

[image: cover-image]

Enterprise Integration Patterns

Designing, Building, and Deploying Messaging Solutions

Gregor Hohpe
Bobby Woolf

With Contributions by
Kyle Brown
Conrad F. D’Cruz
Martin Fowler
Sean Neville
Michael J. Rettig
Jonathan Simon

[image: Image]
Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Hohpe, Gregor.
 Enterprise integration patterns : designing, building, and deploying messaging
 solutions / Gregor Hohpe, Bobby Woolf.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-20068-3
 1. Telecommunication—Message processing. 2. Management information
 systems. I. Woolf, Bobby. II. Title.

 TK5102.5.H5882 2003
 005.7’136—dc22
 2003017989

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN: 0-321-20068-3

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

Fifteenth printing, May 2011

List of Patterns

[image: Image]

Aggregator (268) How do we combine the results of individual but related messages so that they can be processed as a whole?

Canonical Data Model (355) How can you minimize dependencies when integrating applications that use different data formats?

[image: Image]

Channel Adapter (127) How can you connect an application to the messaging system so that it can send and receive messages?

[image: Image]

Channel Purger (572) How can you keep leftover messages on a channel from disturbing tests or running systems?

[image: Image]

Claim Check (346) How can we reduce the data volume of message sent across the system without sacrificing information content?

[image: Image]

Command Message (145) How can messaging be used to invoke a procedure in another application?

[image: Image]

Competing Consumers (502) How can a messaging client process multiple messages concurrently?

[image: Image]

Composed Message Processor (294) How can you maintain the overall message flow when processing a message consisting of multiple elements, each of which may require different processing?

[image: Image]

Content Enricher (336) How do we communicate with another system if the message originator does not have all the required data items available?

[image: Image]

Content Filter (342) How do you simplify dealing with a large message when you are interested only in a few data items?

[image: Image]

Content-Based Router (230) How do we handle a situation in which the implementation of a single logical function is spread across multiple physical systems?

[image: Image]

Control Bus (540) How can we effectively administer a messaging system that is distributed across multiple platforms and a wide geographic area?

[image: Image]

Correlation Identifier (163) How does a requestor that has received a reply know which request this is the reply for?

[image: Image]

Datatype Channel (111) How can the application send a data item such that the receiver will know how to process it?

[image: Image]

Dead Letter Channel (119) What will the messaging system do with a message it cannot deliver?

[image: Image]

Detour (545) How can you route a message through intermediate steps to perform validation, testing, or debugging functions?

[image: Image]

Document Message (147) How can messaging be used to transfer data between applications?

[image: Image]

Durable Subscriber (522) How can a subscriber avoid missing messages while it’s not listening for them?

[image: Image]

Dynamic Router (243) How can you avoid the dependency of the router on all possible destinations while maintaining its efficiency?

[image: Image]

Envelope Wrapper (330) How can existing systems participate in a messaging exchange that places specific requirements, such as message header fields or encryption, on the message format?

[image: Image]

Event Message (151) How can messaging be used to transmit events from one application to another?

[image: Image]

Event-Driven Consumer (498) How can an application automatically consume messages as they become available?

[image: Image]

File Transfer (43) How can I integrate multiple applications so that they work together and can exchange information?

Format Indicator (180) How can a message’s data format be designed to allow for possible future changes?

[image: Image]

Guaranteed Delivery (122) How can the sender make sure that a message will be delivered even if the messaging system fails?

Idempotent Receiver (528) How can a message receiver deal with duplicate messages?

[image: Image]

Invalid Message Channel (115) How can a messaging receiver gracefully handle receiving a message that makes no sense?

[image: Image]

Message Broker (322) How can you decouple the destination of a message from the sender and maintain central control over the flow of messages?

[image: Image]

Message Bus (137) What architecture enables separate applications to work together but in a decoupled fashion such that applications can be easily added or removed without affecting the others?

[image: Image]

Message Channel (60) How does one application communicate with another using messaging?

[image: Image]

Message Dispatcher (508) How can multiple consumers on a single channel coordinate their message processing?

[image: Image]

Message Endpoint (95) How does an application connect to a messaging channel to send and receive Messages?

[image: Image]

Message Expiration (176) How can a sender indicate when a message should be considered stale and thus shouldn’t be processed?

[image: Image]

Message Filter (237) How can a component avoid receiving uninteresting messages?

Message History (551) How can we effectively analyze and debug the flow of messages in a loosely coupled system?

[image: Image]

Message Router (78) How can you decouple individual processing steps so that messages can be passed to different filters depending on a set of conditions?

[image: Image]

Message Sequence (170) How can messaging transmit an arbitrarily large amount of data?

[image: Image]

Message Store (555) How can we report against message information without disturbing the loosely coupled and transient nature of a messaging system?

[image: Image]

Message Translator (85) How can systems using different data formats communicate with each other using messaging?

[image: Image]

Message (66) How can two applications connected by a message channel exchange a piece of information?

[image: Image]

Messaging Bridge (133) How can multiple messaging systems be connected so that messages available on one are also available on the others?

[image: Image]

Messaging Gateway (468) How do you encapsulate access to the messaging system from the rest of the application?

Messaging Mapper (477) How do you move data between domain objects and the messaging infrastructure while keeping the two independent of each other?

[image: Image]

Messaging (53) How can I integrate multiple applications so that they work together and can exchange information?

[image: Image]

Normalizer (352) How do you process messages that are semantically equivalent but arrive in a different format?

[image: Image]

Pipes and Filters (70) How can we perform complex processing on a message while maintaining independence and flexibility?

[image: Image]

Point-to-Point Channel (103) How can the caller be sure that exactly one receiver will receive the document or perform the call?

[image: Image]

Polling Consumer (494) How can an application consume a message when the application is ready?

[image: Image]

Process Manager (312) How do we route a message through multiple processing steps when the required steps may not be known at design time and may not be sequential?

[image: Image]

Publish-Subscribe Channel (106) How can the sender broadcast an event to all interested receivers?

[image: Image]

Recipient List (249) How do we route a message to a dynamic list of recipients?

[image: Image]

Remote Procedure Invocation (50) How can I integrate multiple applications so that they work together and can exchange information?

[image: Image]

Request-Reply (154) When an application sends a message, how can it get a response from the receiver?

[image: Image]

Resequencer (283) How can we get a stream of related but out-of-sequence messages back into the correct order?

[image: Image]

Return Address (159) How does a replier know where to send the reply?

[image: Image]

Routing Slip (301) How do we route a message consecutively through a series of processing steps when the sequence of steps is not known at design time and may vary for each message?

Scatter-Gather (297) How do you maintain the overall message flow when a message must be sent to multiple recipients, each of which may send a reply?

[image: Image]

Selective Consumer (515) How can a message consumer select which messages it wishes to receive?

[image: Image]

Service Activator (532) How can an application design a service to be invoked both via various messaging technologies and via non-messaging techniques?

[image: Image]

Shared Database (47) How can I integrate multiple applications so that they work together and can exchange information?

[image: Image]

Smart Proxy (558) How can you track messages on a service that publishes reply messages to the Return Address specified by the requestor?

[image: Image]

Splitter (259) How can we process a message if it contains multiple elements, each of which may have to be processed in a different way?

[image: Image]

Test Message (569) What happens if a component is actively processing messages but garbles outgoing messages due to an internal fault?

[image: Image]

Transactional Client (484) How can a client control its transactions with the messaging system?

[image: Image]

Wire Tap (547) How do you inspect messages that travel on a Point-to-Point Channel?

To my family and all my friends who still remember me
after I emerged from book “crunch mode”
—Gregor

To Sharon, my new wife
—Bobby

Contents

Foreword by John Crupi

Foreword by Martin Fowler

Preface

Acknowledgments

Introduction

Chapter 1: Solving Integration Problems Using Patterns

The Need for Integration

Integration Challenges

How Integration Patterns Can Help

The Wide World of Integration

Loose Coupling

One-Minute EAI

A Loosely Coupled Integration Solution

Widgets & Gadgets ‘R Us: An Example

Internal Systems

Taking Orders

Processing Orders

Checking Status

Change Address

New Catalog

Announcements

Testing and Monitoring

Summary

Chapter 2: Integration Styles

Introduction

File Transfer (by Martin Fowler)

Shared Database (by Martin Fowler)

Remote Procedure Invocation (by Martin Fowler)

Messaging

Chapter 3: Messaging Systems

Introduction

Message Channel

Message

Pipes and Filters

Message Router

Message Translator

Message Endpoint

Chapter 4: Messaging Channels

Introduction

Point-to-Point Channel

Publish-Subscribe Channel

Datatype Channel

Invalid Message Channel

Dead Letter Channel

Guaranteed Delivery

Channel Adapter

Messaging Bridge

Message Bus

Chapter 5: Message Construction

Introduction

Command Message

Document Message

Event Message

Request-Reply

Return Address

Correlation Identifier

Message Sequence

Message Expiration

Format Indicator

Chapter 6: Interlude: Simple Messaging

Introduction

Request-Reply Example

Publish-Subscribe Example

JMS Request-Reply Example

Request-Reply Example

Request-Reply Code

Invalid Message Example

Conclusions

.NET Request-Reply Example

Request-Reply Example

Request-Reply Code

Invalid Message Example

Conclusions

JMS Publish-Subscribe Example

The Observer Pattern

Distributed Observer

Publish-Subscribe

Comparisons

Push and Pull Models

Channel Design

Conclusions

Chapter 7: Message Routing

Introduction

Content-Based Router

Message Filter

Dynamic Router

Recipient List

Splitter

Aggregator

Resequencer

Composed Message Processor

Scatter-Gather

Routing Slip

Process Manager

Message Broker

Chapter 8: Message Transformation

Introduction

Envelope Wrapper

Content Enricher

Content Filter

Claim Check

Normalizer

Canonical Data Model

Chapter 9: Interlude: Composed Messaging

Loan Broker Example

Obtaining a Loan Quote

Designing the Message Flow

Sequencing: Synchronous versus Asynchronous

Addressing: Distribution versus Auction

Aggregating Strategies: Multiple Channels versus Single Channel

Managing Concurrency

Three Implementations

Synchronous Implementation Using Web Services (by Conrad F. D‘Cruz)

Solution Architecture

Web Services Design Considerations

Apache Axis

Service Discovery

The Loan Broker Application

Components of the Loan Broker Application

Client Application

Running the Solution

Performance Limitations

Limitations of This Example

Summary

Asynchronous Implementation with MSMQ

Loan Broker Ecosystem

Laying the Groundwork: A Messaging Gateway

Base Classes for Common Functionality

Designing the Bank

Designing the Credit Bureau

Designing the Loan Broker

Refactoring the Loan Broker

Putting it All Together

Improving Performance

A Few Words on Testing

Limitations of This Example

Summary

Asynchronous Implementation with TIBCO ActiveEnterprise (by Michael J. Rettig)

Solution Architecture

The Implementation Toolset

The Interfaces

Implementing the Synchronous Services

The Loan Broker Process

Managing Concurrent Auctions

Execution

Conclusions

Chapter 10: Messaging Endpoints

Introduction

Messaging Gateway

Messaging Mapper

Transactional Client

Polling Consumer

Event-Driven Consumer

Competing Consumers

Message Dispatcher

Selective Consumer

Durable Subscriber

Idempotent Receiver

Service Activator

Chapter 11: System Management

Introduction

Control Bus

Detour

Wire Tap

Message History

Message Store

Smart Proxy

Test Message

Channel Purger

Chapter 12: Interlude: System Management Example

Loan Broker System Management

Instrumenting the Loan Broker

Management Console

Loan Broker Quality of Service

Verify the Credit Bureau Operation

Credit Bureau Failover

Enhancing the Management Console

Limitations of This Example

Chapter 13: Integration Patterns in Practice

Case Study: Bond Pricing System (by Jonathan Simon)

Building a System

Architecture with Patterns

Structuring Channels

Selecting a Message Channel

Problem Solving with Patterns

Flashing Market Data Updates

Major Production Crash

Summary

Chapter 14: Concluding Remarks

Emerging Standards and Futures in Enterprise Integration (by Sean Neville)

The Relationship between Standards and Design Patterns

Survey of Standards Processes and Organizations

Business Process Components and Intra-Web Service Messaging

ebXML and the Electronic Business Messaging Service (ebMS)

Business Process Execution Language for Web Services (BEPL4WS)

Web Service Choreography Interface (WSCI)

Java Business Process Component Standards

WS-*

Conclusions

Bibliography

Index

Foreword

by John Crupi

What do you do when a new technology arrives? You learn the technology. This is exactly what I did. I studied J2EE (being from Sun Microsystems, it seemed to be the logical choice). Specifically, I focused on the EJB technology by reading the specifications (since there were no books yet). Learning the technology, however, is just the first step—the real goal is to learn how to effectively apply the technology. The nice thing about platform technologies is that they constrain you to performing certain tasks. But, as far as the technology is concerned, you can do whatever you want and quite often get into trouble if you don’t do things appropriately.

One thing I’ve seen in the past 15 years is that there seem to be two areas that software developers obsess over: programming and designing—or more specifically, programming and designing effectively. There are great books out there that tell you the most efficient way to program certain things in Java and C#, but far fewer tell you how to design effectively. That’s where this book comes in. When Deepak Alur, Dan Malks, and I wrote Core J2EE Patterns, we wanted to help J2EE developers “design” better code. The best decision we made was to use patterns as the artifact of choice. As James Baty, a Sun Distinguished Engineer, puts it, “Patterns seem to be the sweet spot of design.” I couldn’t agree more, and luckily for us, Gregor and Bobby feel the same way.

This book focuses on a hot and growing topic: integration using messaging. Not only is messaging key to integration, but it will most likely be the predominant focus in Web services for years to come. There is so much noise today in the Web services world, it’s a delicate and complex endeavor just to identify the specifications and technologies to focus on. The goal remains the same, however—software helps you solve a problem. Just as in the early days of J2EE and .NET, there is not a lot of design help out there yet for Web services. Many people say Web services is just a new and open way to solve our existing integration problems—and I agree. But, that doesn’t mean we know how to design Web services. And that brings us to the gem of this book. I believe this book has many of the patterns we need to design Web services and other integration systems. Because the Web service specifications are still battling it out, it wouldn’t have made sense for Bobby and Gregor to provide examples of many of the Web service specifications. But, that’s okay. The real payoff will result when the specifications become standards and we use the patterns in this book to design for those solutions that are realized by these standards. Then maybe we can realize our next integration goal of designing for service-oriented architectures.

Read this book and keep it by your side. It will enhance your software career to no end.

John Crupi
Bethesda, MD
August 2003

Foreword

by Martin Fowler

While I was working on my book Patterns of Enterprise Application Architecture, I was lucky to get some in-depth review from Kyle Brown and Rachel Reinitz at some informal workshops at Kyle’s office in Raleigh-Durham. During these sessions, we realized that a big gap in my work was asynchronous messaging systems.

There are many gaps in my book, and I never intended it to be a complete collection of patterns for enterprise development. But the gap on asynchronous messaging is particularly important because we believe that asynchronous messaging will play an increasingly important role in enterprise software development, particularly in integration. Integration is important because applications cannot live isolated from each other. We need techniques that allow us to take applications that were never designed to interoperate and break down the stovepipes so we can gain a greater benefit than the individual applications can offer us.

Various technologies have been around that promise to solve the integration puzzle. We all concluded that messaging is the technology that carries the greatest promise. The challenge we faced was to convey how to do messaging effectively. The biggest challenge in this is that messages are by their nature asynchronous, and there are significant differences in the design approaches that you use in an asynchronous world.

I didn’t have space, energy, or frankly the knowledge to cover this topic properly in Patterns of Enterprise Application Architecture. But we came up with a better solution to this gap: find someone else who could. We hunted down Gregor and Bobby, and they took up the challenge. The result is the book you’re about to read.

I’m delighted with the job that they have done. If you’ve already worked with messaging systems, this book will systematize much of the knowledge that you and others have already learned the hard way. If you are about to work with messaging systems, this book will provide a foundation that will be invaluable no matter which messaging technology you have to work with.

Martin Fowler
Melrose, MA
August 2003

Preface

This is a book about enterprise integration using messaging. It does not document any particular technology or product. Rather, it is designed for developers and integrators using a variety of messaging products and technologies, such as

• Message-oriented middleware (MOM) and EAI suites offered by vendors such as IBM (WebSphere MQ Family), Microsoft (BizTalk), TIBCO, WebMethods, SeeBeyond, Vitria, and others.

• Java Message Service (JMS) implementations incorporated into commercial and open source J2EE application servers as well as standalone products.

• Microsoft’s Message Queuing (MSMQ), accessible through several APIs, including the System.Messaging libraries in Microsoft .NET.

• Emerging Web services standards that support asynchronous Web services (for example, WS-ReliableMessaging) and the associated APIs such as Sun Microsystems’ Java API for XML Messaging (JAXM) or Microsoft’s Web Services Extensions (WSE).

Enterprise integration goes beyond creating a single application with a distributed n-tier architecture, which enables a single application to be distributed across several computers. Whereas one tier in a distributed application cannot run by itself, integrated applications are independent programs that can each run by themselves, yet that function by coordinating with each other in a loosely coupled way. Messaging enables multiple applications to exchange data or commands across the network using a “send and forget” approach. This allows the caller to send the information and immediately go on to other work while the information is transmitted by the messaging system. Optionally, the caller can later be notified of the result through a callback. Asynchronous calls and callbacks can make a design more complex than a synchronous approach, but an asynchronous call can be retried until it succeeds, which makes the communication much more reliable. Asynchronous messaging also enables several other advantages, such as throttling of requests and load balancing.

Who Should Read This Book

This book is designed to help application developers and system integrators connect applications using message-oriented integration tools:

• Application architects and developers who design and build complex enterprise applications that need to integrate with other applications. We assume that you’re developing your applications using a modern enterprise application platform such as the Java 2 Platform, Enterprise Edition (J2EE), or the Microsoft .NET Framework. This book will help you connect the application to a messaging layer and exchange information with other applications. This book focuses on the integration of applications, not on building applications; for that, we refer you to Patterns of Enterprise Application Architecture by Martin Fowler.

• Integration architects and developers who design and build integration solutions connecting packaged or custom applications. Most readers in this group will have experience with one of the many commercial integration tools like IBM WebSphere MQ, TIBCO, WebMethods, SeeBeyond, or Vitria, which incorporate many of the patterns presented in this book. This book helps you understand the underlying concepts and make confident design decisions using a vendor-independent vocabulary.

• Enterprise architects who have to maintain the “big picture” view of the software and hardware assets in an enterprise. This book presents a consistent vocabulary and graphical notation to describe large-scale integration solutions that may span many technologies or point solutions. This language is also a key enabler for efficient communication between the enterprise architect and the integration and application architects and developers.

What You Will Learn

This book does not attempt to make a business case for enterprise application integration; the focus is on how to make it work. You will learn how to integrate enterprise applications by understanding the following:

• The advantages and limitations of asynchronous messaging as compared to other integration techniques.

• How to determine the message channels your applications will need, how to control whether multiple consumers can receive the same message, and how to handle invalid messages.

• When to send a message, what it should contain, and how to use special message properties.

• How to route a message to its ultimate destination even when the sender does not know where that is.

• How to convert messages when the sender and receiver do not agree on a common format.

• How to design the code that connects an application to the messaging system.

• How to manage and monitor a messaging system once it’s in use as part of the enterprise.

What This Book Does Not Cover

We believe that any book sporting the word “enterprise” in the title is likely to fall into one of three categories. First, the book might attempt to cover the whole breadth of the subject matter but is forced to stop short of detailed guidance on how to implement actual solutions. Second, the book might provide specific hands-on guidance on the development of actual solutions but is forced to constrain the scope of the subject area it addresses. Third, the book might attempt to do both but is likely never to be finished or else to be published so late as to be irrelevant. We opted for the second choice and hopefully created a book that helps people create better integration solutions even though we had to limit the scope of the book. Topics that we would have loved to discuss but had to exclude in order not to fall into the category-three trap include security, complex data mapping, workflow, rule engines, scalability and robustness, and distributed transaction processing (XA, Tuxedo, and the like). We chose asynchronous messaging as the emphasis for this book because it is full of interesting design issues and trade-offs, and provides a clean abstraction from the many implementations provided by various integration vendors.

This book is also not a tutorial on a specific messaging or middleware technology. To highlight the wide applicability of the concepts presented in this book, we included examples based on a number of different technologies, such as JMS, MSMQ, TIBCO, BizTalk, and XSL. However, we focus on the design decisions and trade-offs as opposed to the specifics of the tool. If you are interested in learning more about any of these specific technologies, please refer to one of the books referenced in the bibliography or to one of the many online resources.

How This Book Is Organized

As the title suggests, the majority of this book consists of a collection of patterns. Patterns are a proven way to capture experts’ knowledge in fields where there are no simple “one size fits all” answers, such as application architecture, object-oriented design, or integration solutions based on asynchronous messaging architectures.

Each pattern poses a specific design problem, discusses the considerations surrounding the problem, and presents an elegant solution that balances the various forces or drivers. In most cases, the solution is not the first approach that comes to mind, but one that has evolved through actual use over time. As a result, each pattern incorporates the experience base that senior integration developers and architects have gained by repeatedly building solutions and learning from their mistakes. This implies that we did not “invent” the patterns in this book; patterns are not invented, but rather discovered and observed from actual practice in the field.

Because patterns are harvested from practitioners’ actual use, chances are that if you have been working with enterprise integration tools and asynchronous messaging architectures for some time, many of the patterns in this book will seem familiar to you. Yet, even if you already recognize most of these patterns, there is still value in reviewing this book. This book should validate your hard-earned understanding of how to use messaging while documenting details of the solutions and relationships between them of which you might not have been aware. It also gives you a consolidated reference to help you pass your knowledge effectively to less-experienced colleagues. Finally, the pattern names give you a common vocabulary to efficiently discuss integration design alternatives with your peers.

The patterns in this book apply to a variety of programming languages and platforms. This means that a pattern is not a cut-and-paste snippet of code, but you have to realize a pattern to your specific environment. To make this translation easier, we added a variety of examples that show different ways of implementing patterns using popular technologies such as JMS, MSMQ, TIBCO, BizTalk, XSL, and others. We also included a few larger examples to demonstrate how multiple patterns play together to form a cohesive solution.

Integrating multiple applications using an asynchronous messaging architecture is a challenging and interesting field. We hope you enjoy reading this book as much as we did writing it.

About the Cover Picture

The common theme for books in the Martin Fowler Signature Series is a picture of a bridge. In some sense we lucked out, because what theme would make a better match for a book on integration? For thousands of years, bridges have helped connect people from different shores, mountains, and sides of the road.

We selected a picture of the Taiko-bashi Bridge at the Sumiyoshi-taisha Shrine in Osaka, Japan, for its simple elegance and beauty. As a Shinto shrine dedicated to the guardian deity for sailors, it was originally erected next to the water. Interestingly, land reclamation has pushed the water away so that the shrine today stands almost three miles inland. Some three million people visit this shrine at the beginning of a new year.

Gregor Hohpe
San Francisco, California

Bobby Woolf
Raleigh, North Carolina

September 2003
www.enterpriseintegrationpatterns.com

[image: Image]

The Pioneer Plaque by Dr. Carl Sagan
A message to extraterrestrial life forms.

Acknowledgments

Like most books, Enterprise Integration Patterns has been a long time in the making. The idea of writing about message-based integration patterns dates back to the summer of 2001 when Martin Fowler was working on Patterns of Enterprise Application Architecture (P of EAA). At that time, it struck Kyle Brown that while P of EAA talked a lot about how to create applications, it touches only briefly on how to integrate them. This idea was the starting point for a series of meetings between Martin and Kyle that also included Rachel Reinitz, John Crupi, and Mark Weitzel. Bobby joined these discussions in the fall of 2001, followed by Gregor in early 2002. The following summer the group submitted two papers for review at the Pattern Languages of Programs (PLoP) conference, one authored jointly by Bobby and Kyle and the other by Gregor. After the conference, Kyle and Martin refocused on their own book projects while Gregor and Bobby merged their papers to form the basis for the book. At the same time, the www.enterpriseintegrationpatterns.com site went live to allow integration architects and developers around the world to participate in the rapid evolution of the content. As they worked on the book, Gregor and Bobby invited contributors to participate in the creation of the book. About two years after Kyle’s original idea, the final manuscript arrived at the publisher.

This book is the result of a community effort involving a great number of people. Many colleagues and friends (many of whom we met through the book effort) provided ideas for examples, ensured the correctness of the technical content, and gave us much needed feedback and criticism. Their input has greatly influenced the final form and content of the book. It is a pleasure for us to acknowledge their contributions and express our appreciation for their efforts.

Kyle Brown and Martin Fowler deserve special mention for laying the foundation for this book. This book might have never been written were it not for Martin’s writing P of EAA and Kyle’s forming a group to discuss messaging patterns to complement Martin’s book.

We were fortunate to have several contributors who authored significant portions of the book: Conrad F. D’Cruz, Sean Neville, Michael J. Rettig, and Jonathan Simon. Their chapters round out the book with additional perspectives on how the patterns work in practice.

Our writers’ workshop participants at the PLoP 2002 conference were the first people to provide substantial feedback on the material, helping to get us going in the right direction: Ali Arsanjani, Kyle Brown, John Crupi, Eric Evans, Martin Fowler, Brian Marick, Toby Sarver, Jonathan Simon, Bill Trudell, and Marek Vokac.

We would like to thank our team of reviewers who took the time to read through the draft material and provided us with invaluable feedback and suggestions:

Richard Helm

Luke Hohmann

Dragos Manolescu

David Rice

Russ Rufer and the Silicon Valley Patterns Group

Matthew Short

Special thanks go to Russ for workshopping the book draft in the Silicon Valley Patterns Group. We would like to thank the following members for their efforts: Robert Benson, Tracy Bialik, Jeffrey Blake, Azad Bolour, John Brewer, Bob Evans, Andy Farlie, Jeff Glaza, Phil Goodwin, Alan Harriman, Ken Hejmanowski, Deborah Kaddah, Rituraj Kirti, Jan Looney, Chris Lopez, Jerry Louis, Tao-hung Ma, Jeff Miller, Stilian Pandev, John Parello, Hema Pillay, Russ Rufer, Rich Smith, Carol Thistlethwaite, Debbie Utley, Walter Vannini, David Vydra, and Ted Young.

Our public e-mail discussion list allowed people who discovered the material on www.enterpriseintegrationpatterns.com to chime in and share their thoughts and ideas. Special honors go to Bill Trudell as the most active contributor to the mailing list. Other active posters included Venkateshwar Bommineni, Duncan Cragg, John Crupi, Fokko Degenaar, Shailesh Gosavi, Christian Hall, Ralph Johnson, Paul Julius, Orjan Lundberg, Dragos Manolescu, Rob Mee, Srikanth Narasimhan, Sean Neville, Rob Patton, Kirk Pepperdine, Matthew Pryor, Somik Raha, Michael Rettig, Frank Sauer, Jonathan Simon, Federico Spinazzi, Randy Stafford, Marek Vokac, Joe Walnes, and Mark Weitzel.

We thank Martin Fowler for hosting us in his signature series. Martin’s endorsement gave us confidence and the energy required to complete this work.

We thank John Crupi for writing the foreword for our book. He has observed the book’s formation from the beginning and has been a patient guide all along without ever losing his sense of humor.

Finally, we owe a great deal to the editing and production team at Addison-Wesley, led by our chief editor, Mike Hendrickson, and including our production coordinator, Amy Fleischer; our project manager, Kim Arney Mulcahy; our copyeditor, Carol J. Lallier; our proofreader, Rebecca Rider; our indexer, Sharon Hilgenberg; as well as Jacquelyn Doucette, John Fuller, and Bernard Gaffney.

We’ve likely missed some names and not given everyone the credit they deserve, and we apologize. But to everyone listed and not listed who helped make this book better, thank you for all your help. We hope you can be as proud of this book as we are.

Introduction

Interesting applications rarely live in isolation. Whether your sales application must interface with your inventory application, your procurement application must connect to an auction site, or your PDA’s calendar must synchronize with the corporate calendar server, it seems that any application can be made better by integrating it with other applications.

All integration solutions have to deal with a few fundamental challenges:

• Networks are unreliable. Integration solutions have to transport data from one computer to another across networks. Compared to a process running on a single computer, distributed computing has to be prepared to deal with a much larger set of possible problems. Often, two systems to be integrated are separated by continents, and data between them has to travel through phone lines, LAN segments, routers, switches, public networks, and satellite links. Each step can cause delays or interruptions.

• Networks are slow. Sending data across a network is multiple orders of magnitude slower than making a local method call. Designing a widely distributed solution the same way you would approach a single application could have disastrous performance implications.

• Any two applications are different. Integration solutions need to transmit information between systems that use different programming languages, operating platforms, and data formats. An integration solution must be able to interface with all these different technologies.

• Change is inevitable. Applications change over time. An integration solution has to keep pace with changes in the applications it connects. Integration solutions can easily get caught in an avalanche effect of changes—if one system changes, all other systems may be affected. An integration solution needs to minimize the dependencies from one system to another by using loose coupling between applications.

Over time, developers have overcome these challenges with four main approaches:

1. File Transfer (43)—One application writes a file that another later reads. The applications need to agree on the filename and location, the format of the file, the timing of when it will be written and read, and who will delete the file.

2. Shared Database (47)—Multiple applications share the same database schema, located in a single physical database. Because there is no duplicate data storage, no data has to be transferred from one application to the other.

3. Remote Procedure Invocation (50)—One application exposes some of its functionality so that it can be accessed remotely by other applications as a remote procedure. The communication occurs in real time and synchronously.

4. Messaging (53)—One application publishes a message to a common message channel. Other applications can read the message from the channel at a later time. The applications must agree on a channel as well as on the format of the message. The communication is asynchronous.

While all four approaches solve essentially the same problem, each style has its distinct advantages and disadvantages. In fact, applications may integrate using multiple styles such that each point of integration takes advantage of the style that suits it best.

What Is Messaging?

This book is about how to use messaging to integrate applications. A simple way to understand what messaging does is to consider the telephone system. A telephone call is a synchronous form of communication. I can communicate with the other party only if the other party is available at the time I place the call. Voice mail, on the other hand, allows asynchronous communication. With voice mail, when the receiver does not answer, the caller can leave him a message; later, the receiver (at his convenience) can listen to the messages queued in his mailbox. Voice mail enables the caller to leave a message now so that the receiver can listen to it later, which is much easier than trying to get the caller and the receiver on the phone at the same time. Voice mail bundles (at least part of) a phone call into a message and queues it for later consumption; this is essentially how messaging works.

Messaging is a technology that enables high-speed, asynchronous, program-to-program communication with reliable delivery. Programs communicate by sending packets of data called messages to each other. Channels, also known as queues, are logical pathways that connect the programs and convey messages. A channel behaves like a collection or array of messages, but one that is magically shared across multiple computers and can be used concurrently by multiple applications. A sender or producer is a program that sends a message by writing the message to a channel. A receiver or consumer is a program that receives a message by reading (and deleting) it from a channel.

The message itself is simply some sort of data structure—such as a string, a byte array, a record, or an object. It can be interpreted simply as data, as the description of a command to be invoked on the receiver, or as the description of an event that occurred in the sender. A message actually contains two parts, a header and a body. The header contains meta-information about the message—who sent it, where it’s going, and so on; this information is used by the messaging system and is mostly ignored by the applications using the messages. The body contains the application data being transmitted and is usually ignored by the messaging system. In conversation, when an application developer who is using messaging talks about a message, she’s usually referring to the data in the body of the message.

Asynchronous messaging architectures are powerful but require us to rethink our development approach. As compared to the other three integration approaches, relatively few developers have had exposure to messaging and message systems. As a result, application developers in general are not as familiar with the idioms and peculiarities of this communications platform.

What Is a Messaging System?

Messaging capabilities are typically provided by a separate software system called a messaging system or message-oriented middleware (MOM). A messaging system manages messaging the way a database system manages data persistence. Just as an administrator must populate the database with the schema for an application’s data, an administrator must configure the messaging system with the channels that define the paths of communication between the applications. The messaging system then coordinates and manages the sending and receiving of messages. The primary purpose of a database system is to make sure each data record is safely persisted, and likewise the main task of a messaging system is to move messages from the sender’s computer to the receiver’s computer in a reliable fashion.

A messaging system is needed to move messages from one computer to another because computers and the networks that connect them are inherently unreliable. Just because one application is ready to send data does not mean that the other application is ready to receive it. Even if both applications are ready, the network may not be working or may fail to transmit the data properly. A messaging system overcomes these limitations by repeatedly trying to transmit the message until it succeeds. Under ideal circumstances, the message is transmitted successfully on the first try, but circumstances are often not ideal.

In essence, a message is transmitted in five steps:

1. Create—The sender creates the message and populates it with data.

2. Send—The sender adds the message to a channel.

3. Deliver—The messaging system moves the message from the sender’s computer to the receiver’s computer, making it available to the receiver.

