, it is based on a linear approximation to any function describing the dependence of the per capita population growth rate on the densities of the S species in competition:
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In this equation, Ni is the population size of species i, ri is its intrinsic rate of natural increase, Ki is its carrying capacity, and αif are competition coefficients. All variables and parameters have the same meaning as in the logistic equation, except for the competition coefficients. The latter are defined such that αif measures the competitive effect of species j on species i relative to the competitive effect of species i on itself. By this definition, the intraspecific coefficients αii = 1, and the logistic equation is recovered when only intraspecific competition occurs.

The behavior of the Lotka-Volterra model is well known for two competing species and can be found in any ecology textbook. The two-species model can be analyzed using an isocline analysis, i.e., a graphical analysis that portrays the curves for which population growth is zero for the two species (known as null isoclines or zero net growth isoclines) in the phase or state plane (N1, N2). Each species has two null isoclines in this plane: Ni = 0, and Ni = Ki − αifNj, which are the two solutions of equation (2.1) when the population growth rate of species i is set to zero (dNi/dt = 0). It is easy to see from equation (2.1) that the population growth rate of species i is positive below the nontrivial isocline Ni = Ki − αifNj and negative above it. This allows four types of asymptotic behaviors to be identified depending on the respective positions of the two nontrivial isoclines: (1) competitive exclusion of species 1 by species 2; (2) competitive exclusion of species 2 by species 1; (3) competitive exclusion of either species 1 or species 2 depending on initial conditions (with an unstable internal equilibrium point and two alternative stable states); and (4) stable coexistence of the two species. The configuration that leads to stable coexistence is shown in figure 2.1. In this configuration, the two nontrivial isoclines intersect in the positive quadrant, which ensures a feasible internal equilibrium point, and the isocline of species 1 has a steeper slope than that of species 2, which ensures convergence of the system’s trajectories toward the internal equilibrium. For this configuration to occur, it is necessary and sufficient that the y-intercept of the isocline of species 1 be greater than that of species 2 (K1/α12 > K2) and that the reverse be true for the x-intercepts (K2/α21 > K1), which can be combined in the double inequality
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where x = K2/K1.

This condition for stable coexistence can be broken down into two distinct conditions:


	a feasibility condition bearing on the ratio K2/K1, which ensures that the internal equilibrium exists (this ratio must be comprised in the interval [α21, 1/α12]);
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FIGURE 2.1. Stable coexistence and overyielding in the classical Lotka-Volterra competition model. Stable coexistence occurs when the null isoclines of the two species intersect as shown in the figure, which requires K2/α12 > K2. and K1/α12 > K2. The stable equilibrium point (N*1, N*2) then lies above the line RYT = 1 (dashed line) that connects the two monoculture equilibria (K1, 0) and (0, K2), which ensures overyielding. Reprinted from Loreau (2004).


	a stability condition bearing on the competition coefficients (which determine the slopes of the isoclines), which ensures that the system converges to the internal equilibrium if it exists. This stability condition, which involves the two extreme terms in inequality (2.2), can be written as
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Since the intraspecific competition coefficients are set equal to 1 by definition, the stability condition states that interspecific competition (as measured by the geometric mean of the interspecific competition coefficients) must be smaller than intraspecific competition. Because of its intuitive biological interpretation, it is essentially this condition that attracted the attention of experimental, empirical, and theoretical ecologists during the development of competition theory in the 20th century. Gause (1934), in his classical experimental tests of the Lotka-Volterra model, had already supposed that the strength of interspecific competition was related to niche overlap, specifically overlap in resource use. This intuition allowed him to confirm the stable coexistence of competitors under the conditions predicted by the model. Combined with Volterra’s (1926) mathematical proof, this led to formulation of the celebrated competitive exclusion principle (Hardin 1960), which states that two species that occupy the same ecological niche cannot coexist indefinitely. As a matter of fact, Gause’s experimental work did not provide strong evidence for this principle because mechanisms other than niche differentiation might have operated. But many other experiments have since confirmed it in constant, homogeneous environments under laboratory conditions (Arthur 1987).

The full condition for stable coexistence [inequality (2.2)], however, requires both interspecific competition to be smaller than intraspecific competition (stability condition) and the carrying capacities of the two species to be sufficiently similar to each other (feasibility condition). Thus, two types of mechanisms are involved in stable coexistence: equalizing and stabilizing mechanisms (Chesson 2000b). Equalizing mechanisms reduce the magnitude of the fitness difference between species (here determined by their carrying capacities), while stabilizing mechanisms concentrate intraspecific effects relative to interspecific effects. The two mechanisms must be present simultaneously to ensure stable coexistence.

As in any approach, the phenomenological approach, of which the Lotka-Volterra model is an archetype, has both strengths and weaknesses. Its main strength lies in its generality: since it ignores specific mechanisms, it may serve as an approximation to many different systems. In particular, the above stability condition carries over to the local stability of equilibrium points in more complex models.1 The corresponding weakness of the Lotka-Volterra model is that it is not truly predictive. Parameter estimates are necessary to predict the outcome of interspecific competition between any two species. While intrinsic rates of natural increase and carrying capacities can be estimated from single-species measurements, competition coefficients cannot. Therefore, there is no way to predict a priori the outcome of a competition experiment; the model can only be fitted to the observations a posteriori.

Another, related weakness of the Lotka-Volterra model is that, just like the logistic equation of which it is an extension, it ignores mass and energy balance constraints and hence says nothing about functional processes such as consumption and production which would allow making explicit predictions on the consequences of interspecific competition for ecosystem functioning. The model, however, does make simple, powerful predictions regarding population size and hence biomass at the community level.

For organisms such as annual plants in which yearly peak biomass is fairly well correlated with yearly production, this provides a valuable opportunity to explore ecosystem-level impacts of competition (Loreau 2004).

The theory of plant competition experiments developed in agricultural sciences provides a criterion to assess whether a mixture of two plant species shows overyielding, i.e., whether it yields more than expected based on their yields in monoculture (De Wit 1960; De Wit and van der Bergh 1965). If the two species use the same resource without niche differentiation, the increase in the yield of one species should be accompanied by a corresponding decrease in the yield of the other species, such that their relative yield total (RYT) is constant and equal to 1:
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where N1 and N2 are the respective yields of species 1 and 2 in mixture, and K1 and K2 are their yields in monoculture.

When yield is simply measured by biomass, as is often done in annual plants, a graphical analysis shows easily that the equilibrium point corresponding to stable coexistence in the system lies above the straight line RYT = 1 that connects the two monoculture equilibria (K1, 0) and (0, K2) (Vandermeer 1989) (figure 2.1). Thus, stable coexistence necessarily implies RYT > 1, and hence overyielding, in the Lotka-Volterra model. Interspecific competition between species that have the potential to coexist owing to some form of niche differentiation leads to a community that yields more biomass than expected from the properties of its component populations. In other words, niche differentiation provides the basis for functional complementarity between species.

Overyielding, however, does not necessarily imply that the mixture outperforms the highest yielding monoculture, a phenomenon known as transgressive overyielding. Assume, without any loss of generality, that species 2 has the highest carrying capacity; i.e., x ≥ 1 in inequality (2.2). Transgressive overyielding then occurs at equilibrium in the Lotka-Volterra model when
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The equilibrium values N1* and N2* are easily obtained by solving equations (2.1) after setting the time derivatives to zero. Substituting them into inequality (2.5) yields
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FIGURE 2.2. Stable coexistence in a model with convex nonlinear null isoclines (solid lines). In this case, the stable equilibrium point (N1*, N2*) may lie below the line RYT = 1 (dashed line) that connects the two monoculture equilibria (K1, 0) and (0, K2). Reprinted from Loreau (2004).

