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Introduction



In the summer of 1992 I was working as a cub reporter at the Evening Argus in Brighton. My days were spent watching recidivist teenagers appear at the local magistrates court, interviewing shopkeepers about the recession and, twice a week, updating the opening hours of the Bluebell Railway for the paper’s listings page. It wasn’t a great time if you were a petty thief, or a shopkeeper, but for me it was a happy period in my life.

John Major had recently been re-elected as prime minister and, flush from victory, he delivered one of his most remembered (and ridiculed) policy initiatives. With presidential seriousness, he announced the creation of a telephone hotline for information about traffic cones – a banal proposal dressed up as if the future of the world depended on it.

In Brighton, however, cones were big news. You couldn’t drive into town without getting stuck in roadworks. The main route from London – the A23 (M) – was a corridor of striped orange cones all the way from Crawley to Preston Park. With its tongue firmly in its cheek, the Argus challenged its readers to guess the number of cones that lined the many miles of the A23 (M). Senior staff congratulated themselves on such a brilliant idea. The village fête-style challenge explained the story while also poking fun at central government: perfect local-paper stuff.

Yet only a few hours after the competition was launched, the first entry was received, and in it the reader had guessed the correct number of cones. I remember the senior editors sitting in dejected silence in the newsroom, as if an important local councillor had just died. They had aimed to parody the prime minister, but it was they who had been made to look like fools.

The editors had assumed that guessing how many cones there were on 20 or so miles of motorway was an impossible task. It self-evidently wasn’t and I think I was the only person in the building who could see why. Assuming that cones are positioned at identical intervals, all you need to do is make one calculation:

Number of cones = length of road ÷ distance between cones

The length of road can be measured by driving down it or by reading a map. To calculate the distance between cones you just need a tape measure. Even though the space between cones may vary a little, and the estimated length of road may also be subject to error, over large distances the accuracy of this calculation is good enough for the purposes of winning competitions in local papers (and was presumably exactly how the traffic police had counted the cones in the first place when they supplied the Argus with the right answer).

I remember this incident very clearly because it was the first moment in my career as a journalist that I realized the value of having a mathematical mind. It was also disquieting to realize just how innumerate most journalists are. There was nothing very complicated about finding out how many cones were lined alongside a road, yet for my colleagues the calculation was a step too far.

Two years previously I had graduated in mathematics and philosophy, a degree with one foot in science and the other in the liberal arts. Entering journalism was a decision, at least superficially, to abandon the former and embrace the latter. I left the Argus shortly after the cones fiasco, moving to work on papers in London. Eventually, I became a foreign correspondent in Rio de Janeiro. Occasionally my heightened aptitude for numbers was helpful, such as when finding the European country whose area was closest to the most recently deforested swathe of Amazon jungle, or when calculating exchange rates during various currency crises. But essentially, it felt very much as if I had left maths behind.

Then, a few years ago, I came back to the UK not knowing what I wanted to do next. I sold T-shirts of Brazilian footballers, I started a blog, I toyed with the idea of importing tropical fruit. Nothing worked out. During this process of reassessment, I looked again at the subject that had consumed me for so much of my youth, and it was there that I found the spark of inspiration that led me to write this book.


Entering the world of maths as an adult was very different from entering it as a child, where the requirement to pass exams means that often the really engrossing stuff is passed over. Now I was free to wander down avenues just because they sounded curious and interesting. I learned about ‘ethnomathematics’, the study of how different cultures approach maths, and about how maths was shaped by religion. I became intrigued by recent work in behavioural psychology and neuroscience that is piecing together exactly why and how the brain thinks of numbers.

I realized that I was behaving just like a foreign correspondent on assignment, except the country I was visiting was an abstract one – ‘Numberland’.

My journey soon became geographical, since I wanted to experience mathematics in the real world. So, I flew to India to learn how the country invented ‘zero’, one of the greatest intellectual breakthroughs in human history. I booked myself into a mega-casino in Reno to see probability in action. And in Japan, I met the world’s most numerate chimpanzee.

As my research progressed, I found myself being in the strange position of being both an expert and a non-specialist at the same time. Relearning school maths was like reacquainting myself with old friends, but there were many friends of friends I had never met back then and there are also a lot of new kids on the block. Before I wrote this book, for example, I was unaware that for hundreds of years there have been campaigns to introduce two new numbers to our ten-number system. I didn’t know why Britain was the first nation to mint a heptagonal coin. And I had no idea of the maths behind Sudoku (because it hadn’t been invented).

I was led to unexpected places, such as Braintree, Essex, and Scottsdale, Arizona, and to unexpected shelves on the library. I spent a memorable day reading a book on the history of rituals surrounding plants to understand why Pythagoras was a notoriously fussy eater.

The book starts at Chapter Zero, since I wanted to emphasize that the subject discussed here is pre-mathematics. This chapter is about how numbers emerged. At the beginning of Chapter One numbers have indeed emerged and we can get down to business. Between that point and the end of Chapter Eleven the book covers arithmetic, algebra, geometry, statistics and as many other fields as I could squeeze into 400-ish pages. I have tried to keep the technical material to a minimum, although sometimes there was no way out and I had to spell out equations and proofs. If you feel your brain hurting, skip to the beginning of the next section and it will get easier again. Each chapter is self-contained, meaning that to understand it one does not have to have read the previous chapters. You can read the chapters in any order, although I hope you read them from the first to the last since they follow a rough chronology of ideas and I occasionally refer back to points made earlier. I have aimed the book at the reader with no mathematical knowledge, and it covers material from primary school level to concepts that are taught only at the end of an undergraduate degree.

I have included a fair bit of historical material, since maths is the history of maths. Unlike the humanities, which are in a permanent state of reinvention, as new ideas or fashions replace old ones, and unlike applied science, where theories are undergoing continual refinement, mathematics does not age. The theorems of Pythagoras and Euclid are as valid now as they always were – which is why Pythagoras and Euclid are the oldest names we study at school. The GCSE syllabus contains almost no maths beyond what was already known in the mid seventeenth century, and likewise A-level with the mid eighteenth century. (In my degree the most modern maths I studied was from the 1920s.)

When writing this book, my motivation was at all times to communicate the excitement and wonder of mathematical discovery. (And to show that mathematicians are funny. We are the kings of logic, which gives us an extremely discriminating sense of the illogical.) Maths suffers from a reputation that it is dry and difficult. Often it is. Yet maths can also be inspiring, accessible and, above all, brilliantly creative. Abstract mathematical thought is one of the great achievements of the human race, and arguably the foundation of all human progress.

Numberland is a remarkable place. I would recommend a visit.

Alex Bellos
 January 2010
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Chapter Zero

A Head for Numbers



When I walked into Pierre Pica’s cramped Paris apartment I was overwhelmed by the stench of mosquito repellent. Pica had just returned from spending five months with a community of Indians in the Amazon rainforest, and he was disinfecting the gifts he had brought back. The walls of his study were decorated with tribal masks, feathered headdresses and woven baskets. Academic books overloaded the shelves. A lone Rubik’s Cube lay unsolved on a ledge.

I asked Pica how the trip had been.

‘Difficult,’ he replied.

Pica is a linguist and, perhaps because of this, speaks slowly and carefully, with painstaking attention to individual words. He is in his fifties, but looks boyish – with bright blue eyes, a reddish complexion and soft, dishevelled silvery hair. His voice is quiet; his manner intense.

Pica was a student of the eminent American linguist Noam Chomsky and is now employed by France’s National Centre for Scientific Research. For the last ten years the focus of his work has been the Munduruku, an indigenous group of about 7000 people in the Brazilian Amazon. The Munduruku are hunter-gatherers who live in small villages spread across an area of rainforest twice the size of Wales. Pica’s interest is the Munduruku language: it has no tenses, no plurals and no words for numbers beyond five.

To undertake his fieldwork, Pica embarks on a journey worthy of the great adventurers. The nearest large airport to the Indians is Santarém, a town 500 miles up the Amazon from the Atlantic Ocean. From there, a 15-hour ferry ride takes him almost 200 miles along the Tapajós River to Itaituba, a former gold-rush town and the last stop to stock up on food and fuel. On his most recent trip Pica hired a jeep in Itaituba and loaded it up with his equipment, which included computers, solar panels, batteries, books and 120 gallons of petrol. Then he set off down the Trans-Amazon Highway, a 1970s folly of nationalistic infrastructure that has deteriorated into a precarious and often impassable muddy track.

Pica’s destination was Jacareacanga, a small settlement a further 200 miles southwest of Itaituba. I asked him how long it took to drive there. ‘Depends,’ he shrugged. ‘It can take a lifetime. It can take two days.’

How long did it take this time, I repeated.

‘You know, you never know how long it will take because it never takes the same time. It takes between ten and twelve hours during the rainy season. If everything goes well.’

Jacareacanga is on the edge of the Munduruku’s demarcated territory. To get inside the area, Pica had to wait for some Indians to arrive so he could negotiate with them to take him there by canoe.

‘How long did you wait?’ I enquired.

‘I waited quite a lot. But, again, don’t ask me how many days.’

‘So, it was a couple of days?’ I suggested tentatively.

A few seconds passed as he furrowed his brow. ‘It was about two weeks.’

More than a month after he left Paris, Pica was finally approaching his destination. Inevitably, I wanted to know how long it took to get from Jacareacanga to the villages.

But by now Pica was demonstrably impatient with my line of questioning: ‘Same answer to everything – it depends!’

I stood my ground. How long did it take this time?

He stuttered: ‘I don’t know. I think…perhaps…two days…a day and a night…’

The more I pushed Pica for facts and figures, the more reluctant he was to provide them. I became exasperated. It was unclear if underlying his responses was French intransigence, academic pedantry or simply a general contrariness. I stopped my line of questioning and we moved on to other subjects. It was only when, a few hours later, we talked about what it was like to come home after so long in the middle of nowhere that he opened up. ‘When I come back from Amazonia I lose sense of time and sense of number, and perhaps sense of space,’ he said. He forgets appointments. He is disoriented by simple directions. ‘I have extreme difficulty adjusting to Paris again, with its angles and straight lines.’ Pica’s inability to give me quantitative data was part of his culture shock. He had spent so long with people who can barely count that he had lost the ability to describe the world in terms of numbers.

No one knows for certain, but numbers are probably no more than about 10,000 years old. By this I mean a working system of words and symbols for numbers. One theory is that such a practice emerged together with agriculture and trade, as numbers were an indispensable tool for taking stock and making sure you were not ripped off. The Munduruku are only subsistence farmers and money has only recently begun to circulate in their villages, so they never evolved counting skills. In the case of the indigenous tribes of Papua New Guinea, it has been argued that the appearance of numbers was triggered by elaborate customs of gift exchange. The Amazon, by contrast, has no such traditions.

Tens of thousands of years ago, well before the arrival of numbers, however, our ancestors must have had certain sensibilities about amounts. They would have been able to distinguish one mammoth from two mammoths, and to recognize that one night is different from two nights. The intellectual leap from the concrete idea of two things to the invention of a symbol or word for the abstract idea of ‘two’, however, will have taken many ages to come about. This occurrence, in fact, is as far as some communities in the Amazon have come. There are tribes whose only number words are ‘one’, ‘two’ and ‘many’. The Munduruku, who go all the way up to five, are a relatively sophisticated bunch.

Numbers are so prevalent in our lives that it is hard to imagine how people survive without them. Yet while Pierre Pica stayed with the Munduruku he easily slipped into a numberless existence. He slept in a hammock. He went hunting and ate tapir, armadillo and wild boar. He told the time from the position of the sun. If it rained, he stayed in; if it was sunny, he went out. There was never any need to count.

Still, I thought it odd that numbers larger than five did not crop up at all in Amazonian daily life. I asked Pica how an Indian would say ‘six fish’. For example, just say that he or she was preparing a meal for six people and he wanted to make sure everyone had a fish each.

‘It is impossible,’ he said. ‘The sentence “I want fish for six people” does not exist.’


What if you asked a Munduruku who had six children: ‘How many kids do you have?’

Pica gave the same response: ‘He will say “I don’t know”. It is impossible to express.’

