

[image: cover-image]

Sams Teach Yourself Java in 21 Days

(Covers Java 7 and Android)

Rogers Cadenhead

[image: Image]

800 East 96th Street,
Indianapolis, Indiana 46240

Sams Teach Yourself Java in 21 Days (Covering Java 7 and Android)

Copyright © 2013 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33574-7
ISBN-10: 0-672-33574-3

Library of Congress Cataloging-in-Publication Data:

Cadenhead, Rogers.
 Sams teach yourself Java in 21 days : covering Java 7 and Android /
Rogers Cadenhead.—6th ed.
 p. cm.
 ISBN 978-0-672-33574-7 (pbk.)
1. Java (Computer program language) 2. Android (Electronic resource)
I. Title.
 QA76.73.J38C315 2013
 005.13’3--dc23
 2012022262

Printed in the United States of America

First Printing August 2012

Editor-in-Chief
Mark Taub

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Gayle Johnson

Indexer
Tim Wright

Proofreader
Chrissy White, Language Logistics, LLC

Technical Editor
Boris Minkin

Editorial Assistant
Vanessa Evans

Cover Designer
Anne Jones

Compositor
Nonie Ratcliff

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The author and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Contents at a Glance

Introduction

Week 1: The Java Language

1 Getting Started with Java

2 The ABCs of Programming

3 Working with Objects

4 Lists, Logic, and Loops

5 Creating Classes and Methods

6 Packages, Interfaces, and Other Class Features

7 Exceptions and Threads

Week 2: The Java Class Library

8 Data Structures

9 Working with Swing

10 Building a Swing Interface

11 Arranging Components on a User Interface

12 Responding to User Input

13 Creating Java2D Graphics

14 Developing Swing Applications

Week 3: Java Programming

15 Working with Input and Output

16 Serializing and Examining Objects

17 Communicating Across the Internet

18 Accessing Databases with JDBC 4.1 and Derby

19 Reading and Writing RSS Feeds

20 XML Web Services

21 Writing Android Apps for Java

Appendixes

A Using the NetBeans Integrated Development Environment

B This Book’s Website

C Setting Up an Android Development Environment

D Using the Java Development Kit

E Programming with the Java Development Kit

Quiz Answers

Table of Contents

Introduction

Week 1: The Java Language

1 Getting Started with Java

The Java Language

History of the Language

Introduction to Java

Selecting a Development Tool

Object-Oriented Programming

Objects and Classes

Attributes and Behavior

Attributes of a Class of Objects

Behavior of a Class of Objects

Creating a Class

Running the Program

Organizing Classes and Class Behavior

Inheritance

Creating a Class Hierarchy

Inheritance in Action

Interfaces

Packages

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

2 The ABCs of Programming

Statements and Expressions

Variables and Data Types

Creating Variables

Naming Variables

Variable Types

Assigning Values to Variables

Constants

Comments

Literals

Number Literals

Boolean Literals

Character Literals

String Literals

Expressions and Operators

Arithmetic

More About Assignment

Incrementing and Decrementing

Comparisons

Logical Operators

Operator Precedence

String Arithmetic

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

3 Working with Objects

Creating New Objects

Using new

How Objects Are Constructed

A Note on Memory Management

Using Class and Instance Variables

Getting Values

Setting Values

Class Variables

Calling Methods

Formatting Strings

Nesting Method Calls

Class Methods

References to Objects

Casting Objects and Primitive Types

Casting Primitive Types

Casting Objects

Converting Primitive Types to Objects and Vice Versa

Comparing Object Values and Classes

Comparing Objects

Determining the Class of an Object

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

4 Lists, Logic, and Loops

Arrays

Declaring Array Variables

Creating Array Objects

Accessing Array Elements

Changing Array Elements

Multidimensional Arrays

Block Statements

If Conditionals

Switch Conditionals

The Ternary Operator

For Loops

While and Do Loops

While Loops

Do-While Loops

Breaking Out of Loops

Labeled Loops

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

5 Creating Classes and Methods

Defining Classes

Creating Instance and Class Variables

Defining Instance Variables

Class Variables

Creating Methods

Defining Methods

The this Keyword

Variable Scope and Method Definitions

Passing Arguments to Methods

Class Methods

Creating Java Applications

Helper Classes

Java Applications and Command-Line Arguments

Passing Arguments to Java Applications

Handling Arguments in Your Java Application

Creating Methods with the Same Name

Constructors

Basic Constructors

Calling Another Constructor

Overloading Constructors

Overriding Methods

Creating Methods That Override Existing Methods

Calling the Original Method

Overriding Constructors

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

6 Packages, Interfaces, and Other Class Features

Modifiers

Access Control for Methods and Variables

Static Variables and Methods

Final Classes, Methods, and Variables

Variables

Methods

Classes

Abstract Classes and Methods

Packages

The import Declaration

Class Name Conflicts

Creating Your Own Packages

Picking a Package Name

Creating the Folder Structure

Adding a Class to a Package

Packages and Class Access Control

Interfaces

The Problem of Single Inheritance

Interfaces and Classes

Implementing and Using Interfaces

Implementing Multiple Interfaces

Other Uses of Interfaces

Creating and Extending Interfaces

New Interfaces

Methods Inside Interfaces

Extending Interfaces

Creating an Online Storefront

Inner Classes

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

7 Exceptions and Threads

Exceptions

Exception Classes

Managing Exceptions

Exception Consistency Checking

Protecting Code and Catching Exceptions

The finally Clause

Declaring Methods That Might Throw Exceptions

The throws Clause

Which Exceptions Should You Throw?

Passing on Exceptions

throws and Inheritance

Creating and Throwing Your Own Exceptions

Throwing Exceptions

Creating Your Own Exceptions

Combining throws, try, and throw

When and When Not to Use Exceptions

When to Use Exceptions

When Not to Use Exceptions

Bad Style Using Exceptions

Threads

Writing a Threaded Program

A Threaded Application

Stopping a Thread

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

Week 2: The Java Class Library

8 Data Structures

Moving Beyond Arrays

Java Structures

Iterator

Bit Sets

Array Lists

Looping Through Data Structures

Stacks

Map

Hash Maps

Generics

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

9 Working with Swing

Creating an Application

Creating an Interface

Developing a Framework

Creating a Component

Adding Components to a Container

Working with Components

Image Icons

Labels

Text Fields

Text Areas

Scrolling Panes

Check Boxes and Radio Buttons

Combo Boxes

Lists

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

10 Building a Swing Interface

Swing Features

Standard Dialog Boxes

Using Dialog Boxes

Sliders

Scroll Panes

Toolbars

Progress Bars

Menus

Tabbed Panes

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

11 Arranging Components on a User Interface

Basic Interface Layout

Laying Out an Interface

Flow Layout

Box Layout

Grid Layout

Border Layout

Mixing Layout Managers

Card Layout

Using Card Layout in an Application

Grid Bag Layout

Designing the Grid

Creating the Grid

Cell Padding and Insets

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

12 Responding to User Input

Event Listeners

Setting Up Components

Event-Handling Methods

Working with Methods

Action Events

Focus Events

Item Events

Key Events

Mouse Events

Mouse Motion Events

Window Events

Using Adapter Classes

Using Inner Classes

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

13 Creating Java2D Graphics

The Graphics2D Class

The Graphics Coordinate System

Drawing Text

Improving Fonts and Graphics with Antialiasing

Finding Information About a Font

Color

Using Color Objects

Testing and Setting the Current Colors

Drawing Lines and Polygons

User and Device Coordinate Spaces

Specifying the Rendering Attributes

Creating Objects to Draw

Drawing Objects

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

14 Developing Swing Applications

Java Web Start

Using Java Web Start

Creating a JNLP File

Supporting Web Start on a Server

Additional JNLP Elements

Improving Performance with SwingWorker

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

Week 3: Java Programming

15 Working with Input and Output

Introduction to Streams

Using a Stream

Filtering a Stream

Handling Exceptions

Byte Streams

File Streams

Filtering a Stream

Byte Filters

Character Streams

Reading Text Files

Writing Text Files

Files and Paths

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

16 Serializing and Examining Objects

Object Serialization

Object Output Streams

Object Input Streams

Transient Variables

Checking an Object’s Serialized Fields

Inspecting Classes and Methods with Reflection

Inspecting and Creating Classes

Working with Each Part of a Class

Inspecting a Class

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

17 Communicating Across the Internet

Networking in Java

Opening a Stream Over the Net

Sockets

Socket Servers

Testing the Server

The java.nio Package

Buffers

Channels

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

18 Accessing Databases with JDBC 4.1 and Derby

Java Database Connectivity

Database Drivers

Examining a Database

Reading Records from a Database

Writing Records to a Database

Moving Through Resultsets

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

19 Reading and Writing RSS Feeds

Using XML

Designing an XML Dialect

Processing XML with Java

Processing XML with XOM

Creating an XML Document

Modifying an XML Document

Formatting an XML Document

Evaluating XOM

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

20 XML Web Services

Introduction to XML-RPC

Communicating with XML-RPC

Sending a Request

Responding to a Request

Choosing an XML-RPC Implementation

Using an XML-RPC Web Service

Creating an XML-RPC Web Service

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

21 Writing Android Apps for Java

The History of Android

Writing an Android App

Organizing an Android Project

Creating the Program

Using an Android Emulator

Creating a Debug Configuration

Running the App

Designing an Android App

Preparing Resources

Configuring a Manifest File

Designing the Graphical User Interface

Writing Code

Summary

Q&A

Quiz

Questions

Certification Practice

Exercises

Appendixes

A Using the NetBeans Integrated Development Environment

B This Book’s Website

C Setting Up an Android Development Environment

D Using the Java Development Kit

E Programming with the Java Development Kit

Quiz Answers

About the Author

Rogers Cadenhead is a programmer and author. He has written more than 20 books on programming and web publishing, including Sams Teach Yourself Java in 24 Hours. He also publishes the Drudge Retort and other websites that receive more than 20 million visits a year. He maintains this book’s official website at www.java21days.com and a personal weblog at http://workbench.cadenhead.org.

Dedication

To my mom, Gail Cadenhead. I’m disappointed you abandoned the beehive hairdo you had in the ’60s, but that’s the last time you ever disappointed me in the 45 years of my life. Thank you for the room and board, for the love and support, and for introducing me to Ryan’s Hope and One Life to Live when I was 8.

Acknowledgments

A book of this scope (and heft!) requires the hard work and dedication of numerous people. Most of them are at Sams Publishing in Indianapolis, and to them I owe considerable thanks—in particular, to Boris Minkin, Gayle Johnson, Songlin Qiu, Anne Goebel, and Mark Taber. Most of all, thanks to my wife, Mary, and my sons, Max, Eli, and Sam.

I’d also like to thank readers who have sent helpful comments about corrections, typos, and suggested improvements regarding this book and its prior editions. The list includes the following people: Dave Barton, Patrick Benson, Ian Burton, Lawrence Chang, Jim DeVries, Ryan Esposto, Kim Farr, Sam Fitzpatrick, Bruce Franz, Owen Gailar, Rich Getz, Bob Griesemer, Jenny Guriel, Brenda Henry-Sewell, Ben Hensley, Jon Hereng, Drew Huber, John R. Jackson, Bleu Jaegel, Natalie Kehr, Mark Lehner, Stephen Loscialpo, Brad Kaenel, Chris McGuire, Paul Niedenzu, E.J. O’Brien, Chip Pursell, Pranay Rajgarhia, Peter Riedlberger, Darrell Roberts, Luke Shulenburger, Mike Tomsic, John Walker, Joseph Walsh, Mark Weiss, P.C. Whidden, Chen Yan, Kyu Hwang Yeon, and J-F. Zurcher.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: errata@informit.com

Mail: Addison-Wesley/Prentice Hall Publishing
 ATTN: Reader Feedback
 1330 Avenue of the Americas
 35th Floor
 New York, New York, 10019

Reader Services

Visit our website and register this book at informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.

Introduction

Some revolutions catch the world by surprise. Twitter, the Linux operating system, and Cupcake Wars all rose to prominence unexpectedly.

The remarkable success of the Java programming language, on the other hand, caught nobody by surprise. Java has been a source of great expectations since its introduction 17 years ago. When Java was introduced in web browsers, a torrent of publicity welcomed the arrival of the new language.

Sun Microsystems cofounder Bill Joy proclaimed, “This represents the end result of nearly 15 years of trying to come up with a better programming language and environment for building simpler and more reliable software.”

Sun, which created Java in 1991 and first released it to the public four years later, was acquired by Oracle in 2010. Oracle, which has been committed to Java development since its earliest years, has continued to support the language and produce new versions.

In the ensuing years, Java lived up to a considerable amount of its hype. The language has become as strong a part of software development as the beverage of the same name. One kind of Java keeps programmers up nights. The other kind enables programmers to rest easier after they have developed their software.

Java was originally offered as a technology for enhancing websites with programs that run in browsers. Today, it’s more likely to be found on servers, driving dynamic web applications backed by relational databases on some of the web’s largest sites. It’s also found on Android cell phones running popular apps such as Angry Birds and Words with Friends.

Each new release of Java strengthens its capabilities as a general-purpose programming language for a wide range of environments. Today, Java is being put to use in desktop applications, Internet servers, personal digital assistants, mobile devices, and many other environments. It’s even making a comeback in the browser with sophisticated applications created in Java that are deployed using the Google Web Toolkit.

Now in its eighth major release—Java 7—the Java language has matured into a full-featured competitor to other general-purpose development languages, such as C++, Python, Ruby, and Visual Basic.