Since the second term in parentheses on the left-hand side of (2.6) is positive by inequality (2.2), this condition reduces to
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It is straightforward to show that the coexistence condition (2.2) also necessarily implies α12 < 1 and hence overyielding of the poorest yielding monoculture by the mixture. But it does not necessarily imply α21 1 and hence overyielding of the highest yielding monoculture by the mixture. As equation (2.7) shows, transgressive overyielding further requires that interspecific competition be smaller than intraspecific competition in both species. This in turn requires stronger niche differentiation than is required for stable coexistence and nontransgressive overyielding since the latter are compatible with α1 > 1.

Unfortunately, these conclusions obtained for the Lotka-Volterra model do not easily extend to more complex competition models. As mentioned above, the Lotka-Volterra model may be viewed as providing a linear approximation of per capita population growth rates, which may more generally be nonlinear. It is this linearity of per capita population growth rates that generates the linearity of the null isoclines (figure 2.1). Convex nonlinear isoclines allow stable equilibrium points to lie on or below the straight line RYT = 1 that connects the two monoculture equilibria (figure 2.2). Under these conditions, stable coexistence may entail absence of overyielding, or even underyielding. Convex nonlinear isoclines were demonstrated in a Drosophila experimental system precisely to explain why stable coexistence is compatible with underyielding and why this does not invalidate competition theory (Gilpin and Justice 1972). How frequent they are in nature is still largely unknown.

Overyielding has been extensively used and much debated within the context of recent experiments on the functional consequences of biodiversity for ecosystem functioning, which will be considered in the next chapter.

MAC ARTHUR’S NICHE THEORY

Overcoming the limitations of phenomenological models requires mechanistic approaches, i.e., approaches that explicitly consider the lower-level processes that generate the phenomenon considered (Schoener 1986). There are two main such approaches for interspecific competition, both of which concern exploitation competition, i.e., mutual negative effects among consumers that arise from exploitation of a joint array of resources. The first, which I shall examine in this section, is the niche theory developed by MacArthur and Levins (1967), Levins (1968), and MacArthur (1969, 1970, 1972); the second, which I shall consider in the following section, is the theory of limiting resources.

MacArthur’s niche theory is a very elegant and powerful theory that applies to consumers that exploit and partition a set of substitutable resources along a resource gradient. The elegance and power of this theory comes from the fact that it addresses not only the composition of communities (what combinations of species win the competition) but also potentially their structure (niche structure, species abundance patterns) and functioning (energy flow). Since plants use nonsubstitutable, essential resources, this theory was developed mainly for animals. Indeed, most of the examples used by MacArthur concerned birds or lizards, which partition food along a body size gradient. In my brief presentation of the theory, I follow Gatto (1990), who generalized MacArthur’s (1969, 1970, 1972) minimum principle for competitive communities.

The theory starts with an explicit representation of the dynamics of consumer-resource interactions. Let Ni be the abundance of consumer species i, and R(z) the abundance of resources along a continuous gradient z, which measures, say, body size, or any other continuous trait of resources that allow consumers to discriminate among them. Assume that resources have logistic growth in the absence of consumers, resources are substitutable (such that their consumption rates by each consumer are additive), and consumers have simple linear functional responses (corresponding to the linear part of a type-1 functional response, as in Lotka-Volterra models). The dynamics of consumer-resource interactions can then be written as
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FIGURE 2.3. MacArthur’s niche model based on explicit consumer-resource dynamics. The niches of consumer species i and j are described by their consumption functions ai(z) and aj(z) along the resource gradient z. The intrinsic rate of natural increase, ρ(z), the carrying capacity, κ(Z), and the energy content, γ(z), of resources may also vary along the gradient.
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where

ρ(z) = intrinsic rate of natural increase of resource type z,

κ(Z) = carrying capacity of resource type z,

αi(z) = consumption rate of resource type z by a consumer of species i,

ηi = coefficient of conversion of the energy consumed by consumer species i into new offspring,

γ(z) = energy content of a unit of resource type z,

mi = mortality rate of consumer species i (due to starvation and natural death).

In this model, the niche of each consumer species i is described by its consumption function ai(z) along the resource gradient z (figure 2.3). But all the parameters that affect the growth and quality of resources, ρ(z), κ(Z), and γ(z), may also vary along the gradient (figure 2.3).

To reduce the dimensionality of this complex system, MacArthur made the additional assumption that resources have much faster dynamics than consumers, such that they are constantly at a moving equilibrium with consumers on the time scale of consumer dynamics. This amounts to setting ∂R(z)/ ∂t = 0 in equation (2.8a). This equation can be solved for the equilibrium value of R(z) as a function of Ni, which can be substituted into equation (2.8b) provided it is positive. MacArthur showed that the system then reduces to a classical Lotka-Volterra competition model for consumers as described by equation (2.1). But the parameters of this model now have a mechanistic interpretation in terms of consumer-resource interactions:
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where w(z) = γ(z)κ(z)/ρ(z) is a weighting factor that measures the quality of resource type z, or, more specifically, its importance in exploitation competition among consumers: a resource that has a higher energy content, a higher carrying capacity, and a slower renewal (thus preventing fast replenishment of available resources) is expected to have a greater impact on intra- and interspecific competition among consumers.

A nice feature of MacArthur’s model is that consumer demographic parameters have a simple energetic interpretation consistent with that presented in chapter 1 for single populations. Thus, ri is consumer species i’s intrinsic rate of natural increase, i.e., its per capita population growth rate when its abundance is negligible (close to zero) and hence resources are at their carrying capacity, κ(Z). In equation (2.9a), κ(z)ai(z) is the amount of resource type z consumed per consumer individual per unit time, which provides an amount of energy γ(z)κ(z)ai(z). Therefore, the integral in equation (2.9a) represents total per capita energy consumption per unit time. This energy consumption is converted to a birth rate through coefficient ηiLast, subtracting the constant mortality rate mi yields the per capita population growth rate of consumer species i when its abundance is negligible, as it should. The carrying capacity of consumer species i, Ki, is proportional to both (1) its per capita energy consumption in excess of its per capita energetic cost of population maintenance [the numerator in equation (2.9b)] and (2) a weighted measure of niche breadth. Indeed, the denominator in equation (2.9b) has a structure similar to the inverse of Levins’s (1968) measure of niche breadth. The competition coefficient, αif, has a structure similar to Levins’s (1968) measure of niche overlap. It can be interpreted as a ratio between the intensity of interspecific competition [measured by the numerator in equation (2.9c)] and the intensity of intraspecific competition [measured by the denominator in equation (2.9c)], in which resources are weighted by their quality as measured by w(z).

A decisive advantage of MacArthur’s mechanistic niche theory over the phenomenological Lotka-Volterra model is that it is predictive, not only descriptive, since all the parameters of the Lotka-Volterra model are in principle measurable a priori from empirical or experimental knowledge about the niche of each species and the properties of their resources. In particular, MacArthur (1972) analyzed the case where species have niches described by normalized Gaussian-shaped consumption curves along the resource gradient. Gaussian-shaped niches have been described in a number of bird and lizard species along a prey size gradient and should hold approximately in many instances after appropriate data transformation, given the general tendency for organisms to have an intermediate optimum in their response to environmental gradients. If σ1 and σ2 are the standard deviations of the consumption curves of species 1 and 2, respectively (a measure of niche breadth), and d is the distance between their means, the competition coefficients are then (MacArthur 1972; Case 2000).
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where [image: ] Thus, competition intensity drops steadily to zero as niche separation (as measured by the ratio [image: ] increases, and the potential for stable coexistence increases correspondingly.

As in any Lotka-Volterra system, stable coexistence entails overyielding. Transgressive overyielding, however, is not guaranteed. Here condition (2.7) becomes
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Thus, transgressive overyielding is facilitated by greater niche separation (larger ratio [image: ]), and by greater similarity in niche breadth [when [image: ], and the right-hand side of (2.11) vanishes]. When niches have identical breadth, any niche differentiation (d > 0) is sufficient to generate transgressive overyielding. On the other hand, when niches have identical optima (d = 0), no difference in niche breadth can make for transgressive overyielding.

