
    
      
        [image: Cover]
      

    

  Table of Contents
Cover image
Copyright
Preface
Authors
About the Authors
Chapter 1. Integrated Material, Product, and Process Design—A New Frontier in Engineering Systems Design1.1. Motivation for the Integrated Design of Materials and Products
1.2. Systems-based Multilevel Materials Design
1.3. Context of Systems-based Materials Design
1.4. Multilevel Design—Challenges and Approach

Chapter 2. Critical Path Issues in Materials Design2.1. The Need for Material Models and Databases
2.2. Characterizing and Managing Uncertainty in Materials Modeling and Design
2.3. Multiscale Linkage of Material Models in Materials Design
2.4. A Systems Perspective for Integrated Product, Process, and Materials Design
2.5. The Need for an Integrated Product-Materials Design Methodology

Chapter 3. Overview of the Framework for Integrated Design of Materials, Products, and Design ProcessesNomenclature
3.1. Systems-based Materials Design as a Process
3.2. Robust Multi-objective Materials Design
3.3. Managing Complexity in Multilevel Product and Materials Design
3.4. Computational Framework for Distributed Product and Materials Design
3.5. Materials Design Examples

Chapter 4. Decision Making in Engineering DesignNomenclature
4.1. Designing—A Goal-oriented Activity
4.2. Decision-Based Design
4.3. Utility Theory
4.4. Closing Remarks

Chapter 5. Mathematical Tools for Decision Making in DesignNomenclature
5.1. An Illustrative Example—Integrated Design of Pressure Vessel and Composite Material
5.2. Selection Decision Support Problem
5.3. Compromise Decision Support Problem
5.4. Closing Remarks

Chapter 6. Robust Design of Materials—Design Under UncertaintyNomenclature
6.1. Uncertainty in Materials Design
6.2. Examples of Uncertainty in Material Models
6.3. An Introduction to Robust Design
6.4. Taguchi Method—Type I Robust Design
6.5. Robust Concept Exploration Method (RCEM)—Type II Robust Design
6.6. Requirements for New Types of Robust Design
6.7. Requirements for New Multilevel Robust Design Methods

Chapter 7. Integrated Design of Materials and Products—Robust Topology Design of a Cellular MaterialNomenclature
7.1. Multifunctional Design of Prismatic Cellular Structures
7.2. Robust Topology Design of Cellular Structures with Processing-Induced Imperfections
7.3. Flexible, Collaborative Design of Prismatic Cellular Combustor Liner Structures
7.4. Closing Remarks

Chapter 8. Integrated Design of Materials and Products—Robust Design Methods for Multilevel SystemsNomenclature
8.1. Robust Concept Exploration Method with Error Margin Indices (RCEM-EMI)—A Method for Type I, II, and III Robust Design
8.2. Inductive Design Exploration Method—A Multilevel Robust Design Method
8.3. Summary of IDEM

Chapter 9. Concurrent Design of Materials and Products—Managing Design ComplexityNomenclature
9.1. Managing Design Complexity
9.2. Frame of Reference: Multilevel Materials Design
9.3. Background—Decision Making Under Uncertainty and Value-of-Information
9.4. Approach for Systems-based Integrated Design of Materials, Products, and Design Processes
9.5. Utilizing the Improvement Potential for Management of Complexity in Design Processes
9.6. Application of the Simulation Model Refinement Approach to a Materials Design Problem
9.7. Applying the Method for Integrated Design of Materials, Products, and Design Processes to the Energetic Material Design Problem
9.8. Materials and Systems-level Simulation Models for Energetic Material Design
9.9. Results Using the Stepwise Refinement of Interaction Patterns (Steps 4–9)
9.10. Closing Remarks

Chapter 10. Distributed Collaborative Design Frameworks10.1. Frame of Reference—Framework for the Distributed Concurrent Design of Materials and Products
10.2. Review of Existing Frameworks
10.3. Motivating Example: Design of Linear Cellular Alloys (LCAs)
10.4. X-DPR (eXtensible Distributed Product Realization) Environment
10.5. Closing Remarks: Future Needs

Chapter 11. Closure—Advancing the Vision of Integrated Design of Materials and Products
Index


Copyright
Butterworth-Heinemann is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK
© 2010 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.




Library of Congress Cataloging-in-Publication Data
Application submitted
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
ISBN: 978-1-85617-662-0

For information on all Butterworth-Heinemann publications visit our Web site at www.elsevierdirect.com




Printed in the United States of America
09 10 11 12 13 10 9 8 7 6 5 4 3 2 1
[image: B9781856176620000156/fx1.jpg is missing]


Preface
To some extent, design of materials has long been a preoccupation of materials scientists and engineers. However, the historical emphasis on laborious, intuitive, serendipitous materials discovery has only relatively recently been augmented by computer simulations. This speeds up discovery of new material solutions, as well as more rapidly assessing process-structure-property relations upon which modern materials science is based. Fueled by the recent emergence and rapid growth of computational methods, a materials design revolution is underway in which the classical materials selection approach is replaced by the simulation-based design of material microstructure or mesostructure to satisfy multiple performance requirements of the component or system, subject to constraints on certain material properties and other aspects of the system.
Materials typically used in applications today have complex, heterogeneous microstructures with different characteristic length scales, and these microstructures affect processing, manufacture, and in-service performance. In the past fifty years, research in theory of dislocations, phase transformations, and micromechanics of heterogeneous materials enabled explicit consideration of the role of microstructure on the properties of metallic systems and certain classes of composites. Pivotal to progress in the present materials design revolution are the works of Olson (Olson 1997) on combining elements of reductionist, bottom-up modeling with deductionist, top-down systems design of materials. The perspective of a material as a complex hierarchical system is instrumental in drawing analogy to subsystems and components considered in conventional design. Moreover, the contribution of Ashby and coworkers (Ashby 1999) regarding systematic definition and execution of the materials selection problem for various performance requirements is acknowledged as foundational to relating properties to performance.
The core of materials design is the interplay of hierarchical systems-based design of materials and multiscale/multilevel modeling methodologies, embedded within a computational framework that supports coordination of information and human decision making. We add to these developments elements of decision-based robust design of engineering systems. Why? In spite of great advances in material modeling and simulation, from atomic scales upward, these approaches have inherent uncertainty when it comes to predicting the properties of “real” materials; moreover, there are gaps of nearly intractable nature in methods for concurrent bridging of length and time scales in modeling material processing, deformation, and failure. While emerging high-performance computing and related simulation tools provide a more predictive foundation to support materials design, brute force methods based on atomistics or concurrent multiscale modeling are unlikely to have sufficient capabilities, combined with issues such as tractability and uncertainty, to support a broad range of materials design problems. A systems approach is required to address the nonlinear, hierarchical nature of real materials. Such an approach has proven to be beneficial for design of other complex systems (e.g., aircraft, automobiles, circuit boards, etc.).
Systems-based engineering design principles have developed substantially in the last few decades. An October 1998 workshop on materials design science and engineering (McDowell and Story 1998), sponsored by the National Science Foundation and cohosted by Georgia Tech and Morehouse College, was held to discuss interdisciplinary frameworks necessary to facilitate concurrent design of materials and products, and to replace “hit and miss” materials discovery with systematic methods for materials development that draw on combined elements of materials characterization and computational simulation. This is driven by an inexorable technology pull by the marketplace toward rapid development cycles for new and improved materials. Potential benefits include a virtual manufacturing environment that goes well beyond geometric modeling to include many aspects of the physical behavior of materials in simulating system-level response. Moreover, tailoring materials to enhance the performance envelope is an imperative as we consider future requirements for increasing efficiency and environmentally sustainable solutions, for example. This workshop noted that a change of culture is necessary in universities and industries to cultivate new concepts for materials design. The resulting roadmap for materials design focused on the following foundational technologies:
• Principles and approaches for more quantitative materials design.

• Enhanced modeling and simulation tools.

• Validated, reliable, and comprehensive databases.

• Methods for in situ characterization and testing.