You might be familiar with Java programming tools such as Eclipse, Borland JBuilder, and NetBeans. These programs make it possible to develop functional Java programs, and you also can use Oracle’s Java Development Kit. The kit, which is available for free on the Web at http://oracle.com/technetwork/java, is a set of command-line tools for writing, compiling, and testing Java programs. NetBeans, another free tool offered by Oracle, is an integrated development environment for the creation of Java programs. It can be downloaded from http://netbeans.org.

This book introduces you to all aspects of Java software development using the most current version of the language and the best available techniques in the Java Standard Edition, the most widely used version of the language and Java Class Library. Programs are prepared and tested using NetBeans, so you can quickly demonstrate the skills you master each day.

Reading this book will help you understand why Java has become the most widely employed programming language on the planet.

How This Book Is Organized

Sams Teach Yourself Java in 21 Days teaches you about the Java language and how to use it to create applications for any computing environment and Android apps that run on cell phones and other mobile devices. By the time you have finished the book, you’ll have well-rounded knowledge of Java and the Java class libraries. Using your new skills, you will be able to develop your own programs for tasks such as web services, database connectivity, XML processing, and mobile programming.

You learn by doing in this book, creating several programs each day that demonstrate the topics being introduced. The source code for all these programs is available on the book’s official website at www.java21days.com, along with other supplemental material such as answers to reader questions.

This book covers the Java language and its class libraries in 21 days, organized into three weeks. Each week covers a broad area of developing Java programs.

In the first week, you learn about the Java language itself:

• Day 1 covers the basics—what Java is, why you should learn the language, and how to create software using a powerful style of development called object-oriented programming. You create your first Java application.

• On Day 2, you dive into the fundamental Java building blocks—data types, variables, and expressions.

• Day 3 goes into detail about how to deal with objects in Java—how to create them, use their variables, call their methods, and compare them.

• On Day 4, you give Java programs some brainpower using conditionals and work with arrays and loops.

• Day 5 fully explores creating classes—the basic building blocks of any Java program.

• On Day 6, you discover more about interfaces and packages, which are useful for grouping classes and organizing a class hierarchy.

• Day 7 covers three powerful features of Java—exceptions, the ability to deal with errors and threads, and the ability to run different parts of a program simultaneously.

Week 2 is dedicated to the most useful classes offered by Oracle for use in your own Java programs:

• Day 8 introduces data structures that you can use as an alternative to strings and arrays—array lists, stacks, hash maps, and bit sets. It also describes a special for loop that makes them easier to use.

• Day 9 begins a five-day exploration of visual programming. You learn how to create a graphical user interface using Swing classes for interfaces, graphics, and user input. Your programs adopt the Nimbus look and feel introduced in Java 7.

• Day 10 covers more than a dozen interface components you can use in a Java program, including buttons, text fields, sliders, scrolling text areas, and icons.

• Day 11 explains how to make a user interface look marvelous using layout managers, a set of classes that determine how components on an interface are arranged.

• Day 12 concludes the coverage of Swing with event-handling classes, which enable a program to respond to mouse clicks and other user interactions.

• On Day 13, you learn about drawing shapes and characters on user interface components.

• Day 14 demonstrates how to use Java Web Start, a technique that makes installing a Java program as easy as clicking a web page link. It also describes SwingWorker, a class that improves application performance by using threads.

Week 3 moves into advanced topics:

• Day 15 covers input and output using streams, a set of classes that enable file access, network access, and other sophisticated data handling.

• Day 16 introduces object serialization, a way to make objects exist even when no program is running. You learn how to save them to a storage medium such as a hard disk, read them into a program, and then use them again as objects.

• On Day 17, you extend your knowledge of streams to write programs that communicate with the Internet, including socket programming, buffers, channels, and URL handling.

• Day 18 shows you how to connect to relational databases using Java Database Connectivity (JDBC) version 4.1. You learn how to exploit the capabilities of Derby, the open source database that’s included with Java.

• Day 19 covers how to read and write RSS documents using the XML Object Model (XOM), an open source Java class library. RSS feeds, one of the most popular XML dialects in use today, enable millions of people to follow site updates and other new web content.

• Day 20 explores how to write web services clients with the language and the Apache XML-RPC class library.

• Day 21 covers the fastest-growing area of Java programming: developing apps for Android phones and mobile devices. Using Eclipse as a development environment and a free Android development kit, you create apps that can be deployed and tested on a phone.

Who Should Read This Book

This book teaches the Java language to three groups:

• Novices who are relatively new to programming

• People who have been introduced to earlier versions of Java

• Experienced developers in other languages, such as Visual C++, Visual Basic, or Python

When you’re finished with this book, you’ll be able to tackle any aspect of the Java language. You’ll also be comfortable enough to tackle your own ambitious programming projects, both on and off the Web.

If you’re somewhat new to programming or have never written a program, you might wonder whether this is the right book for you. Because all the concepts in this book are illustrated with working programs, you’ll be able to work your way through the subject regardless of your experience level. If you understand what variables and loops are, you’ll be able to benefit from this book. You might want to read this book if any of the following are true:

• You had some beginning programming lessons in school, you grasp what programming is, and you’ve heard that Java is easy to learn, powerful, and cool.

• You’ve programmed in another language for a few years, you keep hearing accolades for Java, and you want to see whether it lives up to its hype.

• You’ve heard that Java is great for web application and Android programming.

If you’ve never been introduced to object-oriented programming, which is the style of programming that Java embodies, don’t be discouraged. This book assumes that you have no background in object-oriented design. You’ll get a chance to learn this development methodology as you’re learning Java.

If you’re a complete beginner to programming, this book might move a little fast for you. Java is a good language to start with, though, and if you take it slowly and work through all the examples, you can still pick up Java and start creating your own programs.

Conventions Used in This Book

Note

A Note presents an interesting, sometimes technical, piece of information related to the discussion.

Tip

A Tip offers advice, such as an easier way to do something.

Caution

A Caution advises you of potential problems and helps you steer clear of disaster.

Text that you type and text that appears onscreen is presented in a monospace font:

It looks like this.

This font represents how text looks onscreen. Placeholders for variables and expressions appear in monospace italic.

The end of each lesson offers several special features: answers to commonly asked questions about that day’s subject matter, a quiz to test your knowledge of the material, two exercises that you can try on your own, and a practice question in case you’re preparing for Java certification. Answers to the questions can be found at the end of the book. Solutions to the exercises and the answer to the certification question can be found on the book’s official website at www.java21days.com.

Week 1: The Java Language

1 Getting Started with Java

2 The ABCs of Programming

3 Working with Objects

4 Lists, Logic, and Loops

5 Creating Classes and Methods

6 Packages, Interfaces, and Other Class Features

7 Exceptions and Threads

Day 1. Getting Started with Java

The thing that Java tries to do and is actually remarkably successful at is spanning a lot of different domains, so you can do app server work, you can do cell phone work, you can do scientific programming, you can write software, do interplanetary navigation, all kinds of stuff...

—Java language creator James Gosling

When the Java programming language was unleashed on the public in 1995, it was an inventive toy for the Web that had the potential to be more.

The word “potential” is a compliment that comes with an expiration date. Sooner or later, potential must be realized, or new words and phrases are used in its place, such as “slacker,” “letdown,” “waste,” and “major disappointment to your mother and me.”

As you develop your skills throughout this book’s 21 one-day tutorials, you’ll be in a good position to judge whether the language has lived up to more than a decade of hype.

You’ll also become a Java programmer with a lot of potential.

The Java Language

Now in its eighth major release, Java has lived up to the expectations that accompanied its arrival. More than four million programmers have learned the language and are using it in places such as NASA, IBM, Kaiser Permanente, and Google. It’s a standard part of the academic curriculum at many computer science departments around the world. First used to create simple programs on web pages, Java can be found today in the following places (and many more):

• Web servers

• Relational databases

• Orbiting telescopes

• E-book readers

• Cell phones

Although Java remains useful for web developers, its ambitions today extend far beyond the Web. Java has matured into one of the most popular general-purpose programming languages.

History of the Language

The story of the Java language is well known by this point. James Gosling and a team of developers were working on an interactive TV project at Sun Microsystems in the mid-1990s when Gosling became frustrated with the language being used. C++ was an object-oriented programming language developed a decade earlier as an extension of the C language.

To address some of the things that frustrated him about C++, Gosling holed up in his office and created a new language that was suitable for his project.

Although that interactive TV effort flopped, Gosling’s language had unforeseen applicability to a new medium that was becoming popular at the same time: the Web.

Java was released to the public for the first time in fall 1995. Although most of the language’s features were primitive compared with C++ (and Java today), special Java programs called applets could be run as part of web pages on the most popular web browser, Netscape Navigator.

This functionality—the first interactive programming available on the Web—drew so much attention to the new language that several hundred thousand programmers learned Java in its first six months.

Even after the novelty of Java web programming wore off, the overall benefits of the language became clear, and the programmers stuck around. There are more professional Java programmers today than C++ programmers.

Sun Microsystems controlled the development of the Java language from its inception until 2010, when the company was acquired by the database and enterprise software giant Oracle in a $7.4 billion deal. Oracle, a longtime user of the language on its own products, has a strong commitment to supporting Java and increasing its capabilities with new releases.

Introduction to Java

Java is an object-oriented, platform-neutral, secure language designed to be easier to learn than C++ and harder to misuse than C and C++.

Object-oriented programming (OOP) is a software development methodology in which a program is conceptualized as a group of objects that work together. Objects are created from templates called classes, and they contain data and the statements required to use that data. Java is primarily object-oriented, as you see later today when you create your first class and use it to create objects.

Platform neutrality is a program’s ability to run without modification in different computing environments. Java programs are transformed into a format called bytecode that can be run by any computer or device equipped with a Java virtual machine. You can create a Java program on a Windows Vista machine that runs on a Linux web server, an Apple Mac using OS X, and a Samsung Android phone. As long as a platform has a Java virtual machine, it can run the bytecode.

Although the relative ease of learning one language over another is always a point of contention among programmers, Java was designed to be easier than C++ primarily in the following ways:

• Java automatically takes care of memory allocation and deallocation, freeing programmers from this error-prone and complex task.

• Java doesn’t include pointers, a powerful feature for experienced programmers that can be easily misused and introduce major security vulnerabilities.

• Java includes only single inheritance in object-oriented programming.

The lack of pointers and the presence of automatic memory management are two key elements of Java security.

Selecting a Development Tool

Now that you’ve been introduced to Java as a spectator, it’s time to put some of these concepts into play and create your first Java program.

If you work your way through the 21 days of this book, you’ll become well versed in Java’s capabilities, including graphics, file input and output, XML processing, and Android app development. You will write programs that run on web pages and others that run on your computer, web servers, or other computing environments.

Before you get started, you must have software on your computer that can be used to edit, prepare, and run Java programs that use the most up-to-date version of the language: Java 7.

Several popular integrated development environments (IDEs) for Java support version 7, including IntelliJ IDEA and the open source software Eclipse.

If you are learning to use these tools at the same time as you learn Java, it can be a daunting task. Most IDEs are aimed primarily at experienced programmers who want to be more productive, not new people who are taking their first forays into a new language.

The simplest tool for Java development is the Java Development Kit, which is free and can be downloaded from www.oracle.com/technetwork/java/javase/downloads.

Whenever Oracle releases a new version of Java, it also makes a free development kit available over the Web to support that version. The current release is Java SE Development Kit 7.

For the sake of a few trees, in this book the language is usually referred to as simply Java and the kit as the JDK.

The drawback of developing Java programs with the JDK is that it is a set of command-line tools. Therefore, it has no graphical user interface for editing programs, turning them into Java classes, and testing them. (A command line is simply a prompt for typing text commands. The Windows command line is accessible on the Start menu under Accessories, Command Prompt or Accessories, System Tools, Command Prompt.)

Oracle offers a free IDE for Java programmers called NetBeans from the website www.netbeans.org. Because NetBeans is easier to use for most people than the JDK, it’s employed throughout this book.

If you don’t have a Java development tool on your computer yet and you want to try NetBeans, you can find out how to get started with the software in Appendix A, “Using the NetBeans Integrated Development Environment.” The appendix covers how to download and install the kit and use it to create a sample Java program to make sure it works.

As soon as you have a Java development tool on your computer that supports Java 7, you’re ready to dive into the language.

Tip

For more information on the other IDEs for Java, visit the IDEA site at www.jetbrains.com/idea and the Eclipse site at www.eclipse.org. Eclipse also is used for Android programming in Day 21, “Writing Android Apps for Java.”

Object-Oriented Programming

The biggest challenge for a new Java programmer is learning object-oriented programming while learning the Java language.

Although this might sound daunting if you are unfamiliar with this style of programming, think of it as a two-for-one discount for your brain. You will learn object-oriented programming by learning Java. There’s no other way to make use of the language.

Object-oriented programming is an approach to building computer programs that mimics how objects are assembled in the physical world.

By using this style of development, you can create programs that are more reusable, reliable, and understandable.

To get to that point, you first must explore how Java embodies the principles of object-oriented programming.

If you already are familiar with object-oriented programming, much of today’s material will be a review for you. Even if you skim over the introductory material, you should create the sample program to get some experience in developing, compiling, and running Java programs.

There are many different ways to conceptualize a computer program. One way is to think of a program as a series of instructions carried out in sequence, which commonly is called procedural programming. Some programmers start by learning a procedural language such as a version of BASIC.

Procedural languages mirror how a computer carries out instructions, so the programs you write are tailored to the computer’s manner of doing things. One of the first things a procedural programmer must learn is how to break a problem into a series of simple steps followed in order.