But the theory is more powerful than this. A key finding of MacArthur is that a competitive community obeying equations (2.1) and (2.9) has a unique, globally stable equilibrium point, and the latter has biologically interpretable structural and functional properties. MacArthur (1969, 1970, 1972) and Gatto (1990) showed that such a community admits a Lyapunov function, i.e., a function that is always positive and whose time derivative is always negative, except at equilibrium where it is zero. Lyapunov functions are particularly useful because they ensure that the dynamical system converges to a unique equilibrium point where they are minimized; thus, they ensure global stability of the equilibrium.

Specifically, MacArthur’s Lyapunov function has the form
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and can be interpreted as follows (Gatto 1990). U is a weighted mean squared difference between the maximum productivity of resources as measured by their intrinsic rate of natural increase, ρ(z), and their total consumption, [image: ] Thus, U measures unutilized productivity. Minimizing it amounts to performing a least-square fit of resource consumption to available resource production. Since mi/ηi represents the per capita energetic cost of population maintenance (the amount of energy lost to basal metabolism and natural death per unit time by an average individual of species i), B is the maintenance energetic cost for the entire community. Both U and B may be viewed as different ways in which the community “wastes” available energy. Thus, Q is a measure of inefficient energy use, and its minimization is a principle of maximum efficiency of energy use in competitive communities.

This is a strong result. MacArthur (1972) showed, using hypothetical examples in the special case where B is constant, how this principle of maximum efficiency of energy use could be applied in principle to predict the composition and species relative abundances of competitive communities. Thus, competition makes not only structural (niche differentiation, species abundance patterns) but also functional (most efficient energy use) properties emerge at the community scale, which supports the view of a competitive community as a full-fledged self-organized system within the broader context of the ecosystem as a whole.

The bipartition of Q into its two components U and B, however, does not lead to simple predictions about the ecological properties that are maximized or minimized in a competitive community. The minimization of U may often conflict with the minimization of B: a small, species-poor community of highly efficient individuals will keep the maintenance energetic cost low but leave plenty of resource productivity unutilized, while an abundant, diversified community will fully use resource productivity but spend a lot of energy in maintenance (Gatto 1990). Thus, a stable competitive community may result from the trade-off between two conflicting constraints. As a consequence, several strategies might be possible depending on environmental conditions and species traits. In general, however, one should expect U to be relatively high and impose strong constraints on community assembly at relatively low levels of species diversity; therefore, species diversity and energy utilization efficiency should be promoted under these conditions. What happens at higher levels of diversity might be more variable, although evolution toward greater species diversity and greater specialization is often predicted in constant or predictable environments (Levins 1968; Gatto 1990).

Despite its elegance, MacArthur’s theory has remained largely untested. The importance of interspecific competition and patterns of niche differentiation predicted by niche theory have been the subject of numerous experimental (Connell 1983; Schoener 1983a; Goldberg and Barton 1992; Gurevitch et al. 1992) and empirical (Strong et al. 1984; Crowley 1992; Gotelli and Graves 1996; Gotelli and McCabe 2002) tests in the field. Overall, these studies have provided mixed support for the theory: interspecific competition and unambiguous patterns of niche differentiation do occur under natural conditions, but they often concern a subset of dominant species or ecologically related species that belong to the same guild within broader communities. This is a fairly reasonable conclusion given that competition should not be expected to be the sole factor at work in natural ecosystems. In contrast, to my knowledge no tests have been attempted on functional or quantitative predictions derived from the mechanistic foundations of the theory.

MacArthur’s theory is based on a number of simplifying assumptions, some of which are explicit or fairly straightforward but others are not. In particular, two implicit assumptions may have far-reaching implications. First, MacArthur’s consumer-resource model incorporates intraspecific competition among resources through the logistic growth term in equation (2.8a), but it ignores interspecific competition between resources that have different positions along the gradient z. Unless the resource gradient is made up of extremely specialized, independent species, this assumption is neither logical nor realistic. Interspecific competition between resources can lead to counterintuitive indirect effects in the system, including indirect mutualism instead of exploitation competition among consumers (Levine 1976). Second, MacArthur’s analysis of his model implicitly assumed that resources all reach a feasible (i.e., positive) equilibrium, the value of which could then be substituted into the dynamical equations of consumers. But strong resource depletion by efficient consumers may lead to extinction of part of the resource gradient. This violates the conditions under which MacArthur’s analysis is valid and can deeply alter the relationship between niche overlap and competition intensity among consumers (Abrams 1998; Abrams et al. 2008). These two assumptions strongly limit the generality of MacArthur’s theory.

THE THEORY OF LIMITING RESOURCES

A second mechanistic approach to exploitation competition is what I call here the theory of limiting resources. This approach was also pioneered by MacArthur and Levins (1964) and MacArthur (1972) and then expanded by Léon and Tumpson (1975) and Tilman (1980, 1982). Grover (1997) provides a comprehensive review of this theory and its more recent developments. In this approach, the dynamics of a small number of discrete resources is considered explicitly, which allows precise predictions to be made about the outcome of competition among the consumers of these resources. Since plants are usually limited by a small number of resources (such as nitrogen and phosphorus), this approach has been mainly applied to plant competition.

Significant insights into the properties of competitive systems can be gained from the simplest case where there is a single resource, R, for which an arbitrary number S of consumers, Ni, compete. Here, the size of compartments R and Ni could be measured equivalently by their abundance, density, biomass, or nutrient stock given appropriate parameterization. Since the theory has been mainly applied to plants competing for inorganic nutrients, I shall consider that R represents the available stock of an inorganic nutrient, and Ni represents the biomass of plant species i. The inorganic nutrient is assumed to be supplied at a constant rate I from an external source and to be lost at a rate q per unit mass, as in chapter 1. If consumers compete only through resource exploitation (no interference competition), the dynamics of the consumer-resource system can be expressed in the form
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where fi(R) is the numerical response of consumer species i to resource availability, and mi is its density-independent mortality rate. As in chapter 1, the consumer’s numerical response is assumed to be proportional to its functional response, fi(R)/ɛi. Parameter ɛi represents species i’s biomass production per unit resource, which incorporates both conversion of nutrient into biomass and production efficiency. The only constraint on the numerical response is that it should be a monotonic increasing function (f’i > 0); i.e., consumer growth increases, or at least does not decrease, as resource availability increases, which is generally expected for a limiting resource.

It is straightforward to see from equation (2.13b) that each consumer species i tends to an equilibrium such that
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where f−1i is the inverse of function fi. Thus, each consumer species tends to control the resource at an equilibrium level that is entirely determined by its own traits (incorporated into fi and mi). Since the resource R can have only one equilibrium value, all consumer species except one are competitively excluded. The species that wins the competition is the species with the lowest equilibrium resource requirement (R*). All other species have negative growth rates and are driven to extinction at that resource level because the latter is too low to meet their own resource requirement (Volterra 1926; Hsu et al. 1977; Armstrong and MacGehee 1980). Note that the same result also holds for MacArthur’s niche model: if all consumers have identical niches—i.e., use the same array of resources—the species that has the lowest resource requirement displaces all the other species at equilibrium (Gatto 1990).

This simple result has important implications. First, it provides the basis for a more precise formulation of the competitive exclusion principle: when resources limit consumer growth, no more than one consumer can persist indefinitely on a single resource in a constant environment. This formulation can easily be extended to limiting factors other than resources (Levin 1970). Of course, this formulation leaves open the issue of what constitutes a distinct resource, which is far from trivial (Abrams 1988). Second, the above result further predicts a priori which species will persist. And third, it implies that resource utilization is maximized by the species that wins the competition, a result that echoes MacArthur’s minimum principle. This corollary is intuitively obvious since the species that depresses resource abundance most can only do so by consuming more of the resource. A formal proof is easily obtained by noting that at equilibrium resource consumption is equal to net resource supply, i.e., I − qR*, in equation (2.13a).

Thus, the species with the lowest R* also has the highest net resource supply and the highest resource consumption.