In this book, we address the first bullet in the previous list, namely, systems strategies for concurrent robust design of materials and systems, along with elements of distributed modeling and simulation environments. Materials design falls under the general category of simulation-based design, in which computational materials science and multiscale mechanics modeling play key roles in evaluating performance metrics necessary to support materials design. Major findings of the May 2006 Report of the U.S. National Science Foundation Blue Ribbon Panel on Simulation-Based Engineering Science (SBES) (Oden, Belytschko et al. 2006) can be summarized as follows:
• “SBES is a discipline indispensable to the nation’s continued leadership in science and engineering…

• Formidable challenges stand in the way of progress in SBES research. These challenges involve resolving open problems associated with multiscale and multi-physics modeling, real-time integration of simulation methods with measurement systems, model validation and verification, handling large data, and visualization…”



The materials design approach advocated here invokes the notion of robust design, i.e., insensitivity of the desired response to any number of sources of uncertainty or variability having to do with material composition, processing, microstructure, service history, models, and model parameters, coupling of models at different length and/or time scales, chaining of design decisions or simulation outputs/inputs, etc. In many respects, it is a manifestation of SBES. To address robust design of materials, we have developed new concepts that extend existing methods and facilitate top-down design in the presence of complexity and uncertainty that is characteristic of hierarchical material systems.
Figure P.1 encompasses the goals of concurrent material and product design, showing that already established methods of design-for-manufacture of parts, subassemblies, assemblies, and overall systems can be extended to address the multiple scales that control property-performance attributes of materials. Hence, the objective of tailoring the material to specific applications (to the left of the vertical bar in Figure P.1) is patently distinct from traditional materials selection that is common in practice. The problem is that the systems-based design methods used to design parts, components, and assemblies must be extended to consider the nuances of process-structure-property relationships in materials in the presence of significant uncertainty. The hierarchy of scales from quantum to continuum on the left side of Figure P.1 may be viewed as a multiscale modeling problem, but this is a reductionist, bottom-up perspective. The materials design challenge is to develop methods that employ bottom-up modeling and simulation, calibrated and validated by characterization and measurement to the extent possible, yet permit top-down design over the hierarchy of material length scales shown in Figure P.1.
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	Figure P.1 Hierarchy of levels from atomic scale to system level in concurrent materials and product design. Existing systems design methods focus on levels to the right of the vertical bar, treating the materials design by selecting the material.




Our intention in this book is to provide a connection between several key primary disciplines or endeavors that have been traditionally distinct but naturally combine to serve as the foundation of modern materials design: (1) systems-based engineering design, (2) computational materials science and engineering, (3) robust systems design, and (4) information technology. It is targeted to serve as a useful reference in emerging methods for concurrent design of materials and products for product designers, materials scientists and engineers, applied mechanics researchers, and other analysts involved in multiscale modeling of material behavior and associated process-structure-property relations.
The reader may find that the premise behind this book—that materials can be designed concurrently with products—is not the usual way of doing business in many organizations that traditionally separate the functions of materials development from systems design along organizational lines, using material properties as the mode of communication/information exchange. It also differs from the way design is taught in most engineering programs, including materials science and engineering. Indeed, the ideas presented here represent our long-term prospectus for how this might be done in the “near tomorrow” as computing power increases, engineering becomes increasingly multidisciplinary, multi-resolution, and multiscale material modeling methods blossom, and systems approaches that emerge from the engineering design, multidisciplinary optimization, and information sciences communities become a part of the engineering lexicon. To this end, we look toward the horizon beyond the current state of the curriculum, university disciplinary structures, or management of design processes in industry. We trust that the initial, embryonic ideas presented here will serve as an impetus for the students of today and technology leaders of tomorrow in various aspects of materials engineering and product development to consider the richness of opportunities that lie ahead in a digital, highly connected world.
In this book, we incorporate ideas and material from the dissertations of three former doctoral students in the Systems Realization Laboratory at Georgia Tech—Carolyn Conner Seepersad, HaeJin Choi, and Jitesh Panchal. In addition, we have all benefited from the rich interactions among students and faculty in the Systems Realization Laboratory. At the peril of omitting some names, we acknowledge Wei Chen (Northwestern University), Tim Simpson (Penn State University), and Kemper Lewis (University of Buffalo), whose doctoral work at Georgia Tech has had a major impact on the material presented herein. In addition, several graduate students and postdoctoral fellows in mechanics of materials at Georgia Tech have contributed substantially to the formative stages of this work. These include doctoral students Ryan Austin and Jim Shepherd, who provided essential framing of computational mechanics issues and codes that contributed to several materials design scenarios presented here as examples, as well as postdocs Aijun Wang and Rajesh Kumar, who developed valuable analysis tools and methods for use in cellular materials design problems.
Pursuit of many of the concepts outlined in this book received financial support from several sources. Concepts for robust design of materials were initially developed in the context of cellular materials applications with the support of the Defense Advanced Research Projects Agency (DARPA) (N00014-99-1-1016) from 1999 to 2002, monitored by Dr. Leo Christodoulou, and by the Office of Naval Research (ONR) (N0014-99-1-0852), under Dr. Steven Fishman. Support from 2002 to 2007 by the Air Force Office of Scientific Research (AFOSR) Multi-University Research Initiative Grant on Energetic Structural Materials (1606U81, Craig Hartley, monitor) is gratefully acknowledged, as is more recent, ongoing support of the NSF (I/UCRC) Center for Computational Materials Design (CCMD), a joint venture of partner institutions Penn State and Georgia Tech.
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Chapter 1. Integrated Material, Product, and Process Design—A New Frontier in Engineering Systems Design
1.1. Motivation for the Integrated Design of Materials and Products
For millennia, the technological capabilities of societies have been so closely linked to available materials that entire eras—the Bronze Age and the Iron Age, for example—have been named for the most advanced engineered materials of the day. Even the modern Information Age owes its name to a revolution in information technology made possible by critical advances in Si-based semiconductors and other materials. The continuing technological advancement of our society is tied closely to our ability to engineer materials that meet the increasingly ambitious requirements of new products. In fact, advancement in materials technology is an enabling element of the exponential rate of technology development. In view of the acceleration of new technology development, it is no longer appropriate to categorize epochs according to material class; we live in an age of synthesis or integration of new and improved materials with electronics, our environment, and even our human bodies via medical implants. The notion of designing materials to best suit this integration is a relatively recent trend.
Design has been defined by the U.S. National Science Foundation (NSF) as a process by which products, processes, and systems are created to perform desired functions through specification. The fundamental objective in a design process is “to transform requirements—generally termed ‘functions,’ which embody the expectations of the purposes of the resulting artifact, into design descriptions” (Gero 1990). Complex new products and systems are currently realized with increasingly sophisticated and effective systems design techniques that have been shown to decrease product development cycle times and increase quality. Like the aircraft illustrated in Figure 1.1, many of these complex systems are realized by concurrently designing the subsystems, components, and parts into which a system is decomposed. However, the design process typically stops at the “part” level—rather than the “material” level—of the system hierarchy illustrated in Figure 1.1. Materials are typically selected—not designed—from a database of available options (Ashby 1999). Accordingly, the performance of many engineered parts and systems is limited by the properties of available constituent materials. For example, the further increase in efficiency and reduction in emission of aircraft gas turbine engines shown in Figure 1.1 requires high temperature, high strength, structural materials for the engine combustor liners, other hot section components, and gas turbine engine disks and blades. Unfortunately, these combinations of properties are not typically available from materials in current databases. The inherent difficulty with materials selection is the inability to tailor a material for application-specific requirements—such as those of the turbine engine hot section—that may conflict in terms of demands on material structure and properties. On the other hand, lead times for the development of new materials have remained relatively constant and unacceptably long relative to the desired product development cycle. The lengthy time frame and expense of new materials development is due in part to the predominantly empirical, trial-and-error approach adopted historically by materials engineers and developers (McDowell and Story 1998, Olson 2000).
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	Figure 1.1 An aircraft as a complex, hierarchical, multiscale system.
(Seepersad 2004)



A foundational premise for the field of materials design is that systems design techniques offer the potential for tailoring materials—as well as products that employ them—to serve the demands of multifunctional applications. We contend that the concept of materials design is not limited to selecting an available material from a database; instead, we actually tailor material structure at various levels of hierarchy (atoms, microstructure, etc.) via associated processing paths to achieve properties and performance levels that are customized for a particular application. In the materials science and engineering design communities, momentum is building toward materials design and away from exclusively empirical materials development approaches (McDowell and Story 1998). Materials scientists and engineers facilitate materials design by creating increasingly sophisticated, realistic, and accurate models for material structure and properties that can be used to support a design process to satisfy a ranged set of performance requirements. In addition, product and systems designers recognize the potential technological breakthroughs that can be achieved by concurrently designing materials and products, thereby overcoming the property and performance limitations of currently available materials for a host of applications.
At this point, it is useful to formalize a definition for the scope of concurrent design of materials and products, which we will refer to as materials design. The term materials design may have different meanings to different people and audiences. Accordingly, our definition is the top-down driven, simulation-supported, decision-based design of material hierarchy to satisfy a ranged set of product-level performance requirements.
It is quite clear that materials design is a challenging proposition. Materials are complex, multiscale systems with phenomena manifested at a hierarchy of length scales. Time scales range from atomic vibrations (femtoseconds) to relaxation of microstructure (nanoseconds to microseconds) to structural performance (seconds, hours, days, years).
Materials design efforts therefore rely on continuous development and improvement of predictive models and simulations on a hierarchy of length scales, quantitative representations of structure, and effective archiving, management, and visualization of materials-related information and data. Together, these components provide important deductive links in the chain of processing-structure-properties-performance, as illustrated in Figure 1.2. Such deductive, bottom-up analytical tools are necessary but not sufficient for materials design. As discussed by Olson (Olson 1997) and illustrated in Figure 1.2, materials design is fundamentally an inductive, goal-oriented synthesis activity aimed at identifying material structures and processing paths that deliver required properties and performance. Like engineering systems design, it is a top-down exercise.
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	Figure 1.2 Olson’s hierarchical concept of “Materials by Design”.
(Olson 1997)



While Olson’s construct provides a foundation on which to build systems-based materials design, it does not fully illuminate the processes and strategies by which top-down design is to be carried out. Without an accompanying systems-based design strategy, it relegates practical aspects of inductive materials design to the creative will, depth of insight, experience, ability, and knowledge base of the individual designer. Important practical challenges must be addressed:
• Material structure and behavior is uncertain;

• Material models are uncertain and may be incomplete;

• Models are typically applied in bottom-up fashion, both for multiple scales of material structure and within the context of the linear deductive structure shown in Figure 1.2;

• Design goals change with time and adjust to new possibilities, such that the design process must be flexible and adaptable; and

• Materials engineers, analysts, and systems designers are distributed geographically within different organizations and have different backgrounds and expertise.