However, added Pica, the issue was a cultural one. It was not the case that the Munduruku counted his first child, his second, his third, his fourth, his fifth and then scratched his head because he could go no further. For the Munduruku, the whole idea of counting children was ludicrous. The whole idea, in fact, of counting anything was ludicrous.

Why would a Munduruku adult want to count his children, asked Pica? The children are looked after by all the adults in the community, he said, and no one is counting who belongs to whom. He compared the situation to the French expression ‘ j’ai une grande famille’, or ‘I’m from a big family’. ‘When I say that I have a big family I am telling you that I don’t know [how many members it has]. Where does my family stop and where does the others’ family begin? I don’t know. Nobody ever told me that.’ Similarly, if you asked an adult Munduruku how many children he is responsible for, there is no correct answer. ‘He will answer “I don’t know”, which really is the case.’

The Munduruku are not alone in the sweep of history in not counting members of their community. When King David counted his own people he was punished with three days of pestilence and 77,000 deaths. Jews are meant to count Jews only indirectly, which is why in synagogues the way of making sure there are ten men present, a minyan, or sufficient community for prayers, is to say a ten-word prayer pointing at each person per word. Counting people with numbers is considered a way of singling people out, which makes them more vulnerable to malign influences. Ask an Orthodox rabbi to count his kids and you have as much chance of an answer as if you asked a Munduruku.

I once spoke to a Brazilian teacher who had spent a lot of time working in indigenous communities. She said that Indians thought that the constant questioning by outsiders of how many children they had was a peculiar compulsion, even though the visitors were simply asking the question to be polite. What is the purpose of counting children? It made the Indians very suspicious, she said.


The first written mention of the Munduruku dates from 1768, when a settler spotted some of them on the bank of a river. A century later, Franciscan missionaries set up a base on Munduruku land and more contact was made during the rubber boom of the late nineteenth century when rubber-tappers penetrated the region. Most Munduruku still live in relative isolation, but like many other Indian groups with a long history of contact, they tend to wear Western clothes like T-shirts and shorts. Inevitably, other features of modern life will eventually enter their world, such as electricity and television. And numbers. In fact, some Munduruku who live at the fringes of their territory have learned Portuguese, the national language of Brazil, and can count in Portuguese. ‘They can count um, dois, três, up until the hundreds,’ said Pica. ‘Then you ask them, “By the way, how much is five minus three?”’ He parodied a Gallic shrug. They have no idea.

In the rainforest Pica conducts his research using laptops powered by solar-charged batteries. Maintaining the hardware is a logistical nightmare because of the heat and the damp, although sometimes the trickiest challenge is assembling the participants. On one occasion the leader of a village demanded that Pica eat a large, red sauba ant in order to gain permission to interview a child. The ever-diligent linguist grimaced as he crunched the insect and swallowed it down.

The purpose of researching the mathematical abilities of people who have the capacity to count only on one hand is to discover the nature of our basic numerical intuitions. Pica wants to know what is universal to all humans, and what is shaped by culture. In one of his most fascinating experiments he examined the Indians’ spatial understanding of numbers. How did they visualize numbers when spread out on a line? In the modern world we do this all the time – on tape measures, rulers, graphs and houses along a street. Since the Munduruku don’t have numbers, Pica tested them using sets of dots on a screen. Each volunteer was presented with the figure overleaf, of an unmarked line. To the left side of the line was one dot; to the right, ten dots. Each volunteer was then shown random sets of between one and ten dots. For each set the subject had to point at where on the line he or she thought the number of dots should be located. Pica moved the cursor to this point and clicked. Through repeated clicks, he could see exactly how the Munduruku spaced numbers between one and ten.
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When American adults were given this test, they placed the numbers at equal intervals along the line. They recreated the number line we learn at school, in which adjacent digits are the same distance apart as if measured by a ruler. The Munduruku, however, responded quite differently. They thought that intervals between the numbers started large and became progressively smaller as the numbers increased. For example, the distance between the marks for one dot and two dots, and two dots and three dots were much larger than the distance between seven and eight dots, or eight and nine dots, as the following two graphs make clear.
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The results were striking. It is generally considered a self-evident truth that numbers are evenly spaced. We are taught this at school and we accept it easily. It is the basis of all measurement and science. Yet the Munduruku do not see the world like this. Stripped of a language of counting and number words, they visualize magnitudes in a completely different way.

When numbers are spread out evenly on a ruler, the scale is called linear. When numbers get closer as they get larger, the scale is called logarithmic.I It turns out that the logarithmic approach is not exclusive to Amazonian Indians. We are all born conceiving numbers this way. In 2004, Robert Siegler and Julie Booth at Carnegie Mellon University in Pennsylvania presented a similar version of the number-line experiment to a group of kindergarten pupils (with an average age of 5.8 years), first-graders (6.9) and second-graders (7.8). The results showed in slow motion how familiarity with counting moulds our intuitions. The kindergarten pupil, with no formal maths education, maps out numbers logarithmically. By the first year at school, when the pupils are being introduced to number words and symbols, the curve is straightening. And by the second year at school, the numbers are at last evenly laid out along the line.

[image: image]

Why do Indians and children think that higher numbers are closer together than lower numbers? There is a simple explanation. In the experiments, the volunteers were presented with a set of dots and asked where this set should be located in relation to a line with one dot on the left and ten dots on the right. (Or, in the children’s case, 100 dots). Imagine a Munduruku is presented with five dots. He will study it closely and see that five dots are five times bigger than one dot, but ten dots are only twice as big as five dots. The Munduruku and the children seem to be making their decisions about where numbers lie based on estimating the ratios between amounts. When considering ratios, it is logical that the distance between five and one is much greater than the distance between ten and five. And if you judge amounts using ratios, you will always produce a logarithmic scale.

It is Pica’s belief that understanding quantities approximately in terms of estimating ratios is a universal human intuition. In fact, humans who do not have numbers – like Indians and young children – have no alternative but to see the world in this way. By contrast, understanding quantities in terms of exact numbers is not a universal intuition; it is a product of culture. The precedence of approximations and ratios over exact numbers, Pica suggests, is due to the fact that ratios are much more important for survival in the wild than the ability to count. Faced with a group of spear-wielding adversaries, we needed to know instantly whether there were more of them than us. When we saw two trees we needed to know instantly which had more fruit hanging from it. In neither case was it necessary to enumerate every enemy or every fruit individually. The crucial thing was to be able to make quick estimates of the relevant amounts and compare them, in other words to make approximations and judge their ratios.

The logarithmic scale is also faithful to the way distances are perceived, which is possibly why it is so intuitive. It takes account of perspective. For example, if we see a tree 100m away and another 100m behind it, the second 100m looks shorter. To a Munduruku, the idea that every 100m represents an equal distance is a distortion of how he perceives the environment.

Exact numbers provide us with a linear framework that contradicts our logarithmic intuition. Indeed, our proficiency with exact numbers means that the logarithmic intuition is overruled in most situations. But it is not eliminated altogether. We live with both a linear and a logarithmic understanding of quantity. For example, our understanding of the passing of time tends to be logarithmic. We often feel that time passes faster the older we get. Yet it works in the other direction too: yesterday seems a lot longer than the whole of last week. Our deep-seated logarithmic instinct surfaces most clearly when it comes to thinking about very large numbers. For example, we can all understand the difference between one and ten. It is unlikely we would confuse one pint of beer and ten pints of beer. Yet what about the difference between a billion gallons of water and ten billion gallons of water? Even though the difference is enormous, we tend to see both quantities as quite similar – as very large amounts of water. Likewise, the terms millionaire and billionaire are thrown around almost as synonyms – as if there is not so much difference between being very rich and very, very rich. Yet a billionaire is a thousand times richer than a millionaire. The higher numbers are, the closer together they feel.

The fact that Pica temporarily forgot how to use numbers after only a few months in the jungle indicates that our linear understanding of numbers is not as deeply rooted in our brains as our logarithmic one. Our understanding of numbers is surprisingly fragile, which is why without regular use we lose our ability to manipulate exact numbers and default to our intuitions judging amounts with approximations and ratios.

Pica said that his and others’ research on our mathematical intuitions may have serious consequences for maths education – both in the Amazon and in the West. We require understanding of the linear number line to function in modern society – it is the basis of measuring, and facilitates calculations. Yet maybe in our dependence on linearity we have gone too far in stifling our own logarithmic intuition. Perhaps, said Pica, this is a reason why so many people find maths difficult. Perhaps we should pay more attention to judging ratios rather than manipulating exact numbers. Likewise, maybe it would be wrong to teach the Munduruku to count like we do since this might deprive them of the mathematical intuitions or knowledge that are necessary for their own survival.

Interest in the mathematical abilities of those who have no words or symbols for numbers has traditionally focused on animals. One of the best-known research subjects was a trotting stallion called Clever Hans. In the early 1900s, crowds gathered regularly in a Berlin courtyard to watch Hans’s owner, Wilhelm von Osten, a retired maths instructor, set the horse simple arithmetical sums. Hans answered by stamping the ground with his hoof the correct number of times. His repertoire included addition and subtraction as well as fractions, square roots and factorization. Public fascination, and suspicion that the horse’s supposed intelligence was some kind of trick, led to an investigation of his abilities by a committee of eminent scientists. They concluded that, jawohl!, Hans really was doing the math.

It took a less eminent but more rigorous psychologist to debunk the equine Einstein. Oscar Pfungst noticed that Hans was reacting to cues in von Osten’s body language. Hans would start stamping his hoof on the ground and stopped only when he could sense a build-up or release of tension in von Osten’s face, indicating the answer had been reached. The horse was sensitive to the tiniest visual signals, such as the leaning of the head, the raising of the eyebrows and even the dilation of the nostrils. Von Osten was not even aware he was making these gestures. Hans was clever at reading people, certainly, but was no arithmetician.

Many further attempts were made in the last century to teach animals to count, not all for the purposes of circus-like entertainment. In 1943 the German scientist Otto Koehler trained his pet raven Jakob to select a pot with a specified number of spots on its lid from a selection of pots with a variety of numbers of spots on their lids. The bird could perform this task when the number of spots on any one lid was between one and seven spots. In recent years, avian intelligence has reached more impressive heights. Irene Pepperberg of Harvard University taught an African grey parrot called Alex numerals from 1 to 6. When shown an assortment of coloured blocks he could reply, for example, how many blue blocks there were by squawking the English number word. So renowned had Alex become among scientists and birdlovers that when he died unexpectedly in 2007, his obituary appeared in The Economist.

The lesson of Clever Hans was that when teaching animals to count, supreme care must be taken to eliminate involuntary human prompting. For the maths education of Ai, a chimpanzee brought to Japan from West Africa in the late 1970s, the chances of human cues were eliminated because she learned using a touch-screen computer.

Ai is now 31 and lives at the Primate Research Institute in Inuyama, a small tourist town in central Japan. Her forehead is high and balding, the hair on her chin is white and she has the dark sunken eyes of ape middle age. She is known there as a ‘student’, never a ‘research subject’. Every day Ai attends classes where she is given tasks. She turns up at 9 a.m. on the dot after spending the night outdoors with a group of other chimps on a giant tree-like construction of wood, metal and rope. On the day I saw her she sat with her head close to a computer, tapping sequences of digits on the screen when they appeared. When she completed a task correctly an 8mm cube of apple whizzed down a tube to her right. Ai caught it in her hand and scoffed it instantly. Her mindless gaze, the nonchalant tapping of a flashing, beeping computer and the mundanity of continual reward reminded me of an old lady doing the slots.

When Ai was a child she became a great ape in both senses of the word by becoming the first non-human to count with Arabic numerals. (These are the symbols 1, 2, 3 and so on, that are used in almost all countries except, ironically, in parts of the Arab world.) In order for her to do this satisfactorily, Tetsuro Matsuzawa, director of the Primate Research Institute, needed to teach her the two elements that comprise human understanding of number: quantity and order.

Numbers express an amount, and they also express a position. These two concepts are linked, but different. For example, when I refer to ‘five carrots’ I mean that the quantity of carrots in the group is five. Mathematicians call this aspect of number ‘cardinality’. On the other hand, when I count from 1 to 20 I am using the convenient feature that numbers can be ordered in succession. I am not referring to 20 objects, I am simply reciting a sequence. Mathematicians call this aspect of number ‘ordinality’. At school we are taught notions of cardinality and ordinality together and we slip effortlessly between them. To chimpanzees, however, the interconnection is not obvious at all.