Note that the best competitor does not necessarily maximize other functional properties, such as production and biomass. Consumer production, which is given by fi(R)Ni in equation (2.13b), is equal to ɛi(I − qR*) at equilibrium from equation (2.13a); this is maximized when R* is minimized only if all species have equal production coefficients e;, Equilibrium biomass, Ni*, is equal to (ɛi/mi)(I - qR*) from equations (2.13); this is maximized when R* is minimized only if all species have equal production coefficients ɛi. and mortality rates mi that are either equal or vary parallel to R*. If a single parameter varies among species, then competition should also generally maximize production and biomass. If, however, several parameters vary simultaneously among species, there is no guarantee that production and biomass will be maximized. As a matter of fact, simultaneous variation in several functional or demographic parameters is likely given the widespread occurrence of trade-offs between different physiological functions and life-history traits in ecology. And when resources are self-reproducing living organisms, the potential for nonlinear relationships between consumer production or biomass and equilibrium resource availability is even greater, as I shall show in chapter 4.

Extending the theory to two or more resources brings additional complexity for two main reasons. First, the consumer’s numerical response to two resources can take on diverse forms, which determine different resource types (Léon and Tumpson 1975; Tilman 1980, 1982). At one extreme are perfectly substitutable resources, which is often assumed to be the case in animals faced with food items of roughly equal quality. At the other extreme are essential resources such as different chemical elements for plants, which cannot be substituted for one another. Different resource types generate different shapes of consumer isoclines in a phase plane determined by the two resources. Second, competition between two species with similar resource types leads to four types of outcomes very much as in the Lotka-Volterra model: competitive exclusion of one species, competitive exclusion of the other species, competitive exclusion of either species depending on initial conditions, and stable coexistence.

Let the two (plant) consumer species be A and B with biomasses NA and NB and let the two (inorganic) resources be 1 and 2 with stocks R1 and R2. Assume that resources obey the same dynamical equation as above; i.e.,
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Here, Si = Ii/q is the equilibrium amount that resource i would reach in the absence of consumption, and cji is the consumption rate of resource i by an individual consumer j, i.e., the functional response of consumer j. At equilibrium, net resource supply and resource consumption must balance, which can be written in vector form as
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where
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The configuration that leads to stable coexistence is shown in figure 2.4 for plants that use essential resources. When resources are essential, Liebig’s law of the minimum holds; i.e., plant growth is limited by the nutrient that is in shortest supply irrespective of the abundance of the other nutrient, which results in L-shaped consumer isoclines in the (R1, R2) phase plane. Léon and Tumpson (1975) and Tilman (1980, 1982) showed that stable coexistence requires a number of conditions, specifically: (1) the consumer null isoclines must intersect in the positive quadrant, which requires that each species be the better competitor (lower R*) for one of the resources; (2) the consumption vector, CA, of species A, which is the better competitor for resource 1, must be steeper than the consumption vector, CB, of species B, which requires that each species consume proportionately more of the resource that limits its own growth more; (3) the resource supply point S with coordinates (S1, S2) must fall in the region comprised between the two consumption vectors (figure 2.4).

When stable coexistence occurs, the resulting community makes better use of the two resources than would either species alone. At the coexistence equilibrium, species A sets R2* while species B sets R1* (figure 2.4); i.e., each resource is controlled by the inferior competitor for that resource. If species A were alone with a resource supply point in the region comprised between the two consumption vectors, the equilibrium point would shift to the right along the isocline of species A, which means that R2* would be unchanged while R1* would be higher. Similarly, if species B were alone, R1* would be unchanged while R2* would be higher. Thus, the two species collectively bring the two resources to lower levels than would occur if only one species were present. Equation (2.16) then shows that net resource supply and hence total resource consumption are higher in mixture than in monoculture. If the two species have equal production coefficients ɛi, this increased total resource consumption should also lead to an increased primary production of the mixed community. Thus, here again, we see that the conditions that promote stable coexistence also promote a better collective resource exploitation, which should generally result in increased total production by the community as a whole.
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FIGURE 2.4. Stable coexistence of two plant species on two essential resources. Stable coexistence requires that (1) the plant null isoclines of the two species (indicated by A and B) intersect in the positive quadrant, i.e., each species be the better competitor (lower R*) for one of the resources; (2) the consumption vector, CA, of species A, which is the better competitor for resource 1, be steeper than the consumption vector, CB, of species B; (3) the resource supply point S fall in the gray region comprised between the two consumption vectors. Under these conditions, the community makes better use of the two resources than would either species alone.

The theory of limiting resources can easily be extended to a broader theory of limiting factors, including predation, and provides the basis for a more comprehensive formal definition of the niche than in MacArthur’s theory. It makes explicit the two components of a species’ niche: its response to, or requirement from, the environment (here encapsulated in its null isocline), and its effect, or impact, on the environment (here encapsulated in its consumption vector) (Leibold 1995; Chesson 2000b; Chase and Leibold 2003).

Tilman (1982) provided experimental evidence that supports the predictions of the theory regarding the conditions of coexistence. Most of the experiments, however, have used freshwater algae under laboratory conditions. Experimental evidence for the theory under field conditions and for other organisms is still scarce.

COEXISTENCE IN SPATIALLY STRUCTURED ENVIRONMENTS

Classical theories in ecology were built on the conceptual and mathematical tools available from classical mechanics and chemistry to describe homogeneous systems (in particular, ordinary differential equations) and accordingly ignored spatial and temporal variations of ecological systems. By focusing on the behavior of idealized average systems, the implicit hope behind this approach was that it would uncover fundamental laws uncluttered by the noise generated by the variability of real systems. This analytical approach has been very successful in ecology, just as in physics or chemistry. In a number of cases, the laws or generalizations obtained for homogeneous systems still hold approximately for heterogeneous systems after appropriate adaptation of the formulation and interpretation of these laws or generalizations. However, it is increasingly clear in all sciences that variability is not simply noise. Variability per se, just like diversity, can add new dimensions, new constraints, and new opportunities, as has been amply demonstrated in ecology.

The study of temporal and especially spatial variations of ecological systems has grown tremendously during the last decades (Tilman and Ka-reiva 1997; Dieckmann et al. 2000). This book is not the appropriate place to review all these developments, which are too numerous and diversified. In this and the next section, I simply attempt to extract some of their main consequences for the maintenance and functional consequences of species diversity in competitive communities. I first focus on spatial variability in this section and then consider temporal variability in the next section.

The importance of spatial structure for coexistence has been recognized at least since Park’s (1948) experiments on flour beetles, but it is only recently that formal quantitative theories have been developed to examine the mechanisms and outcomes of competitive coexistence in spatially structured environments (reviewed in Amarasekare 2003). These theories can be organized conceptually along two main axes.

First, they differ according to the spatial scale they consider: some theories focus on regional processes, while others consider only local processes to explain local coexistence. By “local” I mean here the scale that defines the system under consideration (whether a population, a community, or an ecosystem); in contrast, “regional” denotes entities or processes at larger spatial scales. Note that many theories can be applied equivalently to several spatial scales. Early models of competition in spatially structured environments (Levins and Culver 1971; Horn and MacArthur 1972; Slatkin 1974; Hanski 1981, 1983) considered patchy environments but were not explicit about scales or mechanisms. They were actually derived from models of metapopulations, i.e., of regional sets of local populations that are spatially distinct but connected by dispersal. Therefore, they could obviously be applied to community dynamics at landscape or regional scales. The difference between the theories that invoke regional processes and those that invoke local processes to explain local coexistence lies in the fact that the former consider cross-scale interactions explicitly: the processes that explain coexistence at the local scale are to be found at the larger regional scale rather than within the local system itself. Regional influences will be considered in chapter 7; in this section I shall consider only those theories that invoke processes at the scale where coexistence occurs.

Second, spatial structure can arise in two fundamentally different ways in spatial theories of coexistence: either the environment is spatially heterogeneous or the environment is homogeneous, and spatial structure is created by the organisms themselves. These two types of situations impose different constraints on coexistence: if spatial heterogeneity is a preexisting feature of the environment, organisms can respond to variations in environmental conditions in accordance with niche theory unless dispersal or recruitment limitation prevents them from doing so; if, on the contrary, the environment is homogeneous at the outset, some mechanism generating limited access of organisms to available space must be present to create and maintain spatial structure.