In view of the prevalent role of uncertainty, robust design methods are desirable. Effective, efficient, systems-based robust design methods are needed for modeling and executing complex, hierarchical materials design processes. A broad set of challenges and opportunities for concurrent design of materials and products is outlined in the report by the U.S. National Academy of Engineering National Materials Advisory Board on Integrated Computational Materials Engineering (ICME) (Pollock, Allison et al. 2008). These notions have gained considerable traction in industry. This book is devoted to exploring implications for systems strategies for concurrent design of materials and products, building on the foundations of Olson’s ideas embodied in Materials by Design® and ICME.

1.2. Systems-based Multilevel Materials Design
Systems-based multilevel design involves accounting for all aspects of systems from lower length and time scales to higher scales, addressing the multiscale nature of physical structure and behavior. The design process is multilevel in the sense that decisions must be made with respect to structure at each level of material and product hierarchies. Multiple levels of models must be integrated with design decisions in concurrent materials/product design. The design process is multiscale in the sense that multiple length and time scales of material structure and responses are addressed by different models. Multilevel design seeks to make risk-informed design decisions at all scales.
Design has traditionally involved selecting a suitable material for a given application (see Figure 1.3). In fact, engineering design textbooks (Norton 2006, Pahl and Beitz 1996, Shigley and Mischke 1989) and undergraduate design courses have typically conveyed the idea that materials should be selected based on tabulated databases of properties. However, the relatively recent use of tailored materials that did not exist in antiquity, such as graphite epoxy composite materials in sporting goods and aerospace applications or advanced Ni-base superalloys in hot section gas turbine engine components, have promoted reexamination of this concept. The key element in tailoring these materials is a quantitative understanding of the relation of process route to microstructure, structure to properties, and properties to performance. This is not a new realization—ancient samurai swords were processed by experts with extensive empirical knowledge of the interplay of composition and process route on microstructure and resulting properties (Olson 2000). Today, however, we are poised to synthesize knowledge of such relations using computational modeling and simulation.
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	Figure 1.3 Materials selection in systems design.




1.2.1. Mappings in Materials Design
Olson’s conceptualization in Figure 1.2 (Olson 1997) has provided a philosophical underpinning for the inductive, top-down engineering approach to materials design.
The flow of information in Olson’s diagram constitutes of a set of mappings, each of which involves intermediate models or data visualization, databases, interfaces between models and/or databases, and/or human decisions. This is illustrated in Figure 1.4. We see that certain classes of mappings (models, codes, and heuristics, as well as experiments) are necessary to support materials design:
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	Figure 1.4 Hierarchy of mappings from process route to microstructure to properties to performance.




• Process-structure (PS) relations: Used to establish manufacturing constraints, cost factors, and thermodynamic and kinetic feasibilities of process route.

• Structure-property (SP) relations: Most often intrinsically hierarchical in nature, these are relations between composition, phases, microstructure morphology, and response functions or properties of relevance to desired performance requirements.

• Property-performance (PP) relations: Relations between properties and response functions and specified performance requirements, either through detailed point-by-point computational models or by construction of approximate response surface or surrogate models.



In Figure 1.4, this is further broken down into mappings of vertical (PS, SP, and PP) and lateral type, the latter involving a reduction of degrees of freedom of the material representation and/or associated models. Vertical mappings of SP type are sometimes referred to as homogenization relations and normally involve a reduction in the model degrees-of-freedom (condensation) of an equivalent response function or model. Such homogenization may be achieved in numerous ways, ranging from concurrent multiscale models, domain decomposition for discrete to continuous transitions, two-scale homogenization, statistical mechanics of evolutionary systems, “handshaking” methods for informing reduced degree-of-freedom (DOF) models based on results of higher DOF models, variational methods such as the generalized principle of virtual velocities (Needleman and Rice 1980), and a number of other emerging computational multiscale modeling approaches. Decision nodes can be inserted at each vertical or lateral mapping at which designers participate to interpret and negotiate information to be transmitted with the mapping.
The horizontal or lateral mappings at each level are also indicated in Figure 1.4. For example, the actual microstructure can be represented in explicit digital format, or distribution functions of geometric attributes (e.g., grains, phases, particles) can be computed and stored, with a significant reduction in DOF. Following this lateral mapping, microstructures can be reconstructed and then analyzed for properties. Since DOF are condensed in the lateral mapping, information content is reduced and it is necessary to proceed forward with the projection of properties from these reconstructed microstructures. The resulting responses or properties mapped from these reduced DOF microstructure representations differ from those based on simulations (projections) performed on the basis of digital images of actual microstructures. Hence, there is loss of information and propagation of uncertainty associated with such mappings. It is important to note, however, that materials design involves exploration of materials and microstructures that do not exist and therefore reconstructions based on distribution functions are an important starting point for many simulations, anchored by limited numbers of actual microstructures when available.

1.2.2. Multiscale Computational Modeling of Materials
The mappings in Figure 1.2 are distinguished from a hierarchy of material length (and time) scales that are pertinent to materials design. Numerous methods for multiscale modeling have been developed to bridge length scales from atomic to molecular to mesoscopic to continuum and macroscale, with associated time scales ranging from femtoseconds to nanoseconds to seconds, hours, days, and years. There are, of course, practical limitations to concurrent multiscale modeling (linking models at different scales or levels of refinement in an explicit way to facilitate fully coupled bottom-up and top-down modeling) even beyond computational issues. These include, in part, assignment of initial conditions for all evolving microstructure attributes, various model approximations, as well as simplifications in models at each scale to achieve concurrency.
In Figure 1.5, we show how experimental measurements are selectively performed to (i) provide input to models (parameters, initial conditions, configurations), (ii) augment or replace models with measured data to formulate meta-models (e.g., response surfaces and artificial neural networks), and/or (iii) calibrate and validate modeling and simulation methods and tools. Such experiments are only one component of validation of the overall framework. The issue of validation is much more comprehensive, having to do as well with logic of information flow, consistency of chained models with decision support requirements, model implementation, etc. Validation is discussed in Chapter 4. For some phenomena, such as nonequilibrium material processing, mechanisms may be poorly understood and model uncertainty is so high that design of experiments process route exploration must be carried out experimentally. Historically, that has been the route of materials development. However, when used in combination with process models that can be calibrated by experiment, the ability to search the feasible design space in process-structure mappings can be expanded.
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	Figure 1.5 Infusion of experiments [Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Orientation Imaging Microscopy (OIM)] at different levels of the multilevel materials design hierarchy, indicating how composition, microstructure, and resulting properties can all be informed or calibrated across Process-Structure (PS), Structure-Property (SP) and Property-Performance (PP) mappings.





1.2.3. Decision Support in Multilevel Concurrent Design of Materials and Products
This interplay of material processing, characterization, and experiments brings us to a very important perspective about concurrent materials and product design. We do not embrace the notion of fully automated simulation-based materials design. Rather, we recognize that only certain classes of materials design problems can be addressed by automated searches of predicted properties of materials that can be synthesized or processed to meet performance requirements. Examples include:
• Combinatorial searches for molecules for pharmaceutical applications (molecular sieves, virus blockers, etc.)

• Design of composites for elastic properties (fiber-reinforced composites, textured polycrystals, etc.)