4. Receive—The receiver reads the message from the channel.

5. Process—The receiver extracts the data from the message.

The following figure illustrates these five transmission steps, which computer performs each, and which steps involve the messaging system:

[image: Image]

Message Transmission Step-by-Step

This figure also illustrates two important messaging concepts:

1. Send and forget—In step 2, the sending application sends the message to the message channel. Once that send is complete, the sender can go on to other work while the messaging system transmits the message in the background. The sender can be confident that the receiver will eventually receive the message and does not have to wait until that happens.

2. Store and forward—In step 2, when the sending application sends the message to the message channel, the messaging system stores the message on the sender’s computer, either in memory or on disk. In step 3, the messaging system delivers the message by forwarding it from the sender’s computer to the receiver’s computer, and then stores the message once again on the receiver’s computer. This store-and-forward process may be repeated many times as the message is moved from one computer to another until it reaches the receiver’s computer.

The create, send, receive, and process steps may seem like unnecessary overhead. Why not simply deliver the data to the receiver? By wrapping the data as a message and storing it in the messaging system, the applications delegate to the messaging system the responsibility of delivering the data. Because the data is wrapped as an atomic message, delivery can be retried until it succeeds, and the receiver can be assured of reliably receiving exactly one copy of the data.

Why Use Messaging?

Now that we know what messaging is, we should ask, Why use messaging? As with any sophisticated solution, there is no one simple answer. The quick answer is that messaging is more immediate than File Transfer (43), better encapsulated than Shared Database (47), and more reliable than Remote Procedure Invocation (50). However, that’s just the beginning of the advantages that can be gained using messaging.

Specific benefits of messaging include:

• Remote Communication. Messaging enables separate applications to communicate and transfer data. Two objects that reside in the same process can simply share the same data in memory. Sending data to another computer is a lot more complicated and requires data to be copied from one computer to another. This means that objects have to be “serializable”—that is, they can be converted into a simple byte stream that can be sent across the network. Messaging takes care of this conversion so that the applications do not have to worry about it.

• Platform/Language Integration. When connecting multiple computer systems via remote communication, these systems likely use different languages, technologies, and platforms, perhaps because they were developed over time by independent teams. Integrating such divergent applications can require a neutral zone of middleware to negotiate between the applications, often using the lowest common denominator—such as flat data files with obscure formats. In these circumstances, a messaging system can be a universal translator between the applications that works with each one’s language and platform on its own terms yet allows them to all to communicate through a common messaging paradigm. This universal connectivity is the heart of the Message Bus (137) pattern.

• Asynchronous Communication. Messaging enables a send-and-forget approach to communication. The sender does not have to wait for the receiver to receive and process the message; it does not even have to wait for the messaging system to deliver the message. The sender only needs to wait for the message to be sent, that is, for the message to be successfully stored in the channel by the messaging system. Once the message is stored, the sender is free to perform other work while the message is transmitted in the background.

• Variable Timing. With synchronous communication, the caller must wait for the receiver to finish processing the call before the caller can receive the result and continue. In this way, the caller can make calls only as fast as the receiver can perform them. Asynchronous communication allows the sender to submit requests to the receiver at its own pace and the receiver to consume the requests at its own different pace. This allows both applications to run at maximum throughput and not waste time waiting on each other (at least until the receiver runs out of messages to process).

• Throttling. A problem with remote procedure calls (RPCs) is that too many of them on a single receiver at the same time can overload the receiver. This can cause performance degradation and even cause the receiver to crash. Because the messaging system queues up requests until the receiver is ready to process them, the receiver can control the rate at which it consumes requests so as not to become overloaded by too many simultaneous requests. The callers are unaffected by this throttling because the communication is asynchronous, so the callers are not blocked waiting on the receiver.

• Reliable Communication. Messaging provides reliable delivery that an RPC cannot. The reason messaging is more reliable than RPC is that messaging uses a store-and-forward approach to transmitting messages. The data is packaged as messages, which are atomic, independent units. When the sender sends a message, the messaging system stores the message. It then delivers the message by forwarding it to the receiver’s computer, where it is stored again. Storing the message on the sender’s computer and the receiver’s computer is assumed to be reliable. (To make it even more reliable, the messages can be stored to disk instead of memory; see Guaranteed Delivery [122].) What is unreliable is forwarding (moving) the message from the sender’s computer to the receiver’s computer, because the receiver or the network may not be running properly. The messaging system overcomes this by resending the message until it succeeds. This automatic retry enables the messaging system to overcome problems with the network so that the sender and receiver don’t have to worry about these details.

• Disconnected Operation. Some applications are specifically designed to run disconnected from the network, yet to synchronize with servers when a network connection is available. Such applications are deployed on platforms like laptop computers and PDAs. Messaging is ideal for enabling these applications to synchronize—data to be synchronized can be queued as it is created, waiting until the application reconnects to the network.

• Mediation. The messaging system acts as a mediator—as in the Mediator pattern [GoF]—between all of the programs that can send and receive messages. An application can use it as a directory of other applications or services available to integrate with. If an application becomes disconnected from the others, it need only reconnect to the messaging system, not to all of the other messaging applications. The messaging system can employ redundant resources to provide high availability, balance load, reroute around failed network connections, and tune performance and quality of service.

• Thread Management. Asynchronous communication means that one application does not have to block while waiting for another application to perform a task, unless it wants to. Rather than blocking to wait for a reply, the caller can use a callback that will alert the caller when the reply arrives. (See the Request-Reply [154] pattern.) A large number of blocked threads or threads blocked for a long time can leave the application with too few available threads to perform real work. Also, if an application with a dynamic number of blocked threads crashes, reestablishing those threads will be difficult when the application restarts and recovers its former state. With callbacks, the only threads that block are a small, known number of listeners waiting for replies. This leaves most threads available for other work and defines a known number of listener threads that can easily be reestablished after a crash.

So, there are a number of different reasons an application or enterprise may benefit from messaging. Some of these are technical details that application developers relate most readily to, whereas others are strategic decisions that resonate best with enterprise architects. Which of these reasons is most important depends on the current requirements of your particular applications. They’re all good reasons to use messaging, so take advantage of whichever reasons provide the most benefit to you.

Challenges of Asynchronous Messaging

Asynchronous messaging is not the panacea of integration. It resolves many of the challenges of integrating disparate systems in an elegant way, but it also introduces new challenges. Some of these challenges are inherent in the asynchronous model, while other challenges vary with the specific implementation of a messaging system.

• Complex programming model. Asynchronous messaging requires developers to work with an event-driven programming model. Application logic can no longer be coded in a single method that invokes other methods, but instead the logic is now split up into a number of event handlers that respond to incoming messages. Such a system is more complex and harder to develop and debug. For example, the equivalent of a simple method call can require a request message and a request channel, a reply message and a reply channel, a correlation identifier and an invalid message queue (as described in Request-Reply [154]).

• Sequence issues. Message channels guarantee message delivery, but they do not guarantee when the message will be delivered. This can cause messages that are sent in sequence to get out of sequence. In situations where messages depend on each other, special care has to be taken to reestablish the message sequence (see Resequencer [283]).

• Synchronous scenarios. Not all applications can operate in a send-and-forget mode. If a user is looking for airline tickets, he or she is going to want to see the ticket price right away, not after some undetermined time. Therefore, many messaging systems need to bridge the gap between synchronous and asynchronous solutions.

• Performance. Messaging systems do add some overhead to communication. It takes effort to package application data into a message and send it, and to receive a message and process it. If you have to transport a huge chunk of data, dividing it into a gazillion small pieces may not be a smart idea. For example, if an integration solution needs to synchronize information between two existing systems, the first step is usually to replicate all relevant information from one system to the other. For such a bulk data replication step, ETL (extract, transform, and load) tools are much more efficient than messaging. Messaging is best suited to keeping the systems in sync after the initial data replication.

• Limited platform support. Many proprietary messaging systems are not available on all platforms. Often, transferring a file via FTP is the only integration option because the target platform may not support a messaging system.

• Vendor lock-in. Many messaging system implementations rely on proprietary protocols. Even common messaging specifications such as JMS do not control the physical implementation of the solution. As a result, different messaging systems usually do not connect to one another. This can leave you with a whole new integration challenge: integrating multiple integration solutions! (See the Messaging Bridge [133] pattern.)

In summary, asynchronous messaging does not solve all problems, and it can even create new ones. Keep these consequences in mind when deciding which problems to solve using messaging.

Thinking Asynchronously

Messaging is an asynchronous technology, which enables delivery to be retried until it succeeds. In contrast, most applications use synchronous function calls—for example, a procedure calling a subprocedure, one method calling another method, or one procedure invoking another remotely through an RPC (such as CORBA and DCOM). Synchronous calls imply that the calling process is halted while the subprocess is executing a function. Even in an RPC scenario, where the called subprocedure executes in a different process, the caller blocks until the subprocedure returns control (and the results) to the caller. In contrast, when using asynchronous messaging, the caller uses a send-and-forget approach that allows it to continue to execute after it sends the message. As a result, the calling procedure continues to run while the subprocedure is being invoked (see figure).

[image: Image]

Synchronous and Asynchronous Call Semantics

Asynchronous communication has a number of implications. First, we no longer have a single thread of execution. Multiple threads enable subprocedures to run concurrently, which can greatly improve performance and help ensure that some subprocesses are making progress even while other subprocesses may be waiting for external results. However, concurrent threads also make debugging much more difficult. Second, results (if any) arrive via a callback mechanism. This enables the caller to perform other tasks and be notified when the result is available, which can improve performance. However, this means that the caller has to be able to process the result even while it is in the middle of other tasks, and it has to be able to remember the context in which the call was made. Third, asynchronous subprocesses can execute in any order. Again, this enables one subprocedure to make progress even while another cannot. But it also means that the sub-processes must be able to run independently in any order, and the caller must be able to determine which result came from which subprocess and combine the results together. As a result, asynchronous communication has several advantages but requires rethinking how a procedure uses its subprocedures.

Distributed Applications versus Integration

This book is about enterprise integration—how to integrate independent applications so that they can work together. An enterprise application often incorporates an n-tier architecture (a more sophisticated version of a client/server architecture), enabling it to be distributed across several computers. Even though this results in processes on different machines communicating with each other, this is application distribution, not application integration.

Why is an n-tier architecture considered application distribution and not application integration? First, the communicating parts are tightly coupled—they dependent directly on each other, so one tier cannot function without the others. Second, communication between tiers tends to be synchronous. Third, an application (n-tier or atomic) tends to have human users who will only accept rapid system response times.

In contrast, integrated applications are independent applications that can each run by themselves but that coordinate with each other in a loosely coupled way. This enables each application to focus on one comprehensive set of functionality and yet delegate to other applications for related functionality. Integrated applications communicating asynchronously don’t have to wait for a response; they can proceed without a response or perform other tasks concurrently until the response is available. Integrated applications tend to have a broad time constraint, such that they can work on other tasks until a result becomes available, and therefore are more patient than most human users waiting real-time for a result.

Commercial Messaging Systems

The apparent benefits of integrating systems using an asynchronous messaging solution have opened up a significant market for software vendors creating messaging middleware and associated tools. We can roughly group the messaging vendors’ products into the following four categories:

1. Operating systems. Messaging has become such a common need that vendors have started to integrate the necessary software infrastructure into the operating system or database platform. For example, the Microsoft Windows 2000 and Windows XP operating systems include the Microsoft Message Queuing (MSMQ) service software. This service is accessible through a number of APIs, including COM components and the System.Messaging namespace, part of the Microsoft .NET platform. Similarly, Oracle offers Oracle AQ as part of its database platform.

2. Application servers. Sun Microsystems first incorporated the Java Messaging Service (JMS) into version 1.2 of the J2EE specification. Since then, virtually all J2EE application servers (such as IBM WebSphere and BEA WebLogic) provide an implementation for this specification. Also, Sun delivers a JMS reference implementation with the J2EE JDK.

3. EAI suites. Products from these vendors offer proprietary—but functionally rich—suites that encompass messaging, business process automation, workflow, portals, and other functions. Key players in this marketplace are IBM WebSphere MQ, Microsoft BizTalk, TIBCO, WebMethods, SeeBeyond, Vitria, CrossWorlds, and others. Many of these products include JMS as one of the many client APIs they support, while other vendors—such as SonicSoftware and Fiorano—focus primarily on implementing JMS-compliant messaging infrastructures.

4. Web services toolkits. Web services have garnered a lot of interest in the enterprise integration communities. Standards bodies and consortia are actively working on standardizing reliable message delivery over Web services (i.e., WS-Reliability, WS-ReliableMessaging, and ebMS). A growing number of vendors offer tools that implement routing, transformation, and management of Web services-based solutions.

The patterns in this book are vendor-independent and apply to most messaging solutions. Unfortunately, each vendor tends to define its own terminology when describing messaging solutions. In this book, we strove to choose pattern names that are technology- and product-neutral yet descriptive and easy to use conversationally.

Many messaging vendors have incorporated some of this book’s patterns as features of their products, which simplifies applying the patterns and accelerates solution development. Readers who are familiar with a particular vendor’s terminology will most likely recognize many of the concepts in this book. To help these readers map the pattern language to the vendor-specific terminology, the following tables map the most common pattern names to their corresponding product feature names in some of the most widely used messaging products.

[image: Image]

[image: Image]

Pattern Form

This book contains a set of patterns organized into a pattern language. Books such as Design Patterns, Pattern Oriented Software Architecture, Core J2EE Patterns, and Patterns of Enterprise Application Architecture have popularized the concept of using patterns to document computer-programming techniques. Christopher Alexander pioneered the concept of patterns and pattern languages in his books A Pattern Language and A Timeless Way of Building. Each pattern represents a decision that must be made and the considerations that go into that decision. A pattern language is a web of related patterns where each pattern leads to others, guiding you through the decision-making process. This approach is a powerful technique for documenting an expert’s knowledge so that it can be readily understood and applied by others.

A pattern language teaches you how to solve a limitless variety of problems within a bounded problem space. Because the overall problem that is being solved is different every time, the path through the patterns and how they’re applied is also unique. This book is written for anyone using any messaging tools for any application, and it can be applied specifically for you and the unique application of messaging that you face.

Using the pattern form by itself does not guarantee that a book contains a wealth of knowledge. It is not enough to simply say, “When you face this problem, apply this solution.” For you to truly learn from a pattern, the pattern has to document why the problem is difficult to solve, consider possible solutions that in fact don’t work well, and explain why the solution offered is the best available. Likewise, the patterns need to connect to each other so as to walk you from one problem to the next. In this way, the pattern form can be used to teach not just what solutions to apply but also how to solve problems the authors could not have predicted. These are goals we strive to accomplish in this book.

Patterns should be prescriptive, meaning that they should tell you what to do. They don’t just describe a problem, and they don’t just describe how to solve it—they tell you what to do to solve it. Each pattern represents a decision you must make: “Should I use Messaging?” “Would a Command Message help me here?” The point of the patterns and the pattern language is to help you make decisions that lead to a good solution for your specific problem, even if the authors didn’t have that specific problem in mind and even if you don’t have the knowledge and experience to develop that solution on your own.

There is no one universal pattern form; different books use various structures. We used a style that is fairly close to the Alexandrian form, which was first popularized for computer programming in Smalltalk Best Practice Patterns by Kent Beck. We like the Alexandrian form because it results in patterns that are more prose-like. As a result, even though each pattern follows an identical, well-defined structure, the format avoids headings for individual subsections, which would disrupt the flow of the discussion. To improve navigability, the format uses style elements such as underscoring, indentation, and illustrations to help you identify important information at a quick glance.

Each pattern follows this structure:

• Name—This is an identifier for the pattern that indicates what the pattern does. We chose names that can easily be used in a sentence so that it is easy to reference the pattern’s concept in a conversation between designers.

• Icon—Most patterns are associated with an icon in addition to the pattern name. Because many architects are used to communicating visually through diagrams, we provide a visual language in addition to the verbal language. This visual language underlines the composability of the patterns, as multiple pattern icons can be combined to describe the solution of a larger, more complex pattern.

• Context—This section explains what type of work might make you run into the problem that this pattern solves. The context sets the stage for the problem and often refers to other patterns you may have already applied.

• Problem—This explains the difficulty you are facing, expressed as a question. You should be able to read the problem statement and quickly determine if this pattern is relevant to your work. We’ve formatted the problem to be one sentence delimited by horizontal rules.

• Forces—The forces explore the constraints that make the problem difficult to solve. They often consider alternative solutions that seem promising but don’t pan out, which helps show the value of the real solution.

• Solution—This part explains what you should do to solve the problem. It is not limited to your particular situation, but describes what to do in the variety of circumstances represented by the problem. If you understand a pattern’s problem and solution, you understand the pattern. We’ve formatted the solution in the same style as the problem so that you can easily spot problem and solution statements when perusing the book.

• Sketch—One of the most appealing properties of the Alexandrian form is that each pattern contains a sketch that illustrates the solution. In many cases, just by looking at the pattern name and the sketch, you can understand the essence of the pattern. We tried to maintain this style by illustrating the solution with a figure immediately following the solution statement of each pattern.

• Results—This part expands upon the solution to explain the details of how to apply the solution and how it resolves the forces. It also addresses new challenges that may arise as a result of applying this pattern.

• Next—This section lists other patterns to be considered after applying the current one. Patterns don’t live in isolation; the application of one pattern usually leads you to new problems that are solved by other patterns. The relationships between patterns are what constitutes a pattern language as opposed to just a pattern catalog.

• Sidebars—These sections discuss more detailed technical issues or variations of the pattern. We set these sections visually apart from the remainder of the text so you can easily skip them if they are not relevant to your particular application of the pattern.

• Examples—A pattern usually includes one or more examples of the pattern being applied or having been applied. An example may be as simple as naming a known use or as detailed as a large segment of sample code. Given the large number of available messaging technologies, we do not expect you to be familiar with each technology used to implement an example. Therefore, we designed the patterns so that you can safely skip the example without losing any critical content of the pattern.

The beauty in describing solutions as patterns is that it teaches you not only how to solve the specific problems discussed, but also how to create designs that solve problems the authors were not even aware of. As a result, these patterns for messaging not only describe messaging systems that exist today, but may also apply to new ones created well after this book is published.

Diagram Notation

Integration solutions consist of many different pieces—applications, databases, endpoints, channels, messages, routers, and so on. If we want to describe an integration solution, we need to define a notation that accommodates all these different components. To our knowledge, there is no widely used, comprehensive notation that is geared toward the description of all aspects of an integration solution. The Unified Modeling Language (UML) does a fine job of describing object-oriented systems with class and interaction diagrams, but it does not contain semantics to describe messaging solutions. The UML Profile for EAI [UMLEAI] enriches the semantics of collaboration diagrams to describe message flows between components. This notation is very useful as a precise visual specification that can serve as the basis for code generation as part of a modeldriven architecture (MDA). We decided not to adopt this notation for two reasons. First, the UML Profile does not capture all the patterns described in our pattern language. Second, we were not looking to create a precise visual specification, but images that have a certain “sketch” quality to them. We wanted pictures that are able to convey the essence of a pattern at a quick glance—very much like Alexander’s sketch. That’s why we decided to create our own “notation.” Luckily, unlike the more formal notation, ours does not require you to read a large manual. A simple picture should suffice:

[image: Image]

Visual Notation for Messaging Solutions

This simple picture shows a message being sent to a component over a channel. We use the word component very loosely here—it can indicate an application that is being integrated, an intermediary that transforms or routes the message between applications, or a specific part of an application. Sometimes, we also depict a channel as a three-dimensional pipe if we want to highlight the channel itself. Often, we are more interested in the components and draw the channels as simple lines with arrow heads. The two notations are equivalent. We depict the message as a small tree with a round root and nested, square elements because many messaging systems allow messages to contain tree-like data structures—for example, XML documents. The tree elements can be shaded or colored to highlight their usage in a particular pattern. Depicting messages in this way allows us to provide a quick visual description of transformation patterns—it is easy to show a pattern that adds, rearranges, or removes fields from the message.

When we describe application designs—for example, messaging endpoints or examples written in C# or Java—we do use standard UML class and sequence diagrams to depict the class hierarchy and the interaction between objects because the UML notation is widely accepted as the standard way of describing these types of solutions (if you need a refresher on UML, have a look at [UML]).

Examples and Interludes

We have tried to underline the broad applicability of the patterns by including implementation examples using a variety of integration technologies. The potential downside of this approach is that you may not be familiar with each technology that is being used in an example. That’s why we made sure that reading the examples is strictly optional—all relevant points are discussed in the pattern description. Therefore, you can safely skip the examples without risk of losing out on important detail. Also, where possible, we provided more than one implementation example using different technologies.

When presenting example code, we focused on readability over runnability. A code segment can help remove any potential ambiguity left by the solution description, and many application developers and architects prefer looking at 30 lines of code to reading many paragraphs of text. To support this intent, we often show only the most relevant methods or classes of a potentially larger solution. We also omitted most forms of error checking to highlight the core function implemented by the code. Most code snippets do not contain in-line comments, as the code is explained in the paragraphs before and after the code segment.

Providing a meaningful example for a single integration pattern is challenging. Enterprise integration solutions typically consist of a number of heterogeneous components spread across multiple systems. Likewise, most integration patterns do not operate in isolation but rely on other patterns to form a meaningful solution. To highlight the collaboration between multiple patterns, we included more comprehensive examples as interludes (see Chapters 6, 9, and 12). These solutions illustrate many of the trade-offs involved in designing a more comprehensive messaging solution.

All code samples should be treated as illustrative tools only and not as a starting point for development of a production-quality integration solution. For example, almost all examples lack any form of error checking or concern for robustness, security, or scalability.

We tried as much as possible to base the examples on software platforms that are available free of charge or as a trial version. In some cases, we used commercial platforms (such as TIBCO ActiveEnterprise and Microsoft BizTalk) to illustrate the difference between developing a solution from scratch and using a commercial tool. We presented those examples in such a way that they are educational even if you do not have access to the required runtime platform. For many examples, we use relatively barebones messaging frameworks such as JMS or MSMQ. This allows us to be more explicit in the example and focus on the problem at hand instead of distracting from it with all the features a more complex middleware toolset may provide.

The Java examples in this book are based on the JMS 1.1 specification, which is part of the J2EE 1.4 specification. By the time this book is published, most messaging and application server vendors will support JMS 1.1. You can download Sun Microsystems’ reference implementation of the JMS specification from Sun’s Web site: http://java.sun.com/j2ee.

The Microsoft .NET examples are based on Version 1.1 of the .NET Framework and are written in C#. You can download the .NET Framework SDK from Microsoft’s Web site: http://msdn.microsoft.com/net.

Organization of This Book

The pattern language in this book, as with any pattern language, is a web of patterns referring to each other. At the same time, some patterns are more fundamental than others, forming a hierarchy of big-concept patterns that lead to more finely detailed patterns. The big-concept patterns form the load-bearing members of the pattern language. They are the main ones, the root patterns that provide the foundation of the language and support the other patterns.

This book groups patterns into chapters by level of abstraction and by topic area. The following diagram shows the root patterns and their relationship to the chapters of the book.

[image: Image]

Relationship of Root Patterns and Chapters

The most fundamental pattern is Messaging (53); that’s what this book is about. It leads to the six root patterns described in Chapter 3, “Messaging Systems,” namely, Message Channel (60), Message (66), Pipes and Filters (70), Message Router (78), Message Translator (85), and Message Endpoint (95). In turn, each root pattern leads to its own chapter in the book (except Pipes and Filters [70], which is not specific to messaging but is a widely used architectural style that forms the basis of the routing and transformation patterns).

The pattern language is divided into eight chapters, which follow the hierarchy just described:

Chapter 2, “Integration Styles”—This chapter reviews the different approaches available for integrating applications, including Messaging (53).

Chapter 3, “Messaging Systems”—This chapter reviews the six root messaging patterns, giving an overview of the entire pattern language.

Chapter 4, “Messaging Channels”—Applications communicate via channels. Channels define the logical pathways a message can follow. This chapter shows how to determine what channels your applications need.

Chapter 5, “Message Construction”—Once you have message channels, you need messages to send on them. This chapter explains the different ways messages can be used and how to take advantage of their special properties.

Chapter 7, “Message Routing”—Messaging solutions aim to decouple the sender and the receiver of information. Message routers provide location independence between sender and receiver so that senders don’t have to know about who processes their messages. Rather, they send the messages to intermediate message routing components that forward the message to the correct destination. This chapter presents a variety of different routing techniques.

Chapter 8, “Message Transformation”—Independently developed applications often don’t agree on messages’ formats, on the form and meaning of supposedly unique identifiers, or even on the character encoding to be used. Therefore, intermediate components are needed to convert messages from the format one application produces to that of the receiving applications. This chapter shows how to design transformer components.

Chapter 10, “Messaging Endpoints”—Many applications were not designed to participate in a messaging solution. As a result, they must be explicitly connected to the messaging system. This chapter describes a layer in the application that is responsible for sending and receiving the messages, making your application an endpoint for messages.

Chapter 11, “System Management”—Once a messaging system is in place to integrate applications, how do we make sure that it’s running correctly and doing what we want? This chapter explores how to test and monitor a running messaging system.

These eight chapters together teach you what you need to know about connecting applications using messaging.

Getting Started

With any book that has a lot to teach, it’s hard to know where to start, both for the authors and the readers. Reading all of the pages straight through assures covering the entire subject area but isn’t the quickest way to get to the issues that are of the most help. Starting with a pattern in the middle of the language can be like starting to watch a movie that’s half over—you see what’s happening but don’t understand what it means.

Luckily, the pattern language is formed around the root patterns described earlier. These root patterns collectively provide an overview of the pattern language, and individually provide starting points for delving deep into the details of messaging. To get an overall survey of the language without reviewing all of the patterns, start with reviewing the root patterns in Chapter 3.

Chapter 2, “Integration Styles,” provides an overview of the four main application integration techniques and settles on Messaging (53) as being the best overall approach for many integration opportunities. Read this chapter if you are unfamiliar with issues involved in application integration and the pros and cons of the various approaches that are available. If you’re already convinced that messaging is the way to go and want to get started with how to use messaging, you can skip this chapter completely.

Chapter 3, “Messaging Systems,” contains all of this pattern language’s root patterns (except Messaging [53], which is in Chapter 2). For an overview of the pattern language, read (or at least skim) all of the patterns in this chapter. To dive deeply on a particular topic, read its root pattern, then go to the patterns mentioned at the end of the pattern section; those next patterns will all be in a chapter named after the root pattern.

After Chapters 2 and 3, different types of messaging developers may be most interested in different chapters based on the specifics of how each group uses messaging to perform integration:

• System administrators may be most interested in Chapter 4, “Messaging Channels,” the guidelines for what channels to create, and Chapter 11, “System Management,” guidance on how to maintain a running messaging system.

• Application developers should look at Chapter 10, “Messaging Endpoints,” to learn how to integrate an application with a messaging system and at Chapter 5, “Message Construction,” to learn what messages to send when.

• System integrators will gain the most from Chapter 7, “Message Routing”—how to direct messages to the proper receivers—and Chapter 8, “Message Transformation”—how to convert messages from the sender’s format to the receiver’s.

Keep in mind that when reading a pattern, if you’re in a hurry, start by just reading the problem and solution. This will give you enough information to determine if the pattern is of interest to you right now and if you already know the pattern. If you do not know the pattern and it sounds interesting, go ahead and read the other parts.

Also remember that this is a pattern language, so the patterns are not necessarily meant to be read in the order they’re presented in the book. The book’s order teaches you about messaging by considering all of the relevant topics in turn and discussing related issues together. To use the patterns to solve a particular problem, start with an appropriate root pattern. Its context explains what patterns need to be applied before this one, even if they’re not the ones immediately preceding this one in the book. Likewise, the next section (the last paragraph of the pattern) describes what patterns to consider applying after this one, even if they’re not the ones immediately following this one in the book. Use the web of interconnected patterns, not the linear list of book pages, to guide you through the material.

Supporting Web Site

Please look for companion information to this book plus related information on enterprise integration at our Web site: www.enterpriseintegrationpatterns.com. You can also e-mail your comments, suggestions, and feedback to us at authors@enterpriseintegrationpatterns.com.

Summary

You should now have a good understanding of the following concepts, which are fundamental to the material in this book:

• What messaging is.

• What a messaging system is.

• Why to use messaging.

• How asynchronous programming is different from synchronous programming.

• How application integration is different from application distribution.

• What types of commercial products contain messaging systems.

You should also have a feel for how this book is going to teach you to use messaging:

• The role patterns have in structuring the material.

• The meaning of the custom notation used in the diagrams.

• The purpose and scope of the examples.

• The organization of the material.

• How to get started learning the material.

Now that you understand the basic concepts and how the material will be presented, we invite you to start learning about enterprise integration using messaging.

Chapter 1. Solving Integration Problems Using Patterns

This chapter illustrates how the patterns in this book can be used to solve a variety of integration problems. In order to do so, we examine common integration scenarios and present a comprehensive integration example. As we design the solution to this example, we express the solution using the patterns contained in this book. At the end of this chapter you will be familiar with about two dozen integration patterns.

The Need for Integration

Enterprises are typically comprised of hundreds, if not thousands, of applications that are custom built, acquired from a third party, part of a legacy system, or a combination thereof, operating in multiple tiers of different operating system platforms. It is not uncommon to find an enterprise that has 30 different Web sites, three instances of SAP, and countless departmental solutions.

We may be tempted to ask: How do businesses allow themselves to get into such a mess? Shouldn’t any CIO who is responsible for such an enterprise spaghetti architecture be fired? Well, as in most cases, things happen for a reason.

First, writing business applications is hard. Creating a single, big application to run a complete business is next to impossible. The Enterprise Resource Planning (ERP) vendors have had some success at creating larger-than-ever business applications. The reality, though, is that even the heavyweights like SAP, Oracle, Peoplesoft, and the like perform only a fraction of the business functions required in a typical enterprise. We can see this easily by the fact that ERP systems are one of the most popular integration points in today’s enterprises.

Second, spreading business functions across multiple applications provides the business with the flexibility to select the “best” accounting package, the “best” customer relationship management software, as well as the “best” order-processing system for its needs. Usually, IT organizations are not interested in a single enterprise application that does it all, nor is such an application possible given the number of individual business requirements.

Vendors have learned to cater to this preference and offer focused applications around a specific core function. However, the ever-present urge to add new functionality to existing software packages has caused some functionality spillover among packaged business applications. For example, many billing systems started to incorporate customer care and accounting functionality. Likewise, the customer care software maker takes a stab at implementing simple billing functions, such as disputes or adjustments. Defining a clear, functional separation between systems is difficult: Is a customer dispute over a bill considered a customer care or a billing function?

Users such as customers, business partners, and internal users generally do not think about system boundaries when they interact with a business. They execute business functions regardless of how many internal systems the business function cuts across. For example, a customer may call to change his or her address and see whether the last payment was received. In many enterprises, this simple request can span across both the customer care and billing systems. Likewise, a customer placing a new order may require the coordination of many systems. The business needs to validate the customer ID, verify the customer’s good standing, check inventory, fulfill the order, get a shipping quote, compute sales tax, send a bill, and so on. This process can easily span five or six different systems. From the customer’s perspective, it is a single business transaction.

In order to support common business processes and data sharing across applications, these applications need to be integrated. Application integration needs to provide efficient, reliable, and secure data exchange between multiple enterprise applications.

Integration Challenges

Unfortunately, enterprise integration is no easy task. By definition, enterprise integration has to deal with multiple applications running on multiple platforms in different locations, making the term simple integration pretty much an oxymoron. Software vendors offer Enterprise Application Integration (EAI) suites that provide cross-platform, cross-language integration as well as the ability to interface with many popular packaged business applications. However, this technical infrastructure addresses only a small portion of the integration complexities. The true challenges of integration span far across business and technical issues.

• Enterprise integration requires a significant shift in corporate politics. Business applications generally focus on a specific functional area, such as customer relationship management (CRM), billing, and finance. This seems to be an extension of Conway’s famous law: “Organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizations.” Many IT groups are organized in alignment with these same functional areas. Successful enterprise integration needs to establish communication not only between multiple computer systems but also between business units and IT departments—in an integrated enterprise application, groups no longer control a specific application because each application is now part of an overall flow of integrated applications and services.

• Because of their wide scope, integration efforts typically have far-reaching implications on the business. Once the processing of the most critical business functions is incorporated into an integration solution, the proper functioning of that solution becomes vital to the business. A failing or misbehaving integration solution can cost a business millions of dollars in lost orders, misrouted payments, and disgruntled customers.

• One important constraint of developing integration solutions is the limited amount of control the integration developers typically have over the participating applications. In most cases, the applications are legacy systems or packaged applications that cannot be changed just to be connected to an integration solution. This often leaves the integration developers in a situation where they have to make up for deficiencies or idiosyncrasies inside the applications or differences between the applications. Often it would be easier to implement part of the solution inside the application endpoints, but for political or technical reasons, that option may not be available.