Before considering these two cases, it is useful to start with a background theory against which they can be contrasted (Loreau and Mouquet 1999). Suppose a homogeneous environment and a community of sessile organisms such as plants in which space occupancy obeys a competitive lottery; i.e., each individual occupies a distinct site and keeps it until it dies a natural death, and vacant sites are occupied by new individuals of each species in proportion to its contribution to a common pool of propagules. Let pi be the proportion of sites occupied by species i. There are S such species that compete for a limited proportion of vacant sites, V. Each species i is characterized by a potential recruitment rate, ci, which incorporates seed production, short-distance dispersal, germination and seedling establishment, and a mortality rate, mi, which encapsulates all forms of natural death. Potential recruitment, however, is not fully realized because only vacant sites can be occupied. The dynamics of such a system is described by the equation
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where V = 1 − Σsj=1 pj, and Ri = ci/mi. Ri is known as species i’s basic reproductive rate, but it is more aptly called its basic reproductive capacity since it is a dimensionless number. The basic reproductive capacity measures the average number of successful offspring that an individual produces during its lifetime in a vacant environment.

It is straightforward to see that each species i tends to an equilibrium such that
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Thus, V* plays the same role as R* in the theory of limiting resources: the species with the lowest V*, and hence with the highest basic reproductive capacity, displaces all the other species. In the absence of any other mechanism, spatial structure per se does not suffice to create the conditions for its own maintenance and hence for species coexistence. A competitive lottery leads to competitive exclusion because space is the single limiting resource in such a system.

SPATIAL COEXISTENCE IN HETEROGENEOUS ENVIRONMENTS

It is a relatively easy step, at least conceptually, to incorporate spatial heterogeneity into classical niche theory. If different species are adapted to different environmental conditions and these conditions vary within a locality or region, one would expect each species to dominate in those places where it is best adapted to the local environment, and hence species diversity to be maintained in the heterogeneous system as a whole. An example of such a mechanism is Tilman’s (1982) resource ratio hypothesis. The theory of limiting resources shows that no more than two competitors can coexist at equilibrium on two resources under given environmental conditions, i.e., at a given resource supply ratio. Different species or combinations of species, however, may persist at different resource supply ratios. In this case, spatial variation in resource supply leads to global coexistence of species that would exclude each other at each location. Dispersal limitation interacts with competition, predation, and other species interactions to limit species distributions along environmental gradients and enhance regional species richness (Case et al. 2005).

Chesson (2000a) attempted to formalize a general model of competitive coexistence in spatially heterogeneous environments. Using this model, he showed that the two main spatial mechanisms of coexistence are analogous to corresponding temporal mechanisms of coexistence, which he identified as relative nonlinearity of competition and the storage effect (see below). These spatial mechanisms, however, involve different life-history traits, and suggest that the spatial storage effect should arise more commonly than the temporal storage effect, while spatial relative nonlinearity should arise less commonly than its temporal counterpart.

Coexistence in spatially heterogeneous environments should allow the species best adapted to particular environmental conditions to make the best use of the available resources under these conditions, which should lead to greater collective resource utilization efficiency by the community as a whole, just as in MacArthur’s niche theory. Chesson et al. (2001) provided theoretical support for this intuitive idea and suggested that the enhanced performance of diverse plant communities in spatially heterogeneous environments also leads to increases in other ecosystem processes such as net primary production, carbon storage, nitrogen mineralization, and evapotranspiration.

SPATIAL COEXISTENCE IN HOMOGENEOUS ENVIRONMENTS

When no spatial heterogeneity preexists in the environment, the maintenance of spatial structure and species coexistence requires the operation of some mechanism that limits access of organisms to available space. The most common such mechanism is recruitment or dispersal limitation, which tends to generate clusters of conspecifics, thereby increasing the intensity of intraspecific competition relative to interspecific competition and thus the potential for coexistence. Coupled with spatial heterogeneity and niche differences among species, recruitment limitation is able to maintain high levels of species diversity (Hurtt and Pacala 1995). In the absence of spatial heterogeneity, at least two factors can operate in conjunction with recruitment limitation to allow indefinite coexistence of competitors: (1) life-history trade-offs (Bolker and Pacala 1999), and (2) differences in the spatial scales over which intra- and interspecific competition occur (Murrell and Law 2003).

The most familiar life-history trade-off allowing coexistence in a spatial context is the competition-colonization trade-off, from pioneer species that are good colonizers but poor competitors to climax species that are poor colonizers but good competitors (Levins and Culver 1971; Horn and MacArthur 1972). Hastings (1980) and Tilman (1994) formalized it into a simple, spatially implicit model which is derived from classical metapopulation models but in which a single individual occupies a site as in the above competitive lottery. The difference with the competitive lottery is that here a superior competitor is assumed to displace an inferior competitor instantaneously if it reaches a site occupied by the latter. Thus, in addition to global competition for space, there is another form of competition, whether by exploitation or interference, that gives a strong local advantage to some species over others. Assuming a strict hierarchy in local competitive abilities such that species 1 is the best local competitor and species n is the poorest local competitor, this yields the following model:
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There are two differences between this equation and equation (2.17) for the competitive lottery. First, the amount of space perceived as vacant is different for each species: species i “sees” as occupied only those sites that are occupied by it or by better competitors, hence the summation in the first term on the right in equation (2.19) runs from species 1 to i. Sites occupied by inferior competitors (species i + 1 to S) count as vacant sites. Second, the last term on the right in equation (2.19) accounts for competitive displacement of species i by better competitors (species 1 to i - 1) as these reach sites occupied by species i.

Since the best competitor is unaffected by the other species, equation (2.19) reduces to Levins’s (1969) metapopulation model for species 1. Therefore, its equilibrium space occupation is simply
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Species 2 is affected only by species 1 and by itself. Therefore, its equilibrium space occupation is easily obtained knowing that of species 1:
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The equilibrium space occupation of species 3 can then be obtained knowing those of the first two species, and so on for the other species. The constraints on species coexistence, however, can be understood qualitatively by considering only the first two species. The equilibrium space occupation of species 1 [equation (2.20)] is equal to the difference between the total proportion of sites available (1) and the proportion of sites that it leaves vacant at equilibrium m1/c1). The equilibrium space occupation of species 2 in turn is equal to the proportion of sites left vacant by species 1 [the first term on the right-hand side of equation (2.21)] minus the proportion of sites that it leaves vacant at equilibrium [the second term on the right-hand side of equation (2.21)]. The proportion of sites left vacant by species 2 then becomes space available for species 3, and so on potentially ad infinitum. Since no species is ever able to occupy space fully, unlimited coexistence is possible in principle.

There are, however, strong constraints on this coexistence because each additional species must be able to occupy space better than the species that precedes it in the competitive hierarchy. It can do so in two ways: either by being better at recruiting at new sites (higher c) or by being better at keeping them in the absence of interspecific interactions (lower m). The first situation is more common because trade-offs between competitive ability and dispersal ability are thought to be widespread—hence the usual interpretation of this model as requiring a competition-colonization trade-off (Tilman 1994). Note that the term “colonization” is not strictly appropriate here since occupancy of a new site corresponds to the recruitment of a new individual in the population, not the establishment of a new population in a metapopulation as in the original formulation (Levins and Culver 1971). More fundamentally, spatial structure per se is not what maintains diversity in this system. The competition-colonization trade-off is, in fact, a trade-off between two forms of competition: global competition for vacant space (in which the best “colonizers” win) and local competition by either interference or exploitation for another resource that is not represented in the model (in which the best “competitors” win). The model can then be reinterpreted in a nonspatial context as a model in which there is a trade-off between the ability for interference competition and the ability to use the shared resource (here, space) and hence maintain a higher carrying capacity (Adler and Mosquera 2000; Kokkoris et al. 2002). It is, in fact, formally identical to the classical Lotka-Volterra model with the following transformations (Loreau 2004):
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This transformation helps in exploring some of the functional consequences of coexistence in a system maintained by the competition-colonization trade-off. In particular, when two species coexist by this mechanism, nontransgressive overyielding is ensured as in any Lotka-Volterra system with stable coexistence. In contrast, equations (2.22) show that the competition coefficient measuring interference from the species with the smaller carrying capacity (species 1) with the species with the larger carrying capacity (species 2) is greater than 1 as a result of the strong competitive asymmetry assumed in the model. This violates condition (2.7) and thus precludes transgressive overyielding.