Matsuzawa first taught Ai that one red pencil refers to the symbol ‘1’ and two red pencils to ‘2’. After 1 and 2, she learned 3 and then all the other digits up to 9. When shown, say, the number 5 she could tap a square with five objects, and when shown a square with five objects she could tap the digit 5. Her education was reward-driven: whenever she got a computer task correct, a tube by the computer dispensed a piece of food.


Once Ai had mastered the cardinality of the digits from 1 to 9, Matsuzawa introduced tasks to teach her how they were ordered. His tests flashed digits up on the screen and Ai had to tap them in ascending order. If the screen showed 4 and 2, she had to touch 2 and then 4 to win her cube of apple. She grasped this pretty quickly. Ai’s competence in both the cardinality and ordinality tasks meant that Matsuzawa could reasonably say that his student had learned to count. The achievement made her a national hero in Japan and a global icon for her species.

Matsuzawa then introduced the concept of zero. Ai picked up the cardinality of the symbol 0 easily. Whenever a square appeared on the screen with nothing in it, she would tap the digit. Then Matsuzawa wanted to see if she was able to infer an understanding of the ordinality of zero. Ai was shown a random sequence of screens with two digits, just like when she was learning the ordinality of 1 to 9, although now sometimes one of the digits was a 0. Where did she think zero’s place was in the ordering of numbers?

In the first session Ai placed 0 between 6 and 7. Matsuzawa calculated this by averaging out which numbers she thought 0 came after and which numbers she thought it came before. In subsequent sessions Ai’s positioning of 0 went under 6, then under 5, 4 and after a few hundred trials 0 was down to around 1. She remained confused, however, if 0 was more or less than 1. Even though Ai had learned to manipulate numbers perfectly well, she lacked the depth of human numerical understanding.

A habit she did learn, however, was showmanship. She is now a total pro, tending to perform better at her computer tasks in front of visitors, especially camera crews.

Investigating animals’ mastery of numbers is an active academic pursuit. Experiments have revealed an unexpected capacity for ‘quantity discrimination’ in animals as varied as salamanders, rats and dolphins. Even though horses may still be incapable of calculating square roots, scientists now believe that the numerical capacities of animals are much more sophisticated than previously thought. All creatures seem to be born with brains that have a predisposition for maths.

After all, numerical competence is crucial to survival in the wild. A chimpanzee is less likely to go hungry if he can look up a tree and quantify the amount of ripe fruit he will have for his lunch. Karen McComb at the University of Sussex monitored a pride of lions in the Serengeti in order to show that lions use a sense of number when deciding whether to attack other lions. In one experiment a solitary lioness was walking back to the pride at dusk. McComb had installed a loudspeaker hidden in the bushes and played a recording of a single roar. The lioness heard it and continued walking home. In a second experiment five lionesses were together. McComb played the roars of three lionesses through her hidden loudspeaker. The group of five heard the roars of three and peered in the direction of the noise. One lioness started to roar and soon all five were charging into the bushes to attack.

McComb’s conclusion was that the lionesses were comparing quantities in their heads. One vs one meant it was too risky to attack, but with five-to-three advantage, the attack was on.

Not all animal number research is as glamorous as camping in the Serengeti or bonding with a celebrity chimpanzee. At the University of Ulm, in Germany, academics put some Saharan desert ants at the end of a tunnel and sent them down it foraging for food. Once they reached the food, however, some of the ants had the bottom of their legs clipped off and other ants were given stilts made from pig bristles. (Apparently this is not as cruel as it sounds, since the legs of desert ants are routinely frazzled off in the Saharan sun.) The ants with shorter legs undershot the journey home, while the ones with longer legs overshot it, suggesting that instead of using their eyes, the ants judged distance with an internal pedometer. Ants’ great skill in wandering for hours and then always navigating their way back to the nest may just be due to a proficiency at counting strides.

Research into the numerical competence of animals has taken some unexpected turns. Chimpanzees may have limits to their mathematical proficiency, yet, while studying this, Matsuzawa discovered that they have other cognitive abilities that are vastly superior to ours.

In 2000 Ai gave birth to a son, Ayumu. On the day I visited the Primate Research Institute, Ayumu was in class right next to his mum. He is smaller, with pinker skin on his face and hands and blacker hair. Ayumu was sitting in front of his own computer, tapping away at the screen when numbers flashed up and avidly 
scoffing the apple cubes when he won them. He is a self-confident lad, living up to his privileged status as son and heir of the dominant female in the group.
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In this task Ayumu is flashed the digits 1 to 7, which then become white squares. He must remember the positions of the numbers so that he can then tap the squares in order to win the food reward.

Ayumu was never taught how to use the touch-screen displays, although as a baby he would sit by his mother as she attended class every day. One day Matsuzawa opened the classroom door only halfway, just enough for Ayumu to come in but too narrow for Ai to join him. Ayumu went straight up to the computer monitor. The staff watched him eagerly to see what he had learned. He pressed the screen to start, and the digits 1 and 2 appeared. This was a simple ordering task. Ayumu clicked on 2. Wrong. He kept on pressing 2. Wrong again. Then he tried to press 1 and 2 at the same time. Wrong. Eventually he got it right: he pressed 1, then 2 and an apple cube shot down into his palm. Before long, Ayumu was better at all the computer tasks than his mum.

A couple of years ago Matsuzawa introduced a new type of number task. On pressing the start button, the numbers 1 to 5 were displayed in a random pattern on the screen. After 0.65 seconds the numbers turned into small white squares. The task was to tap the white squares in the correct order, remembering which square had been which number.

Ayumu completed this task correctly about 80 percent of the time, which was about the same amount as a sample group of Japanese children. Matsuzawa then reduced the time that the numbers were visible, to 0.43 seconds, and while Ayumu barely noticed the difference, the children’s performances dropped significantly, to a success rate of about 60 percent. When Matsuzawa reduced the time that the numbers were visible again – to only 0.21 seconds, Ayumu was still registering 80 percent, but the kids dropped to 40.

This experiment revealed that Ayumu had an extraordinary photographic memory, as do the other chimps in Inuyama, although none is as good as he is. Matsuzawa has increased the number of digits in further experiments and now Ayumu can remember the positioning of eight digits made visible for only 0.21 seconds. Matsuzawa also reduced the time interval and Ayumu can now remember the positioning of five digits visible for only 0.09 seconds – which is barely enough time for a human to register the numbers, let alone remember them. This astonishing talent for instant memorization may well be because making snap decisions, for example, about numbers of foes, is vital in the wild.

Studies into the limits of animals’ numerical capabilities bring us naturally to the question of innate human abilities. Scientists wanting to investigate minds as uncontaminated as possible by acquired knowledge require subjects who are as young as possible. As a result, infants only a few months old are now routinely tested on their maths skills. Since at this age babies cannot talk or properly control their limbs, testing them for signs of numerical prowess relies on their eyes. The theory is that they will stare for longer at pictures they find interesting. In 1980 Prentice Starkey at the University of Pennsylvania showed babies between 16 and 30 weeks old a screen with two dots, and then showed another screen with two dots. The babies looked at the second screen for 1.9 seconds. But when Starkey repeated the test, showing a screen with three dots after the screen with two dots, the babies looked at it for 2.5 seconds: almost a third longer. Starkey argued that this extra stare-time meant the babies had noticed something different about three dots compared to two dots, and therefore had a rudimentary understanding of number. This method of judging numerical cognition through the length of attention span is now standard. Elizabeth Spelke at Harvard showed in 2000 that six-month-old babies can tell the difference between 8 and 16 dots, and in 2005 that they can distinguish between 16 and 32.

A related experiment showed that babies had a grasp of arithmetic. In 1992, Karen Wynn, at the University of Arizona, sat a five-month-old baby in front of a small stage. An adult placed a Mickey Mouse doll on the stage and then put up a screen to hide it. The adult then placed a second Mickey Mouse doll behind the screen, and the screen was then pulled away to reveal two dolls. Wynn then repeated the experiment, this time with the screen pulling away to reveal a wrong number of dolls: just one doll or three of them. When there were one or three dolls, the baby stared at the stage for longer than when the answer was two, indicating that the infant was surprised when the arithmetic was wrong. Babies understood, argued Wynn, that one doll plus one doll equals two dolls.


The Mickey experiment was later performed with the Sesame Street puppets Elmo and Ernie. Elmo was placed on the stage. The screen came down. Then another Elmo was placed behind the screen. The screen was taken away. Sometimes two Elmos were revealed, sometimes an Elmo and an Ernie together and sometimes only one Elmo or only one Ernie. The babies stared for longer when just one puppet was revealed, rather than when two of the wrong puppets were revealed. In other words, the arithmetical impossibility of 1 + 1 = 1 was much more disturbing than the metamorphosis of Elmos into Ernies. Babies’ knowledge of mathematical laws seems much more deeply rooted than their knowledge of physical ones.
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In Karen Wynn’s experiment, babies were tested on their ability to distinguish the correct number of dolls behind a screen.


The Swiss psychologist Jean Piaget (1896–1980) argued that babies build up an understanding of numbers slowly, through experience, so there was no point in teaching arithmetic to children younger than six or seven. This influenced generations of educators, who often preferred to let primary-age pupils play around with blocks in lessons rather than introduce them to formal mathematics. Now Piaget’s views are considered outdated. Pupils come face to face with Arabic numerals and sums as soon as they get to school.

Dot experiments are also the cornerstone of research into adult numerical cognition. A classic experiment is to show a person dots on a screen and ask how many dots he or she sees. When there are one, two or three dots, the response comes almost instantly. When there are four dots, the response is significantly slower, and with five slower still.

So what! you might say. Well, this probably explains why in several cultures the numerals for 1, 2 and 3 have been one, two and three lines, while the number for 4 is not four lines. When there are three lines or fewer we can tell the number of lines straight away, but when there are four of them our brain has to work too hard and a different symbol is necessary. The Chinese characters for one to four are [image: image],[image: image],[image: image] and [image: image]. Ancient Indian numerals were [image: image], [image: image], [image: image] and [image: image]. (If you join the lines, you can see how they turned into the modern 1, 2, 3 and 4.)

In fact, there is some debate about whether the limit of the number of lines we can grasp instantly is three or four. The Romans actually had the alternatives IIII and IV for four. The IV is much more instantly recognizable, but clock faces – perhaps for aesthetic reasons – tended to use the IIII. Certainly, the number of lines, dots, or sabre-toothed tigers that we can enumerate rapidly, confidently and accurately is no more than four. While we have an exact sense of 1, 2 and 3, beyond 4 our exact sense wanes and our judgements about numbers become approximate. For example, try to guess quickly how many dots are at the top of the page opposite.
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It’s impossible. (Unless you are an autistic savant, like the character played by Dustin Hoffman in Rain Man, who would be able to grunt in a split second ‘Seventy-five’.) Our only strategy is to estimate, and we’d probably be far off the mark.

Researchers have tested the extent of our intuition of amounts by showing volunteers images of different numbers of dots and asking which set is larger, and our proficiency at discriminating dots, it turns out, follows regular patterns. It is easier, for example, to tell the difference between a group of 80 dots and a group of 100 dots than it is between two groups of 81 and 82 dots. Similarly, it is easier to discriminate between 20 and 40 dots than it is between 80 and 100 dots. In both A and B below, the left set of dots is larger than the right set of dots, yet the length of time it takes us to process the information is noticeably longer in case B.
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Scientists have been surprised by how strictly our powers of comparison follow mathematical laws, such as the multiplicative principle. In his book The Number Sense, the French cognitive scientist Stanislas Dehaene gives the example of a person who can discriminate 10 dots from 13 dots with an accuracy of 90 percent. If the first set is doubled to 20 dots, how many dots does the second set need to include so that this person still has 90 percent accuracy in discrimination? The answer is 26, exactly double the original number of the second set.

Animals are also able to compare sets of dots. While they do not score as highly as we do, the same mathematical laws also seem to govern their skills. This is pretty remarkable. Humans are unique in having a wonderfully elaborate system of counting. Our life is filled with numbers. Yet, for all our mathematical talent, when it comes to perceiving and estimating large numbers our brains function just like those of our feathered and furry friends.