• Despite the widespread need for integration solutions, only a few standards have established themselves in this domain. The advent of XML, XSL, and Web services certainly marks the most significant advance of standards-based features in an integration solution. However, the hype around Web services has also given grounds to new fragmentation of the marketplace, resulting in a flurry of new “extensions” and “interpretations” of the standards. This should remind us that the lack of interoperability between “standards-compliant” products was one of the major stumbling blocks for CORBA, which offered a sophisticated technical solution for systems integration.

• Existing XML Web services standards address only a fraction of the integration challenges. For example, the frequent claim that XML is the lingua franca of system integration is somewhat misleading. Standardizing all data exchange to XML can be likened to writing all documents using a common alphabet, such as the Roman alphabet. Even though the alphabet is common, it is still being used to represent many languages and dialects, which cannot be readily understood by all readers. The same is true in enterprise integration. The existence of a common presentation (e.g., XML) does not imply common semantics. The notion of “account” can have many different semantics, connotations, constraints, and assumptions in each participating system. Resolving semantic differences between systems proves to be a particularly difficult and time-consuming task because it involves significant business and technical decisions.

• While developing an EAI solution is challenging in itself, operating and maintaining such a solution can be even more daunting. The mix of technologies and the distributed nature of EAI solutions make deployment, monitoring, and troubleshooting complex tasks that require a combination of skill sets. In most cases, these skill sets are spread across many different individuals or do not even exist within IT operations.

Anyone who has been through an EAI deployment can attest that EAI solutions are a critical component of today’s enterprise strategies—but they make IT life harder, not easier. It’s a long way between the high-level vision of the integrated enterprise (defined by terms such as straight-through-processing, T+1, agile enterprise) and the nuts-and-bolts implementations (What parameters did System.Messaging.XmlMessageFormatter take again?).

How Integration Patterns Can Help

There are no simple answers for enterprise integration. In our opinion, anyone who claims that integration is easy must be incredibly smart (or at least a good bit smarter than the rest of us), incredibly ignorant (okay, let’s say optimistic), or have a financial interest in making you believe that integration is easy.

Even though integration is a broad and difficult topic, we can always observe some people who are much better at it than others. What do these people know that others don’t? Since there is no such thing as “Teach Yourself Integration in 21 Days” (this book sure ain’t!), it is unlikely that these people know all the answers to integration. However, they have usually solved enough integration problems that they can compare new problems to prior problems they have solved. They know the “patterns” of problems and associated solutions. They learned these patterns over time by trial-and-error or from other experienced integration architects.

The patterns are not copy-paste code samples or shrink-wrapped components, but rather nuggets of advice that describe solutions to frequently recurring problems. Used properly, the integration patterns can help fill the wide gap between the high-level vision of integration and the actual system implementation.

The Wide World of Integration

We intentionally left the definition of integration very broad. To us it means connecting computer systems, companies, or people. While this broad definition gives us the convenience of sticking whatever we find interesting into this book, it is helpful to have a closer look at some of the most common integration scenarios. Over the course of many integration projects, we repeatedly came across the following six types of integration:

• Information portals

• Data replication

• Shared business functions

• Service-oriented architectures

• Distributed business processes

• Business-to-business integration

This list is by no means a complete taxonomy of all things integration, but it does illustrate the kind of solutions that integration architects build. Many integration projects consist of a combination of multiple types of integration. For example, reference data replication is often required in order to tie applications into a single, distributed business process.

[image: Image]

Information Portal

Many business users have to access more than one system to answer a specific question or to perform a single business function. For example, to verify the status of an order, a customer service representative may have to access the order management system on the mainframe plus log on to the system that manages orders placed over the Web. Information portals aggregate information from multiple sources into a single display to avoid having the user access multiple systems for information. Simple information portals divide the screen into multiple zones, each of which displays information from a different system. More sophisticated systems provide limited interaction between zones; for example, when a user selects an item from a list in zone A, zone B refreshes with detailed information about the selected item. Other portals provide even more sophisticated user interaction and blur the line between a portal and an integrated application.

[image: Image]

Data Replication

Many business systems require access to the same data. For example, a customer’s address may be used in the customer care system (when the customer calls to change it), the accounting system (to compute sales tax), the shipping system (to label the shipment), and the billing system (to send an invoice). Many of these systems have their own data stores to store customer-related information. When a customer calls to change his or her address, all these systems need to change their copy of the customer’s address. This can be accomplished by implementing an integration strategy based on data replication.

There are many different ways to implement data replication. For example, some database vendors build replication functions into the database; alternatively, we can export data into files and re-import them to the other system, or we can use message-oriented middleware to transport data records inside messages.

[image: Image]

Shared Business Function

In the same way that many business applications store redundant data, they also tend to implement redundant functionality. Multiple systems may need to check whether a social-security number is valid, whether the address matches the specified postal code, or whether a particular item is in stock. It makes sense to expose these functions as a shared business function that is implemented once and available as a service to other systems.

A shared business function can address some of the same needs as data replication. For example, we could implement a business function called Get Customer Address that could allow other systems to request the customer’s address when it is needed rather than permanently store a redundant copy. The decision between these two approaches is driven by a number of criteria, such as the amount of control we have over the systems (calling a shared function is usually more intrusive than loading data into the database) or the rate of change (an address may be needed frequently but change very infrequently).

[image: Image]

Service-Oriented Architecture

Shared business functions are often referred to as services. A service is a well-defined function that is universally available and responds to requests from “service consumers.” Once an enterprise assembles a collection of useful services, managing the services becomes a critical function. First, applications need some form of service directory, a centralized list of all available services. Second, each service needs to describe its interface in such a way that an application can “negotiate” a communications contract with the service. These two functions, service discovery and negotiation, are the key elements that make up a service-oriented architecture (SOA).

SOAs blur the line between integration and distributed applications. A new application can be developed using existing remote services that may be provided by other applications. Therefore, calling a service can be considered integration between the two applications. However, most SOAs provide tools that make calling an external service almost as simple as calling a local method (performance considerations aside), so that the process of developing an application on top of an SOA resembles building a distributed application.

[image: Image]

Distributed Business Process

One of the key drivers of integration is that a single business transaction is often spread across many different systems. A previous example showed us that a simple business function such as placing an order can easily touch half a dozen systems. In most cases, all relevant functions are incorporated inside existing applications. What is missing is the coordination between these applications. Therefore, we can add a business process management component that manages the execution of a business function across multiple existing systems.

The boundaries between an SOA and a distributed business can be fuzzy. For example, you could expose all relevant business functions as services and then encode the business process inside an application that accesses all services via an SOA.

[image: Image]

Business-to-Business Integration

So far, we have mainly considered the interaction between applications and business functions inside a single enterprise. In many cases, business functions may be available from outside suppliers or business partners. For example, the shipping company may provide a service for customers to compute shipping cost or track shipments. Or a business may use an outside provider to compute sales tax rates. Likewise, integration frequently occurs between business partners. A customer may contact a retailer to inquire on the price and availability of an item. In response, the retailer may ask the supplier for the status of an expected shipment that contains the out-of-stock item.

Many of the above considerations apply equally to business-to-business integration. However, communicating across the Internet or some other network usually raises new issues related to transport protocols and security. Also, since many business partners may collaborate in an electronic “conversation,” standardized data formats are critically important.

Loose Coupling

One of the biggest buzzwords in enterprise architecture and integration is loose coupling. It is in fact such a popular term that Doug Kaye wrote a whole book titled after this ubiquitous concept [Kaye]. The benefits of loose coupling have been known for quite some time now, but they have taken center stage more recently due to the surging popularity of Web services architectures.

The core principle behind loose coupling is to reduce the assumptions two parties (components, applications, services, programs, users) make about each other when they exchange information. The more assumptions two parties make about each other and the common protocol, the more efficient the communication can be, but the less tolerant the solution is of interruptions or changes because the parties are tightly coupled to each other.

A great example of tight coupling is a local method invocation. Invoking a local method inside an application is based on a lot of assumptions between the called and the calling routine. Both methods have to run in the same process (e.g., a virtual machine) and be written in the same language (or at least use a common intermediate language or byte code). The calling method has to pass the exact number of expected parameters using agreed-upon data types. The call is immediate; that is, the called method starts processing immediately after the calling method makes the call. Meanwhile, the calling method will resume processing only when the called method completes (meaning the invocation is synchronous). Processing will automatically resume in the calling method with the statement immediately following the method call. The communication between the methods is immediate and instantaneous, so neither the caller nor the called method has to worry about security breaches in the form of eavesdropping third parties. All these assumptions make it very easy to write well-structured applications that divide functionality into individual methods to be called by other methods. The resulting large number of small methods allows for flexibility and reuse.

Many integration approaches have aimed to make remote communications simple by packaging a remote data exchange into the same semantics as a local method call. This strategy resulted in the notion of a Remote Procedure Call (RPC) or Remote Method Invocation (RMI), supported by many popular frameworks and platforms: CORBA (see [Zahavi]), Microsoft DCOM, .NET Remoting, Java RMI, and most recently, RPC-style Web services. The intended upside of this approach is twofold. First, synchronous method-call semantics are very familiar to application developers, so why not build on what we already know? Second, using the same syntax and semantics for both local method calls and remote invocations would allow us to defer until deployment time the decision about which components should run locally and which should run remotely, leaving the application developer with one less thing to worry about.

The challenge that all these approaches face lies in the fact that remote communication invalidates many of the assumptions that a local method call is based on. As a result, abstracting the remote communication into the simple semantics of a method call can be confusing and misleading. Waldo and colleagues reminded us back in 1994 that “objects that interact in a distributed system need to be dealt with in ways that are intrinsically different from objects that interact in a single address space” [Waldo]. For example, if we call a remote service to perform a function for us, do we really want to restrict ourselves to only those services that were built using the same programming language we use? A call across the network also tends to be multiple orders of magnitude slower than a local call. Should the calling method really wait until the called method completes? What if the network is interrupted and the called method is temporarily unreachable? How long should we wait? How can we be sure we communicate with the intended party and not a third-party “spoofer”? How can we protect against eavesdropping? What if the method signature (the list of expected parameters) of the called method changes? If the remote method is maintained by a third party or a business partner, we no longer have control over such changes. Should we have our method invocation fail, or should we attempt to find the best possible mapping between the parameters and still make the call? It quickly becomes apparent that remote integration brings up a lot of issues that a local method call never had to deal with.

In summary, trying to portray remote communication as a variant of a local method invocation is asking for trouble. Such tightly coupled architectures typically result in brittle, hard-to-maintain, and poorly scalable solutions. Many Web services pioneers recently (re-)discovered this fact the hard way.

One-Minute EAI

To show the effects of tightly coupled dependencies and how to resolve them, let’s look at a very simple way of connecting two systems. Let’s assume we are building an online banking system that allows customers to deposit money into their account from another bank. To perform this function, the front-end Web application has to be integrated with the back-end financial system that manages fund transfers.

The easiest way to connect the two systems is through the TCP/IP protocol. Every self-respecting operating system or programming library created in the last 15 years is certain to include a TCP/IP stack. TCP/IP is the ubiquitous communications protocol that transports data between the millions of computers connected to the Internet and local networks. Why not use the most ubiquitous of all network protocols to communicate between two applications?

To keep things simple, let’s assume that the remote function that deposits money into a person’s account takes only the person’s name and the dollar amount as arguments. The following few lines of code suffice to call such a function over TCP/IP (we chose C#, but this code would look virtually identical in C or Java).

String hostName = "finance.bank.com";
int port = 80;

IPHostEntry hostInfo = Dns.GetHostByName(hostName);
IPAddress address = hostInfo.AddressList[0];

IPEndPoint endpoint = new IPEndPoint(address, port);

Socket socket = new Socket(address.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
socket.Connect(endpoint);

byte[] amount = BitConverter.GetBytes(1000);
byte[] name = Encoding.ASCII.GetBytes("Joe");

int bytesSent = socket.Send(amount);
bytesSent += socket.Send(name);

socket.Close();

This code opens a socket connection to the address finance.bank.com and sends two data items (the amount and the customer’s name) across the network. No expensive middleware is required: no EAI tools, RPC toolkits—just 10 lines of code. When we run this code, it tells us “7 bytes sent.” Voila! How can integration be difficult?

There are a couple of major problems with this integration attempt. One of the strengths of the TCP/IP protocol is its wide support so that we can connect to pretty much any computer connected to the network regardless of the operating system or programming language it uses. However, the platform-independence works only for very simple messages: byte streams. In order to convert our data into a byte stream, we used the BitConverter class. This class converts any data type into a byte array, using the internal memory representation of the data type. The catch is that the internal representation of an integer number varies with computer systems. For example, .NET uses a 32-bit integer, while other systems may use a 64-bit representation. Our example transfers 4 bytes across the network to represent a 32-bit integer number. A system using 64 bits would be inclined to read 8 bytes off the network and would end up interpreting the whole message (including the customer name) as a single number.

Also, some computer systems store their numbers in big-endian format, while others store them in little-endian format. A big-endian format stores numbers starting with the highest byte first, while little-endian systems store the lowest byte first. PCs operate on a little-endian scheme so that the code passes the following 4 bytes across the network:

232 3 0 0

232 + 3 * 28 equals 1,000. A system that uses big-endian numbers would consider this message to mean 232 * 224 + 3 * 216 = 3,892,510,720. Joe will be a very rich man! So this approach works only under the assumption that all connected computers represent numbers in the same internal format.

The second problem with this simple approach is that we specify the location of the remote machine (in our case, finance.bank.com). The Dynamic Naming Service (DNS) gives us one level of indirection between the domain name and the IP address, but what if we want to move the function to a different computer on a different domain? What if the machine fails and we have to set up another machine? What if we want to send the information to more than one machine? For each scenario, we would have to change the code. If we use a lot of remote functions, this could become very tedious. So, we should find a way to make our communication independent from a specific machine on the network.

Our simple TCP/IP example also establishes temporal dependencies between the two machines. TCP/IP is a connection-oriented protocol. Before any data can be transferred, a connection has to be established first. Establishing a TCP connection involves IP packets traveling back and forth between sender and receiver. This requires that both machines and the network are all available at the same time. If any of the three pieces is malfunctioning or not available due to high load, the data cannot be sent.

Finally, the simple communication also relies on a very strict data format. We are sending 4 bytes of amount data and then a sequence of characters that define the customer’s account. If we want to insert a third parameter, such as the name of the currency, we would have to modify both sender and receiver to use the new data format.

[image: Image]

Tightly Coupled Interaction

Our minimalist integration solution is fast and cheap, but it results in a very brittle solution because the two participating parties make the following assumptions about each other:

• Platform technology—internal representations of numbers and objects

• Location—hardcoded machine addresses

• Time—all components have to be available at the same time

• Data format—the list of parameters and their types must match

As we stated earlier, coupling is a measure of how many assumptions parties make about each other when they communicate. Our simple solution requires the parties to make a lot of assumptions. Therefore, this solution is tightly coupled.

In order to make the solution more loosely coupled, we can try to remove these dependencies one by one. We should use a standard data format that is self-describing and platform-independent, such as XML. Instead of sending information directly to a specific machine, we should send it to an addressable channel. A channel is a logical address that both sender and receiver can agree on without being aware of each other’s identity. Using channels resolves the location dependency but still requires all components to be available at the same time if the channel is implemented using a connection-oriented protocol. In order to remove this temporal dependency, we can enhance the channel to queue up sent requests until the network and the receiving system are ready. The sender can now send requests into the channel and continue processing without having to worry about the delivery of the data. Queuing requests inside the channel requires data to be chunked into self-contained messages so that the channel knows how much data to buffer and deliver at any one time. The two systems still depend on a common data format, but we can remove this dependency by allowing for data format transformations inside the channel. If the format of one system changes, we only have to change the transformer and not the other participating systems. This is particularly useful if many applications send data to the same channel.

[image: Image]

Loosely Coupled Interaction

Mechanisms such as a common data format, asynchronous communication across queuing channels, and transformers help turn a tightly coupled solution into a loosely coupled one. The sender no longer has to depend on the receiver’s internal data format nor on its location. It does not even have to pay attention to whether or not the other computer is ready to accept requests. Removing these dependencies between the systems makes the overall solution more tolerant to change, the key benefit of loose coupling. The main drawback of the loosely coupled approach is the additional complexity. This is no longer a 10-lines-of-code solution! Therefore, we use a message-oriented middleware infrastructure that provides these services for us. This infrastructure makes exchanging data in a loosely coupled way almost as easy as the example we started with. The next section describes the components that make up such a middleware solution.

Is loose coupling the panacea? Like everything else in enterprise architecture, there is no single best answer. Loose coupling provides important benefits such as flexibility and scalability, but it introduces a more complex programming model and can make designing, building, and debugging solutions more difficult.

A Loosely Coupled Integration Solution

In order to connect two systems via an integration solution, a number of issues have to be resolved. These functions make up what we call middleware—the glue that sits between applications.

Invariably, some data has to be transported from one application to the next. This data could be an address record that needs to be replicated, a call to a remote service, or a snippet of HTML headed for a portal display. Regardless of the payload, this piece of data needs to be understood by both ends and needs to be transported across a network. Two elements provide this basic function. We need a communications channel that can move information from one application to the other. This channel could consist of a series of TCP/IP connections, a shared file, a shared database, or a floppy disk being carried from one computer to the next (the infamous “sneakernet”). Inside this channel, we place a message—a snippet of data that has an agreed-upon meaning to both applications that are to be integrated. This piece of data can be very small, such as the phone number of a single customer that has changed, or it can be very large, such as the complete list of all customers and their associated addresses.

[image: Image]

Basic Elements of Message-Based Integration

Now that we can send messages across channels, we can establish a very basic form of integration. However, we promised that simple integration is an oxymoron, so let’s see what is missing. We mentioned that integration solutions often have limited control over the applications they are integrating, such as the internal data formats used by the applications. For example, one data format may store the customer name in two fields, called FIRST_NAME and LAST_NAME, while the other system may use a single field called Customer_Name. Likewise, one system may support multiple customer addresses, while the other system supports only a single address. Because the internal data format of an application can often not be changed, the middleware needs to provide some mechanism to convert one application’s data format in the other’s format. We call this step translation.

So far, we can send data from one system to another and accommodate differences in data formats. What happens if we integrate more than two systems? Where does the data have to be moved? We could expect each application to specify the target system(s) for the data it is sending over the channel. For example, if the customer address changes in the customer care system, we could make that system responsible for sending the data to all other systems that store copies of the customer address. As the number of systems increases, this becomes very tedious and requires the sending system to have knowledge about all other systems. Every time a new system is added, the customer care system would have to be adjusted to the new environment. Things would be a lot easier if the middleware could take care of sending messages to the correct places. This is the role of a routing component, such as a message broker.

Integration solutions can quickly become complex because they deal with multiple applications, data formats, channels, routing, and transformation. All these elements may be spread across multiple operating platforms and geographic locations. In order to have any idea what is going on inside the system, we need a systems management function. This subsystem monitors the flow of data, makes sure that all applications and components are up and running, and reports error conditions to a central location.

Our integration solution is now almost complete. We can move data from one system from another, accommodate differences in the data format, route the data to the required systems, and monitor the performance of the solution. So far, we assumed that an application sends data as a message to the channel. However, most packaged and legacy applications and many custom applications are not prepared to participate in an integration solution. We need a message endpoint to connect the system explicitly to the integration solution. The endpoint can be a special piece of code or a Channel Adapter (127) provided by an integration software vendor.

Widgets & Gadgets ‘R Us: An Example

The best way to understand message-based integration solutions is by walking through a concrete example. Let’s consider Widgets & Gadgets ‘R Us (WGRUS), an online retailer that buys widgets and gadgets from manufacturers and resells them to customers.

[image: Image]

WGRUS Ecosystem

For this example, we assume that the solution needs to support the following requirements. Naturally, we simplified the requirements a bit for sake of brevity, but nevertheless these types of requirements occur frequently in real businesses.

• Take Orders: Customers can place orders via Web, phone, or fax.

• Process Orders: Processing an order involves multiple steps, including verifying inventory, shipping the goods, and invoicing the customer.

• Check Status: Customers can check the order status.

• Change Address: Customers can use a Web front-end to change their billing and shipping address.

• New Catalog: The suppliers update their catalog periodically. WGRUS needs to update its pricing and availability based on the new catalogs.

• Announcements: Customers can subscribe to selective announcements from WGRUS.

• Testing and Monitoring: The operations staff needs to be able to monitor all individual components and the message flow between them.

We tackle each of these requirements separately and describe the solution alternatives and trade-offs using the pattern language introduced in this book. We will start with a simple message flow architecture and introduce more complex concepts, such as a Process Manager (312), as we address increasingly complex requirements.

Internal Systems

As in most integration scenarios, WGRUS is not a so-called “green field” implementation, but rather the integration of an existing IT infrastructure comprised of a variety of packaged and custom applications. The fact that we have to work with existing applications often makes integration work challenging. In our example, WGRUS runs the following systems (see figure).

[image: Image]

WGRUS IT Infrastructure

WGRUS has four different channels to interact with customers. Customers can visit the company Web site, call the customer service representative at the call center, or submit orders via fax. Customers can also receive notifications via e-mail.

WGRUS’s internal systems are comprised of the accounting system, which also includes billing functions, and the shipping system that computes shipping charges and interacts with the shipping companies. For historic reasons, WGRUS has two inventory and catalog systems. WGRUS used to sell only widgets but acquired another retailer that sells gadgets.

Taking Orders

The first function we want to implement is taking orders. Taking orders is a good thing because orders bring revenue. However, placing orders is currently a tedious manual process, so the cost incurred with each order is high.

The first step to streamlining order processing is to unify taking orders. A customer can place orders over one of three channels: Web site, call center, or fax. Unfortunately, each system is based on a different technology and stores incoming orders in a different data format. The call center system is a packaged application, while the Web site is a custom J2EE application. The inbound fax system requires manual data entry into a small Microsoft Access application. We want to treat all orders equally, regardless of their source. For example, a customer should be able to place an order via the call center and check the order status on the Web site.

Because placing an order is an asynchronous process that connects many systems, we decide to implement a message-oriented middleware solution to streamline the order entry process. The packaged call center application was not developed with integration in mind so that we have to connect it to the messaging system using a Channel Adapter (127). A Channel Adapter (127) is a component that can attach to an application and publish messages to a Message Channel (60) whenever an event occurs inside the application. With some Channel Adapters (127), the application may not even be aware of the presence of the adapter. For example, a database adapter may add triggers to specific tables so that every time the application inserts a row of data, a message is sent to the Message Channel (60). Channel Adapters (127) can also work in the opposite direction, consuming messages off a Message Channel (60) and triggering an action inside the application in response.

We use the same approach for the inbound fax application, connecting the Channel Adapter (127) to the application database. Because the Web application is custom built, we implement the Message Endpoint (95) code inside the application. We use a Messaging Gateway (468) to isolate the application code from the messaging-specific code.

[image: Image]

Taking Orders from Three Different Channels

Because each system uses a different data format for the incoming orders, we use three Message Translators (85) to convert the different data formats into a common New Order message that follows a Canonical Data Model (355). A Canonical Data Model (355) defines message formats that are independent from any specific application so that all applications can communicate with each other in this common format. If the internal format of an application changes, only the Message Translator (85) between the affected application and the common Message Channel (60) has to change, while all other applications and Message Translators (85) remain unaffected. Using a Canonical Data Model (355) means that we deal with two types of messages: canonical (public) messages and application-specific (private) messages. Application-specific messages should not be consumed by any component other than that application and the associated Message Translator (85). To reinforce this policy, we name application-specific Message Channels (60) starting with the name of the application: for example, WEB_NEW_ORDER. In contrast, channels carrying canonical messages are named after the intent of the message without any prefix: for example, NEW_ORDER.

We connect each Channel Adapter (127) to the Message Translator (85) via a Point-to-Point Channel (103) because we want to be sure that each order message is consumed only once. We could get away without using a Message Translator (85) for the Web interface if we programmed the transformation logic into the Messaging Gateway (468). However, hand-coding transformation functions can be tedious and error-prone, and we prefer to use a consistent approach. The additional Message Translator (85) also allows us to shield the New Order flow from minor changes in the Web interface data format. All Message Translators (85) publish to the same NEW_ORDER Point-to-Point Channel (103) so that orders can be processed off this channel without regard to the order’s origin.

The NEW_ORDER Message Channel (60) is a so-called Datatype Channel (111) because it carries messages of only one type: new orders. This makes it easy for message consumers to know what type of message to expect. The New Order message itself is designed as a Document Message (147). The intent of the message is not to instruct the receiver to take a specific action, but rather to pass a document to any interested recipient, who is free to decide how to process the document.

Processing Orders

Now that we have a consistent order message that is independent from the message source, we are ready to process orders. To fulfill an order, we need to complete the following steps:

• Verify the customer’s credit standing. If the customer has outstanding bills, we want to reject the new order.

• Verify inventory. We can’t fulfill orders for items that are not in stock.

• If the customer is in good standing and we have inventory, we want to ship the goods and bill the customer.

We can express this sequence of events using a Unified Modeling Language (UML) activity diagram. Activity diagrams have relatively simple semantics and are a good tool to depict processes that include parallel activities. The notation is very simple; sequential activities are connected by simple arrows. Parallel activities are connected by a thick black bar representing fork and join actions. A fork action causes all connected activities to start simultaneously, while the join action continues only after all incoming activities have been completed.

Our activity diagram (see figure) is designed to execute the Check Inventory task and the Validate Customer Standing task in parallel. The join bar waits until both activities are completed before it allows the next activity to start. The next activity verifies the results of both steps: Do we have inventory, and is the customer in good standing? If both conditions are fulfilled, the process goes on to fulfill the order. Otherwise, we transition to an exception-handling activity. For example, we may call to remind the customer to pay the last invoice or send an e-mail letting him or her know that the order will be delayed. Because this book focuses on the design aspects of message-oriented integration rather than on workflow modeling, we leave the details of the exception-handling process aside for now. For a very good discussions of workflow architecture and workflow modeling, refer to [Leyman] and [Sharp].

[image: Image]

Activity Diagram for Order Processing

It turns out that the activities in the activity diagram map relatively nicely to the systems in WGRUS’s IT department. The accounting system verifies the customer’s credit standing, the inventory systems check the inventory, and the shipping system initiates the physical shipping of goods. The accounting system also acts as the billing system and sends invoices. We can see that the processing of orders is a typical implementation of a distributed business process.

To convert the logical activity diagram into an integration design, we can use a Publish-Subscribe Channel (106) to implement the fork action and an Aggregator (268) to implement the join action. A Publish-Subscribe Channel (106) sends a message to all active consumers; an Aggregator (268) receives multiple incoming messages and combines them into a single, outgoing message (see figure).

[image: Image]

Order Processing Implementation Using Asynchronous Messaging

In our example, the Publish-Subscribe Channel (106) sends the New Order message to both the accounting system and the inventory system. The Aggregator (268) combines the result messages from both systems and passes the combined message to a Content-Based Router (230). A Content-Based Router (230) is a component that consumes a message and publishes it, unmodified, to a choice of other channels based on rules coded inside the router. The Content-Based Router (230) is equivalent to the branch in a UML activity diagram. In this case, if both the inventory check and the credit check have been affirmative, the Content-Based Router (230) forwards the message to the VALIDATED_ORDER channel. This channel is a Publish-Subscribe Channel (106), so the validated order reaches both the shipping and the billing systems. If the customer is not in good standing or we have no inventory on hand, Content-Based Router (230) forwards the message to the INVALID_ORDER channel. An exception-handling process (not shown in the figure) listens to messages on this channel and notifies the customer of the rejected order.

Now that we have established the overall message flow, we need to have a closer look at the inventory function. As we learned in the requirements section, WGRUS has two inventory systems: one for widgets and one for gadgets. As a result, we have to route the request for inventory to the correct system. Because we want to hide the peculiarities of the inventory systems from the other systems, we insert another Content-Based Router (230) that routes the message to the correct inventory system based on the type of item ordered (see figure). For example, all incoming messages with an item number starting with W are routed to the widget inventory system, and all orders with an item number starting with G are routed to the gadget inventory system.

[image: Image]

Routing the Inventory Request

Note that the intent of messages on the Point-to-Point Channels (103) between the Content-Based Router (230) and the inventory systems is different from the previous channel. These channels contain Command Messages (145), messages that instruct the system to execute the specified command, in this case verifying the inventory of an item.

Because the widget inventory system and the gadget inventory system use different internal data formats, we again insert Message Translators (85) to convert from the canonical New Order message format to a system-specific format.

What happens if the order item starts neither with W nor G? The Content-Based Router (230) routes the message to the INVALID_ORDER channel so that the invalid order can be processed accordingly, by notifying the customer, for example. This channel is a typical example of an Invalid Message Channel (115). It highlights the fact that the meaning of a message changes depending on what channel it is on. Both the NEW_ORDER channel and the INVALID_ORDER channel transport the same type of message, but in one case a new order is being processed, while in the other case the order is deemed invalid.

So far, we have assumed that each order contains only a single item. This would be pretty inconvenient for our customers because they would have to place a new order for each item. Also, we would end up shipping multiple orders to the same customer and incur unnecessary shipping costs. However, if we allow multiple items inside an order, which inventory system should verify the inventory for this order? We could use a Publish-Subscribe Channel (106) to send the order to each inventory system to pick out the items that it can process. But what would then happen to invalid items? How would we notice that neither inventory system processed the item? We want to maintain the central control the Content-Based Router (230) gives us, but we need to be able to route each order item individually.

Therefore, we insert a Splitter (259), a component that breaks a single message into multiple individual messages. In our case, the Splitter (259) splits a single Order message into multiple Order Item messages. Each Order Item message can then be routed to the correct inventory system using a Content-Based Router (230) as before; see the following figure.

[image: Image]

Processing Order Items Individually

Naturally, when the inventory for all items has been verified, we need to recombine the messages into a single message. We already learned that the component that can combine multiple messages into a single message is the Aggregator (268). Using both a Splitter (259) and an Aggregator (268), we can logically separate the message flow for individual order items from the flow for a complete order.

When designing an Aggregator (268), we have to make three key decisions:

• Which messages belong together (correlation)?

• How do we determine that all messages are received (the completeness condition)?

• How do we combine the individual messages into one result message (the aggregation algorithm)?

Let’s tackle these issues one by one. We can’t correlate order items by the customer ID, because a customer may place multiple orders in short succession. Therefore, we need a unique order ID for each order. We accomplish this by inserting a Content Enricher (336) into the part of the solution that takes orders (see figure). A Content Enricher (336) is a component that adds missing data items to an incoming message. In our case, the Content Enricher (336) adds a unique order ID to the message.

[image: Image]

Taking Orders with Enricher

Now that we have an order ID to correlate Order Item messages, we need to define the completeness condition and the aggregation algorithm for the Order Item Aggregator (268). Because we route all messages, including invalid items, to the Aggregator (268), the Aggregator (268) can simply use the number of items in the order (one of the fields in the Order message) to count until all order items arrive. The aggregation algorithm is similarly simple. The Aggregator (268) concatenates all Order Item messages back into a single Order message and publishes it to the VALIDATED_ORDER channel.

The combination of a Splitter (259), a Message Router (78), and an Aggregator (268) is fairly common. We refer to it as a Composed Message Processor (294). To simplify the figure, we insert the symbol for a Composed Message Processor (294) into the original message flow diagram:

[image: Image]

Revised Order Process Implementation

Checking Status

Despite connecting the systems via Message Channels (60), fulfilling an order can take some amount of time. For example, we may be out of a certain item and the inventory system may be holding the Inventory Check message until new items arrive. This is one of the advantages of asynchronous messaging: the communication is designed to happen at the pace of the components. While the inventory system is holding the message, the accounting system can still verify the customer’s credit standing. Once both steps are completed, the Aggregator (268) publishes the Validated Order message to initiate shipment and invoicing.

A long-running business process also means that both customers and managers are likely to want to know the status of a specific order. For example, if certain items are out of inventory, the customer may decide to process just those items that are in stock. Or, if the customer has not received the goods, it is useful if we can tell him or her that the goods are on their way (including the shipping company’s tracking number) or that there is an internal delay in the warehouse.

Tracking the status of an order with the current design is not so easy. Related messages flow through multiple systems. To ascertain the status of the order in the sequence of steps, we would have to know the “last” message related to this order. One of the advantages of a Publish-Subscribe Channel (106) is that we can add additional subscribers without disturbing the flow of messages. We can use this property to listen in to new and validated orders and store them in a Message Store (555). We could then query the Message Store (555) database for the status of an order (see figure):

[image: Image]

Adding a Message Store to Track Order Status

In situations where we use a Point-Point Channel (103), we cannot simply add a subscriber to the channel, because a Point-to-Point Channel (103) ensures that each message is only consumed by a single subscriber. However, we can insert a Wire Tap (547), a simple component that consumes a message off one channel and publishes it to two channels. We can then use the second channel to send messages to the Message Store (555); see figure.