Object-oriented programming looks at a computer program from a different angle, focusing on the task the program was created to perform, not on how a computer handles tasks.

In object-oriented programming, a computer program is conceptualized as a set of objects that work together to accomplish a task. Each object is a separate part of the program, interacting with the other parts in highly controlled ways.

For a real-life example of object-oriented design, consider a stereo system. Most systems are built by hooking together a bunch of different objects, which are more commonly called components, such as the following:

• Speaker components play midrange and high-frequency sounds.

• A subwoofer component plays low bass frequency sounds.

• A tuner component receives radio broadcast signals.

• A CD player component reads audio data from CDs.

• A turntable component reads audio data from vinyl records.

These components are designed to interact with each other using standard input and output connectors. Even if you bought the speakers, subwoofer, tuner, CD player, and turntable from different companies, you could combine them to form a stereo system—as long as each component has standard connectors.

Object-oriented programming works under the same principle: You put together a program by creating new objects and connecting them to each other and to existing objects provided by Oracle or another developer. These objects are each a component in the larger program and are combined in a standard way. Each object plays a specific role in the larger program.

An object is a self-contained element of a computer program that represents a related group of features and that is designed to accomplish specific tasks.

Objects and Classes

Object-oriented programming is modeled on the observation that in the physical world, objects are made up of many kinds of smaller objects.

The ability to combine objects is only one aspect of object-oriented programming. Another important feature is the use of classes.

A class is a template used to create an object. Every object created from the same class has similar features.

Classes embody all features of a particular set of objects. When you write a program in an object-oriented language, you don’t define individual objects. Instead, you define classes used to create those objects.

If you were writing a networking program in Java, you could create a Modem class that describes the features of all computer modems. Most modems have the following common features:

• They connect to a computer’s serial port.

• They send and receive information.

• They dial phone numbers.

The Modem class serves as an abstract model for the concept of a modem. To actually have something concrete you can manipulate in a program, you need an object. You must use the Modem class to create a Modem object. The process of creating an object from a class is called instantiation, which is why objects also are called instances.

A Modem class can be used to create different Modem objects in a program, each with different features such as the following:

• Some are internal modems, and others are external modems.

• Some use the COM1 port, and others use the COM2 port.

• Some have error control, and others don’t.

Even with these differences, two Modem objects still have enough in common to be recognizable as related objects. Figure 1.1 shows a Modem class and several objects created from that template.

[image: Image]

Figure 1.1. The Modem class and several Modem objects.

Here’s another example: Using Java, you could create a class to represent all command buttons—the clickable rectangles that appear on windows, dialog boxes, and other parts of a program’s graphical user interface.

When the CommandButton class is developed, it could define these features:

• The text displayed on the button

• The size of the button

• Aspects of its appearance, such as whether it has a 3D shadow

The CommandButton class also could define how a button behaves, deciding the following things:

• Whether the button requires a single click or a double-click

• Whether it should ignore mouse clicks

• What it does when clicked

After you define the CommandButton class, you can create instances of that button—in other words, CommandButton objects. The objects all take on the basic features of a button as defined by the class. But each one could have a different appearance and slightly different behavior, depending on what you need that object to do.

By creating a CommandButton class, you don’t have to keep rewriting the code for each button you want to use in your programs. In addition, you can reuse the CommandButton class to create different kinds of buttons as you need them, both in this program and in others.

When you write a Java program, you design and construct a set of classes. When your program runs, objects are created from those classes and used as needed. Your task as a Java programmer is to create the right set of classes to accomplish what your program needs to accomplish.

Fortunately, you don’t have to start from scratch. The Java language includes the Java Class Library, more than 3,900 classes that implement most of the functionality you will need. These classes are installed along with a development tool such as the JDK.

When you’re talking about programming in the Java language, you’re actually talking about using this class library and some standard keywords and operators defined in Java.

The class library handles numerous tasks, such as mathematical functions, text, graphics, user interaction, and networking. Working with these classes is no different from working with the Java classes you create.

For complicated Java programs, you might create a whole set of new classes that form their own class library for use in other programs.

Reuse is one of the fundamental benefits of object-oriented programming.

Note

In the Java Class Library, one of Java’s standard classes, JButton in the javax.swing package, encompasses all the functionality of this hypothetical CommandButton example, along with a lot more. You get a chance to create objects from this class during Day 9, “Working with Swing.”

Attributes and Behavior

A Java class consists of two distinct types of information: attributes and behavior.

Both of these are present in VolcanoRobot, a project you will implement today as a class. This project, a simple simulation of a volcanic exploration vehicle, is inspired by the Dante II robot used by NASA’s Telerobotics Research program to do research inside volcanic craters.

Before you create the program, you need to learn some things about how object-oriented programs are designed in Java. The concepts may be difficult to understand as you’re introduced to them, but you get plenty of practice with them throughout the book.

Attributes of a Class of Objects

Attributes are the data that differentiates one object from another. They can be used to determine the appearance, state, and other qualities of objects that belong to that class.

A volcanic exploration vehicle could have the following attributes:

• Status—Exploring, moving, returning home

• Speed—Measured in miles per hour

• Temperature—Measured in degrees Fahrenheit

In a class, attributes are defined by variables—places to store information in a computer program. Instance variables are attributes that have values that differ from one object to another.

An instance variable defines an attribute of one particular object. The object’s class defines what kind of attribute it is, and each instance stores its own value for that attribute. Instance variables also are called object variables.

Each class attribute has a single corresponding variable. You change that attribute of the object by changing the value of the variable.

For example, the VolcanoRobot class defines a speed instance variable. This must be an instance variable because each robot travels at a different speed. The value of a robot’s speed instance variable could be changed to make the robot move more quickly or slowly.

Instance variables can be given a value when an object is created and then stay constant throughout the life of the object. They also can be given different values as the object is used in a running program.

For other variables, it makes more sense to have one value that is shared by all objects of that class. These attributes are called class variables.

A class variable defines an attribute of an entire class. The variable applies to the class itself and to all its instances, so only one value is stored, no matter how many objects of that class have been created.

An example of a class variable for the VolcanoRobot class would be a variable that holds the current time. If an instance variable were created to hold the time, each object could have a different value for this variable. That could cause problems if the robots are supposed to perform tasks in conjunction with each other.

Using a class variable prevents this problem because all objects of that class share the same value automatically. Each VolcanoRobot object would have access to that variable.

Behavior of a Class of Objects

Behavior refers to the things that a class of objects can do to themselves and other objects. Behavior can be used to change an object’s attributes, receive information from other objects, and send messages to other objects, asking them to perform tasks.

A volcano robot could have the following behavior:

• Check the current temperature

• Begin a survey

• Accelerate or decelerate its speed

• Report its current location

Behavior for a class of objects is implemented using methods.

Methods are groups of related statements in a class that perform a specific task. They are used to accomplish specific tasks on their own objects and on other objects and are comparable to functions and subroutines in other programming languages. A well-designed method performs only one task.

Objects communicate with each other using methods. A class or object can call methods in another class or object for many reasons, including the following:

• To report a change to another object

• To tell the other object to change something about itself

• To ask another object to do something

For example, two volcano robots could use methods to report their locations to each other and avoid collisions, and one robot could tell another to stop so that it can pass by safely.

Just as there are instance and class variables, there are also instance and class methods. Instance methods, which are usually just called methods, are used when you are working with an object of the class. If a method changes an individual object, it must be an instance method. Class methods apply to a class itself.

Creating a Class

To see classes, objects, attributes, and behavior in action, you will develop a VolcanoRobot class, create objects from that class, and work with them in a running program.

Note

The main purpose of this project is to explore object-oriented programming. You learn more about Java programming syntax during Day 2, “The ABCs of Programming.”

NetBeans organizes Java classes into projects. It will be useful to have a project to hold the classes you create in this book. If you have not done so already, create a project:

1. Choose the menu command File, New Project. The New Project dialog box appears.

2. In the Categories pane, choose Java.

3. In the Projects pane, choose Java Application and click Next. The New Java Application dialog box opens.

4. In the Project Name text field, enter the name of the project (I used Java21). The Project Folder field is updated as you type the name. Make a note of this folder—it’s where your Java programs can be found on your computer.

5. Click Finish.

The project is created. You can use it throughout the book.

If you created a project earlier, it already should be open in NetBeans. A new class you create will be added to this project.

To begin creating your first class, run NetBeans and start a new program:

1. Choose the menu command File, New File. The New File dialog box opens.

2. In the Categories pane, choose Java.

3. In the File Types pane, choose Empty Java File and click Next. The Empty Java File dialog box opens.

4. In the Class Name text field, enter VolcanoRobot. The file you’re creating is shown in the Created File field, which can’t be edited. This file has the name VolcanoRobot.java.

5. Click Finish.

The NetBeans source code editor opens with a blank file. Enter the code shown in Listing 1.1. When you’re done, save the file using the menu command File, Save. The file VolcanoRobot.java will be saved.

Note

Don’t type the numbers at the beginning of each line in the listing. They’re not part of the program. They are included so that individual lines can be described for instructive purposes in this book.

Listing 1.1. The Full Text of VolcanoRobot.java.

Click here to view code image

 1: class VolcanoRobot {
 2: String status;
 3: int speed;
 4: float temperature;
 5:
 6: void checkTemperature() {
 7: if (temperature > 660) {
 8: status = "returning home";
 9: speed = 5;
10: }
11: }
12:
13: void showAttributes() {
14: System.out.println("Status: " + status);
15: System.out.println("Speed: " + speed);
16: System.out.println("Temperature: " + temperature);
17: }
18: }

When you save this file, if it has no errors, NetBeans automatically creates a VolcanoRobot class. This process is called compiling the class, and it uses a tool called a compiler. The compiler turns the lines of source code into bytecode that the Java virtual machine can run.

The class statement in line 1 of Listing 1.1 defines and names the VolcanoRobot class. Everything contained between the opening brace ({) on line 1 and the closing brace (}) on line 18 is part of this class.

The VolcanoRobot class contains three instance variables and two instance methods.

The instance variables are defined in lines 2–4:

String status;
int speed;
float temperature;

The variables are named status, speed, and temperature. Each is used to store a different type of information:

• status holds a String object—a group of letters, numbers, punctuation, and other characters.

• speed holds an int, a numeric integer value.

• temperature holds a float, a floating-point number.

String objects are created from the String class, which is part of the Java Class Library.

Tip

As you might have noticed from the use of String in this program, a class can use objects as instance variables.

The first instance method in the VolcanoRobot class is defined in lines 6–11:

Click here to view code image

void checkTemperature() {
 if (temperature > 660) {
 status = "returning home";
 speed = 5;
 }
}

Methods are defined in a manner similar to a class. They begin with a statement that names the method, identifies the type of information the method produces, and defines other things.

The checkTemperature() method is contained within the opening brace on line 6 of Listing 1.1 and the closing brace on line 11. This method can be called on a VolcanoRobot object to find out its temperature.

This method checks to see whether the object’s temperature instance variable has a value greater than 660. If it does, two other instance variables are changed:

• The status variable is changed to the text “returning home,” indicating that the temperature is too hot and the robot is heading back to its base.

• The speed is changed to 5. (Presumably, this is as fast as the robot can travel.)

The second instance method, showAttributes(), is defined in lines 13–17:

Click here to view code image

void showAttributes() {
 System.out.println("Status: " + status);
 System.out.println("Speed: " + speed);
 System.out.println("Temperature: " + temperature);
}

This method calls the method System.out.println() to display the values of three instance variables, along with some text explaining what each value represents.

If you haven’t saved this file yet, choose File, Save. This command is disabled if the file hasn’t been changed since the last time you saved it.

Running the Program

Even if you typed the VolcanoRobot program in Listing 1.1 correctly and compiled it into a class, you can’t do anything with it. The class you have created defines what a VolcanoRobot object is like, but it doesn’t actually create one of these objects.

There are two ways to put the VolcanoRobot class to use:

• Create a separate Java program that creates an object belonging to that class.

• Add a special class method called main() to the VolcanoRobot class so that it can be run as an application and create an object of that class in that method.

The first option is chosen for this exercise.

Listing 1.2 contains the source code for VolcanoApplication, a Java class that creates a VolcanoRobot object, sets its instance variables, and calls methods. Following the same steps as in the preceding listing, create a new Java file in NetBeans and name it VolcanoApplication.

Enter the code shown in Listing 1.2 into the NetBeans source code editor.

Listing 1.2. The Full Text of VolcanoApplication.java

Click here to view code image

 1: class VolcanoApplication {
 2: public static void main(String[] arguments) {
 3: VolcanoRobot dante = new VolcanoRobot();
 4: dante.status = "exploring";
 5: dante.speed = 2;
 6: dante.temperature = 510;
 7:
 8: dante.showAttributes();
 9: System.out.println("Increasing speed to 3.");
10: dante.speed = 3;
11: dante.showAttributes();
12: System.out.println("Changing temperature to 670.");
13: dante.temperature = 670;
14: dante.showAttributes();
15: System.out.println("Checking the temperature.");
16: dante.checkTemperature();
17: dante.showAttributes();
18: }
19: }

When you choose File, Save to save the file, NetBeans compiles it into the VolcanoApplication class, which contains bytecode for the Java virtual machine to run.

Tip

If you encounter problems compiling or running any program in this book, you can find a copy of the source file and other related files on the book’s official website at www.java21days.com.

After you have compiled the application, run the program by choosing the menu command Run, Run File. The output displayed by the VolcanoApplication class appears in an Output pane in NetBeans, as shown in Figure 1.2.

[image: Image]

Figure 1.2. The output of the VolcanoApplication class.