Note, however, that yield is measured here by the fraction of space occupied by each species, which may have little to do with actual biomass production. It is likely that species that have a higher potential recruitment rate also have a higher productivity. Therefore, to be slightly more realistic while keeping simplicity, assume now that a species’ production is given by its recruitment potential, which is the product of the number of sites it occupies and its potential recruitment rate at a site. Total production is then approximated by (Loreau and Mouquet 1999)
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Since species 2 has both a higher spatial carrying capacity and a higher recruitment rate, it also has a higher product of these two quantities and hence a higher production. As a result, total production in the two-species community is intermediate between that of the two species when they are alone, and transgressive overyielding is again impossible with this measure of yield. On the other hand, nontransgressive overyielding is guaranteed since species 1 is unaffected by species 2, and hence the relative yield total is necessarily greater than 1 when species 2 coexists with species 1. Thus, a community structured by the competition-colonization trade-off has the peculiar properties that nontransgressive overyielding always occurs but transgressive overyielding never occurs.

Bolker and Pacala (1999) identified three main strategies in spatially homogeneous environments, i.e., colonization, exploitation, and tolerance, which are analogous to Grime’s (1979) empirically based plant strategies. Life-history trade-offs other than the familiar competition (tolerance)-colonization trade-off are possible among these strategies. Although their functional consequences have not been explored, they are likely to be often similar. Life-history trade-offs may be viewed as a form of niche differentiation among species since they involve deterministic differences in the way these species interact with their environment. These niche differences tend to generate complementarity among species and hence overyielding. If the physical environment is homogeneous, however, space is a fixed resource to be shared among all species; its monopolization by superior exploiters is prevented by interactions with species that have some other competitive advantage such as interference competition. Transgressive overyielding, i.e., a community that uses the shared spatial resource better than does the best of its members, is unlikely under these conditions. In contrast, it is likely in the coexistence mechanism suggested by Murrell and Law (2003), i.e., heteromyopia. In this mechanism, the distance over which individuals see (i.e., interact with) their heterospecific neighbors is shorter than the distance over which they see their conspecific neighbors. This effectively creates small gaps in a landscape occupied by one species, in which another species can spread. In this case, two species may better exploit space that any one of them separately.
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FIGURE 2.5. A simplified ecosystem model in which N plants have limited access to an inorganic nutrient in individual resource depletion zones. The shared inorganic nutrient pool is affected only indirectly by plants through diffusion and other nutrient transport processes.

A different mechanism of species coexistence in spatially homogeneous environments was suggested by Huston and DeAngelis (1994) and further analyzed by Loreau (1996, 1998a) and Goreaud et al. (2002). Individual organisms have only limited access to available resources because of physical limitations in body size and mobility. In particular, plants are sessile organisms that affect soil nutrients only in the immediate vicinity of their rooting system. Huston and DeAngelis (1994) proposed to model such a resource access limitation by distinguishing two types of resource compartments: an individual resource depletion zone under the direct control of each individual plant, and a global nutrient pool in the rest of the soil that is affected only indirectly by plants through diffusion and other nutrient transport processes. Variation in the rate of nutrient transport in the soil determines the degree to which plants interact competitively through their indirect effect on the shared nutrient pool.

To understand the main factors that control competitive interactions and species diversity in such a system, it is useful to consider a simplified model in which plants compete for a single limiting nutrient, and nutrient recycling and higher trophic levels are ignored (Loreau 1998a). A global soil inorganic nutrient pool (with concentration R and volume VR) supports N individual plants i (with concentration Pi expressed per unit volume of their resource depletion zone), which exploit the soil inorganic nutrient in their individual resource depletion zones (with concentration Li and volume Vi) (figure 2.5). Nutrient in inorganic form flows through the ecosystem at a rate q per unit time; R0 is the inflowing nutrient concentration, defined as R0 = I/q, where I is the input of inorganic nutrient. Nutrient is transported by physical processes between the individual and global pools at a rate k per unit time. The global soil inorganic nutrient pool, R, then obeys the dynamical equation
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where σi = Vi/VR is the relative volume of plant i’s resource depletion zone.

For simplicity’s sake, assume now that the resource depletion zones of all plants have identical volumes, Vi = V, and hence σi = σ. At equilibrium, the time derivative in equation (2.24) vanishes, which provides the following equilibrium concentration for the global soil inorganic nutrient pool:
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where p = q/(q + kσN), and [image: ] is the average nutrient concentration in the resource depletion zones across all plant individuals. Thus, the equilibrium nutrient concentration in the soil inorganic pool is a weighted average of R0, its equilibrium concentration in the absence of plants, and [image: ] the average nutrient concentration of the resource depletion zones under plant control (with [image: ]< R* < R0). The weighting coefficient p depends on the relative importance of the processes that govern global inputs and outputs in the system (q) compared with those that govern nutrient transport in the soil, i.e., the nutrient transport rate (k), and the number (N) and size (σ) of the plant resource depletion zones. If nutrient transport is very small (k tends to zero), plants have virtually no influence on the global soil nutrient concentration; as a result, competition is negligible and coexistence is unlimited. In contrast, if nutrient transport is very large (k tends to infinity), plants strongly affect the global soil nutrient concentration; in this case, competition among plants mediated by the global pool is intense, and the plant species with the lowest L* can be shown to eventually outcompete all other plants just as in a nonspatial environment.

The strength of this individual-based approach lies in its ability to link individual- and ecosystem-level functional properties (chapter 3). Although it has only been applied so far to plants competing for soil nutrients, its area of application is potentially much broader. For instance, different kinds of insect herbivores, such as leaf eaters, stem borers and root feeders, have access to different plant parts and may coexist as a result of this form of niche differentiation. A plant could then be represented as a coupled system of plant parts similar to the system of individual and global nutrient pools discussed above. Likewise, predators may attack only part of the prey population if some prey have access to refuges. The prey population could again be divided into an accessible compartment and a nonaccessible compartment.

An important limitation of this approach, however, is that spatial structure is assumed a priori. While some forms of spatial structure may be dictated by inherited niche differentiation, this is generally not the case with plants competing for space. Thus, while this theory accounts for short-term plant coexistence, it does not explain long-term coexistence because it does not consider the spatial dynamics of site occupation. As a matter of fact, what maintained long-term plant coexistence in Huston and DeAngelis’s (1994) simulations was the fact that they sampled new occupants of vacant sites from a regional species pool, thus mimicking an immigration process from a regional source (chapter 7).

NONEQUILIBRIUM COEXISTENCE IN TEMPORALLY FLUCTUATING ENVIRONMENTS

The problem of nonequilibrium coexistence was first introduced by Hutchinson (1961), who felt that niche theory, which he largely contributed to develop, was unable to explain what he called the “paradox of the plankton,” i.e., the coexistence of a large number of algal species on a few limiting resources. Hutchinson reasoned that if the characteristic time scales of environmental variability and competitive exclusion are very different, competitive exclusion should proceed as in a constant environment because organisms either grow so fast that the best competitor displaces the other species before an environmental change takes place, or grow so slowly that they experience an average environment. On the other hand, if the characteristic time scales of environmental variability and competitive exclusion are similar, nonequilibrium coexistence of competitors on the same resources should be possible because environmental changes may provide a temporary competitive advantage to different species at different times.