[image: Image]

Tracking Messages with a Wire Tap

Storing message data in a central database has another significant advantage. In the original design, each message had to carry extraneous data in order to continue processing the message down the line. For example, the Validate Customer Standing message may have had to transport all sorts of customer data even though it required only the customer ID. This additional data is necessary so that the resulting message still contains all data from the original order message. Storing the New Order message in a Message Store (555) at the beginning of the message flow has the advantage that all subsequent components can refer to the Message Store (555) for important message data without all intermediate steps having to carry the data along. We refer to such a function as Claim Check (346)—messages can “check in” data for later retrieval. The downside of this approach is that accessing a central data store is not as reliable as sending messages across asynchronous Message Channels (60).

Now, the Message Store (555) is responsible for maintaining data related to the new message as well as the progress of the message within the process. This data gives us enough information to use the Message Store (555) to determine the next required steps in the process rather than connecting components with fixed Message Channels (60). For example, if the database contains reply messages from both the inventory systems and the billing system, we can conclude that the order has been validated and can send a message to the shipping and billing systems. Instead of making this decision in a separate Aggregator (268) component, we can do it right in the Message Store (555). Effectively, we are turning the Message Store (555) into a Process Manager (312).

A Process Manager (312) is a central component that manages the flow of messages through the system. The Process Manager (312) provides two main functions:

• Storing data between messages (inside a “process instance”)

• Keeping track of progress and determining the next step (by using a “process template”)

[image: Image]

Processing Orders with a Process Manager

This architecture turns the individual systems (e.g., the inventory systems) into shared business functions that can be accessed by other components as services, thus increasing reuse and simplifying maintenance. The services can be wired together via a message flow (for example, using a Composed Message Processor (294) to check inventory status for each order item) or orchestrated via a Process Manager (312). Using a Process Manager (312) makes changing the flow of messages much easier than our previous approach.

The new architecture exposes all services to a common services bus so that they can be invoked from any other component. We could turn the WGRUS IT infrastructure into an SOA by adding facilities to look up (“discover”) a service from a central service registry. In order to participate in this SOA, each service would have to provide additional functions. For example, each service would have to expose an interface contract that describes the functions provided by the service. Each request-reply service also needs to support the concept of a Return Address (159). A Return Address (159) allows the caller (the service consumer) to specify the channel where the service should send the reply message. This is important to allow the service to be reused in different contexts, each of which may require its own channel for reply messages.

The Process Manager (312) itself uses a persistent store (typically files or a relational database) to store data associated with each process instance. To allow the Web interface to query the status of an order, we could send a message to the Process Manager (312) or the order database. However, checking status is a synchronous process—the customer expects the response right away. Because the Web interface is a custom application, we decide to access the order database directly to query the order status. This form of Shared Database (47) is the simplest and most efficient approach, and we are always ensured that the Web interface displays the most current status. The potential downside of this approach is that the Web interface is tightly coupled to the database, a trade-off that we are willing to take.

One difficulty in exposing systems as services results from the fact that many legacy systems were not built with features such as Return Address (159) in mind. Therefore, we “wrap” access to the legacy system with a Smart Proxy (558). This Smart Proxy (558) enhances the basic system service with additional capability so that it can participate in an SOA. To do this, the Smart Proxy (558) intercepts both request and reply messages to and from the basic service (see figure).

[image: Image]

Inserting a Smart Proxy to Turn a Legacy System into a Shared Service

The Smart Proxy (558) can store information from the request message (e.g., the Return Address [159] specified by the requestor) and use this information to process the reply message, (e.g., route it to the correct reply channel). A Smart Proxy (558) is also very useful to track quality of service (e.g., response times) of an external service.

Change Address

WGRUS needs to deal with a number of addresses. For example, the invoice has to be sent to the customer’s billing address, while the goods are shipped to the shipping address. We want to allow the customer to maintain all these addresses through the Web interface to eliminate unnecessary manual steps.

We can choose between two basic approaches to get the correct billing and shipping addresses to the billing and shipping systems:

• Include address data with every New Order message

• Store address data in each system and replicate changes

The first option has the advantage that we can use an existing integration channel to transport the additional information. A potential downside is the additional data flowing across the middleware infrastructure; we pass the address data along with every order even though the address may change much less frequently.

When implementing the first option, we need to consider that the billing and shipping systems are packaged applications and were likely not designed with integration in mind. As such, they are unlikely to be able to accept addresses with a new order but rather use the address that is stored in their local database. To enable the systems to update the address with the New Order message, we need to execute two functions in the billing system (and the shipping system): First, we must update the address, and then we must send the bill (or ship the goods). Because the order of the two messages matters, we insert a simple Process Manager (312) component that receives a New Order message (which includes the current shipping and billing addresses and publishes two separate messages to the billing (or shipping) system (see figure).

[image: Image]

Including Address Data in the New Order Message

We need to keep in mind that the Channel Adapters (127) require messages to be formatted in the proprietary formats used by the applications (using so-called private messages). Because the New Order message arrives in the canonical message format, we need to perform a translation between the two formats. We could build the transformation into the Process Manager (312), but we actually prefer external Message Translators (85) so that the logic inside the Process Manager (312) is not affected by the possibly complicated data format required by the applications.

The second option uses data replication to propagate address changes to all affected systems independently of the New Order process. Whenever the address information changes in the Web interface, we propagate the changes to all interested systems using a Publish-Subscribe Channel (106). The systems store the updated address internally and use it when an Order message arrives. This approach reduces message traffic (assuming customers change addresses less frequently than they place orders). It can also reduce coupling between systems. Any system that uses an address can subscribe to the ADDRESS_CHANGE channel without affecting any other systems.

Because we are dealing with multiple types of addresses (shipping and billing addresses), we need to make sure that only the right type of address is stored in each system. We need to avoid sending an address change message to the shipping system if the address is a billing address. We accomplish this by using Message Filters (237) that pass only messages matching certain criteria (see figure).

We also use Message Translators (85) to translate the generic Address Change message into the specific message format used by the applications. In this case, we do not have to use a Message Translator (85) for the Web interface because we define the Canonical Data Model (355) as equal to the format of the Web interface application. This could limit our flexibility if we want to introduce other ways of changing addresses in the future, but for now it is sufficient.

[image: Image]

Propagating Address Changes via a Separate Publish-Subscribe Channel

Both the shipping and the billing systems store addresses in a relational database, so we use a database Channel Adapter (127) to update the data in each system.

How do we decide between the two options? In our situation, the message traffic is not much of a concern because we process only a few hundred orders a day, so either solution would be reasonably efficient. The main decision driver is going to be the internal structure of the applications. We may not be able to insert the addresses directly into the database, but rather through the applications’ business layer. In this case, the applications may perform additional validation steps and record the address change activity. The system may even be programmed to e-mail a confirmation message to the customer every time the address changes. This would get very annoying if the update occurred with every order. Such a condition would favor propagating address changes using dedicated messages that are sent only when the customer actually changes the address.

In general, we prefer well-defined, self-contained business actions such as “Change Address” and “Place Order” because they give us more flexibility in orchestrating the businesses processes. It all comes down to a question of granularity and the associated trade-offs. Fine-grained interfaces can lead to sluggish systems due to an excessive number of remote calls being made or messages being sent. For example, imagine an interface that exposes a separate method to change each address field. This approach would be efficient if the communication happens inside a single application—you update only those fields that changed. In an integration scenario, sending six or seven messages to update an address would be a significant overhead, plus we would have to deal with synchronizing the individual messages. Fine-grained interfaces also lead to tight coupling. If we change the address format by adding a new field, we have to define new message formats and change all other applications to send an additional message.

Coarse-grained interfaces solve these issues, but at a cost. We send fewer messages and are therefore more efficient and less tightly coupled. However, interfaces that are too coarse can limit our flexibility. If Send Invoice and Change Address are combined into one external function, we will never be able to change an address without sending a bill. So, as always, the best answer is the happy medium and depends on the specific trade-offs at work in the real-life scenario.

New Catalog

To place orders, customers need to see the currently offered items and their prices online. WGRUS’s catalog is driven by the offerings from the respective suppliers. However, one of the services that WGRUS provides to its customers is allowing them to view widgets and gadgets on the same site and to order both types of items in a single order. This function is an example of an Information Portal scenario—we combine information from multiple sources into a single view.

It turns out that both suppliers update their product catalog once every three months. Therefore, it makes relatively little sense to create a real-time messaging infrastructure to propagate catalog changes from the suppliers to WGRUS. Instead, we use File Transfer (43) integration to move catalog data from suppliers to WGRUS. The other advantage of using files is that they are easily and efficiently transported across public networks using FTP or similar protocols. In comparison, most asynchronous messaging infrastructures do not work well over the public Internet.

We still can use translators and adapters to transform the data to our internal catalog format. However, these translators process a whole catalog at once instead of one item at a time. This approach is much more efficient if we are dealing with large amounts of data in the same format.

[image: Image]

Updating Catalog Data via File Transfer

Announcements

In order to improve business, we want to announce specials to our customers every once in a while. To avoid annoying the customers, we allow each customer to specify which messages interest them. We also want to target specific messages to a specific subset of customers. For example, we may announce special deals only to preferred customers. When we need to send information to multiple recipients, a Publish-Subscribe Channel (106) immediately comes to mind. However, a Publish-Subscribe Channel (106) has some disadvantages. First, it allows any subscriber to listen to the published messages without the publisher’s knowledge. For example, we would not want smaller customers to receive special offers intended for high-volume customers. The second downside of Publish-Subscribe Channels (106) is that they work efficiently only on local networks. If we send data across wide-area networks via a Publish-Subscribe Channel (106), we have to send a separate copy of the message to each recipient. If a recipient is not interested in the message, we would have incurred unnecessary network traffic.

Therefore, we should look for a solution that allows subscribers to issue their subscription preferences and then send individual messages only to interested (and authorized) customers. To perform this function, we use a Dynamic Recipient List (249). A dynamic Recipient List (249) is the combination of two Message Routing (78) patterns. A Recipient List (249) is a router that propagates a single message to a set of recipients. The main difference between the Recipient List (249) and a Publish-Subscribe Channel (106) is that the Recipient List (249) addresses each recipient specifically and therefore has tight control over who receives messages. A Dynamic Router (243) is a router whose routing algorithm can change based on control messages. These control messages can take the form of subscription preferences issued by the subscribers. A dynamic Recipient List (249) is the result of combining these two patterns.

[image: Image]

Sending Announcements with a Dynamic Recipient List

If customers receive announcements via e-mail, the implementation of these patterns can use the mailing list’s features typically supplied by e-mail systems. Each recipient channel is then identified by an e-mail address. Likewise, if customers prefer to receive announcements via a Web services interface, each recipient channel is implemented by a SOAP request, and the channel address is the URI of the Web service. This example illustrates that the patterns we use to describe the solution design are independent of a specific transport technology.

Testing and Monitoring

Monitoring the correct execution of messages is a critical operations and support function. The Message Store (555) can provide us with some important business metrics, such as the average time to fulfill an order. However, we may need more detailed information for the successful operation of an integration solution. Let’s assume we enhance our solution to access an external credit agency to better assess our customer’s credit standing. Even if we show no outstanding payments, we may want to decline a customer’s order if the customer’s credit ranking is particularly poor. This is especially useful for new customers who do not have a payment history with us. Because the service is provided by an outside provider, we are charged for its use. To verify the provider’s invoice, we want to track our actual usage and reconcile the two reports. We cannot simply go by the number of orders, because the business logic may not request an external credit check for long-standing customers. Also, we may have a quality of service (QoS) agreement with the external provider. For example, if the response time exceeds a specified time, we may not have to pay for the request.

To make sure we are being billed correctly, we want to track the number of requests we make and the time it takes for the associated response to arrive. We have to be able to deal with two specific situations. First, the external service can process more than one request at a time, so we need to be able to match up request and reply messages. Second, since we treat the external service as a shared service inside our enterprise, we want to allow the service consumer to specify a Return Address (159), the channel where the service should send the reply message. Not knowing to which channel the reply is being sent can make it difficult to match request and reply messages.

Once again, the Smart Proxy (558) is the answer. We insert the Smart Proxy (558) between any service consumer and the external service. The Smart Proxy (558) intercepts each request to the service and replaces the Return Address (159) specified by the service consumer with a fixed reply channel. This causes the service to send all reply messages to the channel specified by the Smart Proxy (558). The proxy stores the original Return Address (159) so that it can forward the reply message to the channel originally specified by the consumer. The Smart Proxy (558) also measures the time elapsed between request and reply messages from the external service. The Smart Proxy (558) publishes this data to the Control Bus (540). The Control Bus (540) connects to a management console that collects metrics from many different components.

[image: Image]

Inserting a Smart Proxy to Track Response Times

Besides tracking our usage of the external credit service, we also want to make sure that the service is working correctly. The Smart Proxy (558) can report to the management console cases where no reply message is received within a specified time-out period. Much harder to detect are cases where the external service returns a reply message but the results in the message are incorrect. For example, if the external service malfunctions and returns a credit score of zero for every customer, we would end up denying every order. There are two mechanisms that can help us protect against such a scenario. First, we can periodically inject a Test Message (66) into the request stream. This Test Message (66) requests the score for a specific person so that the result is known. We can then use a test data verifier to check not only that a reply was received but also the accuracy of the message content. Because the Smart Proxy (558) supports Return Addresses (159), the test data generator can specify a special reply channel to separate test replies from regular replies (see figure).

[image: Image]

Inserting Test Messages to Verify Accurate Results

Another effective strategy to detect malfunctioning services is to take a statistical sample. For example, we may expect to decline an average of less than one in 10 orders due to customers’ poor standing. If we decline more than five orders in a row, this may be an indication that an external service or some business logic is malfunctioning. The management console could e-mail the five orders to an administrator, who can then take a quick look at the data to verify whether the rejections were justified.

Summary

We have walked through a fairly extensive integration scenario using different integration strategies such as File Transfer (43), Shared Database (47), and asynchronous Messaging (53). We routed, split, and aggregated messages. We introduced a Process Manager (312) to allow for more flexibility. We also added functions to monitor the correct operation of the solution. While the requirements for this example were admittedly simplified, the issues and design trade-offs we had to consider are very real. The solution diagrams and descriptions highlight how we can describe each solution in a vendor-neutral and technology-neutral language that is much more accurate than a high-level sequence diagram.

The integration scenario in this chapter focuses primarily on how to connect existing applications. For a detailed description of how to publish and consume messages from inside a custom application, see the examples in Chapter 6, “Interlude: Simple Messaging,” and Chapter 9, “Interlude: Composed Messaging.”

The remainder of the book contains detailed descriptions and code examples for each of the patterns that we used in our solution design, as well as many related patterns. The patterns are categorized by their primary intent between base patterns, channel patterns, message patterns, routing patterns, transformation patterns, endpoint patterns, and system management patterns. This arrangement makes it easy to read all patterns in sequence or to look up individual patterns as a reference.

Chapter 2. Integration Styles

Introduction

Enterprise integration is the task of making disparate applications work together to produce a unified set of functionality. These applications can be custom developed in house or purchased from third-party vendors. They likely run on multiple computers, which may represent multiple platforms, and may be geographically dispersed. Some of the applications may be run outside of the enterprise by business partners or customers. Other applications might not have been designed with integration in mind and are difficult to change. These issues and others like them make application integration complicated. This chapter explores multiple integration approaches that can help overcome these challenges.

Application Integration Criteria

What makes good application integration? If integration needs were always the same, there would be only one integration style. Yet, like any complex technological effort, application integration involves a range of considerations and consequences that should be taken into account for any integration opportunity.

The fundamental criterion is whether to use application integration at all. If you can develop a single, standalone application that doesn’t need to collaborate with any other applications, you can avoid the whole integration issue entirely. Realistically, though, even a simple enterprise has multiple applications that need to work together to provide a unified experience for the enterprise’s employees, partners, and customers.

The following are some other main decision criteria.

Application coupling—Integrated applications should minimize their dependencies on each other so that each can evolve without causing problems to the others. As explained in Chapter 1, “Solving Integration Problems Using Patterns,” tightly coupled applications make numerous assumptions about how the other applications work; when the applications change and break those assumptions, the integration between them breaks. Therefore, the interfaces for integrating applications should be specific enough to implement useful functionality but general enough to allow the implementation to change as needed.

Intrusiveness—When integrating an application into an enterprise, developers should strive to minimize both changes to the application and the amount of integration code needed. Yet, changes and new code are often necessary to provide good integration functionality, and the approaches with the least impact on the application may not provide the best integration into the enterprise.

Technology selection—Different integration techniques require varying amounts of specialized software and hardware. Such tools can be expensive, can lead to vendor lock-in, and can increase the learning curve for developers. On the other hand, creating an integration solution from scratch usually results in more effort than originally intended and can mean reinventing the wheel.

Data format—Integrated applications must agree on the format of the data they exchange. Changing existing applications to use a unified data format may be difficult or impossible. Alternatively, an intermediate translator can unify applications that insist on different data formats. A related issue is data format evolution and extensibility—how the format can change over time and how that change will affect the applications.

Data timeliness—Integration should minimize the length of time between when one application decides to share some data and other applications have that data. This can be accomplished by exchanging data frequently and in small chunks. However, chunking a large set of data into small pieces may introduce inefficiencies. Latency in data sharing must be factored into the integration design. Ideally, receiver applications should be informed as soon as shared data is ready for consumption. The longer sharing takes, the greater the opportunity for applications to get out of sync and the more complex integration can become.

Data or functionality—Many integration solutions allow applications to share not only data but functionality as well, because sharing of functionality can provider better abstraction between the applications. Even though invoking functionality in a remote application may seem the same as invoking local functionality, it works quite differently, with significant consequences for how well the integration works.

Remote Communication—Computer processing is typically synchronous—that is, a procedure waits while its subprocedure executes. However, calling a remote subprocedure is much slower than a local one so that a procedure may not want to wait for the subprocedure to complete; instead, it may want to invoke the subprocedure asynchronously, that is, starting the subprocedure but continuing with its own processing simultaneously. Asynchronicity can make for a much more efficient solution, but such a solution is also more complex to design, develop, and debug.

Reliability—Remote connections are not only slow, but they are much less reliable than a local function call. When a procedure calls a subprocedure inside a single application, it’s a given that the subprocedure is available. This is not necessarily true when communicating remotely; the remote application may not even be running or the network may be temporarily unavailable. Reliable, asynchronous communication enables the source application to go on to other work, confident that the remote application will act sometime later.

So, as you can see, there are several different criteria that must be considered when choosing and designing an integration approach. The question then becomes, Which integration approach best addresses which of these criteria?

Application Integration Options

There is no one integration approach that addresses all criteria equally well. Therefore, multiple approaches for integrating applications have evolved over time. The various approaches can be summed up in four main integration styles.

File Transfer (43)—Have each application produce files of shared data for others to consume and consume files that others have produced.

Shared Database (47)—Have the applications store the data they wish to share in a common database.

Remote Procedure Invocation (50)—Have each application expose some of its procedures so that they can be invoked remotely, and have applications invoke those to initiate behavior and exchange data.

Messaging (53)—Have each application connect to a common messaging system, and exchange data and invoke behavior using messages.

This chapter presents each style as a pattern. The four patterns share the same problem statement—the need to integrate applications—and very similar contexts. What differentiates them are the forces searching for a more elegant solution. Each pattern builds on the last, looking for a more sophisticated approach to address the shortcomings of its predecessors. Thus, the pattern order reflects an increasing order of sophistication, but also increasing complexity.

The trick is not to choose one style to use every time but to choose the best style for a particular integration opportunity. Each style has its advantages and disadvantages. Applications may integrate using multiple styles so that each point of integration takes advantage of the style that suits it best. Likewise, an application may use different styles to integrate with different applications, choosing the style that works best for the other application. As a result, many integration approaches can best be viewed as a hybrid of multiple integration styles. To support this type of integration, many integration and EAI middleware products employ a combination of styles, all of which are effectively hidden in the product’s implementation.

The patterns in the remainder of this book expand on the Messaging (53) integration style. We focus on messaging because we believe that it provides a good balance between the integration criteria but is also the most difficult style to work with. As a result, messaging is still the least well understood of the integration styles and a technology ripe with patterns that quickly explain how to use it best. Finally, messaging is the basis for many commercial EAI products, so explaining how to use messaging well also goes a long way in teaching you how to use those products. The focus of this section is to highlight the issues involved with application integration and how messaging fits into the mix.

File Transfer

by Martin Fowler

[image: Image]

An enterprise has multiple applications that are being built independently, with different languages and platforms.

How can I integrate multiple applications so that they work together and can exchange information?

In an ideal world, you might imagine an organization operating from a single, cohesive piece of software, designed from the beginning to work in a unified and coherent way. Of course, even the smallest operations don’t work like that. Multiple pieces of software handle different aspects of the enterprise. This is due to a host of reasons.

• People buy packages that are developed by outside organizations.

• Different systems are built at different times, leading to different technology choices.

• Different systems are built by different people whose experience and preferences lead them to different approaches to building applications.

• Getting an application out and delivering value is more important than ensuring that integration is addressed, especially when that integration doesn’t add any value to the application under development.

As a result, any organization has to worry about sharing information between very divergent applications. These can be written in different languages, based on different platforms, and have different assumptions about how the business operates.

Tying together such applications requires a thorough understanding of how to link together applications on both the business and technical levels. This is a lot easier if you minimize what you need to know about how each application works.

What is needed is a common data transfer mechanism that can be used by a variety of languages and platforms but that feels natural to each. It should require a minimal amount of specialized hardware and software, making use of what the enterprise already has available.

Files are a universal storage mechanism, built into any enterprise operating system and available from any enterprise language. The simplest approach would be to somehow integrate the applications using files.

Have each application produce files that contain the information the other applications must consume. Integrators take the responsibility of transforming files into different formats. Produce the files at regular intervals according to the nature of the business.

[image: Image]

An important decision with files is what format to use. Very rarely will the output of one application be exactly what’s needed for another, so you’ll have to do a fair bit of processing of files along the way. This means not only that all the applications that use a file have to read it, but that you also have to be able to use processing tools on it. As a result, standard file formats have grown up over time. Mainframe systems commonly use data feeds based on the file system formats of COBOL. UNIX systems use text-based files. The current method is to use XML. An industry of readers, writers, and transformation tools has built up around each of these formats.

Another issue with files is when to produce them and consume them. Since there’s a certain amount of effort required to produce and process a file, you usually don’t want to work with them too frequently. Typically, you have some regular business cycle that drives the decision: nightly, weekly, quarterly, and so on. Applications get used to when a new file is available and processes it at its time.

The great advantage of files is that integrators need no knowledge of the internals of an application. The application team itself usually provides the file. The file’s contents and format are negotiated with integrators, although if a package is used, the choices are often limited. The integrators then deal with the transformations required for other applications, or they leave it up to the consuming applications to decide how they want to manipulate and read the file. As a result, the different applications are quite nicely decoupled from each other. Each application can make internal changes freely without affecting other applications, providing they still produce the same data in the files in the same format. The files effectively become the public interface of each application.

Part of what makes File Transfer simple is that no extra tools or integration packages are needed, but that also means that developers have to do a lot of the work themselves. The applications must agree on file-naming conventions and the directories in which they appear. The writer of a file must implement a strategy to keep the file names unique. The applications must agree on which one will delete old files, and the application with that responsibility will have to know when a file is old and no longer needed. The applications will need to implement a locking mechanism or follow a timing convention to ensure that one application is not trying to read the file while another is still writing it. If all of the applications do not have access to the same disk, then some application must take responsibility for transferring the file from one disk to another.

One of the most obvious issues with File Transfer is that updates tend to occur infrequently, and as a result systems can get out of synchronization. A customer management system can process a change of address and produce an extract file each night, but the billing system may send the bill to an old address on the same day. Sometimes lack of synchronization isn’t a big deal. People often expect a certain lag in getting information around, even with computers. At other times the result of using stale information is a disaster. When deciding on when to produce files, you have to take the freshness needs of consumers into account.

In fact, the biggest problem with staleness is often on the software development staff themselves, who frequently must deal with data that isn’t quite right. This can lead to inconsistencies that are difficult to resolve. If a customer changes his address on the same day with two different systems, but one of them makes an error and gets the wrong street name, you’ll have two different addresses for a customer. You’ll need some way to figure out how to resolve this. The longer the period between file transfers, the more likely and more painful this problem can become.

Of course, there’s no reason that you can’t produce files more frequently. Indeed, you can think of Messaging (53) as File Transfer where you produce a file with every change in an application. The problem then is managing all the files that get produced, ensuring that they are all read and that none get lost. This goes beyond what file system–based approaches can do, particularly since there are expensive resource costs associated with processing a file, which can get prohibitive if you want to produce lots of files quickly. As a result, once you get to very fine-grained files, it’s easier to think of them as Messaging (53).

To make data available more quickly and enforce an agreed-upon set of data formats, use a Shared Database (47). To integrate applications’ functionality rather than their data, use Remote Procedure Invocation (50). To enable frequent exchanges of small amounts of data, perhaps used to invoke remote functionality, use Messaging (53).

Shared Database

by Martin Fowler

[image: Image]

An enterprise has multiple applications that are being built independently, with different languages and platforms. The enterprise needs information to be shared rapidly and consistently.

How can I integrate multiple applications so that they work together and can exchange information?

File Transfer (43) enables applications to share data, but it can lack timeliness—yet timeliness of integration is often critical. If changes do not quickly work their way through a family of applications, you are likely to make mistakes due to the staleness of the data. For modern businesses, it is imperative that everyone have the latest data. This not only reduces errors, but also increases people’s trust in the data itself.

Rapid updates also allow inconsistencies to be handled better. The more frequently you synchronize, the less likely you are to get inconsistencies and the less effort they are to deal with. But however rapid the changes, there are still going to be problems. If an address is updated inconsistently in rapid succession, how do you decide which one is the true address? You could take each piece of data and say that one application is the master source for that data, but then you’d have to remember which application is the master for which data.

File Transfer (43) also may not enforce data format sufficiently. Many of the problems in integration come from incompatible ways of looking at the data. Often these represent subtle business issues that can have a huge effect. A geological database may define an oil well as a single drilled hole that may or may not produce oil. A production database may define a well as multiple holes covered by a single piece of equipment. These cases of semantic dissonance are much harder to deal with than inconsistent data formats. (For a much deeper discussion of these issues, it’s really worth reading Data and Reality [Kent].) What is needed is a central, agreed-upon datastore that all of the applications share so each has access to any of the shared data whenever it needs it.

Integrate applications by having them store their data in a single Shared Database, and define the schema of the database to handle all the needs of the different applications.

[image: Image]

If a family of integrated applications all rely on the same database, then you can be pretty sure that they are always consistent all of the time. If you do get simultaneous updates to a single piece of data from different sources, then you have transaction management systems that handle that about as gracefully as it ever can be managed. Since the time between updates is so small, any errors are much easier to find and fix.

Shared Database is made much easier by the widespread use of SQL-based relational databases. Pretty much all application development platforms can work with SQL, often with quite sophisticated tools. So you don’t have to worry about multiple file formats. Since any application pretty much has to use SQL anyway, this avoids adding yet another technology for everyone to master.

Since every application is using the same database, this forces out problems in semantic dissonance. Rather than leaving these problems to fester until they are difficult to solve with transforms, you are forced to confront them and deal with them before the software goes live and you collect large amounts of incompatible data.

One of the biggest difficulties with Shared Database is coming up with a suitable design for the shared database. Coming up with a unified schema that can meet the needs of multiple applications is a very difficult exercise, often resulting in a schema that application programmers find difficult to work with. And if the technical difficulties of designing a unified schema aren’t enough, there are also severe political difficulties. If a critical application is likely to suffer delays in order to work with a unified schema, then often there is irresistible pressure to separate. Human conflicts between departments often exacerbate this problem.

Another, harder limit to Shared Database is external packages. Most packaged applications won’t work with a schema other than their own. Even if there is some room for adaptation, it’s likely to be much more limited than integrators would like. Adding to the problem, software vendors usually reserve the right to change the schema with every new release of the software.

This problem also extends to integration after development. Even if you can organize all your applications, you still have an integration problem should a merger of companies occur.

Multiple applications using a Shared Database to frequently read and modify the same data can turn the database into a performance bottleneck and can cause deadlocks as each application locks others out of the data. When applications are distributed across multiple locations, accessing a single, shared database across a wide-area network is typically too slow to be practical. Distributing the database as well allows each application to access the database via a local network connection, but confuses the issue of which computer the data should be stored on. A distributed database with locking conflicts can easily become a performance nightmare.

To integrate applications’ functionality rather than their data, use Remote Procedure Invocation (50). To enable frequent exchanges of small amounts of data using a format per datatype rather than one universal schema, use Messaging (53).

Remote Procedure Invocation

by Martin Fowler

[image: Image]

An enterprise has multiple applications that are being built independently, with different languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange information?

File Transfer (43) and Shared Database (47) enable applications to share their data, which is an important part of application integration, but just sharing data is often not enough. Changes in data often require actions to be taken across different applications. For example, changing an address may be a simple change in data, or it may trigger registration and legal processes to take into account different rules in different legal jurisdictions. Having one application invoke such processes directly in others would require applications to know far too much about the internals of other applications.

This problem mirrors a classic dilemma in application design. One of the most powerful structuring mechanisms in application design is encapsulation, where modules hide their data through a function call interface. In this way, they can intercept changes in data to carry out the various actions they need to perform when the data is changed. Shared Database (47) provides a large, unencapsulated data structure, which makes it much harder to do this. File Transfer (43) allows an application to react to changes as it processes the file, but the process is delayed.

The fact that Shared Database (47) has unencapsulated data also makes it more difficult to maintain a family of integrated applications. Many changes in any application can trigger a change in the database, and database changes have a considerable ripple effect through every application. As a result, organizations that use Shared Database (47) are often very reluctant to change the database, which means that the application development work is much less responsive to the changing needs of the business.

What is needed is a mechanism for one application to invoke a function in another application, passing the data that needs to be shared and invoking the function that tells the receiver application how to process the data.

Develop each application as a large-scale object or component with encapsulated data. Provide an interface to allow other applications to interact with the running application.

[image: Image]

Remote Procedure Invocation applies the principle of encapsulation to integrating applications. If an application needs some information that is owned by another application, it asks that application directly. If one application needs to modify the data of another, it does so by making a call to the other application. This allows each application to maintain the integrity of the data it owns. Furthermore, each application can alter the format of its internal data without affecting every other application.

A number of technologies, such as CORBA, COM, .NET Remoting, and Java RMI, implement Remote Procedure Invocation (also referred to as Remote Procedure Call, or RPC). These approaches vary as to how many systems support them and their ease of use. Often these environments add additional capabilities, such as transactions. For sheer ubiquity, the current favorite is Web services, using standards such as SOAP and XML. A particularly valuable feature of Web services is that they work easily with HTTP, which is easy to get through firewalls.

The fact that there are methods that wrap the data makes it easier to deal with semantic dissonance. Applications can provide multiple interfaces to the same data, allowing some clients to see one style and others a different style. Even updates can use multiple interfaces. This provides a lot more ability to support multiple points of view than can be achieved by relational views. However, it is awkward for integrators to add transformation components, so each application has to negotiate its interface with its neighbors.

Since software developers are used to procedure calls, Remote Procedure Invocation fits in nicely with what they are already used to. Actually, this is more of a disadvantage than an advantage. There are big differences in performance and reliability between remote and local procedure calls. If people don’t understand these, then Remote Procedure Invocation can lead to slow and unreliable systems (see [Waldo], [EAA]).

Although encapsulation helps reduce the coupling of the applications by eliminating a large shared data structure, the applications are still fairly tightly coupled together. The remote calls that each system supports tend to tie the different systems into a growing knot. In particular, sequencing—doing certain things in a particular order—can make it difficult to change systems independently. These types of problems often arise because issues that aren’t significant within a single application become so when integrating applications. People often design the integration the way they would design a single application, unaware that the rules of the engagement change dramatically.

To integrate applications in a more loosely coupled, asynchronous fashion, use Messaging (53) to enable frequent exchanges of small amounts of data, ones that are perhaps used to invoke remote functionality.

Messaging

[image: Image]

An enterprise has multiple applications that are being built independently, with different languages and platforms. The enterprise needs to share data and processes in a responsive way.

How can I integrate multiple applications so that they work together and can exchange information?

File Transfer (43) and Shared Database (47) enable applications to share their data but not their functionality. Remote Procedure Invocation (50) enables applications to share functionality, but it tightly couples them as well. Often the challenge of integration is about making collaboration between separate systems as timely as possible, without coupling systems together in such a way that they become unreliable either in terms of application execution or application development.

File Transfer (43) allows you to keep the applications well decoupled but at the cost of timeliness. Systems just can’t keep up with each other. Collaborative behavior is way too slow. Shared Database (47) keeps data together in a responsive way but at the cost of coupling everything to the database. It also fails to handle collaborative behavior.