Using Listing 1.2 as a guide, you can see the following things taking place in the main() class method of this application:

• Line 2—The main() method is created and named. All main() methods take this format, as you learn during Day 5, “Creating Classes and Methods.” For now, the most important thing to note is the static keyword, which indicates that the method is a class method shared by all VolcanoRobot objects.

• Line 3—A new VolcanoRobot object is created using the class as a template. The object is given the name dante.

• Lines 4–6—Three instance variables of the dante object are given values: status is set to the text “exploring,” speed is set to 2, and temperature is set to 510.

• Line 8—On this line and several that follow, the showAttributes() method of the dante object is called. This method displays the current values of the instance variables status, speed, and temperature.

• Line 9—On this line and others that follow, a call to the System.out.println() method displays the text in parentheses.

• Line 10—The speed instance variable is set to the value 3.

• Line 13—The temperature instance variable is set to the value 670.

• Line 16—The checkTemperature() method of the dante object is called. This method checks to see whether the temperature instance variable is greater than 660. If it is, status and speed are assigned new values.

Note

If for some reason you can’t use NetBeans to write Java programs and must instead use the Java Development Kit, you can find out how to install it in Appendix D, “Using the Java Development Kit,” and how to compile and run Java programs with it in Appendix E, “Programming with the Java Development Kit.”

Organizing Classes and Class Behavior

Object-oriented programming in Java also requires three more concepts: inheritance, interfaces, and packages. All three are mechanisms for organizing classes and class behavior.

Inheritance

Inheritance, one of the most crucial concepts in object-oriented programming, has a direct impact on how you design and write your own Java classes.

Inheritance is a mechanism that enables one class to inherit all the behavior and attributes of another class.

Through inheritance, a class automatically picks up all the functionality of an existing class. The new class must only define how it is different from that existing class.

With inheritance, all classes—including those you create and the ones in the Java Class Library—are arranged in a strict hierarchy.

A class that inherits from another class is called a subclass. The class that gives the inheritance is called a superclass.

A class can have only one superclass, but it can have an unlimited number of subclasses. Subclasses inherit all the attributes and behavior of their superclass.

In practical terms, this means that if the superclass has behavior and attributes that your class needs, you don’t have to redefine the behavior or copy that code to have the same behavior and attributes. Your class automatically receives these things from its superclass, the superclass gets them from its superclass, and so on, all the way up the hierarchy. Your class becomes a combination of its own features and all the features of the classes above it in the hierarchy.

The situation is comparable to how you inherited traits from your parents, such as your height, hair color, and love of peanut-butter-and-banana sandwiches. They inherited some of these things from their parents, who inherited from theirs, and backward through time to the Garden of Eden, Big Bang, giant spaghetti monster, or [insert personal belief here].

Figure 1.3 shows how a hierarchy of classes is arranged.

[image: Image]

Figure 1.3. A class hierarchy.

At the top of the Java class hierarchy is the class Object.

All classes inherit from this superclass. Object is the most general class in the hierarchy. It defines behavior inherited by all the classes in the Java Class Library.

Each class further down the hierarchy becomes more tailored to a specific purpose. A class hierarchy defines abstract concepts at the top of the hierarchy. Those concepts become more concrete further down the line of subclasses.

Often when you create a new class in Java, you want all the functionality of an existing class except for some additions or modifications of your own creation. For example, you might want a new version of CommandButton that makes a sound when clicked.

To receive all the CommandButton functionality without doing any work to re-create it, you can define your new class as a subclass of CommandButton.

Because of inheritance, your class automatically inherits behavior and attributes defined in CommandButton as well as the behavior and attributes defined in the superclasses of CommandButton. All you have to worry about are the things that make your new class different from CommandButton itself. Subclassing is the mechanism for defining new classes as the differences between those classes and their superclass.

Subclassing is the creation of a new class that inherits from an existing class. The only task in the subclass is to indicate the differences in behavior and attributes between the subclass and its superclass.

If your class defines entirely new behavior and isn’t a subclass of another class, you can inherit directly from the Object class.

If you create a class that doesn’t indicate a superclass, Java assumes that the new class inherits directly from Object. The VolcanoRobot class you created earlier today did not specify a superclass, so it’s a subclass of Object.

Creating a Class Hierarchy

If you’re creating a large set of classes, it makes sense for your classes to inherit from the existing class hierarchy and to make up a hierarchy themselves. This gives your classes several advantages:

• Functionality common to multiple classes can be put into a superclass, which enables it to be used repeatedly in all classes below it in the hierarchy.

• Changes to a superclass automatically are reflected in all its subclasses, their subclasses, and so on. There is no need to change or recompile any of the lower classes; they receive the new information through inheritance.

For example, imagine that you have created a Java class to implement all the features of a volcanic exploratory robot. (This shouldn’t take much imagination.)

The VolcanoRobot class is completed and works successfully. Your boss at NASA asks you to create a Java class called MarsRobot.

These two kinds of robots have similar features. Both are research robots that work in hostile environments and conduct research. Both keep track of their current temperature and speed.

Your first impulse might be to open the VolcanoRobot.java source file, copy it into a new source file called MarsRobot.java, and then make the necessary changes for the new robot to do its job.

A better plan is to figure out the common functionality of MarsRobot and VolcanoRobot and organize it into a more general class hierarchy. This might be a lot of work just for the classes VolcanoRobot and MarsRobot, but what if you also want to add MoonRobot, UnderseaRobot, and DesertRobot? Factoring common behavior into one or more reusable superclasses significantly reduces the overall amount of work you must do.

To design a class hierarchy that might serve this purpose, start at the top with the class Object, the pinnacle of all Java classes.

The most general class to which these robots belong might be called Robot. A robot, generally, could be defined as a self-controlled exploration device. In the Robot class, you define only the behavior that qualifies something to be a device, to be self-controlled, and to be designed for exploration.

There could be two classes below Robot: WalkingRobot and DrivingRobot. The obvious thing that differentiates these classes is that one travels by foot and the other by wheel. The behavior of walking robots might include bending over to pick up something, ducking, running, and the like. Driving robots would behave differently. Figure 1.4 shows what you have so far.

[image: Image]

Figure 1.4. The basic Robot hierarchy.

Now the hierarchy can become even more specific.

With WalkingRobot, you might have several classes: ScienceRobot, GuardRobot, SearchRobot, and so on. As an alternative, you could factor out still more functionality and have intermediate classes for TwoLegged and FourLegged robots, with different behaviors for each (see Figure 1.5).

[image: Image]

Figure 1.5. Two-legged and four-legged walking robots.

Finally, the hierarchy is done, and you have a place for VolcanoRobot. It can be a subclass of ScienceRobot, which is a subclass of WalkingRobot, which is a subclass of Robot, which is a subclass of Object.

Where do attributes such as status, temperature, and speed come in? At the place they fit into the class hierarchy most naturally. Because all robots need to keep track of the temperature of their environment, it makes sense to define temperature as an instance variable in Robot. All subclasses would have that instance variable as well. Remember that you need to define a behavior or attribute only once in the hierarchy and it is inherited automatically by each subclass.

Note

Designing an effective class hierarchy involves a lot of planning and revision. As you attempt to put attributes and behavior into a hierarchy, you’re likely to find reasons to move some classes to different spots in the hierarchy. The goal is to reduce the number of repetitive features (and redundant code) needed.

Inheritance in Action

Inheritance in Java works much more simply than it does in the real world. No wills or courts are required when inheriting from a parent.

When you create a new object, Java keeps track of each variable defined for that object and each variable defined for each superclass of the object. In this way, all the classes combine to form a template for the current object, and each object fills in the information appropriate to its situation.

Methods operate similarly. A new object has access to all method names of its class and superclass. This is determined dynamically when a method is used in a running program. If you call a method of a particular object, the Java virtual machine first checks the object’s class for that method. If the method isn’t found, the virtual machine looks for it in the superclass of that class, and so on, until the method definition is found. This is illustrated in Figure 1.6.

[image: Image]

Figure 1.6. How methods are located in a class hierarchy.

Things get complicated when a subclass defines a method that matches a method defined in a superclass in name and other aspects. In this case, the method definition found first (starting at the bottom of the hierarchy and working upward) is the one that is used.

Because of this, you can create a method in a subclass that prevents a method in a superclass from being used. To do this, you give the method the same name, return type, and arguments as the method in the superclass. This procedure, shown in Figure 1.7, is called overriding.

[image: Image]

Figure 1.7. Overriding methods.

Note

Java’s form of inheritance is called single inheritance because each Java class can have only one superclass, although any given superclass can have multiple subclasses.

In other object-oriented programming languages such as C++, classes can have more than one superclass, and they inherit combined variables and methods from all those superclasses. This is called multiple inheritance. Java makes inheritance simpler by allowing only single inheritance.

Interfaces

Single inheritance makes the relationship between classes and the functionality they implement easier to understand and design. However, it also can be restrictive, especially when you have similar behavior that needs to be duplicated across different branches of a class hierarchy. Java solves the problem of shared behavior by using interfaces.

An interface is a collection of methods that indicate a class has some behavior in addition to what it inherits from its superclasses. The methods included in an interface do not define this behavior; that task is left for the classes that implement the interface.

For example, the Comparable interface contains a method that compares two objects of the same class to see which one should appear first in a sorted list. Any class that implements this interface shows other objects that it knows how to determine the sorting order for objects of that class. This behavior would be unavailable to the class without the interface.

You learn about interfaces during Day 6, “Packages, Interfaces, and Other Class Features.”

Packages

Packages in Java are a way to group related classes and interfaces. They enable groups of classes to be referenced more easily in other classes. They also eliminate potential naming conflicts among classes.

Classes in Java can be referred to by a short name such as Object or a full name such as java.lang.Object.

By default, your Java classes can refer to the classes in the java.lang package using only short names. The java.lang package provides basic language features such as string handling and mathematical operations. To use classes from any other package, you must refer to them explicitly using their full package name or use an import command to import the package in your source code file.

Because the Color class is contained in the java.awt package, you normally refer to it in your programs with the notation java.awt.Color.

If the entire java.awt package has been imported using import, the class can be referred to as Color.

Summary

If today was your first exposure to object-oriented programming, it probably seemed theoretical and a bit overwhelming.

Because your brain has been stuffed with object-oriented programming concepts and terminology for the first time, you might be worried that no room is left for the Java lessons of the remaining 20 days.

Don’t panic. Stay calm and carry on.

At this point, you should have a basic understanding of classes, objects, attributes, and behavior. You also should be familiar with instance variables and methods. You use these right away tomorrow.

The other aspects of object-oriented programming, such as inheritance and packages, are covered in more detail in upcoming days.

You work with object-oriented programming in every remaining day of the book. There’s no other way to create programs in Java.

By the time you finish the first week, you’ll have working experience with objects, classes, inheritance, and all other aspects of the methodology.

Q&A

Q Methods are functions defined inside classes. If they look like functions and act like functions, why aren’t they called functions?

A Some object-oriented programming languages do call them functions. (C++ calls them member functions.) Other object-oriented languages differentiate between functions inside and outside the body of a class or object because in those languages the use of the separate terms is important to understanding how each function works. Because the difference is relevant in other languages and because the term method now is in common use in object-oriented terminology, Java uses the term as well.

Q What’s the distinction between instance variables and methods and their counterparts, class variables and methods?

A Almost everything you do in a Java program involves instances (also called objects) rather than classes. However, some behavior and attributes make more sense if stored in the class itself rather than in the object.

For example, the Math class in the java.lang package includes a class variable called PI that holds the approximate value of pi. This value does not change, so there’s no reason why different objects of that class would need their own individual copy of the PI variable. On the other hand, every String object contains a method called length() that reveals the number of characters in that String. This value can be different for each object of that class, so it must be an instance method.

Class variables occupy memory until a Java program is finished running, so they should be used with care. If a class variable references an object, that object will remain in memory as well. This is a common problem causing a program to take up too much memory and run slowly.

Q When a Java class imports an entire package, does it increase the compiled size of that class?

A No. The use of the term “import” is a bit misleading. The import keyword does not add the bytecode of one class or one package to the class you are creating. Instead, it simply makes it easier to refer to classes within another class.

The sole purpose of importing is to shorten the class names when they’re used in Java statements. It would be cumbersome to always have to refer to full class names such as javax.swing.JButton and java.awt.Graphics in your code instead of calling them JButton and Graphics.

Quiz

Review today’s material by taking this three-question quiz. Answers are at the end of the book.

Questions

1. What is another word for a class?

A. Object

B. Template

C. Instance

2. When you create a subclass, what must you define about that class?

A. Nothing. Everything is defined already.

B. Things that are different from its superclass

C. Everything about the class

3. What does an instance method of a class represent?

A. The attributes of that class

B. The behavior of that class

C. The behavior of an object created from that class

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java programming certification test. Answer it without looking at today’s material.

Which of the following statements is true?

A. All objects created from the same class must be identical.

B. All objects created from the same class can be different from each other.

C. An object inherits attributes and behavior from the class used to create it.

D. A class inherits attributes and behavior from its subclass.

The answer is available on the book’s website at www.java21days.com. Visit the Day 1 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. In the main() method of the VolcanoRobot class, create a second VolcanoRobot robot named virgil, set up its instance variables, and display them.

2. Create an inheritance hierarchy for the pieces of a chess set. Decide where the instance variables color, startingPosition, forwardMovement, and sideMovement should be defined in the hierarchy.

Where applicable, exercise solutions are offered on the book’s website at www.java21days.com.