Human intuitions about quantities led, over millions of years, to the creation of numbers. It is impossible to know exactly how this happened, but it is reasonable to speculate that it arose from our desire to track things – such as moons, mountains, predators or drum beats. At first we may have used visual symbols, such as our fingers, or notches on wood, in a one-to-one correspondence with the object we were tracking – two notches or two fingers means two mammoths, three notches or three fingers means three, and so on. Later on we will have come up with words to express the concepts of ‘two notches’ or ‘three fingers’.

As more and more objects were tracked, our vocabulary and symbology of numbers expanded and – accelerating to the present day – we now have a fully developed system of exact numbers with which we can count as high as we like. Our ability to express numbers exactly, such as being able to say that there are precisely 75 dots in the top picture on the previous page, sits cheek-by-jowl with our more fundamental ability to understand such quantities approximately. We choose which approach to use depending on circumstance: in the supermarket, for example, we use our understanding of exact numbers when we look at prices of products. But when we decide to join the shortest checkout queue we are using our instinctive, approximate sense. We do not count every person in every queue. We look at the queues and estimate which one has the fewest people in it.

In fact, we use our imprecise approach to numbers constantly, even when using precise terminology. Ask someone how long it takes them to get to work and most often the answer will be a range, say, ‘Thirty-five, forty minutes.’ In fact, I have noticed that I am incapable of giving single-number answers to questions involving quantity. How many people were at the party? ‘Twenty, thirty…’ How long did you stay? ‘Three and a half, four hours…’ How many drinks did you have? ‘Four, five…ten…’ I used to think that I was just being indecisive. Now I’m not so sure. I prefer to think that I was drawing on my inner number sense, an intuitive, animal propensity to deal in approximations.

Since the approximate number sense is essential for survival, it might be thought that all humans would have comparable abilities. In a 2008 paper, psychologists at Johns Hopkins University and the Kennedy Krieger Institute investigated whether or not this was the case among a group of 14-year-olds. The teenagers were shown varying numbers of yellow and blue dots together on a screen for 0.2 seconds, and asked only whether there were more blue or yellow dots. The results astonished the researchers, since the scores showed an unexpectedly wide variation in performance. Some pupils could easily tell the difference between 9 blue dots and 10 yellow, but others had abilities comparable to those of infants – hardly even able to say if 5 yellow dots beat 3 blue.

An even more startling finding became apparent when the teenagers’ dot-comparing scores were then compared to their maths scores since kindergarten. Researchers had previously assumed that the intuitive ability to discriminate amounts does not contribute much to how good a student is at tasks such as solving equations and drawing triangles. Yet this study found a strong correlation between a talent at reckoning and success in formal maths. The better one’s approximate number sense, it seems, the higher one’s chance of getting good grades. This might have serious consequences for education. If a flair for estimation fosters mathematical aptitude, maybe maths classes should be less about times tables and more about honing skills at comparing sets of dots.

 


Stanislas Dehaene is perhaps the leading figure in the cross-disciplinary field of numerical cognition. He started off as a mathematician, and is now a neuroscientist, a professor at the Collège de France and one of the directors of NeuroSpin, a state-of-the-art research institute near Paris. Shortly after he published The Number Sense in 1997, he was having lunch in the canteen of Paris’s Science Museum with the Harvard development psychologist Elizabeth Spelke. There they sat down by chance next to Pierre Pica. Pica brought up his experiences with the Munduruku and, after excited discussions, the three decided to collaborate. The chance to study a community that doesn’t have counting was a wonderful opportunity for new research.

Dehaene devised experiments for Pica to take to the Amazon, one of which was very simple: he wanted to know just what they understood by their number words. Back in the rainforest Pica assembled a group of volunteers and showed them varying numbers of dots on a screen, asking them to say aloud the number of dots they saw.

The Munduruku numbers are:

 




	
one

	
    pũg




	
two

	
    xep xep




	
three

	
    ebapug




	
four

	
    ebadipdip




	
five

	
    p ũg pogbi






When there was one dot on the screen, the Munduruku said pũg. When there were two, they said xep xep. But beyond two they were not precise. When three dots showed up, ebapug was said only about 80 percent of the time. The reaction to four dots was ebadipdip in only 70 percent of cases. When shown five dots, pũg pogbi was the answer managed only 28 percent of the time, with ebadipdip being given instead in 15 percent of answers. In other words, for three and above the Munduruku’s number words were really just estimates. They were counting ‘one’, ‘two’, ‘threeish’, ‘fourish’, ‘fiveish’. Pica started to wonder whether pũg pogbi, which literally means ‘handful’, even really qualified as a number. Maybe they could not count up to five, but only to fourish?


Pica also noticed an interesting linguistic feature of their number words. He pointed out to me that from one to four, the number of syllables of each word is equal to the number itself. This observation really excited him. ‘It is as if the syllables are an aural way of counting,’ he said. In the same way that the Romans counted I, II, III and IIII but switched to V at five, the Munduruku started with one syllable for one, added another for two, another for three, another for four but did not use five syllables for five. Even though the words for three and four were not used precisely, they contained precise numbers of syllables. When the number of syllables was no longer important, the word was maybe not a number word at all. ‘This is amazing since it seems to corroborate the idea that humans possess a number system that can only track up to four exact objects at a time,’ Pica said.

Pica also tested the Munduruku’s abilities to estimate large numbers. In one test, illustrated overleaf, the subjects were shown a computer animation of two sets of several dots falling into a can. They were then asked to say if these two sets added together in the can – no longer visible for comparison – amounted to more than a third set of dots that then appeared on the screen. This tested whether they could calculate additions in an approximate way. They could, performing just as well as a group of French adults given the same task.

In a related experiment, also illustrated overleaf, Pica’s computer screen showed an animation of six dots falling into a can and then four dots falling out. The Munduruku were then asked to point at one of three choices for how many dots were left in the can. In other words, what is 6 minus 4? This test was designed to see if the Munduruku understood exact numbers for which they had no words. They could not do the task. When shown the animation of a subtraction that contained either 6, 7 or 8 dots, the solution always eluded them. ‘They could not calculate even in simple cases,’ said Pica.

The results of these dot experiments showed that the Munduruku were very proficient in dealing with rough amounts, but were abysmal in exact numbers above five. Pica was fascinated by the similarities this revealed between the Munduruku and Westerners: both had a fully functioning, exact system for tracking small numbers and an approximate system for large numbers. The significant difference was that the Munduruku had failed to combine these two independent systems together to reach numbers beyond five. Pica said that this must be because keeping the systems separate was more useful. He suggested that in the interests of cultural diversity it was important to try to protect the Munduruku way of counting, since it would surely become threatened by the inevitable increase in contact between the Indians and Brazilian settlers.
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Approximate addition and comparison.
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Exact subtraction.

The fact, however, that there were some Munduruku who had learned to count in Portuguese but still failed to grasp basic arithmetic was an indication of just how powerful their own mathematical system was and how well suited it was to their needs. It also showed how difficult the conceptual leap must be to having a proper understanding of exact numbers above five.

Could it be that humans need words for numbers above four in order to have an exact understanding of them? Professor Brian Butterworth, of University College London, believes that we don’t. He thinks that the brain contains a ready-built capacity to understand exact numbers, which he calls the ‘exact number module’. According to his interpretation, humans understand the exact number of items in small collections, and by adding to these collections one by one we can learn to understand how bigger numbers behave. He has been conducting research in the only place outside the Amazon where there are indigenous groups with almost no number words: the Australian Outback.

The Warlpiri aboriginal community live near Alice Springs and have words only for one, two and many, and the Anindilyakwa of Groote Eylande in the Gulf of Carpentaria have words only for one, two, three (which sometimes means four) and many. In one experiment with children of both groups, a block of wood was tapped with a stick up to seven times and counters were placed on a mat. Sometimes the number of taps matched the number of counters, sometimes not. The children were perfectly able to say when the numbers matched and when they didn’t. Butterworth argued that to get the answer right the children were producing a mental representation of exact number that was abstract enough to represent both auditory and visual enumeration. These children had no words for the numbers four, five, six and seven, yet were perfectly able to hold those amounts in their heads. Words were useful to understand exactness, Butterworth concluded, but not necessary.

Another important focus of Butterworth’s work – and of Stanislas Dehaene’s – is a condition called dyscalculia, or number blindness, in which one’s number sense is defective. It occurs in an estimated 3–6 percent of the population. Dyscalculics do not ‘get’ numbers the way most people do. For example, which of these two figures is biggest?

 

65         24

Easy, it’s 65. Almost all of us will get the correct answer in less than half a second. If you have dyscalculia, however, it can take up to three seconds. The nature of the condition varies from person to person, but those diagnosed with it often have problems in correlating the symbol for a number, say 5, with the number of objects the symbol represents. They also find it hard to count. Dyscalculia does not mean you cannot count, but sufferers tend to lack basic intuitions about number and instead rely on alternative strategies to cope with numbers in everyday life, for instance by using their fingers more. Severe dyscalculics can barely read the time.

If you were smart in all your subjects at school but failed ever to pass an exam in maths, you may well be dyscalculic. (Although if you always failed at maths, you are probably not reading this book.) The condition is thought to be a principal cause of low numeracy. Understanding dyscalculia has a social urgency, since adults with low numeracy are much more likely to be unemployed or depressed than their peers. Yet dyscalculia is little understood. It can be thought of as the number version of dyslexia; the conditions are comparable in that they both affect roughly the same proportion of the population and they appear to have no bearing on overall intelligence. However, a lot more is known about dyslexia than about dyscalculia. It is estimated, in fact, that academic papers on dyslexia outnumber those on dyscalculia by about ten to one. Among the reasons why dyscalculia research is so far behind is that there are many other reasons why one might be bad at maths – the subject is often taught badly at school, and it is easy to fall behind if you miss lessons when crucial concepts are introduced. There is also less of a social taboo around being rubbish with numbers than there is around being rubbish at reading.

Brian Butterworth frequently writes references for people he has tested for dyscalculia, explaining to prospective employers that the failure to achieve school maths qualifications is not due to laziness or lack of intelligence. Dyscalculics can be high achievers in all other areas beyond numbers. It is even possible, says Butterworth, to be dyscalculic and very good at maths. There are several branches of mathematics, such as logic and geometry, that prioritize deductive reasoning or spatial awareness rather than dexterity with numbers or equations. Usually, however, dyscalculics are not at all good at maths.

Much of the research into dyscalculia is behavioural, such as the screening of tens of thousands of schoolchildren by giving them tests on a computer in which they must say which of two numbers is the biggest. Some is neurological, in which magnetic resonance scans of dyscalculic and non-dyscalculic brains are studied to see how their circuitry differs. In cognitive science, advances in understanding a mental faculty often come from studying cases where the faculty is faulty. Gradually, a clearer picture is emerging of what dyscalculia is – and of how the number sense works in the brain.

Neuroscience, in fact, is providing some of the most exciting new discoveries in the field of numerical cognition. It is now possible to see what happens to individual neurons in a monkey’s brain when that monkey thinks of a precise number of dots.

Andreas Nieder at the University of Tübingen in southern Germany trained rhesus macaques to think of a number. He did this by showing them one set of dots on a computer, then, after a one-second interval, showing another set of dots. The monkeys were taught that if the second set was equal to the first set, then pressing a lever would earn them a reward of a sip of apple juice. If the second set was not equal to the first, then there was no apple juice. After about a year, the monkeys learned to press the lever only when the number of dots on the first and second screens was equal. Nieder and his colleagues reasoned that during the one-second interval between screens the monkeys were thinking about the number of dots they had just seen.

Nieder decided he wanted to see what was happening in the monkeys’ brains when they were holding the number in their heads. So, he inserted an electrode two microns in diameter through a hole in their skulls and into the neural tissue. Don’t worry, no monkeys were hurt. At that size, an electrode is tiny enough to slide through the brain without causing damage or pain. (The insertion of electrodes into human brains for research contravenes ethical guidelines, although it is allowed for therapeutic reasons such as the treatment of epilepsy.) Nieder positioned the electrode so that it faced a section of the monkeys’ pre-frontal cortex, and then began the experiment.