Faced with these problems, Remote Procedure Invocation (50) seems an appealing choice. But extending a single application model to application integration dredges up plenty of other weaknesses. These weaknesses start with the essential problems of distributed development. Despite that RPCs look like local calls, they don’t behave the same way. Remote calls are slower, and they are much more likely to fail. With multiple applications communicating across an enterprise, you don’t want one application’s failure to bring down all of the other applications. Also, you don’t want to design a system assuming that calls are fast, and you don’t want each application knowing the details about other applications, even if it’s only details about their interfaces.

What we need is something like File Transfer (43) in which lots of little data packets can be produced quickly and transferred easily, and the receiver application is automatically notified when a new packet is available for consumption. The transfer needs a retry mechanism to make sure it succeeds. The details of any disk structure or database for storing the data needs to be hidden from the applications so that, unlike Shared Database (47), the storage schema and details can be easily changed to reflect the changing needs of the enterprise. One application should be able to send a packet of data to another application to invoke behavior in the other application, like Remote Procedure Invocation (50), but without being prone to failure. The data transfer should be asynchronous so that the sender does not need to wait on the receiver, especially when retry is necessary.

Use Messaging to transfer packets of data frequently, immediately, reliably, and asynchronously, using customizable formats.

[image: Image]

Asynchronous messaging is fundamentally a pragmatic reaction to the problems of distributed systems. Sending a message does not require both systems to be up and ready at the same time. Furthermore, thinking about the communication in an asynchronous manner forces developers to recognize that working with a remote application is slower, which encourages design of components with high cohesion (lots of work locally) and low adhesion (selective work remotely).

Messaging systems also allow much of the decoupling you get when using File Transfer (43). Messages can be transformed in transit without either the sender or receiver knowing about the transformation. The decoupling allows integrators to choose between broadcasting messages to multiple receivers, routing a message to one of many receivers, or other topologies. This separates integration decisions from the development of the applications. Since human issues tend to separate application development from application integration, this approach works with human nature rather than against it.

The transformation means that separate applications can have quite different conceptual models. Of course, this means that semantic dissonance will occur. However, the messaging viewpoint is that the measures used by Shared Database (47) to avoid semantic dissonance are too complicated to work in practice. Also, semantic dissonance is going to occur with third-party applications and with applications added as part of a corporate merger, so the messaging approach is to address the issue rather than design applications to avoid it.

By sending small messages frequently, you also allow applications to collaborate behaviorally as well as share data. If a process needs to be launched once an insurance claim is received, it can be done immediately by sending a message when a single claim comes in. Information can be requested and a reply made rapidly. While such collaboration isn’t going to be as fast as Remote Procedure Invocation (50), the caller needn’t stop while the message is being processed and the response returned. And messaging isn’t as slow as many people think—many messaging solutions originated in the financial services industry where thousands of stock quotes or trades have to pass through a messaging system every second.

This book is about Messaging, so you can safely assume that we consider Messaging to be generally the best approach to enterprise application integration. You should not assume, however, that it is free of problems. The high frequency of messages in Messaging reduces many of the inconsistency problems that bedevil File Transfer (43), but it doesn’t remove them entirely. There are still going to be some lag problems with systems not being updated quite simultaneously. Asynchronous design is not the way most software people are taught, and as a result there are many different rules and techniques in place. The messaging context makes this a bit easier than programming in an asynchronous application environment like X Windows, but asynchrony still has a learning curve. Testing and debugging are also harder in this environment.

The ability to transform messages has the nice benefit of allowing applications to be much more decoupled from each other than in Remote Procedure Invocation (50). But this independence does mean that integrators are often left with writing a lot of messy glue code to fit everything together.

Once you decide that you want to use Messaging for system integration, there are a number of new issues to consider and practices you can employ.

How do you transfer packets of data?

A sender sends data to a receiver by sending a Message (66) via a Message Channel (60) that connects the sender and receiver.

How do you know where to send the data?

If the sender does not know where to address the data, it can send the data to a Message Router (78), which will direct the data to the proper receiver.

How do you know what data format to use?

If the sender and receiver do not agree on the data format, the sender can direct the data to a Message Translator (85) that will convert the data to the receiver’s format and then forward the data to the receiver.

If you’re an application developer, how do you connect your application to the messaging system?

An application that wishes to use messaging will implement Message Endpoints (95) to perform the actual sending and receiving.

Chapter 3. Messaging Systems

Introduction

In Chapter 2, “Integration Styles,” we discussed the various options for connecting applications with one another, including Messaging (53). Messaging makes applications loosely coupled by communicating asynchronously, which also makes the communication more reliable because the two applications do not have to be running at the same time. Messaging makes the messaging system responsible for transferring data from one application to another, so the applications can focus on what data they need to share as opposed to how to share it.

Basic Messaging Concepts

Like most technologies, Messaging (53) involves certain basic concepts. Once you understand these concepts, you can make sense of the technology even before you understand all of the details about how to use it. The following are the basic messaging concepts.

Channels—Messaging applications transmit data through a Message Channel (60), a virtual pipe that connects a sender to a receiver. A newly installed messaging system typically doesn’t contain any channels; you must determine how your applications need to communicate and then create the channels to facilitate it.

Messages—A Message (66) is an atomic packet of data that can be transmitted on a channel. Thus, to transmit data, an application must break the data into one or more packets, wrap each packet as a message, and then send the message on a channel. Likewise, a receiver application receives a message and must extract the data from the message to process it. The message system will try repeatedly to deliver the message (e.g., transmit it from the sender to the receiver) until it succeeds.

Pipes and Filters—In the simplest case, the messaging system delivers a message directly from the sender’s computer to the receiver’s computer. However, certain actions often need to be performed on the message after it is sent by its original sender but before it is received by its final receiver. For example, the message may have to be validated or transformed because the receiver expects a message format different from the sender’s. The Pipes and Filters (70) architecture describes how multiple processing steps can be chained together using channels.

Routing—In a large enterprise with numerous applications and channels to connect them, a message may have to go through several channels to reach its final destination. The route a message must follow may be so complex that the original sender does not know what channel will get the message to the final receiver. Instead, the original sender sends the message to a Message Router (78), an application component that takes the place of a filter in the Pipes and Filters (70) architecture. The router then determines how to navigate the channel topology and directs the message to the final receiver, or at least to the next router.

Transformation—Various applications may not agree on the format for the same conceptual data; the sender formats the message one way, but the receiver expects it to be formatted another way. To reconcile this, the message must go through an intermediate filter, a Message Translator (85), which converts the message from one format to another.

Endpoints—Most applications do not have any built-in capability to interface with a messaging system. Rather, they must contain a layer of code that knows both how the application works and how the messaging system works, bridging the two so that they work together. This bridge code is a set of coordinated Message Endpoints (95) that enable the application to send and receive messages.

Book Organization

The patterns in this chapter provide you with the basic vocabulary and understanding of how to achieve enterprise integration using Messaging (53). Each subsequent chapter builds on one of the base patterns in this chapter and covers that particular topic in more depth.

[image: Image]

Relationship of Root Patterns and Chapters

You can read this chapter straight through for an overview of the main topics in Messaging (53). For more details about any one of these topics, skip ahead to the chapter associated with that particular pattern.

Message Channel

[image: Image]

An enterprise has two separate applications that need to communicate by using Messaging (53).

How does one application communicate with another using messaging?

Once a group of applications has a messaging system available, it’s tempting to think that any application can communicate with any other application anytime you want it to. Yet, the messaging system does not magically connect all of the applications.

[image: Image]

Applications Magically Connected

Likewise, it’s not as though an application just randomly throws out information into the messaging system while other applications just randomly grab whatever information they run across. (Even if this worked, it wouldn’t be very efficient.) Rather, the application sending out the information knows what sort of information it is, and the applications that would like to receive information aren’t looking for just any information but for particular types of information they can use. So the messaging system isn’t a big bucket that applications throw information into and pull information out of. It’s a set of connections that enables applications to communicate by transmitting information in predetermined, predictable ways.

Connect the applications using a Message Channel, where one application writes information to the channel and the other one reads that information from the channel.

[image: Image]

When an application has information to communicate, it doesn’t just fling the information into the messaging system but adds the information to a particular Message Channel. An application receiving information doesn’t just pick it up at random from the messaging system; it retrieves the information from a particular Message Channel.

The application sending information doesn’t necessarily know what particular application will end up retrieving it, but it can be assured that the application that retrieves the information is interested in the information. This is because the messaging system has different Message Channels for different types of information the applications want to communicate. When an application sends information, it doesn’t randomly add the information to any channel available; it adds it to a channel whose specific purpose is to communicate that sort of information. Likewise, an application that wants to receive particular information doesn’t pull info off some random channel; it selects what channel to get information from based on what type of information it wants.

Channels are logical addresses in the messaging system. How they’re actually implemented depends on the messaging system product and its implementation. Perhaps every Message Endpoint (95) has a direct connection to every other endpoint, or perhaps they’re all connected through a central hub. Perhaps several separate logical channels are configured as one physical channel that nevertheless keeps straight which messages are intended for which destination. The set of defined logical channels hides these configuration details from the applications.

A messaging system doesn’t automatically come preconfigured with all of the message channels the applications need to communicate. Rather, the developers designing the applications and the communication between them have to decide what channels they need for the communication. Then the system administrator who installs the messaging system software must also configure it to set up the channels that the applications expect. Although some messaging system implementations support creating new channels while the applications are running, this isn’t very useful because other applications besides the one that creates the channel must know about the new channel so they can start using it too. Thus, the number and purpose of channels available tend to be fixed at deployment time. (There are exceptions to this rule; see the introduction to Chapter 4, “Messaging Channels.”)

A Little Bit of Messaging Vocabulary

So what do we call the applications that communicate via a Message Channel? There are a number of terms out there that are largely equivalent. The most generic terms are probably sender and receiver; an application sends a message to a Message Channel to be received by another application. Other popular terms are producer and consumer. You will also see publisher and subscriber, but they are geared more toward Publish-Subscribe Channels (106) and are often used in generic form. Sometimes we say that an application listens on a channel to which another application talks. In the world of Web services, we generally talk about a requester and a provider. These terms usually imply that the requester sends a message to the provider and receives a response back. In the olden days we called these client and server (the terms are equivalent, but saying “client” and “server” is not cool).

Now it gets confusing. When dealing with Web services, the application that sends a message to the service provider is often referred to as the consumer of the service even though it sends the request message. We can think of it in such a way that the consumer sends a message to the provider and then consumes the response. Luckily, use of the term with this meaning is limited to Remote Procedure Invocation (50) scenarios. An application that sends or receives messages may be called a client of the messaging system; a more specific term is endpoint or message endpoint.

Something that often fools developers when they first get started with using a messaging system is what exactly needs to be done to create a channel. A developer can write Java code that calls the method createQueue defined in the JMS API or .NET code that includes the statement new MessageQueue, but neither code actually allocates a new queue resource in the messaging system. Rather, these pieces of code simply instantiate a runtime object that provides access to a resource that was already created in the messaging system using its administration tools.

There is another issue you should keep in mind when designing the channels for a messaging system: Channels are cheap, but they’re not free. Applications need multiple channels for transmitting different types of information and transmitting the same information to lots of other applications. Each channel requires memory to represent the messages; persistent channels require disk space as well. Even if an enterprise system had unlimited memory and disk space, any messaging system implementation usually imposes some hard or practical limit to how many channels it can service consistently. So plan on creating new channels as your application needs them, but if it needs thousands of channels or needs to scale in ways that may require thousands of channels, you’ll need to choose a highly scalable messaging system implementation and test that scalability to make sure it meets your needs.

Channel Names

If channels are logical addresses, what do these addresses look like? As in so many cases, the detailed answer depends on the implementation of the messaging system. Nevertheless, in most cases channels are referenced by an alphanumeric name, such as MyChannel. Many messaging systems support a hierarchical channel-naming scheme, which enables you to organize channels in a way that is similar to a file system with folders and subfolders. For example, MyCorp/Prod/OrderProcessing/NewOrders would indicate a channel that is used in a production application at MyCorp and contains new orders.

There are two different kinds of message channels: Point-to-Point Channels (103) and Publish-Subscribe Channels (106). Mixing different data types on the same channel can cause a lot of confusion; to avoid this, use separate Datatype Channels (111). Selective Consumer (515) makes one physical channel act logically like multiple channels. Applications that use messaging often benefit from a special channel for invalid messages, an Invalid Message Channel. Applications that wish to use Messaging (53) but do not have access to a messaging client can still connect to the messaging system using Channel Adapters (127). A well-designed set of channels forms a Message Bus (137) that acts like a messaging API for a whole group of applications.

Example: Stock Trading

When a stock trading application makes a trade, it puts the request on a Message Channel for trade requests. Another application that processes trade requests will look for those it can process on that same message channel. If the requesting application needs to request a stock quote, it will probably use a different Message Channel, one designed for stock quotes, so that the quote requests stay separate from the trade requests.

Example: J2EE JMS Reference Implementation

Let’s look at how to create a Message Channel in JMS. The J2EE SDK ships with a reference implementation of the J2EE services, including JMS. The reference server can be started with the j2ee command. Message channels have to be configured using the j2eeadmin tool. This tool can configure both queues and topics.

j2eeadmin -addJmsDestination jms/mytopic topic
j2eeadmin -addJmsDestination jms/myqueue queue

Once the channels have been administered (created), they can be accessed by JMS client code.

Context jndiContext = new InitialContext();
Queue myQueue = (Queue) jndiContext.lookup("jms/myqueue");
Topic myTopic = (Topic) jndiContext.lookup("jms/mytopic");

The JNDI lookup doesn’t create the queue (or topic); it was already created by the j2eeadmin command. The JNDI lookup simply creates a Queue instance in Java that models and provides access to the queue structure in the messaging system.

Example: IBM WebSphere MQ

If your messaging system implementation is IBM’s WebSphere MQ for Java, which implements JMS, you’ll use the WebSphere MQ JMS administration tool to create destinations. This will create a queue named myQueue.

DEFINE Q(myQueue)

Once that queue exists in WebSphere MQ, an application can access the queue.

WebSphere MQ, without the full WebSphere Application Server, does not include a JNDI implementation, so we cannot use JNDI to look up the queue as we did in the J2EE example. Rather, we must access the queue via a JMS session, like this.

Session session = // create the session
Queue queue = session.createQueue("myQueue");

Example: Microsoft MSMQ

MSMQ provides a number of different ways to create a message channel, called a queue. You can create a queue using the Microsoft Message Queue Explorer or the Computer Management console (see figure). From here you can set queue properties or delete queues.

[image: Image]

Alternatively, you can create the queue using code.

using System.Messaging;
...
MessageQueue.Create("MyQueue");

Once the queue is created, an application can access it by creating a MessageQueue instance, passing the name of the queue.

MessageQueue mq = new MessageQueue("MyQueue");

Message

[image: Image]

An enterprise has two separate applications that are communicating via Messaging (53), using a Message Channel (60) that connects them.

How can two applications connected by a Message Channel exchange a piece of information?

A Message Channel (60) can often be thought of as a pipe, a conduit from one application to another. It might stand to reason then that data could be poured into one end, like water, and it would come flowing out of the other end. But most application data isn’t one continuous stream; it consists of units, such as records, objects, database rows, and the like. So a channel must transmit units of data.

What does it mean to “transmit” data? In a function call, the caller can pass a parameter by reference by passing a pointer to the data’s address in memory; this works because both the caller and the function share the same memory heap. Similarly, two threads in the same process can pass a record or object by passing a pointer, since they both share the same memory space.

Two separate processes passing a piece of data have more work to do. Since they each have their own memory space, they have to copy the data from one memory space to the other. The data is usually transmitted as a byte stream, the most basic form of data. This means that the first process must marshal the data into byte form, and then copy it from the first process to the second one; the second process will unmarshal the data back into its original form, such that the second process then has a copy of the original data in the first process. Marshaling is how a Remote Procedure Call (RPC) sends arguments to the remote process and how the process returns the result.

So messaging transmits discrete units of data, and it does so by marshaling the data from the sender and unmarshaling it in the receiver so that the receiver has its own local copy. What would be helpful would be a simple way to wrap a unit of data such that it is appropriate to transmit the data on a messaging channel.

Package the information into a Message, a data record that the messaging system can transmit through a Message Channel.

[image: Image]

Thus, any data that is to be transmitted via a messaging system must be converted into one or more messages that can be sent through messaging channels.

A message consists of two basic parts.

1. Header—Information used by the messaging system that describes the data being transmitted, its origin, its destination, and so on.

2. Body—The data being transmitted, which is generally ignored by the messaging system and simply transmitted as is.

This concept is not unique to messaging. Both postal service mail and e-mail send data as discrete mail messages. An Ethernet network transmits data as packets, as does the IP part of TCP/IP such as the Internet. Streaming media on the Internet is actually a series of packets.

To the messaging system, all messages are the same: some body of data to be transmitted as described by the header. However, to the applications programmer, there are different types of messages—that is, different application styles of use. Use a Command Message (145) to invoke a procedure in another application. Use a Document Message (147) to pass a set of data to another application. Use an Event Message (151) to notify another application of a change in this application. If the other application should send back a reply, use Request-Reply (154).

If an application wishes to send more information than one message can hold, break the data into smaller parts and send the parts as a Message Sequence (170). If the data is only useful for a limited amount of time, specify this use-by time as a Message Expiration (176). Since all the various senders and receivers of messages must agree on the format of the data in the messages, specify the format as a Canonical Data Model (355).

Example: JMS Message

In JMS, a message is represented by the type Message, which has several subtypes. In each subtype, the header structure is the same; it’s the body format that varies by type.

1. TextMessage—The most common type of message. The body is a string, such as literal text or an XML document. textMessage.getText() returns the message body as a String.

2. BytesMessage—The simplest, most universal type of message. The body is a byte array. bytesMessage.readBytes(byteArray) copies the contents into the specified byte array.

3. ObjectMessage—The body is a single Java object, specifically one that implements java.io.Serializable, which enables the object to be marshaled and unmarshaled. objectMessage.getObject() returns the Serializable.

4. StreamMessage—The body is a stream of Java primitives. The receiver uses methods like readBoolean(), readChar(), and readDouble() to read the data from the message.

5. MapMessage—The body acts like a java.util.Map, where the keys are Strings. The receiver uses methods like getBoolean("isEnabled") and getInt("numberOfItems") to read the data from the message.

Example: .NET Message

In .NET, the Message class implements the message type. It has a property, Body, which contains the contents of the message as an Object; BodyStream stores the contents as a Stream. Another property, BodyType, specifies the type of data the body contains, such as a string, a date, a currency, a number, or any other object.

Example: SOAP Message

In the SOAP protocol [SOAP 1.1], a SOAP message is an example of Message. A SOAP message is an XML document that is an envelope (a root SOAP-ENV:Envelope element) that contains an optional header (a SOAP-ENV:Header element) and required body (a SOAP-ENV:Body element). This XML document is an atomic data record that can be transmitted (typically the transmission protocol is HTTP) so it is a message.

Here is an example of a SOAP message from the SOAP spec that shows an envelope containing a header and a body.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Header>
 <t:Transaction
 xmlns:t="some-URI"
 SOAP-ENV:mustUnderstand="1">
 5
 </t:Transaction>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DEF</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP also demonstrates the recursive nature of messages, because a SOAP message can be transmitted via a messaging system, which means that a messaging system message object (e.g., an object of type javax.jms.Message in JMS or System.Messaging.Message in .NET) contains the SOAP message (the XML SOAP-ENV:Envelope document). In this scenario, the transport protocol isn’t HTTP but the messaging system’s internal protocol (which in turn may be using HTTP or some other network protocol to transmit the data, but the messaging system makes the transmission reliable). For more information on transporting a message across a different messaging system, see Envelope Wrapper (330).

Pipes and Filters

[image: Image]

In many enterprise integration scenarios, a single event triggers a sequence of processing steps, each performing a specific function. For example, let’s assume a new order arrives in our enterprise in the form of a message. One requirement may be that the message is encrypted to prevent eavesdroppers from spying on a customer’s order. A second requirement is that the messages contain authentication information in the form of a digital certificate to ensure that orders are placed only by trusted customers. In addition, duplicate messages could be sent from external parties (remember all the warnings on the popular shopping sites to click the Order Now button only once?). To avoid duplicate shipments and unhappy customers, we need to eliminate duplicate messages before subsequent order processing steps are initiated. To meet these requirements, we need to transform a series of possibly duplicated, encrypted messages containing extra authentication data into a series of unique, simple plain-text order messages without the extraneous data fields.

How can we perform complex processing on a message while maintaining independence and flexibility?

One possible solution would be to write a comprehensive “incoming message massaging module” that performs all the necessary functions. However, such an approach would be inflexible and difficult to test. What if we need to add a step or remove one? For example, what if orders can be placed by large customers who are on a private network and do not require encryption?

Implementing all functions inside a single component also reduces opportunities for reuse. Creating smaller, well-defined components allows us to reuse them in other processes. For example, order status messages may be encrypted but do not need to be de-duped because duplicate status requests are generally not harmful. Separating the decryption function into a separate module allows us to reuse this function for other messages.

Integration solutions typically connect a collection of heterogeneous systems. As a result, different processing steps may need to execute on different physical machines, such as when individual processing steps can only execute on specific systems. For example, it is possible that the private key required to decrypt incoming messages is only available on a designated machine and cannot be accessed from any other machine for security reasons. This means that the decryption component has to execute on this designated machine, whereas the other steps may execute on other machines. Likewise, different processing steps may be implemented using different programming languages or technologies that prevent them from running inside the same process or even on the same computer.

Implementing each function in a separate component can still introduce dependencies between components. For example, if the decryption component calls the authentication component with the results of the decryption, we cannot use the decryption function without the authentication function. We could resolve these dependencies if we could “compose” existing components into a sequence of processing steps in such a way that each component is independent from the other components in the system. This would imply that components expose generic external interfaces so that they are interchangeable.

If we use asynchronous messaging, we should take advantage of the asynchronous aspects of sending messages from one component to another. For example, a component can send a message to another component for further processing without waiting for the results. Using this technique, we could process multiple messages in parallel, one inside each component.

Use the Pipes and Filters architectural style to divide a larger processing task into a sequence of smaller, independent processing steps (filters) that are connected by channels (pipes).

[image: Image]

Each filter exposes a very simple interface: It receives messages on the inbound pipe, processes the message, and publishes the results to the outbound pipe. The pipe connects one filter to the next, sending output messages from one filter to the next. Because all components use the same external interface, they can be composed into different solutions by connecting the components to different pipes. We can add new filters, omit existing ones, or rearrange them into a new sequence—all without having to change the filters themselves. The connection between filter and pipe is sometimes called a port. In the basic form, each filter component has one input port and one output port.

When applied to our example problem, the Pipes and Filters architecture results in three filters connected by two pipes (see figure). We need one additional pipe to send messages to the decryption component and one to send the clear-text order messages from the de-duper to the order management system. This makes a total of four pipes.

Pipes and Filters describes a fundamental architectural style for messaging systems: Individual processing steps (filters) are chained together through the messaging channels (pipes). Many patterns in this and the following sections, such as routing and transformation patterns, are based on this Pipes and Filters architectural style. This lets you easily combine individual patterns into larger solutions.

The Pipes and Filters style uses abstract pipes to decouple components from each other. The pipe allows one component to send a message into the pipe so that it can be consumed later by another process that is unknown to the component. The obvious implementation for such a pipe is a Message Channel (60). Typically, a Message Channel (60) provides language, platform, and location independence between the filters. This affords us the flexibility to move a processing step to a different machine for dependency, maintenance, or performance reasons. However, a Message Channel (60) provided by a messaging infrastructure can be quite heavyweight if all components can in fact reside on the same machine. Using a simple in-memory queue to implement the pipes would be much more efficient. Therefore, it is useful to design the components so that they communicate with an abstract pipe interface. The implementation of that interface can then be swapped out to use a Message Channel (60) or an alternative implementation such as an in-memory queue. The Messaging Gateway (468) describes how to design components for this flexibility.

One of the potential downsides of a Pipes and Filters architecture is the larger number of required channels. First, channels may not be an unlimited resource, since channels provide buffering and other functions that consume memory and CPU cycles. Also, publishing a message to a channel involves a certain amount of overhead because the data has to be translated from the application-internal format into the messaging infrastructure’s own format. At the receiving end, this process has to be reversed. If we are using a long chain of filters, we are paying for the gain in flexibility with potentially lower performance due to repeated message data conversion.

The pure form of Pipes and Filters allows each filter to have only a single input port and a single output port. When dealing with Messaging (53), we can relax this property somewhat. A component may consume messages off more than one channel and also output messages to more than one channel (for example, a Message Router [78]). Likewise, multiple filter components can consume messages off a single Message Channel (60). A Point-to-Point Channel (103) ensures that only one filter component consumes each message.

Using Pipes and Filters also improves testability, an often overlooked benefit. We can test each individual processing step by passing a Test Message (66) to the component and comparing the result message to the expected outcome. It is more efficient to test and debug each core function in isolation because we can tailor the test mechanism to the specific function. For example, to test the encryption/decryption function we can pass in a large number of messages containing random data. After we encrypt and decrypt each message we compare it with the original. On the other hand, to test authentication, we need to supply messages with specific authentication codes that match known users in the system.

Pipeline Processing

Connecting components with asynchronous Message Channels (60) allows each unit in the chain to operate in its own thread or its own process. When a unit has completed processing one message, it can send the message to the output channel and immediately start processing another message. It does not have to wait for the subsequent components to read and process the message. This allows multiple messages to be processed concurrently as they pass through the individual stages. For example, after the first message has been decrypted, it can be passed on to the authentication component. At the same time, the next message can already be decrypted (see figure). We call such a configuration a processing pipeline because messages flow through the filters like liquid flows through a pipe. When compared to strictly sequential processing, a processing pipeline can significantly increase system throughput.

[image: Image]

Pipeline Processing with Pipes and Filters

Parallel Processing

However, the overall system throughput is limited by the slowest process in the chain. We can deploy multiple parallel instances of that process to improve throughput. In this scenario, a Point-to-Point Channel (103) with Competing Consumers (502) is needed to guarantee that each message on the channel is consumed by exactly one of N available processors. This allows us to speed up the most time-intensive process and improve overall throughput. We need to be aware, though, that this configuration can cause messages to be processed out of order. If the sequence of messages is critical, we can run only one instance of each component or we must use a Resequencer (283).

[image: Image]

Increasing Throughput with Parallel Processing

For example, if we assume that decrypting a message is much slower than authenticating it, we can use the configuration shown in the figure, running three parallel instances of the decryption component. Parallelizing filters works best if each filter is stateless—that is, it returns to the previous state after a message has been processed. This means that we cannot easily run multiple parallel de-dupe components because the component maintains a history of all messages that it already received and is therefore not stateless.

History of Pipes and Filters

Pipes and Filters architectures are by no means a new concept. The simple elegance of this architecture combined with the flexibility and high throughput makes it easy to understand the popularity of Pipes and Filters architectures. The simple semantics also allow formal methods to be used to describe the architecture.

[Kahn] described Kahn Process Networks in 1974 as a set of parallel processes that are connected by unbounded FIFO (First-In, First-Out) channels. [Garlan] contains a good chapter on different architectural styles, including Pipes and Filters. [Monroe] gives a detailed treatment of the relationships between architectural styles and design patterns. [PLoPD1] contains Regine Meunier’s “The Pipes and Filters Architecture,” which formed the basis for the Pipes and Filters pattern included in [POSA]. Almost all integration-related implementations of Pipes and Filters follow the “Scenario IV” presented in [POSA], using active filters that pull, process, and push independently from and to queuing pipes. The pattern described by [POSA] assumes that each element undergoes the same processing steps as it is passed from filter to filter. This is generally not the case in an integration scenario. In many instances, messages are routed dynamically based on message content or external control. In fact, routing is such a common occurrence in enterprise integration that it warrants its own patterns, the Message Router (78).

Vocabulary

When discussing Pipes and Filters architectures, we need to be cautious with the term filter. We later define two additional patterns, the Message Filter (237) and the Content Filter (342). While both of these are special cases of a generic filter, so are many other patterns in this pattern language. In other words, a pattern does not have to involve a filtering function (e.g., eliminating fields or messages) in order to be a filter in the sense of Pipes and Filters. We could have avoided this confusion by renaming the Pipes and Filters architectural style. However, we felt that Pipes and Filters is such an important and widely discussed concept that it would be even more confusing if we gave it a new name. We are trying to use the word filter cautiously throughout these patterns and trying to be clear about whether we are talking about a generic filter as in Pipes and Filters or a Message Filter (237)/Content Filter (342) that filters messages. If we thought there might still be confusion, we called the generic filter a component, which is a generic enough (and often abused enough) term that it should not get us into any trouble.

Pipes and Filters share some similarities with the concept of Communicating Sequential Processes (CSPs). Introduced by Hoare in 1978 [CSP], CSPs provide a simple model to describe synchronization problems that occur in parallel processing systems. The basic mechanism underlying CSPs is the synchronization of two processes via input-output (I/O). I/O occurs when process A indicates that it is ready to output to process B, and process B states that it is ready to input from process A. If one of these happens without the other being true, the process is put on a wait queue until the other process is ready. CSPs are different from integration solutions in that they are not as loosely coupled, nor do the “pipes” provide any queuing mechanisms. Nevertheless, we can benefit from the extensive treatment of CSPs in the academic world.

Example: Simple Filter in C# and MSMQ

The following code snippet shows a generic base class for a filter with one input port and one output port. The base implementation simply prints the body of the received message and sends it to the output port. A more interesting filter would subclass the Processor class and override the ProcessMessage method to perform additional actions on the message—that is, transform the message content or route it to different output channels.

You notice that the Processor receives references to an input and output channel during instantiation. Thus, the class is tied to neither specific channels nor any other filter. This allows us to instantiate multiple filters and to chain them together in arbitrary configurations.

using System;
using System.Messaging;

namespace PipesAndFilters
{
 public class Processor
 {
 protected MessageQueue inputQueue;
 protected MessageQueue outputQueue;

 public Processor (MessageQueue inputQueue, MessageQueue outputQueue)
 {
 this.inputQueue = inputQueue;
 this.outputQueue = outputQueue;
 }

 public void Process()
 {
 inputQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnReceiveCompleted);
 inputQueue.BeginReceive();
 }

 private void OnReceiveCompleted(Object source, ReceiveCompletedEventArgs asyncResult)
 {
 MessageQueue mq = (MessageQueue)source;

 Message inputMessage = mq.EndReceive(asyncResult.AsyncResult);
 inputMessage.Formatter = new XmlMessageFormatter
 (new String[] {"System.String,mscorlib"});

 Message outputMessage = ProcessMessage(inputMessage);

 outputQueue.Send(outputMessage);

 mq.BeginReceive();
 }

 protected virtual Message ProcessMessage(Message m)
 {
 Console.WriteLine("Received Message: " + m.Body);
 return (m);
 }
 }
}

This implementation is an Event-Driven Consumer (498). The Process method registers for incoming messages and instructs the messaging system to invoke the method OnReceiveCompleted every time a message arrives. This method extracts the message data from the incoming event object and calls the virtual method ProcessMessage.

This simple filter example is not transactional. If an error occurs while processing the message (before it is sent to the output channel), the message is lost. This is generally not desirable in a production environment. See Transactional Client (484) for a solution to this problem.

Message Router

[image: Image]

Multiple processing steps in a Pipes and Filters (70) chain are connected by Message Channels (60).

How can you decouple individual processing steps so that messages can be passed to different filters depending on a set of conditions?

The Pipes and Filters (70) architectural style connects filters directly to each other with fixed pipes. This makes sense because many applications of the Pipes and Filters (70) pattern (e.g., [POSA]) are based on a large set of data items, each of which undergoes the same sequential processing steps. For example, a compiler will always execute the lexical analysis first, the syntactic analysis second, and the semantic analysis last. Message-based integration solutions, on the other hand, deal with individual messages that are not necessarily associated with a single, larger data set. As a result, individual messages are more likely to require a different series of processing steps.

A Message Channel (60) decouples the sender and the receiver of a Message (66). This also means that multiple applications can publish Messages (66) to a Message Channel (60). As a result, a Message Channel (60) can contain messages from different sources that may have to be treated differently based on the type of the message or other criteria. You could create a separate Message Channel (60) for each message type (a concept explained in more detail later as a Datatype Channel [111]) and connect each channel to the required processing steps for that message type. However, this would require the message originators to be aware of the selection criteria for different processing steps in order to publish the message to the correct channel. It could also lead to an explosion of the number of Message Channels (60). Furthermore, the decision on which steps the message undergoes may not just depend on the origin of the message. For example, we could imagine a situation where the destination of a message varies depending on the number of messages that have passed through the channel so far. No single originator would know this number and would therefore be unable to send the message to the correct channel.