In such cases, one can identify and explore the space of feasible material structure and then exercise structure-property models. In the first case, atomic-level modeling tools must be used (based on first principles ab initio or molecular mechanics), while in the second case, continuum models apply. But the applications that consider materials design as a database search and/or data mining exercise are very limited owing to the many challenges pointed out in Section 1.4.
With regard to materials design objectives, concurrent multiscale modeling schemes or homogenization concepts may be unnecessary in many cases, because the goal is not to accurately predict properties but to understand their sensitivity to microstructure and to capture essential dominant mechanisms and their transitions as a function of forcing functions and responses applicable to the given design scenario. Although seamless “bottom-up” modeling is appealing from a scientific perspective, it is often too idealized and chained with a compilation of approximations that may compromise viability for materials design. In addressing most applications involving integrated materials and product design, multilevel design demands that models be employed in the range for which they are most appropriate and accurate, using decision-based protocols for passing information from one level to the next, as shown in Figure 1.6. The decision support nodes in Figure 1.6 can employ the construct of compromise Decision Support Problems set forth in several reference sources (Mistree, Hughes et al. 1993, Muster and Mistree 1988) and discussed in Chapter 5. Of course, explicit, seamless scale transitions can be utilized for certain mappings as well, but the utility of doing this must be determined by the degree of coupling in the system. Decisions to decouple models executed at different levels in Figure 1.5 and Figure 1.6, as well as at different length and time scales, must consider the value-of-information that is compromised in so doing. A metric for value-of-information is assessed by conducting level transitions involving decisions shown in Figure 1.6 and comparing relative performance loss (change of objective function) based on weakly coupled models with representative cases using strongly coupled models (Panchal, Choi et al. 2006, Panchal, Choi et al. 2007), as discussed in Chapter 9. This methodology also pertains to refinement of models framed at a given scale, i.e., variable resolution or fidelity. In general, a hierarchy of models may be employed, with different DOF and at different length and time scales, to inform design decisions. 
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	Figure 1.6 Hierarchy of mappings in multilevel materials design, showing how mappings can be accompanied by decisions associated with transfer of information between levels.




In the next section, we distinguish between the notion of multiscale modeling, which is inherently a bottom-up exercise, and multilevel design. In the latter, the hierarchy of length and time scales, as well as product, assembly, subassembly, and component scales, is considered. The presence of decision nodes at various model and database interfaces in Figure 1.6 highlights a key distinguishing feature of multilevel design—it employs the concept of decision support to link information from models and databases, rather than seeking automated, seamless connectivity. Figure 1.7 illustrates the hierarchy of material length scales below the individual part/component scale, which is a key aspect of concurrent design of the material as a part of the overall product design. This concept of concurrent design of materials and products is broader than just the design of materials to achieve specified properties (although that is an important subset) because the performance requirements may place a complex, conflicting set of demands on the material properties. Moreover, different responses are often coupled to some degree (e.g., ductility and fracture toughness), such that designing to “property sets” that are measured at fixed structure is not always meaningful. To the right of the vertical black line in Figure 1.7, robust systems design methods are well established, and are routinely applied to the design of aircraft, automobiles, refrigerators, etc. (Chen, Allen et al. 1997, Kalsi, Hacker et al. 1999, Rolander, Rambo et al. 2006, Taguchi 1986). On the other hand, methods to address the hierarchy of material length scales on the left side of this figure are not well established. Associated models and model parameters for process-structure and structure-property relations at each scale of material structure (and through the hierarchy of scales) are characterized by relatively high degrees of uncertainty compared to models and processes on the right side of the diagram. In fact, the uncertainty in material modeling is often difficult to quantify (for example, effects of randomness in material microstructure on variability of properties or responses).
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	Figure 1.7 Extension of systems-based, top-down materials design from parts, subassemblies, assemblies, and components to hierarchical levels of material structure.






1.3. Context of Systems-based Materials Design
1.3.1. Multiscale Modeling vs. Multilevel Materials Design
It is useful to distinguish the goals and methods of multiscale modeling for the hierarchy of material structure shown on the left in Figure 1.7 from those of materials design. Numerous methods for concurrent multiscale modeling have been developed, as well as a number of other emerging multiscale homogenization approaches. Concurrent multiscale modeling is a specific class of multiscale modeling approaches that involves fully coupled simulation models at multiple scales; this enables both bottom-up prediction of collective responses as a function of microstructure, and top-down assessment of microstructure-scale responses given higher length and time scale behavior. Concurrent modeling of multiple scales is of particular relevance in relating efficient coarse-grain models of response (e.g., finite element analysis of macroscopic structures) to fine-scale behavior (mesoscopic, microscopic, nanoscopic). As such, it is an analysis tool. However, it must be borne in mind that distinct objectives can drive the design of each level of hierarchy, and the design process need not rely on chaining or sequencing models at different scales. Concurrent multiscale modeling is not particularly attractive for materials design in many cases because the propagation of uncertainty may be too significant to render useful designs; there is also uncertainty associated with approximations involved in the models and methods for scale transitions. This may be viewed as a coupling of models written at different length (and time) scales, and will be discussed in Chapter 9 in terms of an interaction matrix for multiscale/multilevel simulation-based design. In fact, combined bottom-up modeling and top-down experimental strategies that interact at intermediate scales may be of greater utility in materials design (Wang, Kumar et al. 2007).
The key distinctions between multiscale modeling and systems-based materials design are highlighted in Figure 1.8. The primary objective in multiscale modeling is analysis (i.e., prediction of the properties of the material based on the structure), whereas the objective of systems-based materials design is to find material microstructure(s) that satisfy the system-level design objectives. Multiscale modeling represents a deductive approach while systems-based materials design corresponds to an inductive approach, as presented by Olson in Figure 1.8. Hence, the focus of the two activities is different—multiscale modeling efforts emphasize accurate prediction of material properties or responses, while systems-based design efforts focus on efficiency in evaluating design options in the presence of uncertainty. The primary challenge in multiscale modeling is to link phenomena at different length and time scales. In contrast, the primary challenge in systems-based design is the management of uncertainty and complexity of the problem; we address these issues in Chapter 6, Chapter 7, Chapter 8 and Chapter 9. Due to their nature, multiscale modeling approaches are generally domain- and problem-specific, whereas systems-based design approaches are independent of a particular materials design problem. 
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	Figure 1.8 Distinctions of multiscale modeling and systems-based multilevel design in the design of materials and products.




As previously mentioned, systems-based design of materials employs models in the range for which they are most appropriate and accurate, using decision-based protocols for informing models and decisions based on these analyses. In general, a hierarchy of models at various scales may be employed, with different purposes and at different length and time scales, to inform decisions. The necessity of seamless scale transitions must be determined by the degree of coupling in the system and the utility of information gained by coupling. Hence, concurrent multiscale modeling is not a sufficient (or necessarily even desirable) component of multilevel materials design. At each level of the hierarchy (for each relevant mechanism that relates to response), models and databases (computationally or experimentally generated) are incomplete and sampling is discrete.
Computational materials science, combined with decision-based design, utility theory, and information economics, has promise to extend design exploration beyond human intuition, representing a fruitful area of collaboration between materials engineers, mechanics of materials, applied mathematicians, statisticians, and systems-based design experts. The goal is typically not to accurately predict mean values of properties or material responses but rather to understand and quantify sensitivity to microstructure. Predictions must be calibrated to measured responses for mean behaviors and for purposes of validation. In so doing, we should (i) use calibrated models in the range for which they are most appropriate and accurate, (ii) employ the concept of robust design to address uncertainty, and (iii) use decision-based protocols for informing robust design.

1.3.2. Materials Selection vs. Materials Design
Returning to the issue of materials selection discussed previously, we are in a position to consider the role of materials selection in concurrent design of materials and products. Interpreting elements of Olson’s diagram in Figure 1.2 as comprising levels involved in materials design, it is clear that only the relations between properties and performance (PP mapping in Figure 1.9) constitute materials selection. A set of N properties is typically extracted from reduced-order (lateral) descriptions of the material response, whether obtained by experiment or simulation, and then is related to M performance requirements, comprising a property-performance space of dimension M + N. The dimensions of the space for materials selection can then be further reduced by judicious non-dimensionalization of combined properties and performance requirements, which depends on the design and selection problem at hand. For example, the materials selection approach developed by Ashby and colleagues (Ashby 1999, Granta Design Limited 2007) is along these lines. As shown in Figure 1.9, the materials selection problem may be considered the “tip of the iceberg” of the entire materials design process.
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	Figure 1.9 Distinguishing the role of materials selection from systems-based materials design.




We suggest that a simulation-based materials design revolution is underway, in which materials selection is augmented by the design of material microstructure and/or mesostructure to satisfy specified ranged sets of performance requirements. Often these multiple performance requirements are in conflict in terms of their demands on microstructure, which leads to the need for multi-objective methods to search for satisfactory solutions.

1.3.3. Prospects for Improvement via Systems-based Materials Design
Historically, materials development has not drawn significantly on systematic design principles. Certainly, important methodologies have been developed, largely in terms of improvement of existing materials. Discovery of new materials has been a “hit or miss” proposition. The methodology is typically described by the following empirical route:
• Develop knowledge of initial conditions on composition range and process path to obtain useful material systems.

• Meander through length scales of material structure hierarchy and phenomena and modify by “intelligent perturbation” of process path.

• Move as far as possible toward desirable properties.