The electrode was so sensitive that it could pick up electrical discharge in individual neurons. When the monkeys thought of numbers, Nieder saw that certain neurons became very active. A whole patch of their brains was lighting up.

On closer analysis, he made a fascinating discovery. The number-sensitive neurons reacted with varying charges depending on the number that the monkey was thinking of at the time. And each neuron had a ‘preferred’ number – a number that made it most active. There was, for example, a population of several thousand neurons that preferred the number one. These neurons shone brightly when a monkey thought of one, less brightly when he thought of two, even less brightly when he thought of three, and so on. There was another set of neurons that preferred the number two. These neurons shone brightest when a monkey thought of two, less brightly when he thought of one or three, dimmer still when the monkey thought of four. Another group of neurons preferred the number three, and another the number four. Nieder conducted experiments up to the number 30, and for each number found neurons that preferred that number.

The results offered an explanation for why our intuitions favour an approximate understanding of numbers. When a monkey is thinking ‘four’, the neurons that prefer four are the most active, of course. But the neurons that prefer three and the neurons that prefer five are also active, though less so, because its brain is also thinking of the numbers surrounding four. ‘It is a noisy sense of number,’ explained Nieder. ‘The monkeys can only represent cardinalities in an approximate way.’

It is almost certain that the same thing happens in human brains. Which raises an interesting question. If our brains can represent numbers only approximately, then how were we able to ‘invent’ numbers in the first place? ‘The “exact number sense” is a [uniquely] human property that probably stems from our ability to represent number very precisely with symbols,’ concluded Nieder. Which reinforces the point that numbers are a cultural artefact, a man-made construct rather than something that we acquire innately.
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Chapter One

The Counter Culture



In Lincolnshire during medieval times, a pimp plus a dik got you a bumfit. There was nothing dishonourable about this. The words were simply the numbers five, ten and fifteen in a jargon used by shepherds when counting their sheep. The full sequence ran:


	Yan

	Tan

	Tethera

	Pethera

	Pimp

	Sethera

	Lethera

	Hovera

	Covera

	Dik

	Yan-a-dik

	Tan-a-dik

	Tethera-dik

	Pethera-dik

	Bumfit

	Yan-a-bumfit

	Tan-a-bumfit

	Tethera-bumfit

	Pethera-bumfit

	Figgit



This is a different way from how we count now, and not just because all the words are unfamiliar. Lincolnshire shepherds organized their numbers in groups of twenty, starting counting with yan and ending with figgit. If a shepherd had more than twenty sheep – and provided he hadn’t sent himself to sleep – he would make note of having completed one cycle by putting a pebble in his pocket, or making a mark on the ground, or scraping a line in his crook. He would then start from the beginning again: ‘Yan, tan, tethera…’ If he had 80 sheep, he would have four pebbles in his pocket, or have marked four lines, at the end. The system is very efficient for the shepherd; he has four small items to represent 80 big ones.

In the modern world, of course, we group our numbers in tens, so our number system has ten digits – 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The number of the counting group, which is often also the number of symbols used, is called the base of a number system, so our decimal system is base ten, while the shepherds’ base is 20.

Without a sensible base, numbers are unmanageable. Imagine that the shepherd had a base-one system, which would mean he had only one number word: yan for one. Two would be yan yan. Three would be yan yan yan. Eighty sheep would be yan said 80 times. This system is pretty useless for counting anything above about three. Alternatively, imagine that every number was a separate word so that being able to count up to 80 would require memory for 80 unique words. Now count to a thousand this way!

Many isolated communities still use unconventional bases. The Arara in the Amazon, for example, count in pairs, with the numbers from one to eight as follows: anane, adak, adak anane, adak adak, adak adak anane, adak adak adak, adak adak adak anane, adak adak adak adak. Counting in twos is not much of an improvement over counting in ones. Expressing 100 requires repeating adak 50 times in succession – which would make haggling at the market rather time-consuming. Systems in which numbers are grouped in threes and fours are also found in the Amazon.

The trick of a good base system is that the base number needs to be large enough to be able to express numbers like 100 without running out of breath, but not so large that we need to overexercise our memories. The most common bases throughout history have been five, ten and twenty, and there is an obvious reason why. These numbers are derived from the human body. We have five fingers on one hand, so five is the first obvious place to take a breath when counting upwards from one. The next natural pause comes at two hands, or ten fingers, and after that at hands and feet, or twenty fingers and toes. (Some systems are composite. The Lincolnshire sheep-counting lexicon, for example, contains base five and ten as well as base 20: the first ten numbers are unique, and the next ten are grouped in fives.) The role that fingers have played in counting is reflected in much number vocabulary, not least the double meaning of digit. For example, five in Russian is piat, and the word for outstretched hand is piast. Similarly, Sanskrit for the word five, pantcha, is related to the Persian pentcha, hand.
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Finger counting from Luca Pacioli’s Summa de arithmetica, geometria, proportioni et proportionalita (1494).


From the moment man started to count he was using his fingers as an aid, and it is no exaggeration to credit a great deal of scientific progress to the versatility of our fingers. If humans were born with flat stumps at the ends of our arms and legs, it is fair to speculate that we would not have evolved intellectually beyond the Stone Age. Before the widespread availability of paper and pencil allowed numbers to be easily written down, they were often communicated through elaborate finger-counting sign languages. In the eighth century the Northumbrian theologian the Venerable Bede presented a system to count to a million, which was one part arithmetic, one part jazz hands. Units and tens were represented by the left fingers and thumb; hundreds and thousands on the right. Higher orders were expressed by moving the hands up and down the body – with a rather unpriestly image to represent 90,000: ‘grasp your loins with the left hand, the thumb towards the genitals’, Bede wrote. Much more evocative was the sign for a million, a self-satisfied gesture of achievement and closure: the hands clasped together, fingers intertwined.

Until only a few hundred years ago, no manual of arithmetic was complete without diagrams of finger-counting. Now, while mostly a lost art, the practice continues in some parts of the world. Traders in India who want to conceal their dealings from bystanders use a method of touching knuckles behind a cloak or cloth. In China, an ingenious – if rather overly intricate – technique allows you to count up to one less than ten billion – 9,999,999,999. Each finger has nine imaginary points – three on each crease line, as marked on the diagram opposite. These points on the right little finger represent the digits 1 to 9. The points on the right fourth finger take us from 10 to 90. The right middle finger goes from 100 to 900, and so on, with each new finger representing the next power of ten. It is therefore possible to count every single person on Earth with only your fingers, which is one way to have the whole world in your hands.

Some cultures count using more of their bodies than just fingers and toes. At the end of the nineteenth century an expedition of British anthropologists reached the islands of the Torres Strait, the stretch of water that separates Australia from Papua New Guinea. There they discovered a community that started with ‘right hand little finger’ for 1, ‘right hand ring finger’ for 2 and this continued through the fingers to ‘right wrist’ for 6, ‘right elbow’ for 7 and on through the shoulders, sternum, left arm and hand, feet and legs, ending at ‘right foot little toe’ for 33. Subsequent expeditions and research uncovered many communities in the region with similar ‘body-tally’ systems.
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In this Chinese system, each finger has nine points, representing the digits 1 to 9 for each order of magnitude, so the right hand can express any number up to 105 – 1 when the other hand touches the relevant points. Swapping hands, the numbers continue to 1010 – 1. A ‘zero’ point is not needed on any finger, since when there are no values relating to that finger it is simply left alone by the other hand.

Perhaps the most curious is the Yupno, the only Papuan people for whom each individual owns a short melody that belongs to them like a name, or signature tune. They also have a counting system that enumerates the nostrils, eyes, nipples, belly button and climaxes in 31, for ‘left testicle’, 32, ‘right testicle’ and 33, ‘penis’. While one can ponder the significance of 33 in the three great monotheistic religions (the age when Christ died, the length of King David’s reign and the number of individual beads on a Muslim prayer string), what is particularly intriguing about the Yupno’s phallic number is that they are actually very coy about it. They refer to the number 33 euphemistically in phrases such as ‘the man thing’. Researchers were unable to discover whether women use the same terms, since they are not supposed to know the number system and refused to answer questions. The upper limit in Yupno is 34, which they call ‘one dead man’.

Base-ten systems have been used in the West for thousands of years. Despite their harmoniousness with our bodies, however, many have questioned whether they are the most sensible base for counting. In fact, some have argued that their physical provenance makes them an actively bad choice. King Charles XII of Sweden dismissed base ten as the product of ‘rustic and simple people’ fumbling around with their fingers. In modern Scandinavia, he believed, a base was needed ‘of more convenience and greater use’. So, in 1716, he ordered the scientist Emanuel Swedenborg to devise a new counting system with a base of 64. He arrived at this formidable number due to the fact that it was derived from a cube, 4 × 4 × 4. Charles, who fought – and lost – the Great Northern War, believed that military calculations, such as measuring the volume of a box of gunpowder, would be made easier with a cube number as a base. Yet his brainwave, wrote Voltaire, ‘could prove only that he loved the extraordinary and the difficult’. Base 64 requires 64 unique names (and symbols) for numbers – an absurdly inconvenient system. Swedenborg therefore simplified the system to base eight and came up with a new notation in which 0, 1, 2, 3, 4, 5, 6, 7 were renamed o, l, s, n, m, t, f, u. In this system, therefore l + l = s, and m × m = so. (The words for the new numbers, however, were rather wonderful. The powers of 8, which would have been written lo, loo, looo, loooo and looooo, were to be pronounced, or yodelled, lu, lo, li, le and la.) In 1718, however, shortly before Swedenborg was due to present the system, a bullet shot the king – and his octonary dream – stone dead.
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One dead Yupno.

But Charles XII had a valid point. Why should we stick with the decimal system just because it was derived from the number of our fingers and toes? If humans were like Disney characters, for example, and had only three fingers and a thumb per hand, it is almost certain that we would live in a base-eight world: giving marks out of eight, compiling top eight charts and letting eight cents make a dime. Mathematics would not change by having an alternative way to group numbers. The bellicose Swede was correct to ask which base best suits our scientific needs – rather than opting for the one that suits our anatomy.

In late 1970s Chicago, Michael de Vlieger was watching the cartoons on Saturday morning TV. A short segment came on. The soundtrack was of disconcerting, off-key piano chords, wah-wah guitar and a menacing bass. Under a full moon and starry night sky a strange humanoid appeared. He had a blue and white striped top hat and tails, blond hair and a stick nose, rather in keeping with the glam-rock fashion of the era. If that wasn’t creepy enough, he had five fingers and a thumb on each hand, and six toes on each foot. ‘It was a little freaky, kind of spooky,’ remembered Michael. The cartoon was Little Twelvetoes, an educational broadcast about base 12. ‘I think the majority of the American population had no idea what was going on. But I thought it was so cool.’

Michael is now 38. I met him in his office, a business suite above some shops in a residential part of St Louis, Missouri. He has thick black hair with a few shoots of white, a round face, dark eyes and sallow skin. His mum is Filipino, while his father is white, and being a mixed-race kid made him the victim of taunts. A clever and sensitive child with an active imagination, he decided to invent his own language so that his classmates couldn’t read his notebooks. Little Twelvetoes inspired him to do the same with numbers – and he adopted base 12 for personal use.

Base 12 has 12 digits: 0 to 9 and two extra ones to represent ten and eleven. The standard notation for each of these two ‘transdecimal’ digits is [image: image] and [image: image]. So, counting to 12 now goes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, [image: image], [image: image], 10. (See table opposite.)

The new single digits are given new names to avoid confusion, so [image: image] is called dek and [image: image] is called el. Also, we give 10 the name do, pronounced doh, and short for dozen, to avoid confusion with 10 in base ten. Counting upwards from do in base 12, or ‘dozenal’, we have do one for 11, do two for 12, do three for 13 all the way up to twodo for 20.

Michael devised a private calendar using base 12. Each date in this calendar was the number of days, counted in base 12, from the day he was born. He still uses it, and he told me later that I visited him on the 80[image: image]9th day of his life.