Message Channels (60) provide a very basic form of routing capabilities. An application publishes a Message (66) to a Message Channel (60) and has no further knowledge of that Message’s (66) destination. Therefore, the path of the Message (66) can change depending on which component subscribes to the Message Channel (60). However, this type of “routing” does not take into account the properties of individual messages. Once a component subscribes to a Message Channel (60), it will by default consume all messages from that channel regardless of the individual message’s specific properties. This behavior is similar to the use of the pipe symbol in UNIX to process text files. It allows you to compose processes into a Pipes and Filters (70) chain, but for the lifetime of the chain, all lines of text undergo the same steps.

We could make the receiving component itself responsible for determining whether it should process a message that arrives on a common Message Channel (60). This is problematic, though, because once the message is consumed and the component determines that it does not want the message, it can’t just put the message back on the channel for another component to check out. Some messaging systems allow receivers to inspect message properties without removing the message from the channel so that it can decide whether to consume the message. However, this is not a general solution and also ties the consuming component to a specific type of message because the logic for message selection is now built right into the component. This would reduce the potential for reuse of that component and eliminate the composability that is the key strength of the Pipes and Filters (70) model.

Many of these alternatives assume that we can modify the participating components to meet our needs. In most integration solutions, however, the building blocks (components) are large applications that in most cases cannot be modified at all—for example, because they are packaged applications or legacy applications. This makes it uneconomical or even impossible to adjust the message-producing or -consuming applications to the needs of the messaging system or other applications.

One advantage of Pipes and Filters (70) is the composability of the individual components. This property enables us to insert additional steps into the filter chain without having to change existing components. This opens up the option of decoupling two filters by inserting between them another filter that determines what step to execute next.

Insert a special filter, a Message Router, which consumes a Message from one Message Channel and republishes it to a different Message Channel, depending on a set of conditions.

[image: Image]

The Message Router differs from the basic notion of Pipes and Filters (70) in that it connects to multiple output channels (i.e., it has more than one output port). However, thanks to the Pipes and Filters (70) architecture, the components surrounding the Message Router are completely unaware of the existence of a Message Router. They simply consume messages off one channel and publish them to another. A defining property of the Message Router is that it does not modify the message contents; it concerns itself only with the destination of the message.

The key benefit of using a Message Router is that the decision criteria for the destination of a message are maintained in a single location. If new message types are defined, new processing components are added, or routing rules change, we need to change only the Message Router logic, while all other components remain unaffected. Also, since all messages pass through a single Message Router, incoming messages are guaranteed to be processed one by one in the correct order.

While the intent of a Message Router is to decouple filters from each other, using a Message Router can actually cause the opposite effect. The Message Router component must have knowledge of all possible destination channels in order to send the message to the correct channel. If the list of possible destinations changes frequently, the Message Router can turn into a maintenance bottleneck. In those cases, it would be better to let the individual recipients decide which messages they are interested in. You can accomplish this by using a Publish-Subscribe Channel (106) and an array of Message Filters (237). We contrast these two alternatives by calling them predictive routing and reactive filtering (for a more detailed comparison, see the Message Filter (237) in Chapter 7, “Message Routing”).

Because a Message Router requires the insertion of an additional processing step, it can degrade performance. Many message-based systems have to decode the message from one channel before it can be placed on another channel, which causes computational overhead if the message itself does not really change. This overhead can turn a Message Router into a performance bottleneck. By using multiple routers in parallel or adding additional hardware, this effect can be minimized. As a result, the message throughput (number of messages processed per time unit) may not be impacted, but the latency (time for one message to travel through the system) will almost certainly increase.

Like most good tools, Message Routers can also be abused. Deliberate use of Message Routers can turn the advantage of loose coupling into a disadvantage. Loosely coupled systems can make it difficult to understand the “big picture” of the solution—the overall flow of messages through the system. This is a common problem with messaging solutions, and the use of routers can exacerbate the problem. If everything is loosely coupled to everything else, it becomes impossible to understand in which direction messages actually flow. This can complicate testing, debugging, and maintenance. A number of tools can help alleviate this problem. First, we can use the Message History (551) to inspect messages at runtime and see which components they traversed. Alternatively, we can compile a list of all channels to which each component in the system subscribes or publishes. With this knowledge we can draw a graph of all possible message flows across components. Many EAI packages maintain channel subscription information in a central repository, making this type of static analysis easier.

Message Router Variants

A Message Router can use any number of criteria to determine the output channel for an incoming message. The most trivial case is a fixed router. In this case, only a single input channel and a single output channel are defined. The fixed router consumes one message off the input channel and publishes it to the output channel. Why would we ever use such a brainless router? A fixed router may be useful to intentionally decouple subsystems so that we can insert a more intelligent router later. Or, we may be relaying messages between multiple integration solutions. In most cases, a fixed router will be combined with a Message Translator (85) or a Channel Adapter (127) to transform the message content or send the message over a different channel type.

Many Message Routers decide the message destination only on properties of the message itself—for example, the message type or the values of specific message fields. We call such a router a Content-Based Router (230). This type of router is so common that the Content-Based Router (230) pattern describes it in more detail.

Other Message Routers decide the message’s destination based on environment conditions. We call these routers context-based routers. Such routers are commonly used to perform load-balancing, test, or failover functionality. For example, if a processing component fails, the context-based router can reroute messages to another processing component and thus provide failover capability. Other routers split the flow of messages evenly across multiple channels to achieve parallel processing similar to a load balancer. Some Message Channels (60) already provide basic load-balancing capabilities without the use of a Message Router because multiple Competing Consumers (502) can each consume messages off the same channel as fast as they can. However, a Message Router can have additional built-in intelligence to route the messages as opposed to a simple round-robin implemented by the channel.

Many Message Routers are stateless—in other words, they look at only one message at a time to make the routing decision. Other routers take the content of previous messages into account when making a routing decision. For example, the Pipes and Filters (70) example used a router that eliminates duplicate messages by keeping a list of all messages it already received. These routers are stateful.

Most Message Routers contain hard-coded logic for the routing decision. However, some variants connect to a Control Bus (540) so that the middleware solution can change the decision criteria without having to make any code changes or interrupting the flow of messages. For example, the Control Bus (540) can propagate the value of a global variable to all Message Routers in the system. This can be very useful for testing to allow the messaging system to switch from test to production mode. The Dynamic Router (243) configures itself dynamically based on control messages from each potential recipient.

Chapter 7, “Message Routing,” introduces more variants of the Message Router.

Example: Commercial EAI Tools

The notion of a Message Router is central to the concept of a Message Broker (322), implemented in virtually all commercial EAI tools. These tools accept incoming messages, validate them, transform them, and route them to the correct destination. This architecture alleviates the participating applications from having to be aware of other applications altogether because the Message Broker (322) brokers between the applications. This is a key function in enterprise integration because most applications to be connected are packaged or legacy applications and the integration has to happen nonintrusively—that is, without changing the application code. Therefore, the middleware has to incorporate all routing logic so the applications do not have to. The Message Broker (322) is the integration equivalent of a Mediator presented in [GoF].

Example: Simple Router with C# and MSMQ

This code example demonstrates a very simple router that routes an incoming message to one of two possible output channels based on a simple condition.

class SimpleRouter
{
 protected MessageQueue inQueue;
 protected MessageQueue outQueue1;
 protected MessageQueue outQueue2;

 public SimpleRouter(MessageQueue inQueue, MessageQueue outQueue1, MessageQueue outQueue2)
 {
 this.inQueue = inQueue;
 this.outQueue1 = outQueue1;
 this.outQueue2 = outQueue2;

 inQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(OnMessage);
 inQueue.BeginReceive();
 }
 private void OnMessage(Object source, ReceiveCompletedEventArgs asyncResult)
 {
 MessageQueue mq = (MessageQueue)source;
 Message message = mq.EndReceive(asyncResult.AsyncResult);

 if (IsConditionFulfilled())
 outQueue1.Send(message);
 else
 outQueue2.Send(message);

 mq.BeginReceive();
 }

 protected bool toggle = false;

 protected bool IsConditionFulfilled ()
 {
 toggle = !toggle;
 return toggle;
 }

}

The code is relatively straightforward. Like the simple filter presented in Pipes and Filters (70), the SimpleRouter class implements an Event-Driven Consumer (498) of messages using C# delegates. The constructor registers the method OnMessage as the handler for messages arriving on the inQueue. This causes the .NET Framework to invoke the method OnMessage for every message that arrives on the inQueue. OnMessage figures out where to route the message by calling the method IsConditionFulfilled. In this trivial example, IsConditionFulfilled simply toggles between the two channels, dividing the sequence of messages evenly between outQueue1 and outQueue2. In order to keep the code to a minimum, this simple router is not transactional—that is, if the router crashes after it consumes a message from the input channel and before it publishes it to the output channel, the message would be lost. Transactional Client (484) explains how to make endpoints transactional.

Message Translator

[image: Image]

The previous patterns show how to construct messages and how to route them to the correct destination. In many cases, enterprise integration solutions route messages between existing applications such as legacy systems, packaged applications, homegrown custom applications, or applications operated by external partners. Each of these applications is usually built around a proprietary data model. Each application may have a slightly different notion of the Customer entity, the attributes that define a Customer, and other entities to which a Customer is related. For example, the accounting system may be more interested in the customer’s taxpayer ID numbers, whereas the customer-relationship management (CRM) system stores phone numbers and addresses. The application’s underlying data model usually drives the design of the physical database schema, an interface file format, or an application programming interface (API)—those entities with which an integration solution must interface. As a result, each application typically expects to receive messages that mimic the application’s internal data format.

In addition to the proprietary data models and data formats incorporated in the various applications, integration solutions often interact with external business partners via standardized data formats that are independent from specific applications. A number of consortia and standards bodies define these protocols; for example, RosettaNet, ebXML, OAGIS, and many other industry-specific consortia. In many cases, the integration solution needs to be able to communicate with external parties using the “official” data formats, even though the internal systems are based on proprietary formats.

How can systems using different data formats communicate with each other using messaging?

We could avoid having to transform messages if we could modify all applications to use a common data format. This turns out to be difficult for a number of reasons (see Shared Database [47]). First, changing an application’s data format is risky, difficult, and requires a lot of changes to inherent business functionality. For most legacy applications, data format changes are simply not economically feasible. We may all remember the effort related to the Y2K retrofits, where the scope of the change was limited to the size of a single field!

Also, while we may get multiple applications to use the same data field names and maybe even the same data types, the physical representation may still be quite different. One application may use XML documents, whereas the other application uses COBOL copybooks.

Furthermore, if we adjust the data format of one application to match that of another application, we are tying the two applications more tightly to each other. One of the key architectural principles in enterprise integration is loose coupling between applications (see Canonical Data Model [355]). Modifying one application to match another application’s data format would violate this principle because it makes two applications directly dependent on each other’s internal representation. This eliminates the possibility of replacing or changing one application without affecting the other application, a scenario that is fairly common in enterprise integration.

We could incorporate the data format translation directly into the Message Endpoint (95). This way, all applications would publish and consume messages in a common format as opposed to in the application’s internal data format. However, this approach requires access to the endpoint code, which is usually not the case for packaged applications. In addition, hard-coding the format translation to the endpoint would reduce the opportunities for code reuse.

Use a special filter, a Message Translator, between other filters or applications to translate one data format into another.

[image: Image]

The Message Translator is the messaging equivalent of the Adapter pattern described in [GoF]. An adapter converts the interface of a component into another interface so it can be used in a different context.

Levels of Transformation

Message translation may need to occur at a number of different levels. For example, data elements may share the same name and data types but may be used in different representations (e.g., XML file vs. comma-separated values vs. fixed-length fields). Or, all data elements may be represented in XML format but use different tag names. To summarize the different kinds of translation, we can divide it into multiple layers (loosely borrowing from the OSI Reference Model).

[image: Image]

The Transport layer at the bottom of the “stack” provides data transfer between the different systems. It is responsible for complete and reliable data transfer across different network segments and deals with lost data packets and other network errors. Some EAI vendors provide their own transport protocols (e.g., TIBCO RendezVous), whereas other integration technologies leverage TCP/IP protocols (e.g., SOAP). Translation between different transport layers can be provided by the Channel Adapter (127) pattern.

The Data Representation layer is also referred to as the syntax layer. This layer defines the representation of data that is transported. This translation is necessary because the transport layer typically transports only character or byte streams. This means that complex data structures have to be converted into a character string. Common formats for this conversion include XML, fixed-length fields (e.g., EDI records), and proprietary formats. In many cases, data is also compressed or encrypted and carries check digits or digital certificates. In order to interface systems with different data representations, data may have to be decrypted, uncompressed, and parsed, and then the new data format must be rendered and possibly compressed and encrypted as well.

The Data Types layer defines the application data types on which the application (domain) model is based. Here we deal with such decisions as whether date fields are represented as strings or as native date structures, whether dates carry a time-of-day component, which time zone they are based on, and so on. We may also consider whether the field Postal Code denotes only a U.S. ZIP code or can contain Canadian postal codes. In the case of a U.S. zip code, do we include a ZIP+4? Is it mandatory? Is it stored in one field, or two? Many of these questions are usually addressed in so-called Data Dictionaries. The issues related to data types go beyond whether a field is of type string or integer. Consider sales data that is organized by region. The application used by one department may divide the country into four regions: West, Central, South, and East, identified by the letters W, C, S, and E. Another department may differentiate the Pacific region from the mountain region and distinguish the Northeast from the Southeast. Each region is identified by a two-digit number. What number does the letter E correspond to?

The Data Structures layer describes the data at the level of the application domain model. It is therefore also referred to as the application layer. This layer defines the logical entities that the application deals with, such as customer, address, or account. It also defines the relationships between these entities: Can one customer have multiple accounts? Can a customer have multiple addresses? Can customers share an address? Can multiple customers share an account? Is the address part of the account or the customer? This is the domain of entity-relationship diagrams and class diagrams.

Levels of Decoupling

Many of the design trade-offs in integration are driven by the need to decouple components or applications. Decoupling is an essential tool to enable the management of change. Integration typically connects existing applications and has to accommodate changes to these applications. Message Channels (60) decouple applications from having to know each other’s location. A Message Router (78) can even decouple applications from having to agree on a common Message Channel (60). However, this form of decoupling achieves only limited independence between applications if they still depend on each other’s data formats. A Message Translator (85) can remove this additional level of dependency.

Chaining Transformations

Many business scenarios require transformations at more than one layer. For example, let’s assume an EDI 850 Purchase Order record represented as a fixed-format file has to be translated to an XML document sent over HTTP to the order management system, which uses a different definition of the Order object. The required transformation spans all four levels: The transport changes from file transfer to HTTP, the data format changes from a fixed-field format to XML, and both data types and data formats have to be converted to comply with the Order object defined by the order management system. The beauty of a layered model is that you can treat one layer without worrying about the lower layers and therefore can focus on one level of abstraction at a time (see the following figure).

[image: Image]

Mapping Across Multiple Layers

Chaining multiple Message Translator units using Pipes and Filters (70) results in the following architecture (see figure on the next page). Creating one Message Translator for each layer allows us to reuse these components in other scenarios. For example, the Channel Adapter (127) and the EDI-to-XML Message Translator can be implemented in a generic fashion so that they can be reused for any incoming EDI document.

[image: Image]

Chaining Multiple Message Translators (85)

Chaining multiple Message Translators also allows you to change the transformations used at an individual layer without affecting any of the other layers. You could use the same structural transformation mechanisms, but instead of converting the data representation into a fixed format, you could convert it into a comma-separated file by swapping out the data representation transformation.

There are many specializations and variations of the Message Translator pattern. An Envelope Wrapper (330) wraps the message data inside an envelope so that it can be transported across a messaging system. A Content Enricher (336) augments the information inside a message, whereas the Content Filter (342) removes information. The Claim Check (346) removes information but stores it for later retrieval. The Normalizer (352) can convert a number of different message formats into a consistent format. Last, the Canonical Data Model (355) shows how to leverage multiple Message Translators to achieve data format decoupling. Inside each of those patterns, complex structural transformations can occur (e.g., mapping a many-to-many relationship into a one-to-one relationship).

Example: Structural Transformation with XSL

Transformation is such a common need that the W3C defined a standard language for the transformation of XML documents: the Extensible Stylesheet Language (XSL). Part of XSL is the XSL Transformation (XSLT) language, a rules-based language that translates one XML document into a different format. Since this is a book on integration and not on XSLT, we just present a simple example (for all the gory details, see the spec [XSLT 1.0], or to learn by reviewing code examples, see [Tennison]). In order to keep things simple, we explain the required transformation by showing example XML documents as opposed to XML schemas.

For example, let’s assume we have an incoming XML document and need to pass it to the accounting system. If both systems use XML, the Data Representation layer is identical, and we need to cover any differences in field names, data types, and structure. Let’s assume the incoming document looks like this.

<data>
 <customer>
 <firstname>Joe</firstname>
 <lastname>Doe</lastname>
 <address type="primary">
 <ref id="55355"/>
 </address>
 <address type="secondary">
 <ref id="77889"/>
 </address>
 </customer>
 <address id="55355">
 <street>123 Main</street>
 <city>San Francisco</city>
 <state>CA</state>
 <postalcode>94123</postalcode>
 <country>USA</country>
 <phone type="cell">
 <area>415</area>
 <prefix>555</prefix>
 <number>1234</number>
 </phone>
 <phone type="home">
 <area>415</area>
 <prefix>555</prefix>
 <number>5678</number>
 </phone>
 </address>
 <address id="77889">
 <company>ThoughtWorks</company>
 <street>410 Townsend</street>
 <city>San Francisco</city>
 <state>CA</state>
 <postalcode>94107</postalcode>
 <country>USA</country>
 </address>
</data>

This XML document contains customer data. Each customer can be associated with multiple addresses, each of which can contain multiple phone numbers. The XML represents addresses as independent entities so that multiple customers could share an address.

Let’s assume the accounting system needs the following representation. (If you think that the German tag names are bit farfetched, keep in mind that one of the most popular pieces of enterprise software is famous for its German field names!)

<Kunde>
 <Name>Joe Doe</Name>
 <Adresse>
 <Strasse>123 Main</Strasse>
 <Ort>San Francisco</Ort>
 <Telefon>415-555-1234</Telefon>
 </Adresse>
</Kunde>

The resulting document has a much simpler structure. Tag names are different, and some fields are merged into a single field. Since there is room for only one address and phone number, we need to pick one from the original document based on business rules. The following XSLT program transforms the original document into the desired format. It does so by matching elements of the incoming document and translating them into the desired document format.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes"/>
 <xsl:key name="addrlookup" match="/data/address" use="@id"/>
 <xsl:template match="data">
 <xsl:apply-templates select="customer"/>
 </xsl:template>
 <xsl:template match="customer">
 <Kunde>
 <Name>
 <xsl:value-of select="concat(firstname, ' ', lastname)"/>
 </Name>
 <Adresse>
 <xsl:variable name="id" select="./address[@type='primary']/ref/@id"/>
 <xsl:call-template name="getaddr">
 <xsl:with-param name="addr" select="key('addrlookup', $id)"/>
 </xsl:call-template>
 </Adresse>
 </Kunde>
 </xsl:template>
 <xsl:template name="getaddr">
 <xsl:param name="addr"/>
 <Strasse>
 <xsl:value-of select="$addr/street"/>
 </Strasse>
 <Ort>
 <xsl:value-of select="$addr/city"/>
 </Ort>
 <Telefon>
 <xsl:choose>
 <xsl:when test="$addr/phone[@type='cell']">
 <xsl:apply-templates select="$addr/phone[@type='cell']" mode="getphone"/>
 </xsl:when>

 <xsl:otherwise>
 <xsl:apply-templates select="$addr/phone[@type='home']" mode="getphone"/>
 </xsl:otherwise>
 </xsl:choose>
 </Telefon>
 </xsl:template>
 <xsl:template match="phone" mode="getphone">
 <xsl:value-of select="concat(area, '-', prefix, '-', number)"/>
 </xsl:template>
 <xsl:template match="*"/>
</xsl:stylesheet>

XSL is based on pattern matching and can be a bit hairy to read if you are used to procedural programming like most of us. In a nutshell, the instructions inside an <xsl:template> element are called whenever an element in the incoming XML document matches the expression specified in the match attribute. For example, the line

<xsl:template match="customer">

causes the subsequent lines to be executed for each <customer> element in the source document. The next statements concatenate first and last name and output it inside the <Name> element. Getting the address is a little trickier. The XSL code looks up the correct instance of the <address> element and calls the subroutine getaddr. getaddr extracts the address and phone number from the original <address> element. It uses the cell phone number if one is present, or the home phone number otherwise.

Example: Visual Transformation Tools

If you find XSL programming a bit cryptic, you are in good company. Therefore, most integration vendors provide a visual transformation editor that displays the structure of the two document formats on the left-hand side and the right-hand side of the screen respectively. The users can then associate elements between the formats by drawing connecting lines between them. This can be a lot simpler than coding XSL. Some vendors, such as Contivo, specialize entirely in transformation tools.

The following figure shows the Microsoft BizTalk Mapper editor that is integrated into Visual Studio. The diagram shows the mapping between individual elements more clearly than the XSL script. On the other hand, some of the details (e.g., how the address is chosen) are hidden underneath the so-called functoid icons.

[image: Image]

Creating Transformations: The Drag-Drop Style

Being able to drag and drop transformations shortens the learning curve for developing a Message Translator dramatically. As so often though, visual tools can also become a liability when it comes to debugging or when you need to create complex solutions. Therefore, many tools let you switch back and forth between XSL and the visual representation.

Message Endpoint

[image: Image]

Applications are communicating by sending Messages (66) to each other via Message Channels (60).

How does an application connect to a messaging channel to send and receive Messages?

The application and the messaging system are two separate sets of software. The application provides functionally for some type of user, whereas the messaging system manages messaging channels for transmitting messages for communication. Even if the messaging system is incorporated as a fundamental part of the application, it is still a separate, specialized provider of functionality, much like a database management system or a Web server. Because the application and the messaging system are separate, they must have a way to connect and work together.

[image: Image]

Applications Disconnected from a Message Channel

A messaging system is a type of server, capable of taking requests and responding to them. Like a database accepting and retrieving data, a messaging server accepts and delivers messages. A messaging system is a messaging server.

A server needs clients, and an application that uses messaging is a client of the messaging server. But applications do not necessarily know how to be messaging clients any more than they know how to be database clients. The messaging server, like a database server, has a client API that the application can use to interact with the server. The API is not application-specific but is domain-specific, where the domain is messaging. The application must contain a set of code that connects and unites the messaging domain with the application to allow the application to perform messaging.

Connect an application to a messaging channel using a Message Endpoint, a client of the messaging system that the application can then use to send or receive Messages.

[image: Image]

Message Endpoint code is custom to both the application and the messaging system’s client API. The rest of the application knows little about message formats, messaging channels, or any of the other details of communicating with other applications via messaging. It just knows that it has a request or piece of data to send to another application, or is expecting those from another application. It is the messaging endpoint code that takes that command or data, makes it into a message, and sends it on a particular messaging channel. It is the endpoint that receives a message, extracts the contents, and gives them to the application in a meaningful way.

The Message Endpoint encapsulates the messaging system from the rest of the application and customizes a general messaging API for a specific application and task. If an application using a particular messaging API were to switch to another, developers would have to rewrite the message endpoint code, but the rest of the application should remain the same. If a new version of a messaging system changes the messaging API, this should only affect the message endpoint code. If the application decides to communicate with others via some means other than messaging, developers should ideally be able to rewrite the message endpoint code but leave the rest of the application unchanged.

A Message Endpoint can be used to send messages or receive them, but one instance does not do both. An endpoint is channel-specific, so a single application would use multiple endpoints to interface with multiple channels. An application may use multiple endpoint instances to interface to a single channel, usually to support multiple concurrent threads.

A Message Endpoint is a specialized Channel Adapter (127) one that has been custom developed for and integrated into its application.

A Message Endpoint should be designed as a Messaging Gateway (468) to encapsulate the messaging code and hide the message system from the rest of the application. It can employ a Messaging Mapper (477) to transfer data between domain objects and messages. It can be structured as a Service Activator (532) to provide asynchronous message access to a synchronous service or function call. An endpoint can explicitly control transactions with the messaging system as a Transactional Client (484).

Sending messages is pretty easy, so many endpoint patterns concern different approaches for receiving messages. A message receiver can be a Polling Consumer (494) or an Event-Driven Consumer (498). Multiple consumers can receive messages from the same channel either as Competing Consumers (502) or via a Message Dispatcher (508). A receiver can decide which messages to consume or ignore using a Selective Consumer (515). It can use a Durable Subscriber (522) to make sure a subscriber does not miss messages published while the endpoint is disconnected. And the consumer can be an Idempotent Receiver (528) that correctly detects and handles duplicate messages.

Example: JMS Producer and Consumer

In JMS, the two main endpoint types are MessageProducer, for sending messages, and MessageConsumer, for receiving messages. A Message Endpoint uses an instance of one of these types to either send messages to or receive messages from a particular channel.

Example: .NET MessageQueue

In .NET, the main endpoint class is the same as the main Message Channel (60) class, MessageQueue. A Message Endpoint uses an instance of MessageQueue to send messages to or receive messages from a particular channel.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/494fig02.jpg
F%10] %

Sender Message | _Poling
Consumer

Receiver

OEBPS/html/graphics/316fig01.jpg
[-] [-]

%

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/080fig01.jpg

OEBPS/html/graphics/480fig01.jpg
Messaging

Mapper

Business
Object

Messaging

Infrastructure

OEBPS/html/graphics/147fig01.jpg

OEBPS/html/graphics/302fig01.jpg
Option A:

/| Proc Al

Proc 8

ProcC

bypass

bypass

bypass

OEBPS/html/graphics/347fig01.jpg
Check Luggage Data Enricher

o

Message
wiClaim Check

Datastore

OEBPS/html/graphics/601fig01.jpg
[

JR—
e
MonitorStatusHandler
PE—
.
1
FailOverHandler

OEBPS/html/graphics/294fig02.jpg
Spiiter

%%%

Gadget Inventory

OEBPS/html/graphics/533fig02.jpg
aMessaging | | aSenice R
System Activator afester

T
<doivers |

OEBPS/html/graphics/133fig01.jpg

OEBPS/html/graphics/533fig01.jpg
%

Request

%

tm’<

Reply

9,-

‘Servce.
Actvator

Service

'Requestor

Replier

OEBPS/html/graphics/094fig01.jpg
22 MessageTranslatorBizTalk - Microsoft BizTalk Server 2004 [design] - Customer2Kunde. btm [= |[B][X]

File

Edit View Project

KundeSchema stomerSchema,

Buid Debug

BizTak Tools Window Help

a1l Customer2Kunde.bem |

saiojd anies (B

% vl

= L <Schema>
=) data
5B customer
12 firstname ————
12 lastname ————|
= 2] addiess
12 ype
=2 et
2 id
= 1) <Sequence>
= 1= address-
B id
2 street:
i cy——
4] state
5] postalcode
) county
=) <Sequence>
=) phone
12 yre—
2 area—|
2 prefis—|
125 number

[<[> [w]\ Page 1

<Schema> & =
Kunde &/ =
Name &l

Adresse &)
Strasse &
&

|—————Telefon &

OEBPS/html/graphics/294fig01.jpg
o000

OEBPS/html/graphics/494fig01.jpg

OEBPS/html/graphics/232fig01.jpg
Eazl et
e ©0 ol ovemry

OEBPS/html/graphics/593fig01.jpg
Backup Credit Primary

Bureau Credit Bureau | pimuyCreciRequestauese
= Credit Bureau
n J——— Monitor
‘/ Test Data
Vriter

oueContoiQueve 00 | Test Data

(o Generato

credtRequestQueue controlBusQueve
- - =
et LoanBroker Banks Managoment
Console

OEBPS/html/graphics/446fig01.jpg
creditioan request

Generate Test
Message

customer Joan request

™00 I ——
W A=t

bark loan.request

ProcessManager

bank loan.reply.

Verify Result

Test Cliant 1 oan Broker

OEBPS/html/graphics/502fig01.jpg

OEBPS/html/graphics/547fig01.jpg

OEBPS/html/graphics/116fig02.jpg
‘Sender

% %ty =

Messages Channel

%ata

Raceiver

vl Invalid
Message Message
Channel

OEBPS/html/graphics/277fig01.jpg
Aggregator Agaregate
0 prrr—
- isCompee)
a5
T T
i '
H
H
i AuctionAggregate Auction
—v
prrr— P
e Compee) Camieeg
a0]
Bia
oria
Venitame

Price

OEBPS/html/graphics/116fig01.jpg
— tlz‘_.ﬁ)_. 272

‘Sender invalid Channel Receiver
Moseon

OEBPS/html/graphics/516fig01.jpg
% %o %

Specifying
Producer

Messages with
Selection Values

Selective
Consumer

Receiver

OEBPS/html/graphics/065fig01.jpg
S Computer Management

Action View Window Help

B @

=l8lx]

Diskeeper
Disk Management
= [Services and Applications
@ Microsoft SQL Servers
Services
WMI Control
8 Indexing Service
=) 54 Message Queuing
(1) Outgoing Queues
R vae Quee: |
= (1) System Queues
P Journal messages
£ DeadHetter messages
£ Transactional dead-lette
8} Message Queuing Triggers
Y Internet Information Services

>

Name

| Number of Mess... | &

W alaueve
@bankiqueue
Obaricqueue
Bbankaqueue
@barkdqueue
@banksqueue
bankreplyquee
Dbrokerreplyqueve
Wbrokerrequestaueue
@btqueue

& controlbusqueue
@ controlqueve

W credireptyqueue
8 creditrequestqueue

|83 dunnoqueue
| aarinetaene

0

OEBPS/html/graphics/617fig01.jpg
Pricing Gateway |
rader

OEBPS/html/graphics/403fig01.jpg
IMessageSender

Send()

Queve : MessageQueue

i
i
|
|
i
i
|

MessageGateway i
i
i
i
|
i
i
1

OEBPS/html/graphics/617fig02.jpg
Pricing
Gateway

g, el
(Pub-Sub)

TN 1NN
(Pub-Sub)

Analytics Settings
(Pointto-Poiny

Thick
Clients.

Analytics Settings
(Pointto-Poiny)

Contrbution

Gateway

OEBPS/html/graphics/559fig01.jpg
Smart Proxy

RequestQueue ‘ServiceRequesiQuee

Requestor 1

Requestor 2

AeplyQueve?

OEBPS/html/graphics/051fig01.jpg
 Appication
]

OEBPS/html/graphics/331fig01.jpg
Messaging System
Somce Wrapper Unwrapper e

=y wHE-T

OEBPS/html/graphics/251fig01.jpg
&
]

=

(o]

%

OEBPS/html/graphics/359fig01.jpg
Canorical

Model

OEBPS/html/graphics/417fig01.jpg
2 3

1
Sequential | [Credit Scnml Bank oumsl Credit Somsl Bank Oumsl Credit vael Bank Oumel

ey,
[Creait Scarel

Pipeline

time
>

OEBPS/html/graphics/017fig01.jpg
Customers:

Supplers
Retaler WidgetCo

1 WeRUs
Gadget Co

PUE

Stipoing Col

OEBPS/html/graphics/364fig01.jpg
Translator

Banks

¥ k2
o o] e § s R 53] D
0anROQUS! | ot Crecit Score Get Banks Recipient List
-
% ey e
Best Quote =

OEBPS/html/graphics/255tab01.jpg
Publish-Subscribe Channel
with Message Filters

Central control and maintenance—
predictive routing.

Distributed control and maintenance—
reactive filering.

Router needs to know about participants.
Router may need to be updated if
participants are added or removed
(unless using dynamic router, but at
expense of losing control).

No knowledge of participants required.
Adding or removing participants is easy.

Often used for business transactions,
e request for quore.

Often used for event notifications or
informational messages.

Generally more cfficient i limited to
queue-based channels

Can be more cfficient with publish-
subscribe channels (depends on
infrastructure),

OEBPS/html/graphics/518fig01.jpg
[EG2RE

Query
Consumer

-0 % % —C

(1%

"
S own P Puchus e
e a5 e e
‘E
=
£

Receiver

OEBPS/html/graphics/578fig01.jpg
Cusiomer Loan Broker

Credit Bureay

ElE

Bank 1

Bank 2

Bank 3

OEBPS/html/graphics/630fig01.jpg
Purchase Order Business Process Component

Operation Operation
Calculate Base Calculate Total
Price Price

Operation
Operation Complete
Find Shipper Shipping

joics
— Process.

Process Invoica

Operation
Operation Complete
| Find Insurer Insurance

Agreement

Operation e
fiosens Schedule
Manufacturing My

Resources

OEBPS/html/graphics/241tab01.jpg
Content-Based Router

Publish-Subscribe Channel
with Message Filters

Exactly one consumer recives cach
message.

More than one consumer can consume a
message.

Central control and maintenance—
predictive routing.

Distributed control and maintenance—
reactive filering,

Router needs to know about participants.
Router may need to be updated if
participants are added or removed.