What, then, is a realistic assessment of the prospects for improvement via systems design of materials? The following questions offer some perspective. To what degree can designs made on the basis of empirical materials development be replaced by design decisions that are informed by modeling and simulation? It is presently estimated that fewer than 10% of decisions are made on the basis of simulation for many integrated material systems in products. Can the fraction of decisions be increased to 15%, or 30%? Every 10% increase may represent a substantial number of months in the materials development and insertion cycle. It can be argued that a threshold must be crossed to realize the goal of simulation-based integrated design of materials and products. What is that threshold level, and how does it vary among products and material classes? To what extent can multiple phenomena be considered simultaneously rather than sequentially? Very little information is obtained from experiments in the laboratory unless some basic insight is gained regarding sets of experiments that distinguish key physical phenomena in terms of operative time and length scales. Greater understanding leads to more efficient experimental protocols and more rapid material characterization. Modeling and simulation offer much greater acceleration by allowing for mechanisms that govern material response to be explored somewhat independently and in parallel, exercising models at different length and time scales in the hierarchy shown in Figure 1.2. Finally, to what extent can the degree of idealization in the design problem be relaxed to consider microstructures and phenomena in more realistic fashion?


1.4. Multilevel Design—Challenges and Approach
1.4.1. Challenges in Top-Down Materials Design
Typically, engineering design (from a systems perspective) proceeds from the top down through the mapping hierarchy as illustrated in Figure 1.2, Figure 1.3, Figure 1.4, Figure 1.5, Figure 1.6, Figure 1.7, Figure 1.8 and Figure 1.9. Bottom-up analysis is an important supporting element. Pursuit of top-down materials design has many challenges, among the most prominent being the difficulty of seeking inverse problem (top-down) solutions arising from the nonequilibrium nature of process path-structure relations and structure-property relations. Cases in which inversion is possible are rather limited when process path is considered, such as tailoring of grain orientation distribution (macroscopic texture) to deliver desired macroscopic elastic properties of polycrystalline metals. Other challenges are listed as follows:
• The nonlinear, path-dependent behavior of metals and alloys limits extent of parametric study and parallelization of continuum analyses and engenders dependence upon initial conditions.

• A wide range of local solutions can be realized for specified objective functions in terms of property or performance requirements, leading to nonuniqueness and perhaps large families of possible solutions.

• The role of extreme value distributions (not just mean field averages) of certain microstructure features that control material responses such as fracture and fatigue. In fact, although materials selection is often expressed in terms of property requirements (Ashby 1999), material responses in the presence of evolving (in contrast to stationary) microstructure are often of interest. This means that information is complex and continuous in many cases, rather than discrete property sets. 

• Representation of microstructure presents challenges in terms of how much information to store and in what format. Moreover, the goal of materials design is to explore microstructures that do not exist, using computational simulations combined with selected experiments to estimate properties.

• Process capabilities constrain achievable microstructures, and thermodynamics and kinetics (history) considerations limit the range of accessible or feasible microstructures.

• Major sources of uncertainty in processing, microstructure, modeling, etc. must be taken into account, as they can dominate the configuration of the design process and range of acceptable solutions. This consideration typically demands design approaches that are robust against such uncertainty.

• Material models (PS, SP) and design results must be validated, using principles of internal consistency, statistical realizability, and validation of material response at various length scales by direct or indirect measurement (Seepersad, Pederson et al. 2006).

• Tradeoffs between design exploration and computational intensity offer practical limitations on the range of design space considered and the number of iterations involved.



From a practical perspective, process-structure relations are often a weak link in the linear structure shown in Figure 1.2, necessitating a distinction between materials development (assessment of feasible materials and microstructures that can be synthesized or processed) and materials design, which runs the gamut of process-structure-property-performance relations.

1.4.2. Addressing Multilevel Design Challenges
A systems-based design approach is necessitated by many of the challenges associated with concurrent design of materials and products. For example, materials design is inherently multilevel and multifunctional in nature. Most applications require materials that satisfy multiple functions—such as structural load bearing, thermal transport, cost, and long-term stability—and these requirements cannot be defined in isolation from overall system conditions and requirements. These conditions are associated with the operating environment and the component(s) and overall system in which a material is integrated. The material is a subsystem of a larger system that includes parts, assemblies, and physical systems. Materials are themselves hierarchical systems. Desired material properties and performance characteristics often depend on phenomena that operate at different length and time scales, spanning from angstroms to meters and from picoseconds to years. A hierarchy of models applies to a range of length and time scales. Each model is used to inform the formulation of other models on higher length scales that capture the collective behavior of lower length scale subsystems, but it is very difficult to formulate a single model for macroscopic material properties that unifies all of the length scales (McDowell and Story 1998). For example, first-principles models can be used on atomistic and molecular levels to predict structure and properties of ideal designs, but they are too computationally expensive and often too idealized to model real materials with highly heterogeneous structures that strongly influence their macroscopic properties. On the other hand, continuum mechanics models are useful for describing properties at a macroscopic scale relevant to many engineering applications, but they are inappropriate for fine-scale dynamic phenomena that require resolution of discrete defects, atoms, etc.
While it is extremely challenging to develop physics-based models that embody relevant process-structure-property relations on different length and time scales for diverse functionality, the complexity and restricted domains of application of these models limit their explicit integration across length and time scales. Instead, they must be linked in a manner that facilitates exploration of the systems-level design space by a collaborative team of experts. Distributing analysis and synthesis activities also leverages the extensive domain-specific knowledge and expertise of various material and product designers who may be specialized according to length and time scales, classes of materials, and domains of functionality. A fundamental role of each domain-specific expert is to make decisions that involve synthesizing and identifying solution alternatives to achieve desirable tradeoffs between sets of conflicting material property goals. However, material subsystems are interdependent, and the individual decisions associated with them rely on information and solutions generated by other decision makers at other levels of the hierarchy. In the end, preferable systems-level solutions are sought, and they are not necessarily obtained by “optimizing” each subsystem individually. Therefore, it is critical to establish multi-objective decision protocols for individual designers as well as standards, tools, and mathematical techniques for interfacing individual decisions and facilitating information flow among multiple experts.
Since materials are typically hierarchical, heterogeneous systems characterized by a certain degree of randomness, it is not reasonable or sufficient to adopt a deterministic approach to materials design. Parameters of a given model are subject to variation associated with spatial variability of microstructure and variability due to processing. Furthermore, uncertainty is associated with model-based predictions for several reasons. Models inevitably incorporate assumptions and approximations that impact the precision and accuracy of predictions. Uncertainty may be magnified when a model is utilized near the limits of its intended domain of applicability and when information propagates through a series of models. To facilitate exploration of a broad design space, approximate or surrogate models may be utilized, but fidelity may be sacrificed for computational efficiency. Experimental data for conditioning or validating models may be sparse and may be affected by measurement errors. Often, it is expensive or impossible to remove these sources of variability, but their impact on model predictions and final system performance can be profound. Therefore, systems-level design methods need to account for the many sources of uncertainty and facilitate the synthesis of robust solutions that are relatively insensitive to them.
It is fully recognized that material structure and property databases for multicomponent material systems serve as foundational elements of materials design, whether based on experiments or simulations. The subject of databases has received much attention in materials design literature to date. It does not receive particular emphasis in this book, however, in view of the fact that databases are considered instruments of informing design decisions, as are models and simulations; accordingly, we implicitly include databases as constituting mappings in Figure 1.9. Databases dominate only certain classes of materials design problems, such as combinatorial design. As is the case with modeling and simulation, databases should also convey uncertainty associated with their elements (assumptions, methods, approximations) to facilitate systems-based robust design. Historically, this aspect has not received much attention.
Finally, it is necessary to establish a computing infrastructure for integrating heterogeneous, distributed software applications and databases in a simulation-based materials design process. An effective computing infrastructure needs to automate the details of executing and linking various models, freeing a designer to build upon previous model-based developments and to concentrate on higher-level design issues. The computing infrastructure should be easily extensible and platform independent. It also needs to archive and organize large amounts of data and facilitate real-time data sharing and visualization as well as systematic communication, translation, and search-based retrieval of design information. Tools are needed for online collaboration, communication, and project management, including real-time data sharing. We suggest a framework based on the eXtensible Distributed Product Realization (X-DPR) environment for systems-based materials design. We expand on this framework in Chapter 10.

1.4.3. Organization of the Book
In this book, we focus on various aspects of systems-based concurrent design of materials and products. The flow of information between different chapters is shown in Figure 1.10. In Chapter 2, a review of existing efforts related to materials design is provided. Chapter 3 contains an overview of the overall design framework presented in the book. The essential constituents of the framework (as shown in Figure 1.11), including robust design, complexity management, and a distributed design framework, are introduced in that chapter. Two examples of materials design problems are also discussed in Chapter 3; these examples are used throughout the book to illustrate the design framework. This concludes the first part of the book. 
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	Figure 1.10 Flow of information among the chapters.
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	Figure 1.11 Framework for systems-based materials design.