Day 2. The ABCs of Programming

A Java program is made up of classes and objects, which, in turn, are made up of methods and variables. Methods are made up of statements and expressions, which are made up of operators.

At this point, you might be worried that Java is like a set of Russian nesting matryoshka dolls. Each doll except the smallest one has a smaller doll inside it, as intricate and detailed as its larger companion.

Today’s lesson clears away the big dolls to reveal the smallest elements of Java programming. You will set aside classes, objects, and methods for a day and examine the basic things you can do in a single line of Java code.

The following subjects are covered:

• Java statements and expressions

• Variables and primitive data types

• Constants

• Comments

• Literals

• Arithmetic

• Comparisons

• Logical operators

Statements and Expressions

All the tasks you want to accomplish in a Java program can be broken into a series of statements. In a programming language, a statement is a simple command that causes something to happen.

Statements represent a single action taken in a Java program. Here are three simple Java statements:

Click here to view code image

int weight = 225;

System.out.println("Free the bound periodicals!");

song.duration = 230;

Some statements can convey a value, such as when two numbers are added or two variables are compared to find out if they are equal.

A statement that produces a value is called an expression. The value can be stored for later use in the program, used immediately in another statement, or disregarded. The value produced by a statement is called its return value.

Some expressions produce a numeric return value, as when two numbers are added or multiplied. Others produce a Boolean value—either true or false—or even can produce a Java object. They are discussed later today.

Although many Java programs contain one statement per line, this is a formatting decision that does not determine where one statement ends and another one begins. Each statement in Java is terminated with a semicolon character (;). A programmer can put more than one statement on a line and it will compile successfully, as in the following example:

Click here to view code image

dante.speed = 2; dante.temperature = 510;

To make your program more readable to other programmers, you should follow the convention of putting only one statement on each line.

Statements in Java are grouped using an opening brace ({) and a closing brace (}). A group of statements organized between these characters is called a block (or block statement). You learn more about them during Day 4, “Lists, Logic, and Loops.”

Variables and Data Types

In the VolcanoRobot application created during Day 1, “Getting Started with Java,” you used variables to keep track of information. A variable is a place where information can be stored while a program is running. The value can be changed at any point in the program—hence the name.

To create a variable, you must give it a name and identify the type of information it will store. You also can give a variable an initial value at the same time you create it.

Java has three kinds of variables: instance variables, class variables, and local variables.

Instance variables, as you learned yesterday, define an object’s attributes.

Class variables define the attributes of an entire class of objects and apply to all instances of it.

Local variables are used inside method definitions or even smaller blocks of statements within a method. You can use them only while the method or block is being executed by the Java virtual machine. They cease to exist afterwards.

Although all three kinds of variables are created in much the same way, class and instance variables are used in a different manner than local variables. You will learn about local variables today and explore instance and class variables during Day 3, “Working with Objects.”

Creating Variables

Before you can use a variable in a Java program, you must create the variable by declaring its name and the type of information it will store. The type of information is listed first, followed by the name of the variable. The following all are examples of variable declarations:

int loanLength;

String message;

boolean gameOver;

In these examples, the int type represents integers, String is an object that holds text, and boolean is used for Boolean true/false values.

Local variables can be declared at any place inside a method, like any other Java statement, but they must be declared before they can be used.

In the following example, three variables are declared at the top of a program’s main() method:

Click here to view code image

public static void main(String[] arguments) {
 int total;
 String reportTitle;
 boolean active;
}

If you are creating several variables of the same type, you can declare all of them in the same statement by separating the variable names with commas. The following statement creates three String variables named street, city, and state:

String street, city, state;

Variables can be assigned a value when they are created by using an equals sign (=) followed by the value. The following statements create new variables and give them initial values:

Click here to view code image

String zipCode = "02134";

int box = 350;

boolean pbs = true;

String name = "Zoom", city = "Boston", state = "MA";

As the last statement demonstrates, you can assign values to multiple variables of the same type by using commas to separate them.

You must give values to local variables before you use them in a program, or the program won’t compile successfully. For this reason, it is good practice to give initial values to all local variables.

Instance and class variable definitions are given an initial value depending on the type of information they hold, as in the following:

• Numeric variables: 0

• Characters: '\0'

• Booleans: false

• Objects: null

Naming Variables

Variable names in Java must start with a letter, an underscore character (_), or a dollar sign ($).

Variable names cannot start with a number. After the first character, variable names can include any combination of letters or numbers.

Note

In addition, the Java language uses the Unicode character set, which includes thousands of character sets to represent international alphabets. Accented characters and other symbols can be used in variable names as long as they have a Unicode character number.

When naming a variable and using it in a program, it’s important to remember that Java is case-sensitive—the capitalization of letters must be consistent. Because of this, a program can have a variable named X and another named x (and a Rose is not a rose is not a ROSE).

In programs in this book and elsewhere, Java variables are given meaningful names that include several joined words. To make it easier to spot the words, the following rules of thumb are used:

• The first letter of the variable name is lowercase.

• Each successive word in the variable name begins with a capital letter.

• All other letters are lowercase.

The following variable declarations follow these naming rules:

Button loadFile;

int localAreaCode;

boolean quitGame;

Variable Types

In addition to a name, a variable declaration must include the data type of information being stored. The type can be any of the following:

• One of the primitive data types, such as int or boolean

• The name of a class or interface

• An array

You learn how to declare and use array variables on Day 4. Today’s lesson focuses on the other variable types.

Data Types

Java has eight basic data types that store integers, floating-point numbers, characters, and Boolean values. These often are called primitive types because they are built-in parts of the language rather than objects, which makes them easier to create and use. These data types have the same size and characteristics no matter what operating system and platform you’re on, unlike some data types in other programming languages.

You can use four data types to store integers. Which one you use depends on the integer’s size, as shown in Table 2.1.

Table 2.1. Integer Types

[image: Image]

All these types are signed, which means that they can hold either positive or negative numbers. The type used for a variable depends on the range of values it might need to hold. None of these integer variables can reliably store a value that is too large or too small for its designated variable type, so take care when designating the type.

Another type of number that can be stored is a floating-point number, which has the type float or double. Floating-point numbers are numbers with a decimal point. The float type should be sufficient for most uses because it can handle any number from 1.4E-45 to 3.4E+38. If not, the double type can be used for more precise numbers ranging from 4.9E-324 to 1.7E+308.

The char type is used for individual characters, such as letters, numbers, punctuation, and other symbols.

The last of the eight primitive data types is boolean. As you have learned, this data type holds either true or false.

All these variable types appear in lowercase, and you must use them as such in programs. Some classes have the same names as some of these data types, but with different capitalization, such as Boolean and Char. These are created and referenced differently in a Java program, so you can’t use them interchangeably in most circumstances. Tomorrow you will see how to use these special classes.

Note

There’s actually a ninth primitive data type in Java, void, which represents nothing. It’s used in methods to indicate that they do not return a value.

Class Types

In addition to the primitive data types, a variable can have a class as its type, as in the following examples:

String lastName = "Hopper";

Color hair;

VolcanoRobot vr;

When a variable has a class as its type, the variable refers to an object of that class or one of its subclasses.

The last statement in the preceding list creates a variable named vr that is reserved for a VolcanoRobot object. You learn more tomorrow about how to associate objects with variables.

Assigning Values to Variables

After a variable has been declared, a value can be assigned to it with the assignment operator, which is an equals sign (=). The following are examples of assignment statements:

idCode = 8675309;

accountOverdrawn = false;

Constants

Variables are useful when you need to store information that can be changed as a program runs.

If the value never should change during a program’s runtime, you can use a type of variable called a constant. A constant is a variable with a value that never changes. This might seem like an oxymoron, given the meaning of the word “variable.”

Constants are useful in defining shared values for the use of all methods of an object. In Java, you can create constants for all kinds of variables: instance, class, and local.

To declare a constant, use the final keyword before the variable declaration and include an initial value for that variable, as in the following:

final float PI = 3.141592;

final boolean DEBUG = false;

final int PENALTY = 25;

Constants can be handy for naming various states of an object and then testing for those states. Suppose you have a program that takes directional input from the numeric keypad on the keyboard—press 8 to go up, 4 to go left, and so on. You can define those values as constant integers:

final int LEFT = 4;
final int RIGHT = 6;
final int UP = 8;
final int DOWN = 2;

Constants often make a program easier to understand. To illustrate this point, consider which of the following two statements is more informative as to its function:

guide.direction = 4;

guide.direction = LEFT;

Note

In the preceding statements, the names of the constants such as DEBUG and LEFT are capitalized. This is a convention adopted by many Java programmers to make it clear that the variable is a constant. Java does not require that constants be capitalized in this manner.

Today’s first project is a Java application that creates several variables, assigns them initial values, and displays two of them as output. Run NetBeans and create a new Java program by selecting the menu command File, New File. Choose the category Java and the file type Empty Java File, and then name the class Variables. Enter the code shown in Listing 2.1 into the source code editor.

Listing 2.1. The Full Text of Variables.java

Click here to view code image

 1: public class Variables {
 2:
 3: public static void main(String[] arguments) {
 4: final char UP = 'U';

 5: byte initialLevel = 12;
 6: short location = 13250;
 7: int score = 3500100;
 8: boolean newGame = true;
 9:
10: System.out.println("Level: " + initialLevel);
11: System.out.println("Up: " + UP);
12: }
13: }

Save the file by choosing File, Save. NetBeans automatically compiles the application if it contains no errors. Run the program by choosing Run, Run File. This program produces two lines of output:

Output [image: Image]

Level: 12
Up: U

This class uses four local variables and one constant, making use of System.out.println() in lines 10 and 11 to produce output.

System.out.println() is a method called to display strings and other information to the standard output device, which usually is the screen.

This method takes a single argument within its parentheses: a string. To present more than one variable or literal as the argument to println(), the + operator combines the elements into a single string.

Java also has a System.out.print() method, which displays a string without terminating it with a newline character. You can call print() instead of println() to display several strings on the same line.

Comments

One of the most effective ways to improve a program’s readability is to use comments. These are text included in a program that explains what’s going on in the code. The Java compiler ignores comments when preparing a version of a Java source file that can be run as a class, so there’s no penalty for using them.

You can use three different kinds of comments in Java programs.

A single-line comment is preceded by two slash characters (//). Everything from the slashes to the end of the line is considered a comment and is disregarded by the compiler, as in the following statement:

Click here to view code image

int creditHours = 3; // set up credit hours for course

Everything from the slashes onward is ignored. As far as the compiler is concerned, the preceding line is the same as this:

int creditHours = 3;

A multiline comment begins with /* and ends with */. Everything between these two delimiters is considered a comment, as in the following:

Click here to view code image

/* This program occasionally deletes all files on
your hard drive and renders it unusable
forever when you click the Save button. */

A Javadoc comment begins with /** and ends with */. Everything between these delimiters is considered to be official documentation on how the class and its methods work.

Javadoc comments are designed to be read by utilities such as javadoc, a tool that’s part of the JDK. This program uses official comments to create a set of web page records that document the functionality of a Java class, show its place in relation to its superclass and subclasses, and describe each of its methods.

Tip

All the official documentation on each class in the Java Class Library is generated from Javadoc comments. You can view current Java documentation at http://docs.oracle.com/javase/7/docs/api.

Literals

In addition to variables, you can work with values as literals in a Java statement. A literal is any number, text, or other information that directly represents a value.

The following assignment statement uses a literal:

int year = 2012;

The literal 2012 represents the integer value 2012. Numbers, characters, and strings are all examples of literals. Java has some special types of literals that represent different kinds of numbers, characters, strings, and Boolean values.

Number Literals

Java has several integer literals. The number 4, for example, is an integer literal of the int variable type. It also can be assigned to byte and short variables because the number is small enough to fit into those integer types. An integer literal larger than an int can hold automatically is considered to be of the type long. You also can indicate that a literal should be a long integer by adding the letter L (upper- or lowercase) to the number. Here’s an example:

pennyTotal = pennyTotal + 4L;

This statement adds the value 4, formatted as a long, to the current value of the pennyTotal variable.

To represent a negative number as a literal, prepend a minus sign (–), as in –45.

Note

Java also supports numeric literals that use binary, octal, and hexadecimal numbering.

Binary numbers are a base-2 numbering system in which only the values 0 and 1 are used. Values made up of 1s and 0s are the simplest form for a computer and are a fundamental part of computing. Counting up from 0, binary values are 0, 1, 10, 11, 100, 111, and so on. Each digit in the number is called a bit. The combination of eight numbers is a byte.

Octal numbers are a base-8 numbering system, which means that they can represent only the values 0 through 7 as a single digit. The eighth number in octal is 10 (or 010 as a Java literal).

Hexadecimal is a base-16 numbering system that can represent 16 numbers as a single digit. The letters A through F represent the last six digits, so the first 16 numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

The octal and hexadecimal systems are better suited for certain tasks in programming than the normal decimal system. If you have ever edited a web page to set its background color, you could have used hexadecimal numbers for green (001100), blue (000011), or butterscotch (FFCC99).

If you need to use a literal integer with octal numbering, prepend a 0 to the number. For example, the octal number 777 would be the literal 0777. Hexadecimal integers are used as literals by prepending the number with 0x, as in 0x12 or 0xFF.

The use of literals to specify binary values was introduced in Java 7. You prepend the number with 0b. For example, 0b101 is the binary value 101, and 0b11111111 is binary 11111111.