While correct, this intuitive argument does not ensure that coexistence will be maintained in the long term since shifting competitive advantages may still lead to the progressive growth or decline of species over longer time scales. There are two main approaches to nonequilibrium coexistence with different implications, depending on whether coexistence is permanent or transient.

PERMANENT NONEQUILIBRIUM COEXISTENCE

Permanent nonequilibrium coexistence occurs when species fluctuate through time but persist indefinitely. Probably the most elegant, if nonintuitive, demonstration that variability per se is a factor that promotes permanent coexistence among species was provided by Levins (1979). Levins illustrated this by a simple model of two consumers, with population sizes N1 and N2, competing for a single resource with abundance R:

[image: ]

Species 1’s per capita population growth rate is a linear function of resource abundance as in classical Lotka-Volterra models, while species 2’s is nonlinear. The quadratic term in R in species 2’s per capita population growth rate has no biological justification; it is chosen because it is the simplest form of nonlinearity, and it is this nonlinearity that allows coexistence. Resource abundance is assumed to fluctuate through time because of either intrinsic factors (unstable consumer-resource interactions) or extrinsic factors (environmental forcing).

If the two species persist indefinitely at finite positive population sizes, the logarithm of population size is bounded away from -∞ and +∞, which ensures that the long-term time-averaged value of their time derivative is zero. In other words, if populations neither go extinct nor explode to infinite sizes, their abundance (and its logarithm) has to fluctuate around an average value such that its long-term average rate of change is zero. Denoting the temporal mean or expected value of a variable x by E(x), this means that

[image: ]

where the following property of statistical moments has been used:

[image: ]

These equations have the solution

[image: ]

which is feasible provided that m2 > m1 (m1 + 1), or, equivalently,

[image: ]

[image: ]

FIGURE 2.6. Permanent nonequilibrium coexistence in Levins’s model (2.26). Inequality (2.30) requires that the curves describing the dependence of the per capita population growth rates of the two species on resource abundance intersect at a level of resource abundance [image: ] that is higher than the value at which species 1 has zero per capita population growth rate, m,. Thus, species 1 must be a superior competitor (i.e., its per capita population growth rate must be higher than that of species 2) at low resource abundance, and its per capita population growth rate must further be positive for some values of resource abundance before species 2 becomes the superior competitor. Species 2 is always the superior competitor at high resource abundance because of the nonlinear dependence of its per capita population growth rate on resource abundance.

Each nonlinearity in the per capita population growth rates introduces a statistical moment of the same order in the equations that define the constraints on coexistence and hence a new possibility of coexistence. It is possible to show that species 1 controls the temporal mean of the resource while species 2 reduces its temporal variance, so that species 1 may be viewed as a consumer of the mean while species 2 may be viewed as a consumer of the variance. Thus, the mean and the variance of resource abundance may be viewed as two distinct resources allowing the coexistence of two consumer species.

This counterintuitive result can be explained biologically as follows. The condition for permanent nonequilibrium coexistence [inequality (2.30)] requires that species 1 be a superior competitor at low resource abundance and that its per capita population growth rate be positive before species 2 takes over as the superior competitor (figure 2.6). Species 2 is always the superior competitor at high resource abundance because of the nonlinear dependence of its per capita population growth rate on resource abundance. Thus, while species 1 depresses and controls mean resource abundance, species 2 consumes more of the resource and grows faster during peaks of resource abundance, thereby reducing the variance of resource abundance. In other words, temporal variation in resource abundance allows temporal niche differentiation between the two species, which is the basis for their permanent nonequilibrium coexistence. This conclusion has since been confirmed both theoretically (Armstrong and MacGehee 1980; Huisman and Weissing 1999) and experimentally using algal microcosms (Sommer 1985).

Chesson (1994) formulated a more general discrete-time model of competition in variable environments and attempted to identify different mechanisms that may generate nonequilibrium coexistence. Defining the per capita population growth rate of species i during the time interval t to t + 1 as

[image: ]

he showed that the average per capita population growth rate of an invader at low density, [image: ] may be partitioned into a mean environmental effect, δE, a mean competitive effect, δC, and a mean of their interaction, δI:

[image: ]

He identified two main mechanisms of permanent nonequilibrium coexistence using this model: (1) relative nonlinearity, which affects the mean competitive effect, δC; and (2) the storage effect, which affects the interaction between competition and the environment, δI. Relative nonlinearity captures the fact that different species have different nonlinear responses to competition. This is essentially what Levins showed with the above model. The storage effect captures the fact that the growth benefits afforded by favorable periods are stored to resist unfavorable periods of population decline. It requires that fluctuations in the environment and in the strength of competition covary and that they have antagonistic effects on per capita population growth rates, such that a species can have periods of exceptionally strong growth when competition is relatively low and environmental conditions are relatively good.

Both relative nonlinearity and the storage effect are generated by specific traits that determine the way species use resources or respond to their environment. As such, they may in principle be regarded as part of a species’ niche. When the environment is periodic or seasonal, the correspondence with classical niche theory in a constant environment can be established explicitly. Temporal overlap and the difference between consumers’ resource-use intensities play roles that are in general qualitatively similar to those of niche overlap and difference between carrying capacities, respectively, in the classical theory. However, the relative time scale of resource dynamics plays a crucial role that does not have its like in the classical theory: coexistence of consumers is possible only provided resource dynamics is sufficiently fast compared with consumer dynamics (Loreau 1992).

Since permanent coexistence in temporally fluctuating environments may in principle be understood using the conceptual tools of niche theory, its functional consequences should also be compatible with niche theory (Chesson et al. 2001). Levins’s above model may again be used to explore this in the simplest case where species environmental responses are constant. In his model, species 1 sets mean resource abundance at m1 irrespective of the presence of species 2. Introduction of species 2 further reduces the variance of resource abundance by consuming peaks of resource abundance. Thus, the two species are complementary in their resource use. The main effect of this temporal complementarity, however, is not on the mean but on the variance; i.e., the system fluctuates less. An additional effect on the mean should occur if the two species have differential responses to environmental fluctuations such as staggered seasonal activity patterns, in which case the combination of several species should maintain a lower level of resource throughout the year (Loreau 1992).

TRANSIENT NONEQUILIBRIUM COEXISTENCE

Transient nonequilibrium coexistence occurs in all competitive systems since competitive exclusion is never instantaneous. Two very different theories appeal more particularly to transient coexistence to explain patterns of species diversity: the intermediate disturbance hypothesis and the neutral theory.

The intermediate disturbance hypothesis (Connell 1978; Huston 1979) is a direct application of Hutchinson’s (1961) intuitive solution to his paradox of the plankton applied to finite time windows. If communities are subjected to periodic disturbances that are either very strong or very frequent, only those species that grow fast enough will be able to recover from these disturbances, and species diversity will be low. At the other extreme, if disturbances are either very weak or rare, slow-growing superior competitors will eventually exclude inferior species, and species diversity will also be low. The highest diversity will be achieved at intermediate levels of either intensity or frequency of disturbance, at which a transient balance will be established between the competitive advantages of fast-growing inferior competitors and slow-growing superior competitors. In the absence of the mechanisms that ensure permanent coexistence, all species but one may ultimately go extinct in such a system, but over finite time intervals an intermediate level of disturbance should maximize diversity. This intermediate level of disturbance, however, should depend on the average growth rate of the organisms considered, which sets the characteristic time scale of competitive exclusion in the system.

Chesson and Huntly (1997) presented an elegant critique of this theory by showing that the long-term dynamics of species relative abundances is independent of the intensity of competition and hence of disturbance, and that the only factor that can slow down competitive exclusion is the similarity of species competitive abilities. Delayed competitive exclusion at intermediate levels of disturbance occurred in Huston’s (1979) model because periodic disturbances acted to decrease the intrinsic rates of natural increase and carrying capacities of all species to near-zero values, which is an unrealistic feature of his model. Another mechanism that can delay competitive exclusion in this model is a trade-off between r and K selection, which corresponds to differences in successional niches among species. This trade-off tends to equalize the competitive abilities of the various species at intermediate levels of disturbance. When species diversity is maintained by differences in successional niches, it does not have pronounced effects on the functional properties of the community as a whole because the functioning of a successional landscape is simply the average functioning of the successional stages present across the landscape (Kinzig et al. 2001).