Michael adopted base 12 for reasons of personal security, but he is not alone in having fallen for its charms. Many serious thinkers have argued that 12 is a better base for a number system because the number is more versatile than 10. In fact, base 12 is more than a number system – it is a politico-mathematical cause. One of its earliest champions was Joshua Jordaine, who in 1687 self-published Duodecimal Arithmetick. He claimed that ‘nothing was more natural and genuine’ than counting in twelves. In the nineteenth century high-profile duodeciphiles included Isaac Pitman, who had gained considerable fame for inventing a widespread system of shorthand, and Herbert Spencer, the Victorian social theorist. Spencer urged base-system reform on behalf of ‘working people, people of narrow incomes and the minor shopkeepers who minister to their wants’. The American inventor and engineer John W. Nystrom was also a fan. He described base 12 as ‘duodenal’ – perhaps the most unfortunate double entendre in the history of science.
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Dozenal numbers from 1 to 100.

The reason that 12 might be considered superior to ten is because of its divisibility. Twelve can be divided by 2, 3, 4 and 6, whereas ten can be divided only by 2 and 5. Advocates of base 12 argue that we are much more likely to want to divide by 3 or 4 than divide by 5 in our daily lives. Consider a shopkeeper. If you have 12 apples, then you can divide them up into two bags of 6, three bags of 4, four bags of 3, or six bags of 2. This is much more user-friendly than 10, which can only be cleanly divided into two bags of 5, or five of 2. The word ‘grocer’, in fact, is a relic of a retailer’s preference for 12 – it comes from ‘gross’, meaning a dozen dozen, or 144. The multi-divisibility of 12 also explains the utility of imperial measure: a foot, which is 12 inches, can be cleanly divided by 2, 3 and 4 – which is quite a plus for carpenters and tailors.

Divisibility is also relevant to multiplication tables. The easiest tables to learn in any base are the ones of numbers that divide that base. This is why, in base ten, the 2 and 5 times tables – which are just the even numbers and the numbers ending in 5 or 0 – are so painless to recite. Likewise, in base 12 the simplest times tables are also those of its divisors: 2, 3, 4 and 6.
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If you look at the final digits of each column, you see a striking pattern. The two times table is, again, all the even numbers. The three times table is all the numbers ending in 3, 6, 9 and 0. The four times table is the numbers ending in 4, 8 and 0, and the six times table all the numbers ending 6 or 0. In other words, in base 12 we get the 2, 3, 4 and 6 times tables for free. Since many children have difficulty in learning their times tables, if we converted to base 12 we would be carrying out a great humanitarian act. Or so the argument goes.

The campaign for base 12 should not be conflated with the crusade against metric by fans of imperial measure. Those people who prefer feet and inches over metres and centimetres have no issue as to whether one foot should be 12 inches, or 10 inches, as it would be in dozenal. Historically, however, an underlying theme of the campaign for base 12 has been a jingoistic anti-Frenchness. Perhaps the finest example of such a view was a pamphlet from 1913 by engineer Rear-Admiral G. Elbrow, in which he called the French metric system ‘retrograde’. He published a list of the dates, in base 12, of the kings and queens of England. He also noticed that Britain had been invaded shortly after each decimal millennium – by the Romans in 43 CE and the Normans in 1066. ‘What if, at the beginning of the [third millennium],’ he prophesized, ‘these two [countries] may again appear in the same direction, and this time in conjunction?’ Invasion by France and Italy might be averted, he argued, simply by rewriting the year 1913 as 1135, as it would be in dozenal, thus delaying the third millennium by several centuries.

The most famous dozenalist call-to-arms, though, was an article in The Atlantic Monthly in October 1934 by the writer F. Emerson Andrews, which led to the formation of the Duodecimal Society of America, or DSA. (It later changed its name to the Dozenal Society of America since ‘duodecimal’ was deemed to be overly reminiscent of the system they were aiming to replace.) Andrews claimed that base ten had been adopted with ‘inexcusable shortsightedness’ and wondered whether it ‘would be so tremendous a sacrifice’ to abandon it. The DSA initially insisted prospective members pass four tests in dozenal arithmetic, although this requirement was quickly dropped. The Duodecimal Bulletin, which continues to this day, is an excellent publication and the only place outside medical literature with articles on hexadactyly, the condition of being born with six fingers. (Which is more common than you might think. About one in every 500 people is born with at least an extra finger or toe.) In 1959 a sister organization, the Dozenal Society of Great Britain, was founded, and a year later the First International Duodecimal Conference was held in France. It was also the last. Still, both societies continue to battle for a dozenal future, seeing themselves as downtrodden militants rallying against the ‘tyranny of ten’.

Michael de Vlieger’s youthful infatuation with base 12 was not a passing phase; he is the current president of the DSA. In fact, he is so committed to the system that he uses it in his job as a designer of digital architectural models.

While base 12 certainly makes times tables easier to learn, its greatest advantage is how it cleans up fractions. Base ten is frequently messy when you want to divide. For example, a third of 10 is 3.33…, where the threes go on for ever. A quarter of 10 is 2.5, which needs a decimal place. In base 12, however, a third of 10 is 4 and a quarter of 10 is 3. Nice. Expressed as a percentage, a third becomes 40 percent, and a quarter 30 percent. In fact if you look at how 100 is divided by the numbers 1 to 12, base 12 provides more concise numbers (note that the semi-colons in the right column stand for the ‘dozenal’ point).
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It is this increased precision that makes base 12 better suited to Michael’s needs. Even though his clients supply him with dimensions in decimal, he prefers to translate them into dozenal. ‘It gives me more choices when dividing into simple ratios,’ he said.
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‘Avoiding [messy] fractions helps ensure things fit. Sometimes, because of time constraints or late-breaking changes, I will need to quickly apply a lot of change at a location that doesn’t jive with the grid I initially set up. Thus it’s important to have predictable simple ratios. I’ve got more and cleaner choices with dozenal, and it’s faster.’ Michael even believes that using base 12 gives his business an edge, comparing it to cyclists and swimmers who shave their legs.

The DSA used to want to replace decimal with dozenal, and its fundamentalist wing still does, but Michael’s ambitions are more modest. He wants simply to show people that there is an alternative to the decimal system, and that perhaps it suits their needs better. He knows that the chances of the world abandoning dix for douze are non-existent. The change would be both confusing and expensive. And decimal works well enough for most people – especially in the computer age, where mental arithmetic skills are less required generally. ‘I would say that dozenal is the optimum base for general computation, for everyday use,’ he added, ‘but I am not here to convert anybody.’

An immediate goal of the DSA is to get the numerals for dek and el into Unicode, the repertoire of text characters used by most computers. In fact, a major debate in dozenal society is which symbols to use. The DSA standard [image: image] and [image: image] were designed in the 1940s by William Addison Dwiggins, one of the US’s foremost font designers and the creator of Futura, Caledonia and Electra. Isaac Pitman preferred [image: image] and [image: image]. Jean Essig, a French enthusiast, preferred [image: image] and [image: image]. Some practical members would prefer * and # since they are already on the 12 buttons of a touch-tone phone. The number words are also an issue. The Manual of the Dozen System (written in 1960, or 1174 in dozenal) recommends the terms dek, el and do (with gro for 100, mo for 1000, and do-mo, gro-mo, bi-mo and tri-mo for the next highest powers of do). Another suggestion is to keep ten, eleven and twelve and continue with twel-one, twel-two, and so on. Such is the sensitivity over terminology that the DSA is careful not to push any system. Great care is needed not to marginalize devotees of any particular symbol or term.

Michael’s love of avant-garde bases did not stop at 12. He has toyed with eight, which he sometimes uses when doing DIY at home. ‘I use bases as tools,’ he said. And he has gone up to base 60. For this he had to design 50 extra symbols to add to the ten digits we have already. His purpose was not practical. He described working in base 60 as like going up a high mountain. ‘I can’t live up there. It is too big a grouping. In the valley it is decimal, and there I can breathe. But I can visit the mountain to see what the view is like.’ He has written out tables of factors in a base 60, or sexagesimal, system, and stared in wonder at the patterns they revealed. ‘There definitely is a beauty there,’ he told me.

While base 60 seems like the product of an extraordinarily fertile imagination, sexagesimal has historical pedigree. It is actually the most ancient base system that we know of.

The simplest form of numerical notation is the tally. It has been used in different forms across the world. The Incas kept count by tying knots on ropes, while cave dwellers painted marks on rocks and, since the invention of wooden furniture, bedposts have – figuratively, at least – been marked with notches. The oldest discovered ‘mathematical artefact’ is believed to be a tally stick: a 35,000-year-old baboon fibula found in a Swaziland cave. The ‘Lebombo bone’ has 29 lines scraped on it, which possibly denote a lunar cycle.

As we saw in the previous chapter, humans can instantly tell the difference between one item and two, between two items and three, but beyond four it gets difficult. This is true of notches as well. For any convenient system of tally-keeping, the tallies need to be grouped. In Britain, tally convention is to mark four vertical lines and then make the fifth a diagonal crossing through them – the so-called ‘five-bar gate’. In South America, the preferred style is for the first four lines to mark a square and the fifth is a diagonal in the square. The Japanese, Chinese and Koreans use a more elaborate method, constructing the character, which means ‘correct’ or ‘proper’. (The next time you have sushi, ask the waiter to show you how he is tallying your dishes.)
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Tally systems of the world.

Around 8000 BC a practice of using small clay pieces with markings to refer to objects emerged throughout the ancient world. These tokens primarily recorded numbers of things, such as sheep to be bought and sold. Different clay pieces referred to different objects or numbers of objects. From that moment sheep could be counted without actually being there, which made trade and stock-keeping much easier. It was the birth of what we understand now as numbers.

In the fourth millennium bc in Sumer, an area now in present-day Iraq, this token system evolved into a script in which a pointed reed was pressed into soft clay. Numbers were first represented by circles or fingernail shapes. By around 2700 bc the stylus had a flat edge and the imprints looked rather like bird footprints, with different imprints referring to different numbers. The script, called cuneiform, marked the beginning of the long history of Western writing systems. It is wonderfully ironic to think that literature was a by-product of a numerical notation invented by Mesopotamian accountants.
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In cuneiform there were symbols only for 1, 10, 60 and 3600, which means the system was a mixture of base 60 and base ten, as the basic set of cuneiform numbers translates into 1, 10, 60 and 60×60. The question why the Sumerians grouped their numbers in sixties has been described as one of the greatest unresolved mysteries in the history of arithmetic. Some have suggested it was the result of the fusion of two previous systems, with bases five and 12, though no conclusive evidence of this has been found.

The Babylonians, who made great advances in maths and astronomy, embraced the Sumerian sexagesimal base, and later the Egyptians, followed by the Greeks, based their time-counting methods on the Babylonian way – which is why, to this day, there are 60 seconds in a minute and 60 minutes in an hour. We are so used to telling the time in base 60 that we never question it, even though it really is quite unexplained. Revolutionary France, however, wanted to iron out what they saw as an inconsistency in the decimal system. When the National Convention introduced the metric system for weights and measures in 1793, it also tried to decimalize time. A decree was signed establishing that every day would be divided into ten hours, each containing 100 minutes, each of which contained 100 seconds. This worked out neatly, making 100,000 seconds in the day – compared to 86,400 (60×60×24) seconds. The revolutionary second was, therefore, a fraction shorter than the normal second. Decimal time became mandatory in 1794 and watches were produced with the numbers going up to ten. Yet the new system was completely bewildering to the populace and abandoned after little more than six months. An hour with 100 minutes is also not as convenient as an hour with 60 minutes, since 100 does not have as many divisors as 60. You can divide 100 by 2, 4, 5, 10, 20, 25 and 50, but you can divide 60 by 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30. The failure of decimal time was a small victory for dozenal thinking. Not only does 12 divide into 60 but it also divides into 24, the number of hours in a day.
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Revolutionary watch with decimal and traditional clock face.

A more recent campaign to decimalize time also flopped. In 1998 the Swiss conglomerate Swatch launched Swatch Internet Time, which divided the day into 1000 parts called beats (equivalent to 1min 26.4secs). The manufacturer sold watches that displayed its ‘revolutionary vision of time’ for a year or so before sheepishly removing them from its catalogue.