Floating-point literals use a period character (.) for the decimal point, as you would expect. The following statement uses a literal to set up a double variable:

double myGPA = 2.25;

All floating-point literals are considered to be of the double variable type instead of float. To specify a literal of float, add the letter F (upper- or lowercase) to the literal, as in the following example:

float piValue = 3.1415927F;

You can use exponents in floating-point literals by using the letter e or E followed by the exponent, which can be a negative number. The following statements use exponential notation:

double x = 12e22;

double y = 19E-95;

Java 7 adds the ability to include an underscore character (_) in a large integer literal to make it more readable to humans. The underscore serves the same purpose as a comma in a large number, making its value more apparent. Consider these two examples, one of which uses underscores:

int jackpot = 3500000;

int jackpot = 3_500_000;

Both examples equal 3,500,000, which is easier to see in the second statement. The Java compiler ignores the underscores.

Caution

If you use a feature of Java 7 in NetBeans and it displays an error message, make sure the project has been set up to use the current version of the language. Choose File, Project Properties to open the Project Properties dialog, choose the category Libraries, and make sure the Java Platform drop-down is set to JDK 1.7.

Boolean Literals

The Boolean literals true and false are the only two values you can use when assigning a value to a boolean variable type or using a Boolean in a statement.

The following statement sets a boolean variable:

boolean chosen = true;

Caution

If you have programmed in other languages, you might expect that a value of 1 is equivalent to true and 0 is equivalent to false. This isn’t the case in Java; you must use the values true and false to represent Boolean values.

Note that the literal true does not have quotation marks around it. If it did, the Java compiler would assume that it is a string of characters.

Character Literals

Character literals are expressed by a single character surrounded by single quotation marks, such as 'a', '#', and '3'. You might be familiar with the ASCII character set, which includes 128 characters, including letters, numerals, punctuation, and other characters useful in computing. Java supports thousands of additional characters through the 16-bit Unicode standard.

Some character literals represent characters that are not readily printable or accessible from a keyboard. Table 2.2 lists the codes that can represent these special characters as well as characters from the Unicode character set.

Table 2.2. Character Escape Codes

[image: Image]

In Table 2.2, the letter d in the octal, hex, and Unicode escape codes represents a number or a hexadecimal digit (a through f or A through F).

String Literals

The final literal you can use in a Java program represents strings of characters. A string in Java is an object rather than a primitive data type. Strings are not stored in arrays as they are in languages such as C.

Because string objects are real objects in Java, methods are available to combine strings, modify strings, and determine whether two strings have the same value.

String literals consist of a series of characters inside double quotation marks, as in the following statements:

Click here to view code image

String quitMsg = "Are you sure you want to quit?";

String password = "drowssap";

Strings can include the character escape codes listed in Table 2.2, as shown here:

Click here to view code image

String example = "Socrates asked, \"Hemlock is poison?\"";

System.out.println("Sincerely,\nMillard Fillmore\n");

String title = "Sams Teach Yourself Ruby on Rails in the John\u2122";

In the last example, the Unicode code sequence \u2122 produces a ™ symbol on systems that have been configured to support Unicode.

Caution

Although Java supports the transmission of Unicode characters, the user’s system also must support it for the characters to be displayed. Unicode support provides a way to encode its characters for systems that support the standard. Java supports the display of any Unicode character that can be represented by a host font.

For more information about Unicode, visit the Unicode Consortium website at www.unicode.org.

Although string literals are used in a manner similar to other literals in a program, they are handled differently behind the scenes.

With a string literal, Java stores that value as a String object. You don’t have to explicitly create a new object, as you must when working with other objects, so they are as easy to work with as primitive data types. Strings are unusual in this respect—none of the basic types are stored as an object when used. You learn more about strings and the String class later today.

Expressions and Operators

An expression is a statement that can convey a value. Some of the most common expressions are mathematical, such as in the following examples:

int x = 3;

int y = x;

int z = x * y;

All three of these statements can be considered expressions; they convey values that can be assigned to variables. The first assigns the literal 3 to the variable x. The second assigns the value of the variable x to the variable y. In the third expression, the multiplication operator (*) is used to multiply the x and y integers, and the result is stored in the z integer.

Expressions can be any combination of variables, literals, and operators. They also can be method calls because methods send back a value to the object or class that called the method.

The value conveyed by an expression is called a return value. This value can be assigned to a variable and used in many other ways in your Java programs.

Most of the expressions in Java use operators such as *. Operators are special symbols used for mathematical functions, assignment statements, and logical comparisons.

Arithmetic

Five operators are used to accomplish basic arithmetic in Java, as shown in Table 2.3.

Table 2.3. Arithmetic Operators

[image: Image]

Each operator takes two operands, one on each side of the operator. The subtraction operator also can be used to negate a single operand, which is equivalent to multiplying that operand by –1.

One thing to be mindful of when performing division is the type of numbers being used. If you store a division operation in an integer, the result is truncated to the next-lower whole number because the int data type can’t handle floating-point numbers.

For example, the expression 31 / 9 results in 3 if stored as an integer.

Modulus division, which uses the % operator, produces the remainder of a division operation. The expression 31 % 9 results in 4 because 31 divided by 9, with the whole number result of 3, leaves a remainder of 4.

Note that many arithmetic operations involving integers produce an int regardless of the original type of the operands. If you’re working with other numbers, such as floating-point numbers or long integers, you should make sure that the operands have the same type you’re trying to end up with.

The next project is a Java class that demonstrates simple arithmetic in the language. Create a new empty Java file in NetBeans called Weather, and enter the code shown in Listing 2.2 into the source code editor. Save the file when you’re done.

Listing 2.2. The Full Text of Weather.java

Click here to view code image

 1: public class Weather {
 2: public static void main(String[] arguments) {
 3: float fah = 86;
 4: System.out.println(fah + " degrees Fahrenheit is ...");
 5: // To convert Fahrenheit into Celsius
 6: // begin by subtracting 32
 7: fah = fah - 32;
 8: // Divide the answer by 9
 9: fah = fah / 9;
10: // Multiply that answer by 5
11: fah = fah * 5;
12: System.out.println(fah + " degrees Celsius\n");
13:
14: float cel = 33;
15: System.out.println(cel + " degrees Celsius is ...");
16: // To convert Celsius into Fahrenheit
17: // begin by multiplying by 9
18: cel = cel * 9;
19: // Divide the answer by 5
20: cel = cel / 5;
21: // Add 32 to the answer

22: cel = cel + 32;
23: System.out.println(cel + " degrees Fahrenheit");
24: }
25: }

Run the program by selecting Run, Run File. It produces the following output in the NetBeans Output pane:

Output [image: Image]

Click here to view code image

86.0 degrees Fahrenheit is ...
30.0 degrees Celsius

33.0 degrees Celsius is ...
91.4 degrees Fahrenheit

In lines 3–12 of this Java application, a temperature in Fahrenheit is converted to Celsius using the arithmetic operators:

• Line 3—The floating-point variable fah is created with a value of 86.

• Line 4—The current value of fah is displayed.

• Line 5—The first of several comments explains what the program is doing. The Java compiler ignores these comments.

• Line 7—fah is set to its current value minus 32.

• Line 9—fah is set to its current value divided by 9.

• Line 11—fah is set to its current value multiplied by 5.

• Line 12—Now that fah has been converted to a Celsius value, fah is displayed again.

A similar thing happens in lines 14–23 but in the reverse direction. A temperature in Celsius is converted to Fahrenheit.

More About Assignment

Assigning a value to a variable is an expression because it produces a value. Because of this feature, you can combine assignment statements in the following way:

x = y = z = 7;

In this statement, all three variables x, y, and z end up with the value 7.

The right side of an assignment expression always is calculated before the assignment takes place. This makes it possible to use an expression statement as in the following code:

int x = 5;
x = x + 2;

In the expression x = x + 2, the first thing that happens is that x + 2 is calculated. The result of this calculation, 7, is then assigned to x.

Using an expression to change a variable’s value is a common task in programming. Several operators are used strictly in these cases.

Table 2.4 shows these assignment operators and the expressions they are functionally equivalent to.

Table 2.4. Assignment Operators

[image: Image]

Caution

These shorthand assignment operators are functionally equivalent to the longer assignment statements for which they substitute. If either side of your assignment statement is part of a complex expression, however, there are cases where the operators are not equivalent. For example, if x equals 20 and y equals 5, the following two statements do not produce the same value:

x = x / y + 5;

x /= y + 5;

When in doubt, simplify an expression by using multiple assignment statements, and don’t use the shorthand operators.

Incrementing and Decrementing

Another common task required in programming is to add 1 to or subtract 1 from an integer variable. These expressions have special operators, which are called increment and decrement operators. Incrementing a variable means adding 1 to its value, and decrementing a variable means subtracting 1 from its value.

The increment operator is ++, and the decrement operator is --. These operators are placed immediately after or immediately before a variable name, as in the following code example:

int x = 7;
x = x++;

In this example, the statement x = x++ increments the x variable from 7 to 8.

These increment and decrement operators can be placed before or after a variable name. This affects the value of expressions that involve these operators.

Increment and decrement operators are called prefix operators if listed before a variable name and postfix operators if listed after a name.

In a simple expression such as count--;, using a prefix or postfix operator produces the same result, making the operators interchangeable. When increment and decrement operations are part of a larger expression, however, the choice between prefix and postfix operators is important.

Consider the following code:

int x, y, z;
x = 42;
y = x++;
z = ++x;

The three expressions in this code yield different results because of the difference between prefix and postfix operations.

When you use postfix operators on a variable in an expression, the variable’s value is evaluated in the expression before it is incremented or decremented. So in y = x++, y receives the value of x before it is incremented by 1.

When using prefix operators on a variable in an expression, the variable is incremented or decremented before its value is evaluated in that expression. Therefore, in z = ++x, x is incremented by 1 before the value is assigned to z.

The end result of the preceding codes example is that y equals 42, z equals 44, and x equals 44.

If you’re still having some trouble figuring this out, here’s the example again with comments describing each step:

Click here to view code image

int x, y, z; // x, y, and z are all declared
x = 42; // x is given the value of 42
y = x++; // y is given x's value (42) before it is incremented

 // and x is then incremented to 43
z = ++x; // x is incremented to 44, and z is given x's value

Caution

Using increment and decrement operators in complex expressions can produce results you might not have expected.

The concept of “assigning x to y before x is incremented” isn’t precisely right because Java evaluates everything on the right side of an expression before assigning its value to the left side.

Java stores some values before handling an expression to make postfix work the way it has been described in this section.

If you’re not getting the results you expect from a complex expression that includes prefix and postfix operators, try breaking the expression into multiple statements to simplify it.

Comparisons

Java has several operators for making comparisons among variables, variables and literals, or other types of information in a program.

These operators are used in expressions that return Boolean values of true or false, depending on whether the comparison being made is true or not. Table 2.5 shows the comparison operators.

Table 2.5. Comparison Operators

[image: Image]

The following example shows a comparison operator in use:

boolean isHip;
int age = 45;
isHip = age < 25;

The expression age < 25 produces a result of either true or false, depending on the value of the integer age. Because age is 45 in this example (which is not less than 25), isHip is given the Boolean value false.

Logical Operators

Expressions that result in Boolean values, such as comparison operations, can be combined to form more complex expressions. This is handled through logical operators, which are used for the logical combinations AND, OR, XOR, and logical NOT.

For AND combinations, the & or && logical operator is used. When two Boolean expressions are linked by these operators, the combined expression returns a true value only if both Boolean expressions are true.

Consider this example:

Click here to view code image

boolean extraLife = (score > 75000) & (playerLives < 10);

This expression combines two comparison expressions: score > 75000 and playerLives < 10. If both expressions are true, the Boolean value true is assigned to the variable extraLife. In any other circumstance, the value false is assigned to the variable.

The difference between & and && lies in how much work Java does on the combined expression. If & is used, the expressions on both sides of the & are evaluated no matter what. If && is used and the left side of the && is false, the expression on the right side of the && never is evaluated.

For OR combinations, the | or || logical operator is used. These combined expressions return a true value if either Boolean expression is true.

Consider this example:

Click here to view code image

boolean extralife = (score > 75000) || (playerLevel == 0);

This expression combines two comparison expressions: score > 75000 and playerLevel == 0. If either of these expressions is true, the Boolean value true is assigned to the variable extraLife. Only if both of these expressions are false is the value false assigned to extraLife.

Note the use of || instead of |. Because of this usage, if score > 75000 is true, extraLife is set to true, and the second expression is never evaluated.

The XOR combination has one logical operator, ^. This results in a true value only if the Boolean expressions it combines have opposite values. If both are true or both are false, the ^ operator produces a false value.

The NOT combination uses the ! logical operator followed by a single expression. It reverses the value of a Boolean expression in the same way that a minus sign reverses the positive or negative sign on a number. For example, if age < 30 returns a true value, !(age < 30) returns a false value.

The logical operators may seem illogical when you first encounter them. You get plenty of opportunities to work with them during the rest of this week, especially on Day 5, “Creating Classes and Methods.”

Operator Precedence

When more than one operator is used in an expression, Java has an established precedence hierarchy to determine the order in which operators are evaluated. In many cases, this precedence determines the expression’s overall value.

For example, consider the following expression:

y = 6 + 4 / 2;

The y variable will equal the value 5 or the value 8, depending on which arithmetic operation is handled first. If the 6 + 4 expression comes first, y has the value of 5. Otherwise, y equals 8.

In general, the order of evaluation from first to last is as follows:

1. Increment and decrement operations

2. Arithmetic operations

3. Comparisons

4. Logical operations

5. Assignment expressions

If two operations have the same precedence, the one on the left in the expression is handled before the one on the right. Table 2.6 shows the specific precedence of the various operators in Java. Operators higher up in the table are evaluated first.