The second part contains a detailed discussion of the fundamental constructs on which the framework is based. In Chapter 4, the fundamentals of engineering design processes are discussed, which include a general model of design. The difference between analysis and synthesis is highlighted from a design perspective. An overview of the decision-based perspective to design is provided. The design framework presented in the book is centered on this perspective. Following a discussion of pursuing design for multiple functions, an overview of multi-objective decision making in design is discussed. In Chapter 5, details of two specific multi-objective decision-making constructs are presented. These include the Compromise Decision Support Problem (cDSP) and the Selection Decision Support Problem (sDSP). Different ways of formulating and solving decision problems in materials design are discussed in Chapter 5 and used extensively throughout the book.
In Chapter 6, the fundamentals of robust design and uncertainty management in simulation-based design are discussed. In the first half of this chapter, Taguchi’s robust design approach is discussed. In the second half, an extension to Taguchi’s approach, called the Robust Concept Exploration Method (RCEM), is described in detail. The existing robust design approaches are evaluated against the challenges in materials design, to identify the requirements for robust design methods in multilevel design. This is the last chapter in the second part of the book.
The details of the design framework are presented in the third part. This contains the core of the new methods for materials design developed at Georgia Tech. This part consists of three chapters. In Chapter 7, the Robust Topological Preliminary Design Exploration Method (RTPDEM) is presented. The method is established for designing complex multiscale products and materials concurrently by topologically and parametrically tailoring them for multifunctional performance that is superior to that of standard designs and less sensitive to variations. This systems-based design approach is formulated by establishing and integrating principles and techniques for robust design, multi-objective decision support, topology design, collaborative design, and design space exploration, along with approximate and detailed simulation models. RTPDEM is illustrated using a combustor liner design example. In Chapter 8, two new robust design concepts, developed for materials design, are presented. These include Robust Concept Exploration Method with Error Margin Indices (RCEM-EMI), and the Inductive Design Exploration Method (IDEM). RCEM-EMI is used for the robust design of systems under the presence of model uncertainty, whereas the IDEM is used for achieving robustness to uncertainty propagated in multilevel design. The methods are presented using a multifunctional energetic structural material design.
In Chapter 9, we address the challenge of complexity in multilevel materials design by presenting an approach based on information economics (value-of-information). The approach consists of refinement of coupled models and systematic simplification of the simulation-based design processes to an extent that does not compromise the design performance. The approach is presented using an energetic structural materials design example. In Chapter 10, the focus is shifted from design methods to computational frameworks for distributed design. An overview of the requirements for a distributed design framework for integrated materials and product design is presented. These requirements are addressed in an X-DPR framework. The framework is illustrated using a cellular material design problem. Finally, we conclude the book by discussing key challenges and future research directions in Chapter 11.
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Chapter 2. Critical Path Issues in Materials Design
Concurrent design of materials and products is a compelling, transformative technology for 21st-century competitiveness. It also serves as an interdisciplinary platform for instruction of new generations of materials scientists and engineers. As pointed out in Section 1.1, the field of Integrated Computational Materials Engineering is rapidly moving in this direction in view of the potential advances in product quality and performance, as well as cost reduction. Accordingly, product design and materials development are not mutually exclusive and independent activities but synergistic components of an integrated product, process, and materials design endeavor. This challenge involves a philosophical and cultural shift toward inductive, goal-oriented synthesis of products and their constituent materials and processing paths. A systems-based strategy is essential. Several critical path issues are outlined in this chapter, with an emphasis on the limitations of current capabilities and the associated research and development opportunities:
• Adequate models and experimental data on different length and time scales for a diverse set of (multiple) functions that material systems must deliver;

• Techniques for characterizing and managing uncertainty in material models applied to processing paths and structure-property relations, as well as resulting design specifications;

• Tools for linking diverse modeling and simulation tools and methods and related data across length and time scales, functional domains, and material classes; and

• Systems design methods and tools that bridge or integrate the design of materials, manufacturing processes, and products/components.



2.1. The Need for Material Models and Databases
Integrated Computational Materials Engineering (ICME) has been enunciated by a National Academy of Engineering (NAE) National Materials Advisory Board study group (Pollock, Allison et al. 2008) as an approach to concurrent design of materials and products. Emphasis is placed on linking models and databases for a set of material structure-property relations at multiple length and time scales to address problems relevant to specific products and applications. ICME hearkens back to Olson’s hierarchical scheme, shown in Figure 1.2 and Chapter 1 (Olson 1997), with the understanding that top-down strategies are essential to supporting goal/means design of materials to meet application-specific performance requirements. Implications of this vision were clarified much earlier at a 1998 workshop sponsored by the National Science Foundation (NSF) (McDowell and Story 1998) entitled “New Directions in Materials Design Science and Engineering (MDS&E),” involving a collaborative effort of U.S. academic and research communities. The participants concluded that a change of culture is necessary in U.S. universities and industries to cultivate and develop the concepts of simulation-based design of materials necessary to support integrated design of material and products. It also forecasted that the 21st century global economy would usher in a revolution of the materials supply/development industry and realization of true virtual manufacturing capabilities (not just geometric modeling) and realistic material behavior. It was recommended to establish a national road map addressing (1) databases for enabling materials design, (2) developing principles of systems design and the prospects for hierarchical materials systems, and (3) identifying opportunities and deficiencies in science-based modeling, simulation, and characterization “tools” to support concurrent design of materials and products.
Thermodynamics is a fundamental building block for simulation-supported materials design (Asta, Ozolins et al. 2001, Liu and Chen 2007, Olson 1997, van de Walle, Ghosh et al. 2007, Wang et al. 2004), providing information regarding stable and metastable phases, characterization of structures and energies of interfaces, and driving forces (transition states) for rearrangement of structure due to thermally activated processes. As such, it facilitates preliminary design exploration for candidate solutions to concurrent material and product design problems. First-principles calculations are indispensible in this regard, and support exploration of multicomponent systems for which little if any empirical understanding has been established (cf. Cuitino, Stainier et al. 2001, Goddard, Cagin et al. 2001, Haslam, Moldovan et al. 2002, Shenderova, Brenner et al. 1998). Database mining approaches have been combined with these sorts of tools (cf. Liu, Chen et al. 2006, Rajan 2005) to rapidly explore candidate solutions, particularly for design of materials with one dominant level of hierarchy. For multiple levels of hierarchy, multiscale modeling methods (cf. Cuitino, Stainier et al. 2001, Liu, Karpov et al. 2004, McDowell 2008, Ortiz, Cuitino et al. 2001) have been developed with input from digital representations of microstructures (Dawson, Miller et al. 2005). Current efforts in each of these areas are rather extensive.
It is widely acknowledged that improvement in fidelity and accuracy of material models is one element of simulation-based design of materials. However, it is a difficult matter to prioritize which phenomena and classes of models should receive investment for various types of materials design problems. A defining characteristic of materials modeling that has received relatively little attention (perhaps due to a conventional focus on deterministic modeling) is uncertainty. In many cases, it dominates considerations regarding the configuration of a simulation-assisted design framework. Uncertainty is discussed in the next section. 