The French and Swiss, however, are not the only Western nations to have had barmy counting procedures in the not too distant past. The tally stick, which became outdated the moment the first Sumerian printed his first cuneiform tablet, was used as a form of British currency until 1826. The Bank of England used to issue souped-up tally sticks that were worth a monetary value based on the distance of a mark from the base. A document written in 1186 by the Lord Treasurer Richard Fitzneal set out the values as:


 




	
£1000

	
    thickness of the palm of the hand




	
£100

	
    breadth of a thumb




	
£20

	
    breadth of a little finger




	
£1

	
    width of a swollen barleycorn






The procedure the Treasury used was, in fact, a system of ‘double tallies’. A piece of wood was split down the middle, giving two parts – the stock and the foil. A value was marked – tallied – on the stock and was also marked on the foil, which acted like a receipt. If I lent some money to the Bank of England, I would be given a stock with a notch indicating the amount – which explains the origin of the words stockholder and stockbroker – while the bank kept the foil, which had a matching notch.

This practice was abandoned barely two centuries ago. In 1834, the Treasury decided to incinerate the obsolete pieces of wood in a furnace under the Palace of Westminster, the seat of British government. The fire, however, spread out of control. Charles Dickens wrote: ‘The stove, overgorged with these preposterous sticks, set fire to the panelling; the panelling set fire to the House of Commons; the two houses [of government] were reduced to ashes.’ Obscure financial instruments have often impacted on the work of government, but only the tally stick has brought down a parliament. When the palace was rebuilt it had a brand new clock tower, Big Ben, which quickly became the most recognizable landmark in London.

An argument often used in favour of the imperial system over metric is that the words sound better. A case in point is the measures for wine:


2 gills = 1 chopin

2 chopins = 1 pint

2 pints = 1 quart

2 quarts = 1 pottle

2 pottles = 1 gallon

2 gallons = 1 peck

2 pecks = 1 demibushel

2 demibushels = 1 bushel (or firkin)

2 firkins = 1 kilderkin

2 kilderkins = 1 barrel


2 barrels = 1 hogshead

2 hogsheads = 1 pipe

2 pipes = 1 tun



This system is base two, or binary, which is usually expressed using the digits 0 and 1. Numbers in binary are the numbers you would use in base ten when only 0 and 1 appear. In other words, the sequence that begins 0, 1, 10, 11, 100, 101, 110, 111, 1000. So, 10 is two, 100 is four, 1000 is eight and so on, with each extra 0 on the end representing multiplication by two. (Which is just like base ten – adding a 0 on the end of a number is multiplication by ten.) In the wine measures, the smallest unit is a gill. Two gills makes a chopin, 4 gills a pint, 8 gills a quart, 16 gills a pottle, etc. The measures replicate perfectly the binary numerals. If a gill is represented by 1, then a chopin is 10, a pint is 100, a quart is 1000 and this carried on all the way to a tun, which is 10,000,000,000,000.

Binary can claim as its cheerleader the greatest mathematician ever to have fallen in love with a non-standard base. Gottfried Leibniz was one of the most important thinkers of the late seventeenth century, a scientist, philosopher and statesman. One of his duties was as librarian to the court of the Duke of Brunswick in Hanover. Leibniz was so excited with base two that he once wrote a letter to the Duke urging him to cast a silver medallion inscribed with the words Imago Creationis – ‘in the image of the world’ – as a tribute to the binary system. For Leibniz, binary had practical and spiritual relevance. First, he thought that its capacity for describing every number in terms of doubles facilitated a variety of operations. ‘[It] permits the Assayer to weigh all sorts of masses with few weights and could serve in coinage to give more value with fewer pieces,’ he wrote in 1703. Leibniz did admit that binary had some practical drawbacks. The numbers are much longer when written out: 1000 in decimal, for example, is 1,111,101,000 in binary. But he added: ‘In recompense for its length, [binary] is more fundamental to science and gives new discoveries.’ By looking at the symmetries and patterns in binary notation, he claimed, new mathematical insights are revealed, and number theory is richer and more versatile because of it.
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Design for Leibniz’s binary medallion, in Johann Bernard Wiedeburg’s Dissertatio mathematica de praestantia arithmeticae binaria prae decimali (1718). As well as the words Imago Creationis, the Latin reads ‘From nothing comes one and everything, but the one is necessary’.

Second, Leibniz marvelled at how the binary system chimed with his religious views. He believed that the cosmos was composed of being, or substance, and non-being, or nothingness. The duality was perfectly symbolized by the numbers 1 and 0. In the same way that God creates all beings from the void, all numbers can be written in terms of 1s and 0s. Leibniz’s conviction that binary exemplified a fundamental metaphysical truth was – to his great delight – strengthened when later in life he was shown the I Ching, the ancient Chinese mystical text. The I Ching is a book of divination. It contains 64 different symbols, each of which comes with an accompanying commentary. The reader randomly selects a symbol (traditionally by casting yarrow sticks) and interprets the related text – a little like one might read an astrological chart. Each symbol in the I Ching is a hexagram, which means it is composed of six horizontal lines. The lines are either broken or unbroken, corresponding to a yin or a yang. The 64 hexagrams in the I Ching are the full set of combinations of yins and yangs when taken in groups of six at a time.

A particularly elegant way of ordering the hexagrams is shown opposite. If each yang is written 0 and each yin is 1, then the sequence matches precisely the binary digits from 0 to 63.

This way of ordering is known as the Fu Hsi sequence. (Strictly speaking, it is the inverse of Fu Hsi, but they are mathematically equivalent.) When Leibniz was made aware of the binary nature of Fu Hsi, it gave him ‘a high opinion of [the I Ching’s] profundity’. Since he thought that the binary system mirrored Creation, his discovery that it also underlay Taoist wisdom meant that Eastern mysticism could now be accommodated within his own Western beliefs. ‘The substance of the ancient theology of the Chinese is intact and, purged of additional errors, can be harnessed to the great truths of the Christian religion,’ he wrote.
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Part of the Fu Hsi sequence of the I Ching and its binary equivalent.

Leibniz’s panegyrics on base two were a rather eccentric preoccupation of the pre-eminent polymath of his day. Yet in ascribing a fundamental importance to the system, he was more prescient than even he could ever have imagined. The digital age runs on binary, as computer technology relies at a most basic level on a language comprised of 0s and 1s. ‘Alas!’ wrote mathematician Tobias Dantzig. ‘What was once hailed as a monument to monotheism ended in the bowels of a robot.’

‘Freedom is the freedom to say two plus two equals four,’ wrote Winston Smith, the protagonist of George Orwell’s Nineteen Eighty-Four. Orwell was making a comment not only about freedom of speech in the Soviet Union, but also about mathematics. Two plus two is always four. No one can tell you it isn’t. Mathematical truths cannot be influenced by culture or ideology.

On the other hand, our approach to mathematics is very much influenced by culture. The selection of base ten, for example, was not premised on mathematical reasons but on physiological ones, the number of our fingers and toes. Language also shapes mathematical understanding in surprising ways. In the West, for example, we are held back by the words we have chosen to express numbers.

In almost all Western European languages, number words do not follow a regular pattern. In English we say twenty-one, twenty-two, twenty-three. But we don’t say tenty-one, tenty-two, tenty-three – we say eleven, twelve, thirteen. Eleven and twelve are unique constructions, and even though thirteen is a combination of three and ten, the three part comes before the ten part – unlike twenty-three, when the three part comes after the twenty part. Between ten and twenty, English is a mess.

In Chinese, Japanese and Korean, however, number words do follow a regular pattern. Eleven is written ten one. Twelve is ten two, and so on with ten three, ten four up to ten nine for nineteen. Twenty is two ten, and twenty-one is two ten one. You pronounce numbers in all cases just as you see them written down. So what? Well, it does make a difference at a young age. Experiments have repeatedly shown that Asian children find it easier to learn to count than Europeans. In one study with Chinese and American four-and five-year-olds, the two nationalities performed similarly when learning to count to 12, but the Chinese were about a year ahead with higher numbers. A regular system also makes arithmetic clearer to understand. A simple sum such as twenty-five plus thirty-two when expressed as two ten five plus three ten two is one step closer to the answer already: five ten seven.

Not all European languages are irregular. Welsh, for example, is just like Chinese. Eleven in Welsh is un deg un (one ten one); twelve is un deg dau (one ten two), and so on. Ann Dowker and Delyth Lloyd at the University of Oxford tested the maths abilities of Welsh-and English-speaking kids from the same Welsh village. While Asian children may be better than American children because of many cultural factors, such as hours spent practising or attitudes towards maths, cultural factors can be eliminated if the children are all living in the same place. Dowker and Lloyd concluded that while general arithmetic performance was more or less equal between Welsh-and English-speakers, the Welsh-speakers did demonstrate better mathematical skills in specific areas – such as reading, comparing and manipulating two-digit numbers.


German is even more irregular than English. In German, twenty-one is einundzwanzig, or one-and-twenty, twenty-two is zweiundzwanzig, or two-and-twenty, and this continues with the unit value preceding the tens value all the way up to 99. This means that when a German says a number over 100, the digits are not pronounced in a consecutive order: three hundred and forty-five is dreihundertfünfundvierzig, or three-hundred-five-and-forty, which lists the numbers in the higgledy-piggledy form 3-5-4. Such is the level of concern in Germany that this makes numbers more confusing than they have to be, that a campaign group Zwanzigeins (Twenty-one) has been set up to push for a change to a more regular system.

And it’s not just the positioning of number words, or their irregular forms between eleven and nineteen, that puts the speakers of the main Western European languages at a disadvantage with some Asian language-speakers. We are also handicapped by how long it takes us to say numbers. In The Number Sense, Stanislas Dehaene writes down the list 4, 8, 5, 3, 9, 7, 6 and asks us to spend 20 seconds memorizing it. English-speakers have a 50 percent chance of remembering the seven numbers correctly. By contrast, Chinese-speakers can memorize nine digits in this way. Dehaene says that this is because the number of digits we can hold in our heads at any one time is determined by how many we can say in a two-second loop. The Chinese words for one to nine are all concise single syllables: yi, er, san, si, wu, liu, qi, ba, jiu. They can be uttered in less than a quarter of a second, so in a two-second span a Chinese-speaker can rattle through nine of them. English number words, by contrast, take just under a third of a second to say (thanks to the frankly cumbersome ‘seven’, with two syllables, and the extended syllable ‘three’), so our limit in two seconds is seven. The record, however, goes to the Cantonese, whose digits are spoken with even more brevity. They can remember ten of them in a two-second period.

While Western languages seem to be working against any mathematical ease of understanding, in Japan language is recruited as an ally. Words and phrases are modified in order to make their multiplication tables, called kuku, easier to learn. The tradition of these tables originated in ancient China, spreading to Japan around the eighth century. Ku in Japanese is nine, and the name comes from the fact that the tables used to begin at the end, with 9×9 = 81. Around 400 years ago they were changed so that the kuku now begins ‘one one is one’.

The words of the kuku are simply:


One one is one

One two is two

One three is three…



This carries on to ‘One nine is nine’, and then the twos begin with:


Two one is two

Two two is four



And so on to nine nine is eighty-one.

So far, this seems very similar to the plain British style of reciting the times tables. In the kuku, however, whenever there are two ways to pronounce a word, the way that flows better is used. For example, the word for one can be in or ichi, and rather than starting the kuku with either in in or ichi ichi, the more sonorous combination in ichi is used. The word for eight is ha. Eight eights should be ha ha. Yet the line in the kuku for 8×8 is happa since it rolls quicker off the tongue. The result is that the kuku is rather like a piece of poetry, or a nursery rhyme. When I visited an elementary school in Tokyo and watched a class of seven-and eight-year-olds practise their kuku, I was struck by how much it sounded like a rap – the phrases were syncopated and jolly. Certainly it bore no relation to how I remember reciting my times tables at school, which was with the metronomic delivery of a steam train going up a hill. Makiko Kondo, the teacher, said that she teaches her pupils kuku with an uptempo rhythm because it makes it fun to learn. ‘First we get them to recite it, and only some time later do they come to understand the real meaning.’ The poetry of the kuku seems to embed the times tables in Japanese brains. Adults told me that they know, for example, that seven times seven is 49 not because they remember the maths but because the music of ‘seven seven forty-nine’ sounds right.