Table 2.6. Operator Precedence

[image: Image]

Several of the operators listed in Table 2.6 are covered later this week.

Returning to the expression y = 6 + 4 / 2, Table 2.6 shows that division is evaluated before addition, so the value of y is 8.

To change the order in which expressions are evaluated, place parentheses around the expressions that should be evaluated first. You can nest one set of parentheses inside another to make sure that expressions are evaluated in the desired order; the innermost parenthetic expression is evaluated first.

The following expression results in a value of 5:

y = (6 + 4) / 2

The value of 5 is the result because 6 + 4 is calculated first, and then the result, 10, is divided by 2.

Parentheses also can improve an expression’s readability. If an expression’s precedence isn’t immediately clear to you, adding parentheses to impose the desired precedence can make the statement easier to understand.

String Arithmetic

As stated earlier, the + operator has a double life outside the world of mathematics. It can concatenate two or more strings.

Concatenate means to link two things. For reasons unknown, it is the verb of choice in computer programming when describing the act of combining two strings, winning out over paste, glue, affix, combine, link, and conjoin.

In several examples, you have seen statements that look something like this:

Click here to view code image

String brand = "Jif";
System.out.println("Choosy mothers choose " + brand);

These two lines result in the display of the following text:

Choosy mothers choose Jif

The + operator combines strings, other objects, and variables to form a single string. In the preceding example, the literal “Choosy mothers choose” is concatenated to the value of the String object brand.

Working with the concatenation operator is made easier in Java by the fact that the operator can handle any variable type and object value as if it were a string. If any part of a concatenation operation is a String or a string literal, all elements of the operation are treated as if they were strings:

Click here to view code image

System.out.println(4 + " score and " + 7 + " years ago");

This produces the output text “4 score and 7 years ago”, as if the integer literals 4 and 7 were strings.

There also is a += shorthand operator to append something to the end of a string. For example, consider the following expression:

myName += " Jr.";

This expression is equivalent to the following:

myName = myName + " Jr.";

In this example, += changes the value of myName, which might be something like “Efrem Zimbalist,” by adding “Jr.” at the end to form the string “Efrem Zimbalist Jr.”

To summarize today’s material, Table 2.7 lists the operators you have learned about. Be a doll and look them over carefully.

Table 2.7. Operator Summary

[image: Image]

[image: Image]

Summary

Anyone who pops open a set of matryoshka dolls has to be a bit disappointed upon reaching the smallest doll in the group.

Today you reached Java’s smallest nesting doll. Using statements and expressions enables you to begin building effective methods, which makes effective objects and classes possible.

Today you learned about creating variables and assigning values to them. You also used literals to represent numeric, character, and string values and worked with operators. Tomorrow, you put these skills to use developing classes.

Q&A

Q What happens if I assign an integer value to a variable that is too large for that variable to hold?

A Logically, you might think that the variable is converted to the next-larger type, but this isn’t what happens. Instead, an overflow occurs—a situation in which the number wraps around from one size extreme to the other. An example of overflow would be a byte variable that goes from 127 (an acceptable value) to 128 (unacceptable). It would wrap around to the lowest acceptable value, which is –128, and start counting upward from there. Overflow isn’t something you can readily detect in a program, so be sure to give your variables plenty of living space in their chosen data type.

Small data types like byte were more necessary when computers had much less memory than they do today and every byte counted. Today, with plentiful memory and hard disk space measured in gigabytes, it is better to use larger data types like int to ensure that you have enough space to store all possible values in a particular variable.

Q Why does Java have all these shorthand operators for arithmetic and assignment? It’s really hard to read that way.

A Java’s syntax is based on C++, which is based on C (more Russian nesting doll behavior). C is an expert language that values programming power over readability, and the shorthand operators are one of the legacies of that design priority. Using them in a program isn’t required because effective substitutes are available, so you can avoid them in your own programming if you prefer.

Quiz

Review today’s material by taking this three-question quiz. Answers are at the end of the book.

Questions

1. Which of the following is a valid value for a boolean variable?

A. "false"

B. false

C. 10

2. Which of these is not a convention for naming variables in Java?

A. After the first word in the variable name, each successive word begins with a capital letter.

B. The first letter of the variable name is lowercase.

C. All letters are capitalized.

3. Which of these data types holds numbers from –32,768 to 32,767?

A. char

B. byte

C. short

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java programming certification test. Answer it without looking at today’s material.

Which of the following data types can hold the number 3,000,000,000 (3 billion)?

A. short, int, long, float

B. int, long, float

C. long, float

D. byte

The answer is available on the book’s website at www.java21days.com. Visit the Day 2 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that calculates how much a $14,000 investment would be worth if it increased in value by 40% during the first year, lost $1,500 in value the second year, and increased 12% in the third year.

2. Write a program that displays two numbers and uses the / and % operators to display the result and remainder after they are divided. Use the \t character escape code to separate the result and remainder in your output.

Where applicable, exercise solutions are offered on the book’s website at www.java21days.com.

Day 3. Working with Objects

Java is primarily an object-oriented programming language. When you do work in Java, you use objects to get the job done. You create objects, modify them, change their variables, call their methods, and combine them with other objects. You develop classes, create objects out of those classes, and use them with other classes and objects.

Today, you work extensively with objects as the following topics are covered:

• Creating objects

• Testing and modifying their class and instance variables

• Calling an object’s methods

• Converting objects from one class to another

Creating New Objects

When you write a Java program, you define a set of classes. As you learned during Day 1, “Getting Started with Java,” classes are templates used to create objects. These objects, which also are called instances, are self-contained elements of a program with related features and data. For the most part, you use the class merely to create instances and then work with those instances. In this section, you learn how to create a new object from any given class.

When using strings on Day 2, “The ABCs of Programming,” you learned that using a string literal (a series of characters enclosed in double quotation marks) creates a new instance of the class String with the value of that string.

The String class is unusual in that respect. Although it’s a class, it can be assigned a value with a literal as if it were a primitive data type. This shortcut is unavailable for other classes. To create instances for them, the new operator is used.

Note

What about the literals for numbers and characters? Don’t they create objects too? Actually, they don’t. The primitive data types for numbers and characters create numbers and characters, but for efficiency they actually aren’t objects. On Day 5, “Creating Classes and Methods,” you learn how to use objects to represent primitive values.

Using new

To create a new object, you use the new operator with the name of the class that should be used as a template. The name of the class is followed by parentheses, as in these three examples:

Click here to view code image

String name = new String("Hal Jordan");

URL address = new URL("http://www.java21days.com");

VolcanoRobot robbie = new VolcanoRobot();

The parentheses are important and can’t be omitted. The parentheses can be empty, however, in which case the most simple, basic object is created. The parentheses also can contain arguments that determine the values of instance variables or other initial qualities of that object.

The following examples show objects being created with arguments:

Click here to view code image

Random seed = new Random(606843071);

Point pt = new Point(0, 0);

The number and type of arguments to include inside the parentheses are defined by the class itself using a special method called a constructor. (You learn more about constructors later today.) If you try to create a new instance of a class with the wrong number or wrong type of arguments, or if you give it no arguments and it needs them, an error occurs when the program is compiled.

Here’s an example of creating different types of objects with different numbers and types of arguments. The StringTokenizer class in the java.util package divides a string into a series of shorter strings called tokens.

You divide a string into tokens by applying a character or characters as a delimiter. For example, the text "02/20/67" could be divided into three tokens—"02", "20", and "67"—using the slash character (/) as a delimiter.

Today’s first project is a Java application that uses string tokens to analyze stock price data. In NetBeans, create a new empty Java file for the class TokenTester, and enter the code shown in Listing 3.1 as its source code. This program creates StringTokenizer objects by using new in two different ways and then displays each token the objects contain.

Listing 3.1. The Full Text of TokenTester.java

Click here to view code image

 1: import java.util.StringTokenizer;
 2:
 3: class TokenTester {
 4:
 5: public static void main(String[] arguments) {
 6: StringTokenizer st1, st2;
 7:
 8: String quote1 = "GOOG 604.43 -0.42";
 9: st1 = new StringTokenizer(quote1);
10: System.out.println("Token 1: " + st1.nextToken());
11: System.out.println("Token 2: " + st1.nextToken());
12: System.out.println("Token 3: " + st1.nextToken());
13:
14: String quote2 = "RHT@60.39@0.78";
15: st2 = new StringTokenizer(quote2, "@");
16: System.out.println("\nToken 1: " + st2.nextToken());

17: System.out.println("Token 2: " + st2.nextToken());
18: System.out.println("Token 3: " + st2.nextToken());
19: }
20: }

Save this file by choosing File, Save or clicking Save All on the NetBeans toolbar. Run the application by choosing Run, Run File to see the output:

Output [image: Image]

Token 1: GOOG
Token 2: 604.43
Token 3: -0.42

Token 1: RHT
Token 2: 60.39
Token 3: 0.78

Two different StringTokenizer objects are created using different arguments to the constructor.

The first object is created using new StringTokenizer() with one argument, a String object named quote1 (line 9). This creates a StringTokenizer object that uses the default delimiters, which are blank spaces, tabs, newlines, carriage returns, or formfeed characters.

If any of these characters is contained in the string, it is used to divide the string. Because the quote1 string contains spaces, these are used as delimiters dividing each token. Lines 10–12 display the values of all three tokens: "GOOG", "604.43", and "-0.42".

The second StringTokenizer object in this example has two arguments when it is constructed in line 14—a String object named quote2 and an at-sign character (@). This second argument indicates that the @ character should be used as the delimiter between tokens. The StringTokenizer object created in line 15 contains three tokens: "RHT", "60.39", and "0.78".

How Objects Are Constructed

Several things happen when you use the new operator. The new instance of the given class is created, memory is allocated for it, and a special method defined in the given class is called. This special method is called a constructor.

A constructor is a special way to create a new instance of a class. A constructor initializes the new object and its variables, creates any other objects that the object needs, and performs any additional operations the object requires to initialize itself.

A class can have several different constructors, each with a different number or type of arguments. When you use new, you can specify different arguments in the argument list, and the correct constructor for those arguments is called.

Multiple constructor definitions enable the TokenTester class to accomplish different things with different uses of the new operator. When you create your own classes, you can define as many constructors as you need to implement the behavior of the class.

No two constructors in a class can have the same number and type of arguments because this is the only way constructors are differentiated from each other.

If a class defines no constructors, a constructor with no arguments is called by default when an object of the class is created. The only thing this constructor does is call the same constructor in its superclass.

A Note on Memory Management

If you are familiar with other object-oriented programming languages, you might wonder whether the new statement has an opposite that destroys an object when it is no longer needed.

Memory management in Java is dynamic and automatic. When you create a new object, Java automatically allocates the proper amount of memory for that object. You don’t have to allocate any memory for objects explicitly. Java does it for you.

Because Java memory management is automatic, you don’t need to deallocate the memory an object uses when you’re finished using the object. Under most circumstances, when you are finished with an object you have created, Java can determine that the object no longer has any live references to it. (In other words, the object isn’t assigned to any variables still in use or stored in any arrays.)

As a program runs, the Java virtual machine periodically looks for unused objects and reclaims the memory that those objects are using. This process is called garbage collection and occurs without any programming on your part. You don’t have to explicitly free the memory taken up by an object; you just have to make sure that you’re not still holding onto an object you want to get rid of.

Using Class and Instance Variables

At this point, you can create your own object with class and instance variables defined in it, but how do you work with those variables? They’re used in largely the same manner as the local variables you learned about yesterday. You can use them in expressions, assign values to them in statements, and so on. You just refer to them slightly differently.

Getting Values

To get to the value of an instance variable, you use dot notation, a form of addressing in which an instance or class variable name has two parts:

• A reference to an object or class on the left side of a dot operator (.)

• A variable on the right side

Dot notation is how you refer to an object’s instance variables and methods.

For example, if you have an object named customer with a variable called orderTotal, here’s how that variable could be referred to in a statement:

Click here to view code image

float total = customer.orderTotal;

This statement assigns the value of the customer object’s orderTotal instance variable to a local floating-point variable named total.

Accessing variables in dot notation is an expression (meaning that it returns a value). Both sides of the dot also are expressions. This means that you can chain instance variable access.

Extending the preceding example, suppose the customer object is an instance variable of the store class. Dot notation can be used twice, as in this statement:

Click here to view code image

float total = store.customer.orderTotal;

Dot expressions are evaluated from left to right, so you start with store’s instance variable customer, which itself has an instance variable orderTotal. The value of this variable is assigned to the total local variable.

Setting Values

Assigning a value to an instance variable with dot notation employs the = operator just like local variables:

customer.layaway = true;

This example sets the value of a boolean instance variable named layaway to true.

The PointSetter application shown in Listing 3.2 tests and modifies the instance variables in a Point object. Point, a class in the java.awt package, represents points in a coordinate system with (x, y) values.

Create a new empty Java file in NetBeans with the class name PointSetter, and then type the source code shown in Listing 3.2 and save the file.

Listing 3.2. The Full Text of PointSetter.java

Click here to view code image

 1: import java.awt.Point;
 2:
 3: class PointSetter {
 4:
 5: public static void main(String[] arguments) {
 6: Point location = new Point(4, 13);
 7:
 8: System.out.println("Starting location:");
 9: System.out.println("X equals " + location.x);
10: System.out.println("Y equals " + location.y);
11:
12: System.out.println("\nMoving to (7, 6)");
13: location.x = 7;
14: location.y = 6;
15:
16: System.out.println("\nEnding location:");
17: System.out.println("X equals " + location.x);
18: System.out.println("Y equals " + location.y);
19: }
20: }

When you run this application, the output is the following:

Output [image: Image]

Starting location:
X equals 4
Y equals 13

Moving to (7, 6)

Ending location:
X equals 7
Y equals 6

In this application, you first create an instance of Point where x equals 4 and y equals 13 (line 6). These individual values are retrieved using dot notation.