No knowledge of participants required
Adding or removing participants is casy.

Often used for business transactions,
c.g. orders.

Often used for event notifications or
informational messages.

Generally more cfficient with queue-
based channels.

Generally more cfficient with publish-
subscribe channels.

OEBPS/html/graphics/350fig01.jpg
Trusted Process Boundary

B

Original
Message

3

Complete.
Flesponse
Message

Check Luggage
O—o >
= e
Fiered
Message
Datastore External
Processing
J—o | - -
e
Enricher rosponse
Message

OEBPS/html/graphics/159fig01.jpg

OEBPS/html/graphics/164fig01.jpg
ANTE——— Message ID

BTkl

Requests

-l

Requestor Replies \, Replier

Correlation 1D

OEBPS/html/graphics/159fig02.jpg
equest

Requestor 1 C"“""E‘ Replier
— i

Roquests

L—

Reply
Channel 1

~
3
)

Requestor 2|

Reply
Channel 2

OEBPS/html/graphics/550fig01.jpg

OEBPS/html/graphics/145fig02.jpg
g |- %

Sender Command Recaiver
Message

[G] - getLasiTradePrica(DIS)

OEBPS/html/graphics/545fig02.jpg
Sowce I—oﬁyé -

OEBPS/html/graphics/145fig01.jpg

OEBPS/html/graphics/345fig01.jpg
Inputs
E Non Schema Inputs
=B P_ACCOUNT
HBL ACCT_NO
HBL DESCRIPTION @

1 Contact

HBL Name
HBL Street
HBL City
HBL Z\P

=8 ADB_SEQUENCE_ACCOUNT_CONTA!
HBL ACCT_NO
HBL CONTACT_ID
HBL CONTACT_TYPE
=8 ADB_SEQUENCE_CONTACT
HBL CONTACT_ID
HBL NAME @
B SALUTATION
=8 ADB_SEQUENCE_ADDRESS
B[ADDRESS_ID
HBL CONTACT_ID
123 ADDRESS_TYPE
B[STREET @
HBL CITY @
HBL zIP

—o NN

OEBPS/html/graphics/545fig01.jpg

OEBPS/html/graphics/030fig01.jpg
Endpoint

Pudish Subscre|
Channel

VALIDATED_ORDER|

ke

Process
Manager

e

Process
Manager

e
et
Bl
Messgn - Chosnal

OEBPS/html/graphics/413fig01.jpg
| Credit Bureau |

Bank Interface

OEBPS/html/graphics/089fig01.jpg
Appl A Application B
[Duasimoues | [Dsiasiues]
) [osarws]
[aia Foprosentaton | [[Daie Reprosamaton |

T
[|

OEBPS/html/graphics/244fig01.jpg
Dynamic Houter Output Channel

Message Router

tz Input Channel

Control Channal

OEBPS/html/graphics/552fig01.jpg
e Eg

OEBPS/html/graphics/019fig01.jpg
‘Endpoint

Point-to-Point
Channel

Web Interface.
WEB_NEW_ORDER

Gateway

Point-to-Point
Channel

Call Center

CC_NEW_ORDER
Channel
Adapter
Inbound Fax

Point-to-Point
Channel

FAX_NEW_ORDER

Channel
Adapter

Message Translator

Message Translator

<L

Message Translator

Point-to-Point
Channel

—) —

NEW_ORDER

New Order
Message

OEBPS/html/graphics/360fig01.jpg
)) TIBCO Designer - patterns
Project Edit View Resources Window Help

BaBXbhixe
Spatems

=3 Schemas
=3 Classes
ER=T1]
(] baseDocument —

= Customer : FirstName ~ LastName
w .

LU FirstName
11 LastName 1 D - Scalar Fi

Palettes | Configuration |

| Adepter Schema

i’ Name: D
Classes Folder Tye T —

ﬂ Default Value.

Generic Class Key Field:

Generic Sequence

OEBPS/html/graphics/275fig01.jpg
bk el

I

%

‘Guaranteed Channel

‘Aggregator

OEBPS/html/graphics/152fig01.jpg
B % —

Subject Event
Message

E

Observer

G}

Observer

\PriceChangedEvent

€

Observer

OEBPS/html/graphics/036fig01.jpg
Consumer

Test Data Generator E_

Test Data Verifier

Smart Proxy

ExtCreditRequest

Credit
Service
Provider

TestReply
Control Bus

Management
Console

OEBPS/html/graphics/644fig01.jpg
Sender

Sond a soquenco
of three messages

I

Reliable
Message
Sender

[Oyre—

e
®

Send first message
Wil UID n header

® sontsomns mossao
e ' ot ansion
® s messae

wilh UID and astMessage token

"

© _ saortutyo woopia
essage na3

[OT——
i acadman oot

[OJww—
A aimassges
—

Reorder message into
cortect sequence

Receiver

t

Dlver a soquence
of three messages

Reliable
Message
Destination

OEBPS/html/graphics/436fig02.jpg
O Computer Management
=) Fie Action View Window Help
] 2
‘Computer Management (Local) Name
= i, System Tools @bankiqueue

(1] Event Viewer @bankzqueve

1 g Shared Folders
bank3queve
“ S Local Users and Groups gbar‘k ‘:m

i & performance Logs and et |gg L 00
Device Manager

* smml ° Bbankeplyqueve
% Services and Applications & credtreplyquee

+ € Microsoft SQL Servers credirequestqueue

WMI Control Bloanreplyqueve
BB Indexing Service @loanrequestqueue
= & Message Queuing
(1 Outgoing Queues
= &3 Private Queues
@30 bankiqueue
= B bankzqueue
@ bank3queue
@4 bankdqueue
+ @ banksqueue
@ bankreplyqueue
+ @3 credreplyqueue
= @ credirequestqueue

. @ invalidmessagequet.
i
>

E Services invalidmessagequeve

OEBPS/html/graphics/328fig01.jpg
Application
A

Ghannel
Adaper

|

Application A
Metadata

Stiing (40) FirstName|
String (40) LastName |
integer _ ZIP.

FirstName-Joe
LasiName-Dos|
zP-0a123

Design-Time Metadaia Flow

Metadata
Ropository.

Application 8
Metadata

Sting (80) Name

Translator

i Moseckio Flow

Sting (2) State

Application
)

Ghannel
Adapter

OEBPS/html/graphics/436fig01.jpg
leceived response: 47 $65,000.80 7.3 Neighborhood-80015
Matched to request - 26.88 seconds
eceived response: 48 $110,000.80 5.6 CountryClub-886812
Matched to request - 27.86 seconds
eceived response: 49 $25.800.80 7.5 Retail-88816
Matched to request - 27.55 seconds
eceived response: 58 $110,880.80 @ ERROR: No Qualifying Quotes
Matched to request — 27.78 seconds

Total elapsed time: 99:@0:33.5627119 secs

average response time 15.31 secs

OEBPS/html/graphics/605fig01.jpg

OEBPS/html/graphics/543fig01.jpg
brhpgieniss

) data
—
|

OEBPS/html/graphics/605fig02.jpg
Trading
Venues

OEBPS/html/graphics/335fig01.jpg
!

Unwrapper

OEBPS/html/graphics/013fig01.jpg
Web App

Sonnect

ack
f————

raw data

A5 30078 111101

Financial
System

OEBPS/html/graphics/574fig01.jpg
Channel Purger

OEBPS/html/graphics/366fig01.jpg
Loan Gregit

Consumer Bankt Bank2 Banky

T T T T T
S T SeCrediscare | |
1 |

h

amoun, term)

- GetLoanQuostamoun,torm, scaro) —sr
E GetLoanQulstamoun,torm, score)
Fgettoanauottamoun, torm, scare)

! 1
P ——

> RatoQuoto =
ot 4+ RateQucte

SociBist e |

OEBPS/html/graphics/090fig01.jpg
EDI Partner Order Management

Emasol | d | d | P‘gf;‘:fsl

Channel Adapter EDHo-XML 850-to-PurchaseOrder

OEBPS/html/graphics/096fig01.jpg
Message
Endpoint

Sender
Application

Message

?Z—’—/

Ghannel

%

Message
Endpoint

Receiver
Application

OEBPS/html/graphics/354fig01.jpg
st — (2 |~ %%k

Different Formats. Normalizer Common Format

OEBPS/html/graphics/420fig01.jpg
Service

Wismatch!

OEBPS/html/graphics/581fig01.jpg
CommonMessaging

MessagaConsumer

SmatPioy

SmerProxyBase

SmartProcy
ReplyConsumer

LomBrorelProry

LoanBrokerProxy

LoanBrokerProxy

FloquestConsumer | P

LoanBrokerProcy
FopyConsumer

OEBPS/html/graphics/615fig01.jpg
Pricing

Gateway

F1on Upeins

TR P

Analytcs Seftings
-—

Thick
Clients.

Update Veries
-—

Contribution

Gateway

OEBPS/html/graphics/007fig01.jpg

OEBPS/html/graphics/067fig01.jpg
Fle-C]

Sender Message Recsiver

OEBPS/html/graphics/061fig01.jpg
Message
Channe:

N

Sender Messaging Receiver
Application ‘System Application

OEBPS/html/graphics/048fig01.jpg
Appiication| [Application| [Application
A B @

T e o

OEBPS/html/graphics/253fig01.jpg
Message Bus

b—[<

H |—

I

Control Bus.

Recipient List

OEBPS/html/graphics/029fig01.jpg
Smart Proxy

samsmm

Reph2 Cnanrel
Adapter

OEBPS/html/graphics/300fig01.jpg
1

] Yol %

Quote Request

New Order Spliter for eachitem | Vendor C PTD

Quote
E Vendor A I

b v =

“Bost” Quoto
Validatod Ordor Aggregator o each tem Agaregator

‘Composed Message Processor Scatter-Gather

OEBPS/html/graphics/569fig02.jpg
‘Test Message Test Message

e B = e B

ppplication Applcation ApplctonAppliction
essage 1 Message 2 tm Test Tost tE Message 1 Message 2

Message Result

—»m|— Test Data
Verifier

Test Data]

Generator
D) controlbus

OEBPS/html/graphics/524fig01.jpg
aPublisher | |aMessaging| | aDurable a Receiver
Sysiem Subscriber

T T
1 subscribe !

ﬁlj‘i oose

publish

subserbe

T__dolivor-

process

nsubscrbe.

OEBPS/html/graphics/569fig01.jpg
o000

OEBPS/html/graphics/510fig01.jpg
aMessaging | | aMessage | | aPerormer | | aPerformer
System Dispatcher

] I]
«deliver ! I I
TN ! !
perform I I
gever: T 7T _pcess
perfom |
Lo,

process

OEBPS/html/graphics/555fig01.jpg

OEBPS/html/graphics/486fig01.jpg
%

Transactional Transactional
Producer Message Consumer
r— Ta—

OEBPS/html/graphics/025fig02.jpg
|Composed Message

NEW_ORDER Processor

New Order
Message

Check Inventory

Publish-Subscribe
Point-to-Point Channel

Channel

Shipping

Aggregator Gontent-
Based
Router

INVALID_ORDER

Biling/
Accounting

OEBPS/html/graphics/486fig02.jpg
‘2 Messaging
System

‘2 Aeceiver

process.

I, message

e

delete D{;

OEBPS/html/graphics/686fig01.jpg
Messaging Endpoints
Message Endpat (55
Messaging Gateway (468)
Messaging Mapper (477)
Transactional Clignt (484)
Poliing Consumer (494)
Event-Driven Consumer {498)
Competing Consumers (502}
Message Dispatcher (508)
Selective Consumer (515)
Durable Subscriber (522}
Idempotent Recaiver (£28)

0 cHEbDuE B

Service Activator (532)

. Endpoint

Message Construction
D
{8 Message (66)

% Command Message (145)
%o Document Message (147)
% Event Message (151)
977 Reuest-Reny (154
[Retum Address (159)
%% Coneation Ienier (163)
Gfifls Message Sequence (170]
(D Message Expiration (176)

Format Indicator (160)
'
i
|
I
'

i
Message

Wessage Routing

00 Pipes and Fiters (70)
Message Router (76)

essage Fier (237)
Dynamic Router (263)
Recipent List (245)

[=] spitter 259)

Application
A
Messaging Channels
Message Channel (50) 50 Dezd Leter Chame! (119)

Point-to-Point Channel (103)

Pubish-Subcrioe Channel (106)
Datatype Ghannel (111)
Invald Message Channe (115)

DB

@ Guaranteed Delivery (122)

[0 Channel Adapter (127)
Messaging Bridge (133)

o Message Bus (137)

Content-Based Router (230) [E=] Composed Msg. Pracessor (29¢)

[Ressauencer (250)

Scatter Gather (297)

Routing Siip (301)
2] Process Manager (312)
5225 Message Broker (322)

Monitoring (] et (545)

] Wire Tep (547)

Control Bus (540)

Message History (551)

[Message Store (555)

I sman prowy (591

2] Test Message (569)
(] Chanmel Puger (572)

Message
Transformation

Messag Transltor (£5)
Envelope Wrapper (330)
(=] content Enviher (336)
[E=1 Content Fier (342)
(= ciim Gheck (346)

[E=] Nommalzer (352)
(Canorical Data Model (355)

Endpoint

Application
B

OEBPS/html/graphics/025fig01.jpg
=ndpoint Point-to-Point

Gateway

WEB_NEW_ORDER

Point-to-Point
Channel

Pointto-Point
Channel

New Order

Call Center
Message

CC_NEW_ORDER. NEW_ORDER

Channel
Adapter

e Translator Add Order 1D

Inbound Fax

Point-to-Point
Channel

FAX_NEW_ORDER

Channel Message Translator
Adapter

OEBPS/html/graphics/441fig01.jpg
ICreditBureauGateway

OEBPS/html/graphics/171fig01.jpg
Sequence
#

Seauence 1) ((Sequence 1 Sequence 1
posin 1 | | Posiion 2 Postion
Sz o | [sie n Sze n
message booy) \ imessage body message body

OEBPS/html/graphics/138fig01.jpg
Application

Message
Bus

Application

Appiication

OEBPS/html/graphics/499fig01.jpg
System

an EventDriven| ,__new
Consumer

dlivers.

onReceive

callback

process

OEBPS/html/graphics/071fig01.jpg
Ppe
t. Authenticatel De-Dupe

ncoming Fiter Fiter Fiter Clean
Ovdor

OEBPS/html/graphics/371fig01.jpg
Credit

Sy
SOAPIHp SOAP/htp
T N e
— bsa e b ¥
B
= sz
v H e—oj < EE—
o
¥ — LG — [
v g 0
Fe | e
- L] =
Vo B s e [N (o]
S [eans
[

OEBPS/html/graphics/171fig02.jpg
Sequence
#7

Soquence 7 ((Sequonce 7 ((Seauerce 7 Sequenca 7
Poston 0 | | Posn 1| [Poston 2 Postion _n-1
End F | [Ena F| [v End T
mossage bosy)\ _nessago body mossago body essage body

OEBPS/html/graphics/339fig01.jpg
%

Enricher

Basic Message

Resource

Ee

Enriched Message

OEBPS/html/graphics/140fig01.jpg
L —

Insurance
Agent

g —

Insurance
Agent
Application

insurance
Customer

Life Insurance System
(Mainframe COBOL IMS)

Health Insurance System
(Client-Server C+)

Auto Insurance System
(Mainframe COBOL CICS)

Message
Bis

Homeownars Insurance System
)

OEBPS/html/graphics/024fig01.jpg
NEW_ORDER INVENTORY STATUS

Order Processing

Aggregator

Widget
Inventory

NEW_ORDER ITEM. |}{| Gadget TTEM_STATUS
Inventory
INVG. CHECK INV

Translator

Item Processing 0

OEBPS/html/graphics/240fig01.jpg
(Widgets|

Content-Based

Router

OEBPS/html/graphics/269fig01.jpg
o
o
nventory Inventory Inventory

tem1 Mtem2 ltem3 Aggregator
fem m tom gregator Jventory

Order

OEBPS/html/graphics/324fig01.jpg
i

OEBPS/html/graphics/409fig01.jpg
MaService S IMessageSender
Run() 1
‘SencReply() B] IMessageReceiver
RequestReply AsyncRequestReply
Service Service
OnMessage() Onbessagel)
Bank CreditBureau LoanBroker

ProcessMessage() Processessage() Progessessage()

OEBPS/html/graphics/470fig01.jpg
an Aopication | | aMessaging | | aMessaging
Gatoway Sisiem

senvee |

receive |

process

OEBPS/html/graphics/123fig01.jpg
1%

Sender

Disk

Receiver

Disk

Computer 1

Computer 2

OEBPS/html/graphics/484fig01.jpg

OEBPS/html/graphics/073fig01.jpg
Msg 1 Msg 2 Msg 3

De-Dupe| Dscrypxl Aumsnll De-Dupe) Dsorvml Authent. Ds—DuDsI

Sequential | [Decypt] [Aumnent

[
[
i

tme
>

Authont

Docrypt Aumeml De-Dupe| Msg 1

Pipeline Decrypt [00-Dups] Msg 2

Docrypt | { Autnent.

(DL
[

Msg3

time,
>

OEBPS/html/graphics/254fig01.jpg
HIREREI RS-

OEBPS/html/graphics/284fig01.jpg
rrrrrrrrrrr

[—=]-—9%.0.2; 1'f-‘f.‘fm‘f@‘fm

OEBPS/html/graphics/284fig02.jpg
nnnnnnnnnn

OEBPS/html/graphics/054fig01.jpg

OEBPS/html/graphics/609fig01.jpg
Message Bridge

Java
CuTi e
R | S| e

OEBPS/html/graphics/112fig01.jpg
¥y —omm—
cumy
Qe
o
Sencie o
)

—Q, —@mm—
oo
Pactass O
o

Sender Recelver

OEBPS/html/graphics/457fig01.jpg
<+ Mapper, Task Edit Dialog,

TaskName: [Create AE Object Bank request

Task Description: | 2|
XML Output: |~

Validate incoming XML: [V

wes. 30 2] 24 ow: 3/ /|10

Inputs. & bankRequest
) Non Schema Inputs 123 88N
=& creditReply 123 Creditscore
|23 ssn |23 HistoryLength
123 Creditscore 3.] LoanAmount
123 HistoryLength HIBL CorrelationiD
=& request 123 LoanTerm
|23 ssn
.| LoanAmount:
123 LoanTerm
B GetLoanReply

e import. | |

OEBPS/html/graphics/367fig01.jpg

OEBPS/html/graphics/572fig01.jpg

OEBPS/html/graphics/572fig02.jpg
— (Hoasesiusue) —
Requestor Replier
 (ChepyGusse D <

OEBPS/html/graphics/006fig02.jpg

OEBPS/html/graphics/006fig01.jpg
£

OEBPS/html/graphics/167fig01.jpg
Request Reply 1 Reply 2 Reply 3.
Message D 123 MessagelD 234 MessagelD 345 Message D 56
Gorelation 1D nul Correlation 10123 Corelation 1D 234 Correlation 1D 345.

‘message body ‘message body. “message body ‘message body

OEBPS/html/graphics/622fig01.jpg

OEBPS/html/graphics/xxivfig01.jpg

OEBPS/html/graphics/342fig01.jpg

OEBPS/html/graphics/xlitab01.jpg
Enterprise Integration

Patterns TIBCO WebMethods SecBeyond Vitria
Message Channel Subject Queue g:ﬂl‘f”“ Channel
; Distributed _ Deliver Teligent o
Pointto-Point Channel Q4" el Fsim Channel
Publish- Pablish-
kel subject Subserbe @™ Subscibe
c Action Channel
Message Message Document __Event Event
Publisher, Publisher, Publisher, Publisher,
Message Endpoint Subscriber Subscriber Subscriber Subscriber

OEBPS/html/graphics/137fig02.jpg
Agent

Life Insurance System
(Manframe COBOL IMS)

Pl

Heallh Insurance System
(Cliont Server C++)

<

Auto Insurance System
(Mainframe COBOL CICS)

Homeowners Insurance System
(J2EE)

OEBPS/html/graphics/137fig01.jpg

OEBPS/html/graphics/298fig01.jpg
L

Quote Request

R

Bost” Quote

Vendor C |—{D

Agaregator

OEBPS/html/graphics/353fig01.jpg
Different Message
Formats

%%t

Gommon Format

OEBPS/html/graphics/283fig01.jpg
000

OEBPS/html/graphics/044fig01.jpg
Application Application

A

Data

OEBPS/html/graphics/352fig01.jpg
g

>,

-0

OEBPS/html/graphics/119fig01.jpg

OEBPS/html/graphics/230fig01.jpg

OEBPS/html/graphics/289fig01.jpg
DelayProcessor

Processing nessages fron
inQuete o outQuede
Delay: 0.3 seconds

Received Message:
Received Message:
Received Hessage: Nessage
Received Hessage: Nessage
Received Hessage: Nessage

Message
Message

Resequencer

Processing nessages fron
inQuese o outQuete
Delay: 0.7 seconds

Received Hessage: Nessage 1
Received Hessage: Nessage ©
Received Hessage: Message 10

Processing nessages fron
inQueve to outlueve
Delay: 1.3 seconds

Received Hessage: Nessage
Received Hessage: Nessage 9

Processing nessages fron

outluese to sequencelueue

Received message index 3
Buffer range: 1

Received message index 4
Buffer range: 1

Received message index 1
Buffer range: 1

Sending message with index 1

Received message index §
Buffer range: 2
Received message index 7
Buffer range: 2
Received message index 2
Buffer range: 2
Sending nessage with index
Sending nessage with index
Sending nessage with index
Sending nessage with index
Received message index 6
Buffer range: &
Sending nessage with index
Sending nessage with index
Received message index §
Buffer range: &
Sending nessage with index

MQSequenceReceive

Receiving nessages fron
\privates | sequenceluese

Received Message:

initialized

Received Message:

Received Message:
Received Message:
Received Message:
Received Message:
Received Message:

Received Message:

1

Message
Hessage
Message
Message
Message
Message
Hessage

- sequence

OEBPS/html/graphics/589fig01.jpg
s g \d s e
.
v v vt
e ey Veskess ey

iy

Mosssao

OEBPS/html/graphics/128fig02.jpg
User
Interface

Business
Logic

Channel
Adoptor

OEBPS/html/graphics/604fig01.jpg
Marke'Da'al Anlyt |
Price Feed | —— > | AnVies | ——>

(Analytics
Coniguration)

Trading
Venues

OEBPS/html/graphics/pub.jpg
vv Addison-Wesley

OEBPS/html/graphics/128fig01.jpg
Application «?g + GEED

Channel Massage. Message
Adapter porma.t

OEBPS/html/graphics/160fig01.jpg
Requestor 1

Requestor 2|

b A
Channel 1 _ Channel 2

OEBPS/html/graphics/235fig01.jpg
Count: Session
Session Receive... Trigger

¥ bl Reply S... Subject ® Data
] Message S
Msg Con... o o M'::ﬁge Emor C...
:;" 5 Msg Con... Ermor
e RVPublisher
RVSubscriber Orderftem __ resutt

_l—omap ’ e
resut ComputeSubject

OEBPS/html/graphics/343fig02.jpg
Content Filter

OEBPS/html/graphics/043fig01.jpg

OEBPS/html/graphics/343fig01.jpg
Gontent Fiter

Massinn

OEBPS/html/graphics/619fig01.jpg
Update Update Uptate Update
(Fied1) (Fields1,2) (Field 3) (Fiekds 1, 2, 3)

OEBPS/html/graphics/305fig01.jpg
Proc A

R E g

Atach Rouing Slip
1o Message

Proc B

L

ProcC

—

Foute Message

According 1o

Siip

OEBPS/html/graphics/274fig01.jpg
Original Message

TR

Aggregator Individual Messages Subsyster

Splitter / Recipient List / Broadcast
EE > >
\ Initiaize

Agaregate Message

OEBPS/html/graphics/xxxviii.jpg
Procass A

Process B

s |]

Synchronous Call

Process B

Asynchronous Message

OEBPS/html/graphics/362fig02.jpg
Bank 1
Customer Loan Broker

Nlg

Bank2

Bank 3

el

Credit Bureal

OEBPS/html/graphics/176fig01.jpg

OEBPS/html/graphics/235tab01.jpg
Item Code Channel Name
adger

widget

OEBPS/html/graphics/015fig01.jpg
Message

Routing Transiation
Channel
fopteaten * .

Endpoint

Syt Meriagerient

OEBPS/html/graphics/151fig01.jpg

OEBPS/html/graphics/170fig01.jpg

OEBPS/html/graphics/381fig01.jpg
Consumer Lomproker R == Eenie Bl | .| Baks
getLoanQuote
> gettoancuoteswinscores
[petoancuoles S
goLondortist
.

Londartist

getBesiOuole

> geanaue
e
BankQuote

oetBankQuote

N gelBestQute
Besiuoi

[Bestuoterspont

OEBPS/html/graphics/362fig01.jpg
T

OEBPS/html/graphics/207fig01.jpg
Subscriber

Publisher

y

Subscriber

Subscriber

Topic

HH

OEBPS/html/graphics/059fig01.jpg
Chapter2
Intsgraion
Styes

(i Pipes and Message Message Message
Sys‘;“sv Filters Router Translator Endpoint

Chapler 4
Messaging
Channels

Chapter :
Message
Construction

Chapter 7:
Message
Routing

Chapter
Message
Transformaton

Chapter 10:
Messaging
Endpoits

Chapter 11
Sysiem
Management

OEBPS/html/graphics/122fig01.jpg

OEBPS/html/graphics/456fig01.jpg
< TIBCO IM - MyTestAppRepo - process/LoanBroker
File Edit View Tools Window Help

e aa@ «» u

Desion | Navgate very| Debug|

G nl2l x|

& Process Diagram
© Bank
o Bank2
o CreditBureay
3
o TestClient
88 Message Diagram
® LoanBrokerSolution
= Channel
 BankLoanReply
 BankLoanRequest
o CreditRequest
® CustomerRequest
o TesfTrigger
¥ Job Creator
© BankaLoanJob
© BankLoanJob
® CreditBureauJob
© LoanBrokerJob
® Testion
) Script
& Schema File
= Shared Parameter
8 Class Diagram
& Class
ER=TY
£ baseDocument
® BankauoteReply
BankQuoteRequest
CreditBureauReply
CreditBureauRequest
LoanQuoteReply
© LoanQuoteRequest
100 Sequence
= Clae
Union

o
v
x

R Select Objects

©)

Creato AE Object Credit Requen?

Invoka Synchronous Credit Bureau Request

»

B Croah AE Object Bank mquest

Initinlze 8id Array

Publish Asynchronous
\2 Bark Reguest Message

Success]

Wait For Bank Re ply And Fillr
©n Cormation!d.

.
.
.
.

Process End of Auction Pariod

CEOEGRERLY ONEIBRBE~EE QRCERSO +|7 ¥]

o]

Zoom 78%

OEBPS/html/graphics/103fig01.jpg

OEBPS/html/graphics/034fig01.jpg
%

Announcement

Input Channel

Dynamic
Fule Base

SUCHIES:

e

Channel

Control Channel

OEBPS/html/graphics/103fig02.jpg
| b=

Sender Order Order Order Point-to-Point Order Order Order Receiver
5 8 % Channel P

OEBPS/html/graphics/450fig01.jpg
CreateBankLoan
Reply

5 SendBank
Reply

T
(Success]

OEBPS/html/graphics/437fig01.jpg
leceived response: 47 $70,.008.00 @ ERROR: No Qualifying Quotes
Matched to request - 15.61 seconds

eceived response: 49 $115,0600.90 @ ERROR: No Qualifying Quotes
Matched to request — 15.61 seconds

eceived response: 48 $90.800.90 9 PaunShop-00098

Matched to request - 16.82 seconds

eceived response: 5@ $45.800.90 @ ERROR: No Qualifying Quotes
Matched to request - 16.43 seconds

Total elapsed time: 00:80:21.5595550 secs
average response time 8.63 secs

OEBPS/html/graphics/437fig02.jpg
O Computer Management

=) File Action View Window

o O@ERE @

Help

=l8lx

Computer Management (Local)
System Tools
Storage
Services and Applications.
€ Microsoft QL Servers
Services
% WMI Control
BB Indexing Service

= 52 Message Queuing
(1] Outgoing Queues

bankiqueue
+ @ bankzqueue
@9 bank3queue
#+ @4 bankdqueue
+ @ bankSqueue
+ @3 bankreplyqueue
+ @ creditreplyqueue

>

v

Name

[Label

| Number .

1

@bankiqueue
Bbankzqueve
@banksqueve
@bankdqueue
@banksqueue
@bankreplyqueue

& credireplyqueue
B credirequestaueue
@invalidmessagequeve
@ loanreplyqueue
@loanrequestqueve

0
0
1
s

OEBPS/html/graphics/053fig01.jpg

OEBPS/html/graphics/047fig01.jpg

OEBPS/html/graphics/380fig01.jpg
Axis Ext. Interfaces
3
Axis Server € ===~
CreditagencyGateway
S gelCustomerCredProfle
LoanBroker
BankQuoteGateway Bank
LoanBrokerWs e
“gelBestQuotel) +getBankCuote()
+gotLoanGuotel) gelBarkQuotes()
“getLoanGuotesWithScores() H T
getFesuiFromLoanCloaringHousal)
-getLoanQuolesReport) LenderGateway I 1
“gelLorderlist) Bankt Banks.

OEBPS/html/graphics/087tab01.jpg
Transformation

Tools/

Layer Deals With Needs (Example) Techniques
Data Entities, associations, Condense many-to- Structural
Structures cardinality many relationship into mapping
(Application aggregation. patterns,
Layer) custom code
Data Types Field names, data types, Convert ZIP code from _EAI visual
value domains, numeric to string. transformation
constraints, code values Concatenate First editors, XSL,
Name and Last Name database
fields to single Name lookups, custom
field. Replace U.S. state ~ code
name with two-
character code.
Data Data formats (XML, Parse data XML parsers,

Representation

Transport

name-value pairs, fixed-
length data fields, EAI
vendor formats, etc.)

Character sets (ASCII,
UniCode, EBCDIC)

Encryption/compression

Communications
protocols: TCP/IP sockes,
HTTP, SOAP, JMS,
TIBCO RendezVous

representation and
render in a different
format.

Decryptlencrypt as
necessary.

Move data across
protocols without
affecting message
content.

EAI parser/
renderer tools,
custom APls

Channel
Adapter (127),
EAl adapters

OEBPS/html/graphics/363fig01.jpg
RATICIL SEaEL],

LS.

L]

%

Loan Request

~[=oH

[-=cH

=l

| Sl

o T
Aggregator
s 8
. aed
g
seacm

Loan Broker

OEBPS/html/graphics/402fig01.jpg
bank1Queve

P alala] |

Generate Test
Message

oanTestClient

Verify

creditRequestQueue creditReplyQueue — G|
bankzQueus
loanRequestQueue _<: pankaQueue
== I 0 —|
RecipientList bank4Queue
— D —|
LoanBroker banksQueue
e
Transiator Aggregator
loanReplyQueue bankReplyQueue

[/}

L—

o
D I- D<—DI-
o

OEBPS/html/graphics/033fig01.jpg
Web Interface

i
j_ Tansior O8I

File

Adapte =
. I}#jl- = Gadget Co

Translator Catalog File

seamco |

OEBPS/html/graphics/078fig01.jpg
A

OEBPS/html/graphics/177fig01.jpg
Message Deivery
Vi Expiration -+ Times Out
Intended
v Message
Sender a0 Channel ntended

Optional _,
Reroute

fo—agm

Expired Dead Leter
Message Channel

OEBPS/html/graphics/301fig01.jpg
oooo

OEBPS/html/graphics/346fig01.jpg

OEBPS/html/graphics/163fig02.jpg
- Tata e

22 Requests

SRR

Requestor Replies Replier

OEBPS/html/graphics/163fig01.jpg

OEBPS/html/graphics/447fig01.jpg
"Send Quot
Request to
Banks

repty recsivec

OEBPS/html/graphics/616fig01.jpg
Pricing Gateway

Bon0 XYZ

OEBPS/html/graphics/532fig01.jpg

OEBPS/html/graphics/377fig01.jpg
TransportChain __Global Chain _ Service Chain

Targel
Sarvice

From
Senvice
Gk Provider
le
bt
e
Glont

Transport Chan Global Chan _ Service Chain

Axis Engine

0. LoanBiokets

OEBPS/html/graphics/xxxiiifig01.jpg
‘Sending Application

Receiving Application

oS

rog

2. Sen

Channel

3. Deliver

‘Computer 1

Computer 2

QO oaa

O] vossagowin s

j Message sorage

OEBPS/html/graphics/332fig01.jpg
~ I Wrapper

Envelope

T | wrapper

Header] Payload

Envelope

OEBPS/html/graphics/616fig02.jpg
Pricing Gateway

Trader A Trader B TraderC
Bond XYZ Bond XYZ Bond XYZ

1010 OO QOO

OEBPS/html/graphics/334fig01.jpg
e

Network
Transport
Appiication
Ethemet TCP Ethernet
toode | 1P Heacer | I5E Application Data Trator

14bytes 20bytes 20bytes 4bytes

OEBPS/html/graphics/120fig01.jpg
e

Sender Message Ghannel

LUelivery Falis

-X]

Reroute Delivery

Intended
Receiver

— g —@EE

Dead
Moskedie

Dead Letter
Channel

OEBPS/html/graphics/348fig01.jpg
Check Luggage

Crs
‘wiClaim Check

Message
whata

Transtormed
Message w/Data

Data Enricher

[

Transtomed Message
‘WClaim Check

OEBPS/html/graphics/548fig01.jpg
LR

s || —— oo

[}

OEBPS/html/graphics/134fig01.jpg
: - AN

-

Messaging Messaging Messaging
System 1 Bridge System 2

OEBPS/html/graphics/614fig01.jpg
Market Data Feed
B0nd ABC
Bord 50D

Anaytcs Engine

Bond ABC.