2.2. Characterizing and Managing Uncertainty in Materials Modeling and Design
In materials design applications, uncertainty can be both stochastic and epistemic. Stochastic (i.e., aleatory) uncertainty stems from stochastic variability and inherent randomness of material processing and morphology, as manifested in heterogeneous, randomly distributed microstructure attributes and defects. Epistemic (i.e., model) uncertainty stems from limits to the knowledge captured in models (model idealization and approximation of reality) and databases. This manifests itself in the limited fidelity and accuracy of predictions, lack of information, and modeling errors due to interpolations, approximations, convergence, assumptions, and other factors related to methods of obtaining approximate solutions. Characterizing and managing both types of uncertainty are essential in pursuing materials design applications.
Simulation-based design in the presence of uncertainty is an active research topic for the engineering design community, but significant challenges hinder direct transfer of this body of knowledge to materials design under uncertainty. Close collaboration with materials engineers and scientists is essential to identify and to address the nuances of uncertainty related to designing materials. Allen and coauthors, in their review (Allen, Seepersad et al. 2006) of robust design capabilities for multidisciplinary and multiscale applications, identify several challenges relevant to materials design, including techniques for addressing model uncertainty (Du and Chen 2000, Du and Chen 2002), propagation of uncertainty through a series of models, each of which may represent a different scale and/or discipline (Gu, Renaud et al. 2000, Gu, Renaud et al. 2006), collaborative decision making under uncertainty (Chang and Ward 1995, Chang, Ward et al. 1994, Chen and Lewis 1999, Kalsi, Hacker et al. 2001), and multidisciplinary/multiscale optimization under uncertainty (Gu, Renaud et al. 2002, Kokkolaras, Mourelatos et al. 2006, Liu, Chen et al. 2006, Mavris, Bandte et al. 1999). However, as noted by Allen and coauthors and in Chapter 1, there are several aspects that render materials design particularly challenging for successful application of robust design and simulation-based design under uncertainty techniques. These include the propagation of information (and uncertainty) through linked models, some of which may magnify the effects of uncertainty or exhibit significant sensitivity to heterogeneities in input data. Models for material process-structure and structure-property relations are often highly sensitive to assumptions regarding their underlying physics, as well as sparse input data with limited precision due to cost and experimental error. Material models must account for the inherent variability of phenomena manifested at microstructural length scales, including stochastic spatial variations of microstructure morphology. Finally, the difficulty of computationally linking models across the full range of relevant scales, for most applications, means that materials design is not a fully automated endeavor but an interactive enterprise involving materials designers who make decisions with the assistance of computers.
Accordingly, materials design under uncertainty is still emerging as a research field. McDowell and Olson (McDowell and Olson 2008), for example, highlight the role of uncertainty in materials design and cite the need for robust materials design solutions that are relatively insensitive to variations in material structure at various scales. Noteworthy recent work includes the multiscale design approach of Yin and coauthors (Yin, Lee et al. 2008), who model uncertainty in material microstructure with a random field approach and facilitate uncertainty propagation with a reduced order approach. Zabaras and coauthors are also developing methods for analyzing the effect of topological uncertainties in microstructure on homogenized properties as part of a set of advanced computational techniques for materials-by-design and stochastic optimization of materials deformation processes (Acharjee and Zabaras 2007, Sankaran and Zabaras 2006, Zabaras 2006). Patera and coauthors (Cuong, Veroy et al. 2005, Huynh and Patera 2007) investigate the use of reduced-order models for materials design applications. They focus on the development of reduced-basis output bound methods for quantifying uncertainty of predictions of these reduced-order models that result from the approximations inherent in the models themselves. In this work, materials design applications include application of modeling concepts of linear elastic fracture and Helmholtz elasticity. Zohdi (Zohdi 2003) has investigated the impact of material uncertainty (specifically random dispersion of particulates in a homogeneous matrix) on macroscopic effective properties. He applied a genetic algorithm for designing these types of materials by finding values of design variables (volume fractions, geometries of particulates, etc.) that minimize deviation from desired effective properties. Choi and coauthors (Choi, Grandhi et al. 2006) use polynomial chaos expansion procedures for quantifying material uncertainty—specifically, for quantifying continuum level material properties as uncorrelated random variables—in robust design processes for mechanical systems.
Uncertainty characterization and management is also a significant issue for several large-scale federal initiatives in the emerging materials design field. For example, the Defense Advanced Research Projects Agency (DARPA) Accelerated Insertion of Materials (AIM) 1 program focused on creating tools and methods to accelerate the insertion of new materials (materials development and certification) into production hardware. Part of the AIM program focused on metallic structures, namely nickel-base superalloys for gas turbine engine disks, with the goal of maximizing disk spin speed while minimizing mass (Apelian, Alleyne et al. 2004, Jou, Voorhees et al. 2004). Part of the design process involved predicting and experimentally validating spatial distributions of forged microstructures and associated distributions of properties such as yield strength (i.e., location-specific materials design of components). Another component of the AIM program focused on composite materials for aerospace applications. In the AIM composites program, Hahn and coinvestigators (Cregger, Caiazzo et al. 2004, Hahn 2001) addressed propagation of uncertainty and variability and associated designer confidence in model predictions. They utilized tools such as analysis of variance, sensitivity analysis, structural reliability methods, Monte Carlo analysis, regression, and robust design to address multiple sources of uncertainty, including uncertainty with respect to input material properties (accuracy, repeatability, and availability of sufficient data), modeling (accuracy, assumptions, interpolation, and extrapolation), and synthesis of experimental and model-based data. Of particular interest were methods for quantifying error bounds on predictions and for validating and updating models.
1http://www.darpa.mil/dso/thrusts/matdev/aim/overview.html
Designer confidence in the performance of tailored materials is one of the most critical challenges facing the materials design community. As noted in the National Materials Advisory Board’s summary of the status and promise of Integrated Computational Materials Engineering (National Materials Advisory Board 2008), engineers need qualified, predictive models for which the accuracy and precision of predictions are known with some level of certainty. While techniques are available for sensitivity analysis and uncertainty quantification, significant work is needed to enhance their efficiency for iterative materials design and to infuse these techniques throughout the fields of computational mechanics and materials science. Furthermore, issues of propagation of uncertainty across multiple models (and scales), model-based uncertainty, and uncertainty associated with sparse experimental data and its integration into computational models continue to challenge materials scientists and systems engineers. Significant additional work is needed in these areas to more rapidly qualify new material designs and to shift workload and decision making based on costly and time-consuming physical experimentation to less costly computational modeling and design. In this book, fundamentals of robust design and uncertainty management are discussed in Chapter 6 and incorporated within robust design methodologies for materials applications in Chapter 7, Chapter 8 and Chapter 9.

2.3. Multiscale Linkage of Material Models in Materials Design
In materials design applications, it is essential to implement not only a design methodology for tailoring multiscale material systems, but also the underlying computing infrastructure and protocols for linking diverse analysis tools, data, and knowledge across scales, functional domains, and material classes. As discussed in Chapter 1, materials design at multiple levels of hierarchy is a much broader activity than multiscale modeling. The need to integrate diverse tools is widely recognized in the science and engineering communities and even more acutely in the materials design field. The NSF’s Office of Cyberinfrastructure, 2 for example, was created in 2005 to support the development of data repositories, visualization tools, high-speed computing facilities, and other resources that enhance their access and usability for scientists and engineers, including those involved in multiscale simulation and design applications such as materials design (Oden, Belytschko et al. 2006). Also, the National Institute of Standards and Technology (NIST) has compiled a database of materials properties. 3 This database supports the development of measurement standards and protocols for hardware and software applications. NIST has also expressed interest in expanding this database to provide coordinated “data on demand” for materials design applications, with an emphasis on standardization, interoperability for industrial and academic users, and responsiveness to research needs for a variety of data, such as nonequilibrium working data (Green 2007). Both industrial and academic researchers have expressed a need for such databases, which may be too costly for a single research group to establish or maintain.
2http://www.nsf.gov/od/oci/about.jsp
3http://www.msel.nist.gov/dataontheweb.html
In the absence of publicly available, widely applicable, and comprehensive computing infrastructure or databases for materials design applications, some materials designers have created their own computational frameworks for multilevel materials design applications. For example, in a Materials by Design® initiative for advanced steels, Olson (Olson 1997) has utilized the THERMOCALC database and software system to integrate models on a hierarchy of scales from quantum scale codes to continuum level models. Similarly, Liu and coauthors (Liu, Chen et al. 2004, Liu, Chen et al. 2006) have developed a computing framework for multilevel materials design called MatCASE (Materials Computation and Simulation Environment), which integrates software from atomic-scale first-principles calculations for predicting interfacial energies, lattice parameters, and elastic constants to finite element analysis for evaluating mechanical responses of proposed microstructures.
While most materials design computing frameworks are aimed at “hard” computing—the use of physics-based models and databases of experimental data to inform materials design—there is also an increasing interest in “soft” computing applications for materials design. Soft computing includes the use of statistical inference and artificial intelligence tools for identifying statistical or heuristic relationships between parameters in a materials design process. Rajan and coauthors (Liu, Chen et al. 2006) have coupled such an approach, termed material informatics, with hard physical modeling and experimentation (namely, the MatCASE developed by Liu and coauthors [Liu, Chen et al. 2004]) for the design of new alloys and catalysts. In similar work, LeClair and collaborators (Chen, Cao et al. 1998, Jackson, Pawlak et al. 1998, Villars, Brandenburg et al. 2000) have used rough sets and neural networks, combined with materials databases and first-principles calculations, to predict structure-property relations and compound formation. Although these soft computing techniques can enhance a materials designer’s insight and perspective, they cannot replace hard computing techniques for the realization of new materials and seem to be most useful when paired with them.
The difficulty with most of these hard- and soft-computing tools is that they are customized for specific applications and therefore not easily transferable. Materials designers often find themselves building computing frameworks from scratch for new applications. As noted in Chapter 1, materials designers need computing frameworks that are platform independent and easily extensible so that models and databases can be easily linked together and combined with commonly available tools for search, visualization, and communication. This type of infrastructure frees the materials designer to concentrate on higher-level design and analysis issues rather than time-consuming details of model integration. In addition, the materials engineer/modeler interplays with the design process by defining models, inputs and outputs, and various sources of uncertainty.
Commercial design integration software is available for sharing and integrating models, databases, and software applications, automating their execution, and streamlining their integration with one another and with design exploration and optimization tools. Two examples are Isight®, a product of Engineous software company (now a subsidiary of Dassault Systemes), and ModelCenter® from Phoenix Integration. Both software tools allow users to perform process integration by linking models and other software applications via a drag-and-drop graphical user interface. They also provide a suite of built-in design exploration tools for optimization, statistical analysis, trade-off studies, design of experiments, and response surface modeling. These tools have proven useful to materials designers. For example, Isight was utilized as the information management and integration infrastructure for the DARPA-sponsored AIM initiative at General Electric (GE) Aviation (Backman, Wei et al. 2006). In this application, Isight served as the infrastructure for a designer knowledge base (DKB) system that incorporated a variety of computational materials simulation and design tools for rapid exploration of new materials, with a focus on nickel-based superalloys for the aerospace industry. The DKB facilitated data storage, integration of physics-based models and empirical data, uncertainty analysis, and design automation tools for generating tradeoff curves. Isight has also been utilized by Questek, LLC, for similar DARPA applications (Green 2007), although QuesTek has also developed its own materials modeling platform, Computational Materials Dynamics (www.questek.com).
One of the disadvantages of these commercially available design integration software tools is the lack of an open-source infrastructure, which means that it is difficult to tailor the infrastructure itself to the needs of materials designers. The motivation and foundation for a more open, extensible framework is presented in Chapter 10.