Hubbell’s (1979, 1986) neutral theory of coexistence is also a theory of transient nonequilibrium coexistence, at least in its initial formulation. This theory is based on the fact that deterministic competitive exclusion becomes infinitely slow as one approaches the limiting case where species are identical in all relevant respects, i.e., are ecologically equivalent. Hubbell argues that the unpredictability of the competitive environment experienced by each individual in species-rich plant communities is a selective factor for ecological equivalence. Coexistence then becomes neutral; the dynamics of the community is a random drift, just as in the neutral theory of molecular evolution. An isolated community would thus drift to extinction, but the time to extinction may be very large if the total size of the community is large. In the recent extended version of his theory, Hubbell (2001) explicitly considers factors that generate diversity and counterbalance this slow drift to extinction, i.e., immigration in a local community and speciation in the regional metacommunity (chapter 7). These factors yield a dynamical balance between species loss by extinction and species gain by immigration or speciation, very much as in MacArthur and Wilson’s (1967) equilibrium theory of island biogeography. The nature of neutral theory has somewhat changed in the process since it has shifted from a theory focused on transient nonequilibrium coexistence to a theory focused on permanent nonequilibrium coexistence maintained by the regional processes of immigration and speciation. In this theory, species identity changes through time, but community properties such as the number of species and their abundance distribution reach a dynamical equilibrium maintained by the balance between extinction and immigration or speciation.

Neutral theory provides an elegant theoretical framework that drastically simplifies the description of multispecies communities and is able to reproduce a number of empirical patterns observed in plant communities, such as species abundance distributions and changes in community similarity as a function of distance. It is, however, highly controversial (Chave 2004; Holy-oak and Loreau 2006; McGill et al. 2006b) because it questions the relevance of the huge amount of studies that have shown deterministic niche differences and competitive exclusion between species. As a matter of fact, it is the only theory that, in its current form, is incompatible with niche theory. A synthesis of the neutral and niche perspectives is, however, conceivable and desirable, just as is a synthesis of selection and neutrality in population genetics (Holyoak and Loreau 2006). Chapter 5 will present a nonneutral extension of neutral theory to examine the link between population- and community-level stability in multispecies communities. Neutral theory implies that species diversity has no functional consequence since all species and all combinations of species are functionally equivalent.

CONCLUSION: NICHE, COEXISTENCE, AND THE COMPETITIVE EXCLUSION PRINCIPLE

Niche and competition theory exerted considerable influence over the development of community ecology in the last decades of the 20th century. Sufficient empirical and experimental evidence has now been accumulated to show that competition is indeed a significant force in ecological systems under both laboratory and natural conditions. A very different question, however, is to know to what extent competitive exclusion and niche differentiation explain the composition, diversity, dynamics, and evolution of entire natural communities. As mentioned earlier, unambiguous patterns of niche differentiation driven by interspecific competition generally concern limited subsets of numerically dominant or ecologically related species within communities. The recent popularity of theories of coexistence that call upon spatial structure and nonequilibrum dynamics, especially for plants, shows that the niche differences predicted by classical competition theory in homogeneous environments are not always spectacularly obvious and prevalent.

There are essentially two ways to reconcile recent developments in the role of spatial structure and nonequilibrum dynamics in the maintenance of species diversity with classical niche theory. One option is to favor rigor and precision and adopt a restrictive view of the niche and of the competitive exclusion principle by explicitly limiting their scope to communities at equilibrium in homogeneous environments. The competitive exclusion principle could be thus formulated in such a restrictive framework: “There cannot be stable equilibrium coexistence between several species that are limited identically by the same resources in a homogeneous environment.” This formulation could be easily extended to limiting factors other than resources as proposed by Levin (1970). In this framework, spatial structure and non-equilibrium dynamics are recognized as distinct factors that are not accounted for by the principle. This restrictive version would not harm the usefulness of the competitive exclusion principle since the latter is essentially an analytical principle that plays a role similar to Newton’s first law of motion in classical mechanics, i.e., that of an ideal benchmark against which the action of natural forces can be contrasted (Hardin 1960).

Another option, however, is to favor generality and adopt a broader, more flexible view of the niche and of the competitive exclusion principle. As we have seen, permanent coexistence in spatially heterogeneous and temporally fluctuating environments has qualitatively similar constraints and functional consequences as does stable coexistence in homogeneous environments, i.e., niche differentiation and overyielding. Including species responses to environmental variations in space and time seems a natural extension of the niche concept. This extension, however, may be much less intuitive than it appears at first sight, as shown by Levins’s (1979) example of permanent nonequilibrium coexistence on a single resource that hinges upon different species consuming different statistical moments of resource abundance. Even theories that call upon spatial structure created by the organisms themselves in an otherwise homogeneous environment or some of the theories based on transient nonequilibrium coexistence can be framed within niche theory since they require trade-offs between species traits, and these deterministic trade-offs can be viewed as different ways of using resources in space and time and hence as niche differences. Their functional consequences, however, are somewhat different since transgressive overyielding seems difficult to obtain in these cases. The only theory that is fundamentally incompatible with niche theory is neutral theory in its pure form since this assumes a complete absence of any deterministic difference among species that could be described as part of their niche.

In this broader framework, the competitive exclusion principle describes a limiting case characterized by three essential ingredients: (1) the identity of species environmental responses (which define their niches); (2) the nonidentity of species competitive abilities (as described by their carrying capacity, their R*, or other such measures); and (3) asymptotic dynamical behavior (whether equilibrium or nonequilibrium). Coexistence is possible if at least one of these ingredients is not present, i.e., if species have different niches (classical niche theory and theories that call upon various trade-offs), if species are competitively equivalent (neutral theory), or if transient dynamical behavior is considered (theories that consider transient coexistence).

Given the variety of mechanisms that make coexistence possible even in purely competitive communities, it should come as no surprise that theory does not predict any absolute limit to the number of species that can coexist in a particular location based on species interactions alone. MacArthur’s (1972) theory has sometimes been interpreted as implying that communities are saturated with species (Cornell and Lawton 1992; Cornell 1993). Given a fixed pool of species with fixed traits such as niche breadth and overlap, MacArthur’s theory does predict that a single community emerges as a globally stable equilibrium configuration—the community that best utilizes available energy. But the composition and diversity of this equilibrium community are shaped by the particular species pool and resource availability distribution chosen. Although the species that coexist at equilibrium must be sufficiently dissimilar in the way they use resources, there is no absolute limiting similarity (Abrams 1983). Accordingly, communities may saturate through time for a given initial species pool, but they do not generally saturate with species with respect to changes in the species pool, as determined by evolutionary or historical processes (Loreau 2000a). As Whittaker (1972, p. 217) emphasized, “There is no evident intrinsic limit on the increase in species number, with increased packing and elaboration of axes of the niche hyperspace.” A similar conclusion holds for any other coexistence mechanism. The number of species that a particular bio-tope harbors depends on its physical size (which limits the total number of individuals and hence the number of species), the environmental conditions in that biotope and its surroundings, and the multiple adaptations of species to the environmental conditions they have experienced in the past (including interactions with other species). A comprehensive theory that predicts species diversity from these basic environmental and evolutionary constraints is still missing.

The theory reviewed in this chapter suggests that some functional consequences of species diversity in competitive communities should be fairly general, though none is predicted to be universal. In particular, diverse communities should often show more efficient resource exploitation than do single species and hence overyielding. By contrast, transgressive overyielding is expected to occur only under specific coexistence mechanisms and requires large enough degrees of niche differentiation. These important issues are explored in more detail in the next chapter.


1This does not hold, however, for the feasibility condition since the feasibility of an equilibrium point hinges on the shape of the null isoclines, which in turn hinges on the detailed functional form of the dynamical equations.
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