Bord 50D

THETIB

CesTIB Adagter

Trader A, Bond ABC

Trader A Bond ABC

Trader A, Bond BCD

Trader A 8and BCD

Trader B, Bond ABC.

Trader B, Bod ABC

Tradsr B, Bond BCD

Trader B Bord 5CD

JavaoMS Adapter
and Wessage outer

Trader A

Trager B

OEBPS/html/graphics/276fig01.jpg
Auction Result Bid Messages

Bl 5 %

[uctono=12 Aggregator | Auctenig=120 Aucton Auton=123
Vncor-LoCost Leadar| Voo s | Vordoriatstess | Voot o
Prce-1 56 Pico=1.65 Pre-183

OEBPS/html/graphics/414fig01.jpg
Crodiureau Messago
LoanBroker =31 “Goevay =S Gatewsy [~
. q
\ \\
Sorartic Rostastonto
anichmentto o message rploraion
proiemeoroin ooe

OEBPS/html/graphics/115fig01.jpg

OEBPS/html/graphics/281fig01.jpg
Auction
JMS “Aggregator et Auction
T T T T
onMessage | |
g | |
getAggregate
[2 | |
addbessage | |

sond

isComplete

getResutMessage

|
getpesitid_|
1

isComplete

44444444;{4%

OEBPS/html/graphics/249fig01.jpg

OEBPS/html/graphics/515fig01.jpg

OEBPS/html/graphics/014fig01.jpg
<depost
<> 1000<ant>
<atcts ooaoct>
<epost- Channel

Self-descriving
oo st

Financial

System

OEBPS/html/graphics/633fig01.jpg
‘Gommunications Protocol Envelope (HTTP, SMTP, FTP, etc.)

SOAP with Attachments MIME Envelope

MIME Part

'SOAP-ENV: Envelope

SOAP-ENV: Header

cb:MessageHeadsr

eb:Ermor

otheretc.

SOAP-ENV: Body

eb:Manifest

evetc

other:etc.

MIME Partls)

Payload(s)

OEBPS/html/graphics/095fig02.jpg
| [z Yg—emm-(en] @

Sender Message Channel Recever
Application Application

OEBPS/html/graphics/9780133065107.jpg
To Acktllson //{J/ by "/r/m//m’ Sories

SN

ENTERPRISE 3,

INTEGRATION ™
PATTERNS

DESIeNING, BUILDING, AND
DEPLOYING-MESSAGING SOLUTIONS

GREGOR HOHPE
Bossy WoOLF

Wit ConTIBUTIONS BY
KYLE BROWN
ConraD F. D'Cruz
MARTIN FOWLER
SEAN NEVILLE
MICHAEL J. RETTIG
JONATHAN SIMON

Forewords by John Crupi and Martin Fowler

OEBPS/html/graphics/095fig01.jpg

OEBPS/html/graphics/214fig01.jpg
Update

Subscriber
State.
Publisher =3
State Reply Subscriber

OEBPS/html/graphics/315fig01.jpg
Process Instances

Process ID = 1234
Current Stop — 1

Process ID = 5678
Current Step = 2,5

OEBPS/html/graphics/148fig01.jpg
B ~%—

Sender Document Receiver
Message

[D] = aPurchaseOrder

OEBPS/html/graphics/580fig01.jpg
loanRequestQueve

Client

loanReplyQueus

* Reply Address Specified by Cient

Smart Proxy
brokerRequesiQueus

brokerReplyQuoue

conrolBusQueve

Management
Console

(Credit Bureau

t

LoanBroker

!

T

Banks

OEBPS/html/graphics/495fig01.jpg
aMessaging aPoling a Receiver

Sustem

Consumer

receive

«delivers

aMessage

«delivers

ea

receive

L

process.

process.

OEBPS/html/graphics/xlivfig01.jpg
- |

Message Channel Component

OEBPS/html/graphics/561fig01.jpg
MsgD=1001 MsgD=2002
Remidcess-MyChamnal Rotunidcoss-RopyChanms.

\
a0 - —— %

RequesiChannel

SenvceChannal

%

Service

- %

MyChanncl = RoplyChannel
VigD-4004 giD=000
Corstond-1001 Corsatont

sg10[CorD [RephyAdirss|
2002 | 1001 | wyCheme.

OEBPS/html/graphics/561fig02.jpg
‘Smart Proxy

RequesiQueue ‘SeviceRequesiQueue

Requestor 1

Requestor 2

ReplyQueuez

| concecion

OEBPS/html/graphics/313fig01.jpg
if
lls

[

OEBPS/html/graphics/621fig01.jpg
Timeout

Uistener

Dead Later
Channel

OEBPS/html/graphics/319fig01.jpg
.

Publish-Subscribe

Fork Channel

Fil Orcer

'
Shiopi Defen

OEBPS/html/graphics/260fig01.jpg
—% %%

Order Order Order
New Order Splitter tem1 lem2 ltem 3

OEBPS/html/graphics/483fig01.jpg
Canonical Private

Message Message Application
B3 e |
Message |
Translator
Bp0
a

Domain Objects.

OEBPS/html/graphics/260fig02.jpg
Ordor Number

Ordr Homs Lis|

om A

Order Message

OEBPS/html/graphics/344fig01.jpg
=%

ERE F—
—] Daﬂl—'fz
O—o

OEBPS/html/graphics/344fig02.jpg
ACCOUNT

§[AccTNO
DESCRIPTION

]

ACCOUNT_CONTACT

§[AccT_NO

7| conTact o
conTact_Tvee

CONTACT

[conTact o
A
SaLUTATION

ADDRESS
7 A0DRESS 1D
conTacT_1p
ADDRESS TYPE
STREET
Ed
Ed

OEBPS/html/graphics/370tab01.jpg
Channel Product
Implementation_Sequencing _ Addressing _ Aggregation Type _Technology
Iy Synchronous Distribution Channel Web Java/
Service/ Apache
SOAP Axis
B Asynchronous Distribution Correlation Message C#/
D Queue Microsoft
MSMQ
C Asynchronous Auction Corrclaion Publish- TIBCO
D Subseribe Active-

Enterprise

OEBPS/html/graphics/319tab01.jpg
Distributed Pipes and Filters

Routing Slip

Central Process Manager

Supports complex message
flow

Supports only simple,
linear flow

Supports complex message
flow

Difficult to change flow

Easy to change flow

Easy o change flow

No central point of failure

Potential point of failure
(compute routing table)

Potential point of failure

Efficient distributed runtime
architecture

Mostly distributed

Hub-and-spoke architecture
may lead to bortleneck

No central point of
administration and reporting

Central point of
administration, but not
reporting

Central point of
administration and reporting

OEBPS/html/graphics/596fig02.jpg
= Management Console.

Secondary Credit Bureau

OEBPS/html/graphics/035fig01.jpg
Smart Proxy

Roquest ExCrecitRoguost

Gonsumer 1 Y Credit

Service
Provider

ExCrecitReply

Consumer 2

Management
s Console

OEBPS/html/graphics/243fig01.jpg

OEBPS/html/graphics/288fig01.jpg
(elayFrocessor

oulQueue

e

‘MQSend

‘sequenceQueve
oo,
1% oo

‘Fesaquencer

MaSsquenceRecaive

OEBPS/html/graphics/351fig01.jpg
Process Instance

Data

Storedin Other
Process (Activily Components
Instance
sty | —————>
8]
\! i~ ctiviy) | ntermediate Messages

Incorming

Message

!

Outgoing
Message

OEBPS/html/graphics/596fig01.jpg
= Management Console.

Primary Credit Bureau

Secondary Credit Bureau

OEBPS/html/graphics/127fig01.jpg

OEBPS/html/graphics/435fig01.jpg
st for SSN 18 for $80.880.98 / 73 months
PaynShop-08054
st for SSN 20 for $25.080.98 / 32 months
-4 PaunShop 00055
st for SSN 23 for $65,080.88 / 53 months
PaunShop-08056
rogusct for SSN 21 for $45.080.68 / 28 monthe
.3 PaunShoy
reguest for SSN 27 Tor $95,000.08 / 50 nonths

U EoR SEN 38 For $115,080.60 / 54 months
aunS ho)

Paun§
Eequest Fox 5N 31 for $85.600.80 / 44 months
PaunSho)

st for SSN 33 nn- $90.000.98 / 37 months
.7 PaunSho)
ot o BN 34 for $120,000.80 / 27 months
9 9.2 PaynShop 00062
request for SSN 38 For $75,000.08 / 49 months
PaunShop-08063
st for SSN 39 for $100,808.80 / 73 months
1 @ PaunShop-80964
Bequese for SSN 41 for $35.000.08 / 26 nonths
PaunSho)

ot o SEN 45 For $165,800.80 / 56 nonthe
PaunShop-00866

st for SSN 43 for $100,0808.90 / 68 months
PaunSho)

Score 466 History 2 months
eceived request For SSN 45
Score 669 History 13 months
eceived request for SSN 49
Score 705 History 4_months
eceived request For SSN 2
Score 576 History 12 months
eceived request for SSN 4
Score 658 History 11 months
eceived request for SSN 8
Score 852 History 17 months
eceived request for SSN 12
Score 379 History 16 months
eceived request for SSN 15
Score 649 History 18 months

Score 618 History 6 months
eceived request for SSN 20
_Score 446 History 1 months

Score 595 History 16 months
[Recedved request for SSN 26
 Score 723 History 13 months

Score 666 History 17 months
eceived request fox SSN 31
Score 580 History 2 months
eceived request For SSN 35
Score 894 History 18 months
eceived request for SSN 39
Score 466 History 14 months
eceived request for SSN 42
Score 536 History 5 months
eceived request for SSN 45
Score 525 History 4 months

p-00067
st for SSN 45 for $85.000.08 / 74 months
8 eceived request For SSN 47
Score 511 History 5 months
[Received request for SSN 50

5
z
5
5
)

Matched to request - 522 seconds
30 536,008.00 66 Retail-00047
Matched to request - 8.12
ece food responces 38 595,000,080 ERROR: No Qualifying Quotes
Fotehed to vousot - .74 sacands
Rece i 39 $100,000.80 B ERROR: No Qualifying Quotes
Matched to request - 4.84 seconds
i : 29 $55,000.00 7 Retail-00048
Matched to request - 683 seconds
eceived response: 36 $70.000.98 @ ERROR: No Qualifying Quotes
Matched to request - 6.84 seconds
eceived response: 41 $35,000.08 8.9 PaunShop-88065
Matched to request - 5.55 seconds
eceived response: 48 $110,008.80 6.3 CountryCluh-00022
HMatched to request - 5.77 seconds
eceived response: 42 $105.000.80 @ ERROR: No Qualifying Quotes
Matched to request - 5.85 seconds
eceived response: 43 $199,000.00 B ERROR: No Qualifying Quotes
Matched to request - 5.7 seconds
eceived response: 35 $30.000.08 6.9 Retail-00050
Hatched to request - 6.85 seconds
eceived response: 44 $120,800.80 6 CountryClub-08023
Hatched to request - 6.27 seconds
eceived response: 45 $85,000.80 8 ERROR: No Qualifying Quotes
Hatched to request - 6.26 seconds
eceived response: 46 $75,000.08 @ ERROR: No Qualifying Quotes
Matched to request - 6.36 seconds
37 $30.000.08 @ ERROR: No Qualifying Quotes
Matched to request - 7.45 seconds
eceived response: 49 $45,000.08 7 Retail-80052
Matched to request - 6.75 seconds
eceived response: 47 $130,000.60 @ ERROR: No Qualifying Quotes
Matched to request - 7.16 seconds
eceived response: 48 $98.000.08 8 ERROR: No Qualifying Quotes
Hatched to request - 7.87 seconds
eceived response: 50 $115.008.80 9.3 PawnShop-80072
Hatched to request - 6.97 seconds
Total clapsed time: @8:00:12.1435447 secs
average response time 4.22 secs

OEBPS/html/graphics/474fig01.jpg
CreditBureauGatowayimp MockCreditBureauGatewayimp

OEBPS/html/graphics/558fig01.jpg

OEBPS/html/graphics/074fig01.jpg
nt

incoming

Order

Decrypt

Clean
Order

OEBPS/html/graphics/026fig01.jpg
Publish Subscrive

Channel

Biling!

NEW_ORDER

New Order
Message

Aggregator

Gheck Inventory

Message Store.

Publish-Subscribe:

Router

INVALID, ORDER

Shipping

Biling!
Accounting

OEBPS/html/graphics/587fig01.jpg
Credit
Bureau

monitorReplyQueue

Credit Bureau
Monitor
Test Data
Verifer

creciReauesiQueue creditReplyQueue
]
| >
Client LoanBroker Banks
| fe—

000 <—e | Test 02

Generator

controlBusQuoe

Management
Console.

OEBPS/html/graphics/023fig01.jpg
LT N

Contonefiassd Oharmel
o S <
pe =y

INVIW_CHECK INV

) —

INVG_CHECK IV

Transiator
A
INVALID ORDER ITEM

OEBPS/html/graphics/227tab01.jpg
Number of ~ Number of
Messages Messages

Pattern Consumed _ Published Stateful2 Comment

Content-Based Router _1 [No (mostly)

Filter 1 Oorl No (mostly)

Recipient List 1 multiple (incl. 0) No

splitter 1 multiple No

Aggregator multiple 1 Yes

Resequencer multiple multiple Yes Publishes same
number it

OEBPS/html/graphics/517fig01.jpg
a Receiver

Consumer

a Seleclive

a2 Messagin
E

2 Specilying
Producer

OEBPS/html/graphics/612fig02.jpg
Market Data Feed Analytics Engine

N
Bong ABC Bond ASC
—>
Bond 5CD Bond BCD.
=
El
e Trager A Bond ABG

Trader A, 80nd BCD

Trager 8, Bond ABC.

Trager B, Band BCD.

OEBPS/html/graphics/111fig01.jpg

OEBPS/html/graphics/612fig01.jpg
Market Data Feed Analytics Engine

>
Bond ABC Bond ABC.

807 BCD Bond 80D

THETIB

Trader A (480, BCD)

Trader B (ABC. BOD)

OEBPS/html/graphics/322fig01.jpg
000
min

OEBPS/html/graphics/325fig01.jpg
Local
Message

Central
Message

OEBPS/html/graphics/111fig02.jpg
L% % bmm]

Sender Query Price Purchase Channel Receiver
Quote Order

OEBPS/html/graphics/250fig01.jpg
‘‘‘‘‘‘‘‘‘‘

nnnnnnnnnnnnnn

(][] [-][*]

OEBPS/html/graphics/259fig01.jpg

OEBPS/html/graphics/618fig01.jpg
- Minutss:Seconds:Milissconds

OEBPS/html/graphics/322fig02.jpg

OEBPS/html/graphics/xltab01.jpg
Enterprise Integration Java Message Microsoft WebSphere
Patterns Service (JMS) MSMQ MQ
Message Channel Destination MessageQueue Queue
Point-to-Point Channel Queue. MessageQueue Queue
Publish-Subscribe Channel Topic —

Message Message Message Message

Message Endpoint

MessageProducer,
MessageConsumer

OEBPS/html/graphics/303fig01.jpg
Proc Af—sprocc
Option C: —»f: {
B e e T e)

Option D: —»{

® Proc A
Option E: —>| f: ProcB)

ProcC

OEBPS/html/graphics/187fig01.jpg
~ (ReauesiGuese]) —~
o [

OEBPS/html/graphics/237fig01.jpg

OEBPS/html/graphics/008fig02.jpg

OEBPS/html/graphics/355fig01.jpg

OEBPS/html/graphics/008fig01.jpg

OEBPS/html/graphics/469fig01.jpg
%)

Messaging | Messaging | Messaging
Gatoway | System | _Gatoway

Application Aoplication

OEBPS/html/graphics/155fig01.jpg
Request Request
Channel

2% —

Reply Reply

'Requestor Channel Replier

OEBPS/html/graphics/310fig01.jpg
Daa 12 opeaton xv2
Hoaa Processor 1 Processor 2 | Processor 3 |
®1 |0 :
11 T=] Tl o]
oV
Operaton XY2L_ol Lookup Router Router I Router I
cramdtz [(2)
Chamel Chamel 1 @ cwmez [@| oz [@
@ [ommrr/] e
Chamel2 Cramnol 2/
Chamel 3 Chamel 3
Return Routing Retum
Daa sip Data”
Rotum
<

OEBPS/html/graphics/610fig01.jpg
Soesson

Ga Pricing
‘Gateway

/

Pricing
Gateway

The TIB

Thick
Client

N\

Contribution
Gateway

Contribution
Server

Market Data. |

Analytics
Engine

Trading
Venues

OEBPS/html/graphics/541fig01.jpg
Message Fow

Control Bus.

OEBPS/html/graphics/238fig01.jpg
Tg Ty To—emm

Widget Gadget Widget
Quote Quote Quole

Message
Filter.

0%

Widget Widget
Quote Quote

OEBPS/html/graphics/286fig01.jpg

OEBPS/html/graphics/341fig01.jpg
ENDRATINON SNy

Content Enricher

® ——[oo] -2

Standards-
Interal Messages complant

Messages
fz —|o—0O |4__E§ —

Content Filter

OEBPS/html/graphics/586fig01.jpg
100
o
o
o
o
E
w
EY
»
1

o

OEBPS/html/graphics/086fig01.jpg
incoming Message

Translator

Translated Message

OEBPS/html/graphics/241fig01.jpg
Widget Filter

{¥a%=-[

Gadget Filter

OEBPS/html/graphics/271fig01.jpg
__Conelation ID
— Message ID

incoming
Messages

!

0]

OEBPS/html/graphics/340fig01.jpg
Doctor Visit ~_Enricher Dogtor Visit

R =

e |

5 o

OEBPS/html/graphics/540fig01.jpg

OEBPS/html/graphics/454fig01.jpg
<5 Channel Edit Dialog

Channel Name: |CustomerRequest

Description: L

Transport: |RY

Channel Type: |clientiserver

AE Message Format. |TIBCO Rendezvous Message

Endpoint:

00
Class: |LoanQuoteRequest 00|

custorer.loan.request

OEBPS/html/graphics/454fig02.jpg
“1 Job Creator Edit Dialog

Job Creator Name: [LoanBrokerJob

Description: 2|

Channel Type: |clientiserver

Transport Type: [RV

Channel: [CustomerRequest e[g
Shared Parameters: s0e| £

Max Concurrent Job:

Checkpoint [~

Rule Sets ﬂl‘ﬁi‘i‘
Brocess mwe

LoanBroker LoanQuoteRequest GetLoanReply

Cancel | ?|

OEBPS/html/graphics/471fig01.jpg

OEBPS/html/graphics/439fig01.jpg
[Received response: 43 $45.080.80 6.7 Retail- 3
Matched to request — 6.81 seconds

[Roceived response: 48 $5.880.80 © ERROR: No Qualifying Quotes
Matched to request — 5.78 seconds

[Received response: 49 $30.060. 7.4 Retail-880824

Hatched to request - 5.91 seconds
Received responses 50 $118,808.08 8.8 PaunShop-00034
Matched to request - 6.29 seconds
Total elapsed time: 0@:@0:12.3232948 secs
average response time 3.68 secs

OEBPS/html/graphics/308fig01.jpg
To—[oe]

New Order

Store st of
inventory systams in
Routing Slip.

Routers

Rstgidnt
Systems

—

))]

L

OO0

Order not
handied

Order
handied

OEBPS/html/graphics/085fig01.jpg
\/

7x

OEBPS/html/graphics/508fig01.jpg

OEBPS/html/graphics/469fig02.jpg
Application

OEBPS/html/graphics/608fig01.jpg
@ |

o Java
3 G
Pricing
Engine and Gontibution
Analyics Subsystem
Subsystem

TIBCO

OEBPS/html/graphics/473fig01.jpg
CreditBureau p—
LomBroker (- e _of e .
\ \
\ \ Y
Samantc ‘Aostactonto —
envichmertto oeneric message Patorm o
problomdoman Yo

quae

3

OEBPS/html/graphics/65107.jpg
Exrermse £
INtEGRATION
Parmiss

OEBPS/html/graphics/268fig01.jpg

OEBPS/html/graphics/606fig01.jpg
Pricing ” Thick 222 | Contribution
Gatoway | €—> | Cient | <> | Gateway

Java ', Java

Cot

Contribution
Server

The TiB l
Analytics | Trading
Market Data | Engine. Venues

OEBPS/html/graphics/009fig01.jpg

OEBPS/html/graphics/070fig01.jpg

OEBPS/html/graphics/468fig01.jpg

OEBPS/html/graphics/523fig01.jpg
Ol

Publsher

‘Durable
Subsorier

Receiver

Publsh Subscribe | Nom Durable
Channel Subsariber

P

OEBPS/html/graphics/425fig01.jpg
AppSpeciic=2 AppSpecitc=T
egbr4433 ,z $§ ealbot2EeD
—<: T g —
AgpSpeciic=2 AopSpeciic=1
i tz ?m [

2

Bank 1 |—

g — »| Bank2 |
a0t HopSpactc2
Best Quotes5 5% Msgio=4co] tz
o2 g > Bank 3
e Qe 24

(A
0
s
o

ApoSpeci-2 | [AppSpecc-1 | [AppSpeciic=2) [AppSpeciio= | [AgpSpeciic=2
Quote=5.2% | | Quote=68% | | Ouote=7.9% | | Quotesise | | Quotesiane

OEBPS/html/graphics/312fig01.jpg

OEBPS/html/graphics/307fig01.jpg
Channel Legacy
InQueve Adapter Application

Fouter Out Queve

In Queve

)

OEBPS/html/graphics/107fig01.jpg
Dfu—i—

Publisher

Address
Changed

Y%L

Address
Changed

— 0

Address
Changed

‘Subscriber

||

Subscriver

9

Publish-Subscrie Address

Channel

Changed

|

‘Subscriber

OEBPS/html/graphics/567fig01.jpg
CommonMessaging

o= martProx martPron

OEBPS/html/graphics/567fig02.jpg
mOueus Size
@ Response Time|

—
—

OEBPS/html/graphics/498fig02.jpg
%%

Sender Message | Event-Driven
Consumer

Receiver

OEBPS/html/graphics/356fig01.jpg
rrrrrrrrr

OEBPS/html/graphics/556fig01.jpg
i; san e

(AN

OEBPS/html/graphics/287fig01.jpg
R itiohiciosimmin il

[O

Wt LI R

& Thottle Flow Control

Proceesors.

OEBPS/html/graphics/337fig01.jpg
vt [Feomin
7

Doctor Vit
postor Vst

Accounting
System

Doctor

Get da o
‘Scheduing Gustomer Scheduling Gustomer Schedulng Cuswmer
System Care System Care System | ocrar|_ Care
Visit
Replcate

‘Customer Data

A: Replicate Data

B: Request Data from
Customer Care System

C: Have Customer Care
System Transform Message

OEBPS/html/graphics/498fig01.jpg

OEBPS/html/graphics/022fig01.jpg
Publish-Subscrive
Channel

NEW_ORDER
New Order
Message

Biling/

Inventory

Accounting

Publish-Subscribe
Point-to-Point Channel

Channel

VALIDATED_ORDER

Content-
Based
Router

Aggregator

INVALID_ORDER

Shipping

Biling/
Accounting

OEBPS/html/graphics/330fig01.jpg

OEBPS/html/graphics/028fig01.jpg
ik ot

Process Manager -

NEW_ORDER

Biling’
Accounting
]
o->5-»0)
=]
Shipping I

Billng!
Accounting

Web Intertace Order 0B

Validato Customer
Standing

Check Inventory

Ship Goods.

Invoice Customer

OEBPS/html/graphics/336fig01.jpg

OEBPS/html/graphics/336fig02.jpg
HJoctor visit

Scheduing
System

“Aocourting
System

FrsiName-Jos
LasiName-Doa
SSN-123.45-6789
Carrier-Kaiser

OEBPS/html/graphics/449fig01.jpg
CTDCREE RUNEREN. SO
(IntegrationManager)

Process Definition
Process Diagram

<<create>>

’D Chomel
Massage Poassd
S

Job Creator

Process Instance(s)
(Job)

OEBPS/html/graphics/060fig01.jpg

OEBPS/html/graphics/060fig02.jpg
|

Applcation Messaging Application
‘System

OEBPS/html/graphics/027fig01.jpg
Foint-to-Foint Wire lap Foint-to-Foint
Channel Channel

Message Store

OEBPS/html/graphics/296fig01.jpg
‘Widget Inventory

‘Spitter Routor Valdated

Ondor

‘Gadgot Inventory

Domasis Lissances Prossicr:

OEBPS/html/graphics/296fig02.jpg
F
’'
8

Composite
NewOrder ossage Validate
Processor Order

OEBPS/html/graphics/321fig01.jpg
7. ProcessManager - Microsoft BizTalk Server 2004 [design] - BizTalk Orchestration1.odx

Edt Vew Projct Buid Debug BaTok Toos Wndow Hep
BizTalk Orchestration1.ods | Intessage.xsd | Inventory_Request.xsd | Inventory_Response.xsd | Credt_Request.xsd | Credt Response, 4 b X

Biopa s @ g

% v

80 B8]
Construct_Inventory Req Construct_Credt_Req
I I
@ Transform_In_To_Inv_Req @ Transform In_To_credt_Req

gre—
& send_t & send_2
Operation_t B [ainren [Fo_credt o]

< Request I I
%] Receive_t %] Receive 2

B Msaov_pesp <]

> Response.

|3 orchestiation
Ready

OEBPS/html/graphics/021fig01.jpg
Valigate
R Gustomer
Inventory Standing

Harde

Exception

OEBPS/html/graphics/066fig01.jpg

OEBPS/html/graphics/290fig01.jpg
Processor

+Initalize (inputQueueName, OutputqueueName)

+Process

#Processhlessage(message)

inQueue

L)

DelayProcessor

Resequencer

Processor

outQueue

OEBPS/html/graphics/434fig01.jpg
MessagingGateway

MaServios
Fun()
SendFieply() (i
AsyncRequestReply
Sorvice
Ontvessagel)
Toan Broker] | . intorfaces |
LoanBrokerPM BankGatoway
BankConnection
‘Processivessage] > +GetBestOuotel) .
“OnProcessComplete(Listen) Venager
t OnBankMessage()
LoanBrokerProcess (CreditBurcauGateway
“OnCreditReply() 1, GetCreditScora()
-OnBestQuote +Listen()
L)
:
CreditBureauGatewayimp
-OnCreditResponse()

OEBPS/html/graphics/503fig02.jpg
aMessaoing | | aGonsumer | | aConsumer | [aConsumer
System

| ceiver: | ! !
1 geiver | T process
olvers o 1 process

process

PO

OEBPS/html/graphics/509fig01.jpg
v

%]

Performer

[%%

Sender Messages

<3

Message
Dispatcher

1%

Performer

(%]

Performer

Receiver

OEBPS/html/graphics/503fig01.jpg

OEBPS/html/graphics/459fig01.jpg
“; RuleSet Edit Dialog

Process: |LoanBroker

Operation: |LoanQuoteRequest GetLoanReply

Binds.

request request
IoanReply <retumn>

R

OEBPS/html/graphics/031fig01.jpg
Endpoint pypigh. Subscrve|

Channel

Web Interface
ADDRESS CHANGE

Message
Translator

<]

Message
Fiter

Message
Translator

SHP_ADDRESS_CHANGE

Channel
Adapter|

BILLADDRESS CHANGEI

Channel
Adapter

Stipping

Biling/
Accounting

OEBPS/html/graphics/106fig01.jpg

OEBPS/html/graphics/154fig01.jpg

OEBPS/html/graphics/528fig01.jpg
SNSRI RIS

Sender Vessage Receiver
Wk —
Message
—
|

Duplicate Message

OEBPS/html/graphics/xlviifig01.jpg
Chagter2
negaton
Stjes

Chagter 3
Messapig
Systoms

Messape
Chamel

Endpont

Crapte 4 Chagtr 5 Crapte 7 Craptrs: || Craptr10: | | Chaptr 11
Messapg Nessage Vessage Wessage || Nessagny System
Cramds | | Consucion Foutng Tearsomaton | | Endponts | | Management

OEBPS/html/graphics/365fig01.jpg
Gonsumar. e recit
Broker Busa ekt B2 Bana

GetLoanCuote
{amount, trm) ™ | GetCreditScore
—

Select Banks.

fe—

GetloanQuote(amount, term, scoxe)

Conpui Fate

SR R

RateQuote
GeloanQuote(amount, term, soore)

GettcanQuoto(armount, term, score)

-
Compude Fate
N o
FateQuote -~
‘Seleot Best Fato
fe——

<
™ Ratoquo

OEBPS/html/graphics/585tab01.jpg
Number Number Minimum ~ Average Maximum Minimum Average Maximum
Time of of Processing Processing Processing Quewe Queue Queve
Stamp Requests Replies Time Time Time Size Sz Size
110256 0 0 0.00 0.00 0.00 0 0 0
44424

4110797 89 7 078 254 393 1 a2 82
18424

i11297 1 9 a3 643 869 83 87 91
92424

4111798 0 s 939 1083 1282 7 %0 3
66424

4112299 0 8 1380 1575 1748 = 72 76
40424

4112800 0 7 83 2009 228 62 65 68
14424

w3300 0 6 2290 2483 2694 56 58 61
88424

4113801 0 0 2774 3162 £3 50 55
62424

14302 0 9 3187 3447 3630 R 4
36424

4114803 0 7 3687 3906 4098 30 33 36
10424

11303 0 9 4175 4382 454 2 s 2
84424

15804 0 8 4592 4767 4967 3 16 20
58424

14120305 0 8 S086 s.58 5459 8 12
n424

14120806 0 4 ssal 5596 5669 T 2 4
06424

4121306 0 0 0.00 0.00 0.00 0 0 0

80424

OEBPS/html/graphics/415fig01.jpg
public struct CreditBureatequest
public struct CreditBureaufenly
internal Class CreditBureau

l xsdexe

aszelent
rame="CreditBureaufequest™
types"Credithureaskequest” />

1 xsdexe

CreditBureau.exe

CreditBureau.xsd

[systen. o Serial zation.
IstuTlable-false)]

public class Creditdureautequest {
public ine S3;

1

CreditBureaustub.cs

ol Roothteriute lesespace="",

CrediBureaufequest quotefequest =
Dew CreditBureautequest ();

CreditBureaulnterface.cs

LoanBroker

OEBPS/html/graphics/522fig01.jpg

OEBPS/html/graphics/018fig01.jpg
Web nerface

Call Center

Inbound Fax

Oubound
Email

WGRUS

Biling!
Accounting

Stipping

Widget
Inventory

Widget
Catdog

Gadget
Inventory

OEBPS/html/graphics/050fig01.jpg

OEBPS/html/graphics/261fig01.jpg
Composite
Message

Static
Splitter

OEBPS/html/graphics/198fig01.jpg
— (mSSEsiOuEE) —
Requestor Replier
- Crmews]

ﬁ]

OEBPS/html/graphics/229fig01.jpg
Exactly One

Single message
Zero or On

Process one message

ata time (stateless) Parallel

messages out

Sequential

Simple Less messages out

Process multiple
messages at a time (stateful)

Same number’
of messages out

Split Message,

Composed Paallel

Broadcast Message
Predetermined, Linear

Sequential

Any Path

5l
=

]
orf
>8

Content-Based
Router

Message Fitter

Recipient List

Splitier

Aggregator

Resequencer

=— Composed
Bro I Message
Processor

H|NE

Bro I Scatter-Gather

Routing Slip

Process Manager

OEBPS/html/graphics/453fig01.jpg
“1 Class Edit Dialog

Class Name: |LoanQuoteRequest

Datatype Family. | |

Superclass: B[oee|

Aftributes ozl x 2]
s8N

Loanamount e
LoanTerm

Operations. L IP4R3 _ﬂ 3
Mame Retumciass Parameters

GetloanReply class. class [ae/LoanQuoteRequest]

cancel |)|