While the irregularities of Western number words may be unfortunate for budding arithmeticians, they are of extreme interest to mathematical historians. The French for eighty is quatre-vingts, or four-twenties, indicating that ancestors of the French once used a base-20 system. It has also been suggested that the reason why the words for ‘nine’ and ‘new’ are identical or similar in many Indo-European languages, including French (neuf, neuf ), Spanish (nueve, nuevo), German (neun, neu) and Norwegian (ni, ny) is a legacy of a long-forgotten base-eight system, where the ninth unit would be the first of a new set of eight. (Excluding thumbs, we have eight fingers, which could be how such a base developed. Or possibly from counting the gaps between the fingers.) Number words are also a reminder of how close we are to the numberless tribes of the Amazon and Australia. In English, thrice can mean both three times and many times; in French, trois is three and très is very: shadows, perhaps, of our own ‘one, two, many’ past.

Whereas certain aspects of number – such as the base, the style of numeral or the form of the words used – have differed widely between cultures, the early civilizations were surprisingly unified in the mechanics of how they counted and calculated. The general method they used is called ‘place value’ and is the principle by which different positions are used to represent different orders of number. Let’s consider what this means in the context of shepherds in medieval Lincolnshire. As I wrote earlier, they had 20 numbers from yan to figgit. Once a shepherd counted 20 sheep, he put a pebble aside and started counting from yan to figgit all over again. If he had 400 sheep, he would have 20 pebbles, since 20×20 = 400. Now imagine the shepherd had a thousand sheep. If he counted them all he would have 50 pebbles, since 50×20 = 1000. Yet the problem with the shepherd having 50 pebbles is that he has no way to count them, since he cannot count higher than 20!

A way to solve this is to draw parallel furrows on the ground, as in the figure overleaf. When the shepherd counts 20 sheep he puts a pebble in the first furrow. When he counts another 20 sheep, he puts another pebble in the first furrow. Slowly the first furrow fills up with pebbles. When the time comes to put a twentieth pebble in the furrow, however, he instead puts a single pebble in the second furrow, and clears the first furrow of all pebbles. In other words, one pebble in the second furrow means 20 pebbles in the first – just as one pebble in the first furrow means 20 sheep. A pebble in the second row stands for 400 sheep. A shepherd who has a thousand sheep and uses this procedure will have two pebbles in the second furrow, and ten in the first. By using a place-value system like this one – by which each furrow confers a different value to the pebble in it – he has used only 12 pebbles to count 1000 sheep rather than the 50 he would have needed without it.

[image: image]

Total sheep = (10 ×20) + (2 ×400) = 1000

Place-value counting systems have been used all over the world. Instead of pebbles in furrows, the Incas used beans or grains of maize in trays. North American Indians threaded pearls or shells on different-coloured string. The Greeks and Romans used counters of bone, ivory or metal on tables that had different columns marked out. In India they used marks on sand.

The Romans also made a mechanical version, with beads sliding in slots, called an abacus. These portable versions spread through the civilized world, though different countries preferred different versions. The Russian schoty has ten beads per rod (except on the row that has four beads, used by cashiers to denote quarter roubles). The Chinese suan-pan has seven, while the Japanese soroban, like the Roman abacus, has just five.

About a million children annually in Japan learn the abacus, attending one of 20,000 after-school abacus clubs. One evening in Tokyo I visited one in a west Tokyo suburb. The club was a short walk from a local train line, on the corner of a residential block. Thirty brightly coloured bicycles were parked outside. A large window displayed trophies, abacuses and a line of wooden slats with the calligraphied names of its star pupils.


[image: image]

The Japanese equivalent of ‘reading, ’riting and ’rithmetic’ is yomi, kaki, soroban, or reading, writing, abacus. The phrase dates from the period in Japanese history between the seventeenth and nineteenth centuries when the country was almost totally isolated from the rest of the world. As a new merchant class emerged, which required skills other than proficiency with a samurai sword, so did a culture of private community-run schools that taught language and arithmetic – with the focus on abacus training.

Yuji Miyamoto’s abacus club is a modern descendant of these older soroban establishments. When I walked in, Miyamoto, who was wearing a dark blue suit and white shirt, was standing in front of a small classroom of five girls and nine boys. He was reading out numbers in Japanese with the breathless syncopation of a horseracing commentator. As the children added them all up, the clatter of beads sounded like a swarm of cicadas.

In a soroban, there are exactly ten positions of beads per column, representing the numbers from 0 to 9, as shown overleaf.

When a number is displayed on the soroban, each digit of the number is represented on a separate column using one of the ten positions.


[image: image]

Numbers on the soroban.

The abacus was invented as a way of counting, but it really came into its own as a method for calculation. Arithmetic became much easier to do when helped by the flicking of beads. For example, to calculate 3 plus 1 you start with 3 beads, move 1 bead and the answer is right before your eyes – 4 beads. To calculate, say, 31 plus 45 you start with two columns marking 3 and 1, move 4 bead positions up the left column and 5 up the right column. The columns now read 7 and 6, which is the answer, 76. With a little bit of practice and application, it becomes easy to add numbers of any length so long as there are enough columns to accommodate them. If on any one column the two numbers add up to more than ten, then you will need to move the beads on the column to the left up one position. For example, 9 plus 2 on one column moves to a 1 on the column to the left and a 1 on the original column, expressing the answer, 11. Subtraction, multiplication and division are a little more complicated, but once mastered can be done extremely quickly.


Until the availability of cheap calculators in the 1980s abacuses were commonly seen on shop counters from Moscow to Tokyo. In fact, during the transition between the manual and electronic eras, a product combining both calculator and abacus was sold in Japan. Addition is usually faster on the abacus since you get your answer as soon as you input the numbers. With multiplication the electronic calculator gives you a slight speed advantage. (The abacus was also a way for the sceptical abacist to check the calculator’s result, just in case he didn’t believe it.)

[image: image]

Sharp’s abacus-calculator.

Abacus use has dropped in Japan since the 1970s when, at its peak, 3.2 million pupils a year sat the national soroban proficiency exam. Yet the abacus still remains a defining aspect of growing up, a mainstream extra-curricular activity like swimming, violin or judo. Abacus training, in fact, is run like a martial art. Levels of ability are measured in dans, and there is a competitive structure of local, provincial and national competitions. One Sunday I went to see a regional event. Almost 300 children, aged between 5 and 12, sat at desks in a conference hall with an array of special soroban accessories, like sleek abacus bags. An announcer stood at the front of the hall and dictated, with the intonation of an impatient muezzin, numbers to be added, subtracted or multiplied. It was a knock-out competition that lasted several hours. A chorus of military brass-band music was pumped through the sound system when the trophies – each with a winged figure holding an abacus aloft – were presented to the victors.

At Miyamoto’s school he introduced me to one of his best pupils. Naoki Furuyama, aged 19, is a former national soroban champion. He was dressed casually, with a light checked shirt over a black T-shirt, and seemed a relaxed and well-adjusted teenager – certainly not the cliché of a socially awkward übergeek. Furuyama can multiply two six-digit numbers together in about four seconds, which is about as long as it takes to say the problem. I asked him what the point was of being able to calculate so fast, since there is no need for such skills in daily life. He replied that it helped his powers of concentration and self-discipline. Miyamoto was standing with us, and he interrupted. What was the point of running 26 miles, he asked me? There was never any need to run 26 miles, but people did it as a way of pushing human performance to the limit. Likewise, he added, there was a nobility in training one’s arithmetical brain as far as one could.

Some parents send their children to abacus club because it is a way to improve school maths results. But that does not completely explain the abacus’s popularity. Other after-school clubs provide more targeted maths tuition – Kumon, for example, a method of ploughing through worksheets that started in Osaka in the early 1950s, is now followed by more than four million children around the world. Abacus club is fun. I saw that in the faces of the pupils at Miyamoto’s school. They clearly enjoyed their dexterity at flicking the beads with speed and precision. The Japanese heritage of the soroban generates national pride. Yet the real joy of the abacus, I thought, is more primal: it has been used for thousands of years and, in some cases, is still the fastest way to do sums.

After a few years of using an abacus, when you are so familiar with the positioning of the beads, it becomes possible to perform calculations simply by visualizing an abacus in your head. This is called anzan, and Miyamoto’s top pupils have all learned it. The feat was amazing to watch – even though there was nothing to see. Miyamoto read out numbers to a totally silent, still classroom and within seconds the students raised their hands with the answers. Naoki Furuyama told me that he visualizes an abacus with eight columns. In other words, his imaginary abacus can display every number from 0 to 99,999,999.

Miyamoto’s abacus club is one of the best in the country in terms of the dans of its pupils and their achievements in national tournaments. Its speciality, however, is anzan. A few years ago Miyamoto decided to devise a type of arithmetical challenge that could only be answered using anzan. When you read out a sum to a pupil, for example, it can be answered in many different ways: using a calculator, pencil and paper, an abacus or anzan. Miyamoto wanted to show that there were some circumstances when anzan was the only possible method.

His solution was the computer game Flash Anzan, which he demonstrated for me. He told the class to get ready, pressed play and the pupils stared at a TV screen at the front of the room. The machine beeped three times to indicate it was about to start, and then the following 15 numbers appeared, one at a time. Each number appeared for only 0.2 seconds, so the whole thing was over in three seconds:


164

597

320

872

913

450

568

370

619

482

749

123

310

809

561



The numbers flashed by so quickly I barely had time to register them. Yet as soon as the last number flashed, Naoki Furuyama smiled and said the sum of the numbers was 7907.

It is impossible to solve a Flash Anzan challenge with a calculator or an abacus since there is no time to remember the digits being flashed at you, let alone type them into a machine or arrange beads. Anzan does not require you to remember the digits. All you do is shift the beads in your brain whenever you see a new number. You start with 0, then on seeing 164 instantly visualize the abacus on 164. On seeing 597 the internal abacus rearranges to the sum, which is 761. After 15 additions you cannot remember any of the flashed numbers nor the intermediate sums, but the imaginary abacus in your head will show the answer: 7907.

The wow factor of Flash Anzan has made it a national fad, and Nintendo has even released a Flash Anzan game for its DS consoles. Miyamoto showed me some clips from a Flash Anzan TV game show in which teenage anzan stars battled it out in front of screaming fans. Miyamoto says his game has helped recruit many new pupils to abacus clubs all over Japan. ‘People didn’t realize what you could do with soroban skills,’ he said. ‘With all this coverage, now they do.’

Neural imaging scans show that the parts of the brain activated by the abacus, or anzan, are different from the parts activated by normal arithmetical calculations and language. Traditional ‘pen and paper’ arithmetic depends on neural networks associated with linguistic processing. The soroban relies on networks associated with visuospatial information. Miyamoto simplifies this as ‘soroban uses the right brain, normal maths uses the left brain’. Not enough scientific research has been done to understand what benefits this segregation brings, or how it relates to general intelligence, concentration or other skills. Yet it does explain an astonishing phenomenon: that soroban experts are able to multitask in the most incredible way.

Miyamoto met his wife, a former national soroban champion, when they frequented the same abacus club as youngsters. Their daughter, Rikako, is a soroban prodigy. Pity her if she wasn’t. At age eight, she completed her top dan – a level that only one in 100,000 people ever achieve in their lifetimes. Rikako, who is now aged nine, was in class. She was wearing a pastel-blue top, and her fringe came down to her glasses. She looked very alert and pursed her lips as a sign of concentration.

Shiritori is a Japanese word game that starts with a person saying shiritori and each subsequent person must say a word that starts with the last syllable of the previous word. So, a possible second word would be ringo (apple), because it begins with ri. Miyamoto asked Rikako and the girl next to her to play shiritori with each other at the same time as playing a game of Flash Anzan in which 30 three-digit numbers were to be displayed in 20 seconds. The machine sounded its introductory pips and the girls’ dialogue went:



Ringo

Gorira (gorilla)

Rappa (trumpet)

Panda (panda bear)

Dachou (ostrich)

Ushi (cow)

Shika (deer)

Karasu (crow)

Suzume (sparrow)

Medaka (killifish)

Kame (turtle)

Medama yaki (fried egg)



At the end of the 20 seconds, Rikako said: 17,602. She had been able to add up the 30 numbers and play shiritori simultaneously.







End of sample
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