2.4. A Systems Perspective for Integrated Product, Process, and Materials Design
While increasingly sophisticated materials models, databases, and computing infrastructures are necessary components of any materials design effort, they are not sufficient. Materials design is fundamentally a synthesis process in which a set of requirements or goals for a material (and its parent component, assembly, or system) are translated into suitable material structures and corresponding processing paths. It also requires a systems perspective for bridging multilevel tools, databases, and models that cannot be unified into a single, integrated “model” for relevant material properties. Methods are needed for coordinating the decisions of distributed material and product designers who may possess expertise in understanding and modeling phenomena at specific length or time scales, functional domains, or material classes. As noted by McDowell and Olson in recent overviews (McDowell 2007, McDowell and Olson 2008), it is not sufficient to gather materials design resources—models, databases, and experts—without developing methodologies for strategically coordinating them for the design of material structure, processing paths, and parent products.
Effective materials design methodologies are required to bridge the gap between materials design and cutting edge product/system design applications in aerospace, automotive, biomedical, and other sectors. These methodologies will need to facilitate distributed design exploration by managing interdependencies between distributed decision makers. Nonunique and perhaps large families of potential solutions will need to be explored in a strategic manner that facilitates (1) exploration of the relationships between processing capabilities and the materials design space, (2) rapid identification of variables that most strongly affect material properties and performance parameters of interest, (3) management of uncertainty from random and heterogeneous material systems, sparse experimental data or information, and limiting assumptions underlying materials models, and (4) management of the tradeoff between increasingly comprehensive, detailed design space exploration, experimental costs, and computational expense.
While a growing body of research has embraced the challenge of pursuing materials design, very few have addressed the challenges inherent in developing a comprehensive materials design methodology that is applicable to broad classes of materials and applications. Olson (Olson 1997a, Olson 1997b, Olson 2000) advocates a systems approach to materials design that accounts for process-structure-property-performance relations for the design of advanced steels and other materials. The approach is based on utilizing a heterogeneous set of computational models and experimental tools that are linked via computational thermodynamics tools. It builds on expert intuition regarding initial conditions and potential solutions that enable minimal iterations through the design system, typically on the order of two or three such iterates; moreover, design support tools are not clearly prescribed or utilized. Subbarayan and Raj (Subbarayan and Raj 1999) follow Olson’s lead to illustrate how the design of a simple tungsten filament is an example of the design of a nonhierarchical system, comprised of subsystems that share linking variables both within and across levels of the hierarchy. As with Olson’s work, formal strategies for exploring the design spaces and coordinating distributed decision making remain open questions. Lu and Deng (Lu and Deng 2004) use variable dependency graphs to formalize the relationships between subsystems in the filament design problem introduced by Subbarayan and Raj. Gall and Horstemeyer (Gall and Horstemeyer 2000) illustrate how the systems philosophy of Subbarayan and Raj and Olson can be customized for design of a cast component using a mechanism-based, multiscale modeling approach (specifically, an internal state variable constitutive model embedded within a nonlinear finite element analysis) that allows a component designer to quantitatively investigate relationships between component-level and microstructure-level parameters and features.
Adams, Kalidindi, and coauthors (Adams, Henrie et al. 2001, Adams, Kalidindi et al. 2005, Kalidindi, Houskamp et al. 2004) have developed an approach for microstructure-sensitive design that enables the incorporation of crystallographic texture as a variable in the design of engineered components with targeted elastic properties. They represent certain aspects of microstructure (namely, the orientation distribution of grains in a polycrystal) in a Fourier space and create a space of potential microstructures called the material hull. Optimal microstructures are identified by intersecting isoproperty surfaces with the hull. The utility of the approach has been demonstrated via application to the design of a compliant beam (Adams, Henrie et al. 2001), an orthotropic plate (Kalidindi, Houskamp et al. 2004), and other components. However, the focus has been on problems for which structure-property relations can be inverted in some manner, which is possible in relating low-order moments of texture to elastic properties. Application of these ideas is unclear for problems involving nonequilibrium evolution of microstructure and associated nonlinearities and path dependence over several length and time scales which preclude such invertibility.
In addition to the work of Adams, Kalidindi, and coauthors, several researchers have focused on different aspects of microstructure-sensitive design. For example, Kulkarni and coauthors (Kulkarni, Krishnamurthy et al. 2004) use genetic algorithms to design the microstructure (volume fraction and radius of particles) of aluminum alloys for targeted properties (strength and ductility). Also, significant effort has been focused on designing composite materials by tailoring either their microstructure attributes (e.g., volume fractions and compositions) or their “architectural layouts” (e.g., lamina and orientations) (Gurdal, Haftka et al. 1999, Jones 1998). Topology optimization techniques have been used to design microstructures with prescribed elastic and thermoelastic properties (Hyun and Torquato 2002, Sigmund 1994, Sigmund 1995, Sigmund 2000, Sigmund and Torquato 1997, Wang and Zhou 2004). Although it is an important first step to incorporate topology and microstructure in the design of engineered components, it is important for materials design to traverse a broader range of length and time scales and to incorporate influential domains such as materials processing and economics.
As emphasized in Section 1.3.2, materials selection has formed the basis for the conventional conception of design with materials in most textbooks and engineering practice to date. For example, Ashby (Ashby 2005) focuses on the design engineer’s task of selecting materials for specific applications but emphasizes properties of existing materials rather than providing tools for designing new materials that are tailored for a specific application. In many respects, the material selection approach is similar to the combinatorial methodologies that have been proposed for materials design, sometimes applied at even the molecular level (sieves, virus blockers, etc.). Whereas the materials selection approach involves databases of the properties of previously developed and qualified materials, combinatorial methodologies produce libraries of properties for hundreds or thousands of distinct compounds that have been synthesized and screened rapidly by an automated method (e.g., vapor deposition). Symyx technologies has pioneered combinatorial materials discovery methodologies (e.g., Danielson, Devenney et al. 1998a, Danielson, Devenney et al. 1998b, McFarland and Weinberg 1999). Combinatorial approaches have also been applied to materials design applications by Rajan and coauthors in the form of material informatics and data mining (Rajan 2005, Suh, Rajagopalan et al. 2003). Though they have their place in materials design, combinatorial materials design approaches primarily extend the domain of materials selection to strategic searching of databases of parameters that reflect influential structure-property relations or material properties of interest. Systematic materials design methods are needed to leverage the power of computational materials models to support simulation-based design of new materials and exploration of the dependence of macroscopic properties of interest on interconnected phenomena on multiple scales in process-structure and structure-property relations.
Although systems-based approaches seem to be emerging as the preferred paradigm for materials design, they are still in their infancy. Systems-based materials design methodologies (complete with computational and mathematical infrastructures for implementing them) are presented in Chapter 7, Chapter 8 and Chapter 9.

2.5. The Need for an Integrated Product-Materials Design Methodology
For the past decade, momentum has been building for the emerging field of simulation-assisted materials design. In contrast to the trial-and-error techniques of traditional, experimental materials science and the purely analytical approach of computational materials science, materials design emphasizes design engineering for systematically synthesizing materials that are tailored for specific product applications and integration of a broad range of materials modeling tools, systems design methodologies and design exploration tools, and empirical databases for exploring material process-structure-property-performance relations across length scales and functional domains. Although some of the foundations for meeting this grand challenge have been laid, a tremendous amount of research remains in the quest to create integrated product-materials design environments that are applicable to broad classes of materials. As summarized in this chapter, research has commenced on increasing the stockpile of materials models and databases, gauging the accuracy and precision of their predictions, linking models and other tools across length scales with computing infrastructures, and developing systems design methodologies for integrating and linking the various tools with decision makers in a hierarchical materials design effort. In the next chapter, we provide an overview of some initial tools that were developed to meet these challenges.
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