The value of x is changed to 7 and y to 6. Finally, the values are displayed again to show how they have changed.

Class Variables

Class variables, as you have learned, are variables defined and stored in the class itself. Their values apply to the class and all its instances.

With instance variables, each new instance of the class gets a new copy of the instance variables that the class defines. Each instance then can change the values of those instance variables without affecting any other instances. With class variables, only one copy of that variable exists when the class is loaded. Changing the value of that variable changes it for all instances of that class.

You define class variables by including the static keyword before the variable itself. For example, consider the following partial class definition:

Click here to view code image

class FamilyMember {
 static String surname = "Mendoza";
 String name;
 int age;
}

Each instance of the class FamilyMember has its own values for name and age, but the class variable surname has only one value for all family members: Mendoza. If the value of surname is changed, all instances of FamilyMember are affected.

Note

Calling these static variables refers to one of the meanings of the word “static”: fixed in one place. If a class has a static variable, every object of that class has the same value for that variable.

To access class variables, you use the same dot notation as with instance variables. To retrieve or change the value of the class variable, you can use either the instance or the name of the class on the left side of the dot operator. Both lines of output in this example display the same value:

Click here to view code image

FamilyMember dad = new FamilyMember();
System.out.println("Family's surname is: " + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname);

Because you can use an object to change the value of a class variable, it’s easy to become confused about class variables and where their values are coming from. Remember that the value of a class variable affects all objects of that particular class.

For this reason, it’s a good idea to use the name of the class when you refer to a class variable. It makes your code easier to read and makes strange results easier to debug.

Calling Methods

Calling a method in an object also makes use of dot notation. The object whose method is being called is on the left side of the dot, and the name of the method and its arguments are on the right side:

Click here to view code image

customer.addToCart(itemNumber, price, quantity);

All method calls must have parentheses after them, even when the method takes no arguments, as in this example:

customer.cancelOrder();

In Listing 3.3, the StringChecker application shows an example of calling some methods defined in the String class. Strings include methods for string tests and modification. Create this program in NetBeans as an empty Java file with the class name StringChecker.

Listing 3.3. The Full Text of StringChecker.java

Click here to view code image

 1: class StringChecker {
 2:
 3: public static void main(String[] arguments) {
 4: String str = " Would you like an apple pie with that?";
 5: System.out.println("The string is: " + str);
 6: System.out.println("Length of this string: "
 7: + str.length());
 8: System.out.println("The character at position 6: "
 9: + str.charAt(6));
10: System.out.println("The substring from 26 to 32: "
11: + str.substring(26, 32));
12: System.out.println("The index of the first 'a': "
13: + str.indexOf('a'));
14: System.out.println("The index of the beginning of the "
15: + "substring \"IBM\": " + str.indexOf("IBM"));
16: System.out.println("The string in uppercase: "
17: + str.toUpperCase());
18: }
19: }

Save and run the file to display this output:

Output [image: Image]

Click here to view code image

The string is: Would you like an apple pie with that?
Length of this string: 38
The character at position 6: y
The substring from 26 to 32: e with
The index of the first 'a': 15
The index of the beginning of the substring "apple": 18
The string in uppercase: WOULD YOU LIKE AN APPLE PIE WITH THAT?

In line 4, you create a new instance of String by using a string literal. The remainder of the program simply calls different string methods to do different operations on that string:

• Line 5 prints the value of the string you created in line 4: “Would you like an apple pie with that?”

• Line 7 calls the length() method in the new String object. This string has 38 characters.

• Line 9 calls the charAt() method, which returns the character at the given position in the string. Note that string positions start at position 0 rather than 1, so the character at position 6 is y.

• Line 11 calls the substring() method, which takes two integers indicating a range and returns the substring with those starting and ending points. The substring() method also can be called with only one argument, which returns the substring from that position to the end of the string.

• Line 13 calls the indexOf() method, which returns the position of the first instance of the given character (here, 'a'). Character literals are surrounded by single quotation marks; if double quotation marks had surrounded the 'a' in line 13, the literal would be considered a String.

• Line 15 shows a different use of the indexOf() method, which takes a string argument and returns the index of the beginning of that string.

• Line 17 uses the toUpperCase() method to return a copy of the string in all uppercase.

Note

If you compare the output of the StringChecker application to the characters in the string, you might be wondering how y could be at position 6 when it is the seventh character in the string. All of the methods look like they’re off by one (except for length()).

The reason is that the methods are zero-based, which means they begin counting with 0 instead of 1. So ‘W’ is at position 0, ‘o’ at position 1, ‘u’ at position 2 and so on. This is something you encounter often in Java.

Formatting Strings

Numbers such as money often need to be displayed in a precise manner. There’s only two places after the decimal (for the cents), a dollar sign ($), and commas.

This kind of formatting when displaying strings can be accomplished with the System.out.format() method.

The method takes two arguments: the output format template and the string to display. Here’s an example that adds a dollar sign and commas to the display of an integer:

Click here to view code image

int accountBalance = 5005;
System.out.format("Balance: $%,d%n", accountBalance);

This code produces the output Balance: $5,005.

The formatting string begins with a percent sign (%) followed by one or more flags. The %,d code displays a decimal with commas dividing each group of three digits. The %n code displays a newline character.

The next example displays the value of pi to 11 decimal places:

Click here to view code image

double pi = Math.PI;
System.out.format("%.11f%n", pi);

The output is 3.14159265359.

Tip

Oracle’s Java site includes a beginner’s tutorial for printf-style output that describes some of the most useful formatting codes:

http://docs.oracle.com/javase/tutorial/java/data/numberformat.html

Nesting Method Calls

A method can return a reference to an object, a primitive data type, or no value at all. In the StringChecker application, all the methods called on the String object str return values that are displayed. The charAt() method returns a character at a specified position in the string.

The value returned by a method also can be stored in a variable:

Click here to view code image

String label = "From";
String upper = label.toUpperCase();

In this example, the String object upper contains the value returned by calling label.toUpperCase(), which is the text FROM, the uppercase version of From.

If the method returns an object, you can call the methods of that object in the same statement. This makes it possible for you to nest methods as you would variables.

Earlier today, you saw an example of a method called with no arguments:

customer.cancelOrder();

If the cancelOrder() method returns an object, you can call methods of that object in the same statement:

Click here to view code image

customer.cancelOrder().fileComplaint();

This statement calls the fileComplaint () method, which is defined in the object returned by the cancelOrder() method of the customer object.

You can combine nested method calls and instance variable references as well. In the next example, the putOnLayaway() method is defined in the object stored by the orderTotal instance variable, which itself is part of the customer object:

Click here to view code image

customer.orderTotal.putOnLayaway(itemNumber, price, quantity);

This manner of nesting variables and methods is demonstrated in a method you’ve used frequently in the first several days of this book: System.out.println().

That method displays strings and other data to the computer’s standard output device.

The System class, part of the java.lang package, describes behavior specific to the computer system on which Java is running. System.out is a class variable that contains an instance of the class PrintStream representing the system’s standard output, which normally is the screen but can be a printer or file. PrintStream objects have a println() method that sends a string to that output stream. The PrintStream class is in the java.io package.

Class Methods

Class methods, like class variables, apply to the class as a whole and not to its instances. Class methods commonly are used for general utility methods that might not operate directly on an object of that class but do fit with that class conceptually.

For example, the String class contains a class method called valueOf(), which can take one of many different types of arguments (integers, Booleans, objects, and so on). The valueOf() method then returns a new instance of String containing the argument’s string value. This method doesn’t operate directly on an existing instance of String, but getting a string from another object or data type is behavior that makes sense to define in the String class.

Class methods also can be useful for gathering general methods in one place. For example, the Math class, defined in the java.lang package, contains a large set of mathematical operations as class methods. No objects can be created from the Math class, but you still can use its methods with numeric or Boolean arguments.

For example, the class method Math.max() takes two arguments and returns the larger of the two. You don’t need to create a new instance of Math; it can be called anywhere you need it, as in the following:

Click here to view code image

int firstPrice = 225;
int secondPrice = 217;
int higherPrice = Math.max(firstPrice, secondPrice);

Dot notation is used to call a class method. As with class variables, you can use either an instance of the class or the class itself on the left side of the dot. For the same reasons noted earlier in the discussion of class variables, using the name of the class makes your code easier to read.

The last two lines in this example both produce strings equal to “550”:

String s, s2;
s = "item";
s2 = s.valueOf(550);
s2 = String.valueOf(550);

References to Objects

As you work with objects, it’s important to understand references. A reference is an address that indicates where an object’s variables and methods are stored.

You aren’t actually using objects when you assign an object to a variable or pass an object to a method as an argument. You aren’t even using copies of the objects. Instead, you’re using references to those objects.

To better illustrate the difference, the RefTester application shown in Listing 3.4 shows how references work. Create an empty Java file for the class RefTester in NetBeans, and enter the code shown in Listing 3.4 as the application’s source code.

Listing 3.4. The Full Text of RefTester.java

Click here to view code image

 1: import java.awt.Point;
 2:
 3: class RefTester {
 4: public static void main(String[] arguments) {
 5: Point pt1, pt2;
 6: pt1 = new Point(100, 100);
 7: pt2 = pt1;
 8:
 9: pt1.x = 200;
10: pt1.y = 200;
11: System.out.println("Point1: " + pt1.x + ", " + pt1.y);
12: System.out.println("Point2: " + pt2.x + ", " + pt2.y);
13: }
14: }

Save and run the application. Here is the output:

Output [image: Image]

Point1: 200, 200
Point2: 200, 200

The following takes place in the first part of this program:

• Line 5—Two Point variables are created.

• Line 6—A new Point object is assigned to pt1.

• Line 7—The value of pt1 is assigned to pt2.

Lines 9–12 are the tricky part. The x and y variables of pt1 both are set to 200, and then all variables of pt1 and pt2 are displayed onscreen.

You might expect pt1 and pt2 to have different values. However, the output shows this not to be the case. As you can see, the x and y variables of pt2 also are changed, even though nothing in the program explicitly changes them. This happens because line 7 creates a reference from pt2 to pt1, instead of creating pt2 as a new object copied from pt1.

The variable pt2 is a reference to the same object as pt1, as shown in Figure 3.1. Either variable can be used to refer to the object or to change its variables.

[image: Image]

Figure 3.1. References to objects.

If you wanted pt1 and pt2 to refer to separate objects, you could use separate new Point() statements on lines 6 and 7 to create separate objects, as shown here:

pt1 = new Point(100, 100);
pt2 = new Point(100, 100);

References in Java become particularly important when arguments are passed to methods. You learn more about this later today.

Note

Java has no explicit pointers or pointer arithmetic, unlike C and C++. By using references and Java arrays, you can duplicate most pointer capabilities without many of their drawbacks.

Casting Objects and Primitive Types

One thing you discover quickly about Java is how finicky it is about the information it will handle. Like Morris, the perpetually hard-to-please cat in the old 9Lives cat food commercials, Java methods and constructors require things to take a specific form and won’t accept alternatives.

When you send arguments to methods or use variables in expressions, you must use variables of the correct data types. If a method requires an int, the Java compiler responds with an error if you try to send a float value to the method. Likewise, if you set up one variable with the value of another, they must be of the same type.

Note

There is one area where Java’s compiler is decidedly flexible: the String object. String handling in println() methods, assignment statements, and method arguments is simplified by the + concatenation operator. If any variable in a group of concatenated variables is a string, Java treats the whole thing as a String. This makes the following possible:

Click here to view code image

float gpa = 2.25F;
System.out.println("Honest, mom, my GPA is a " + (gpa + 1.5));

Using the concatenation operator, a single string can hold the text representation of multiple objects and primitive data in Java.

Sometimes you’ll have a value in your Java class that isn’t the right type for what you need. It might be the wrong class or the wrong data type, such as a float when you need an int.

In these situations, you can use a process called casting to convert a value from one type to another.

Although the concept of casting is reasonably simple, the usage is complicated by the fact that Java has both primitive types (such as int, float, and boolean) and object types (String, Point, ZipFile, and the like). This section discusses three forms of casts and conversions:

• Casting between primitive types, such as int to float or float to double

• Casting from an object of a class to an object of another class, such as from Object to String

• Casting primitive types to objects and then extracting primitive values from those objects

When discussing casting, it can be easier to think in terms of sources and destinations. The source is the variable being cast into another type. The destination is the result.

Casting Primitive Types

Casting between primitive types enables you to convert the value of one type to another primitive type. This most commonly occurs with the numeric types. But one primitive type can never be used in a cast. Boolean values must be either true or false and cannot be used in a casting operation.

In many casts between primitive types, the destination can hold larger values than the source, so the value is converted easily. An example would be casting a byte into an int. Because a byte holds values from –128 to 127 and an int holds from around –2,100,000 to 2,100,000, there’s more than enough room to cast a byte into an int.

Often you can automatically use a byte or char as an int; you can use an int as a long, an int as a float, or anything as a double. In most cases, because the larger type provides more precision than the smaller, no loss of information occurs as a result. The exception is casting integers to floating-point values. Casting an int or a long to a float, or a long to a double, can cause some loss of precision.

Note

A character can be used as an int because each character has a corresponding numeric code that represents its position in the character set. If the variable i has the value 65, the cast (char) i produces the character value 'A'. The numeric code associated with a capital A is 65 in the ASCII character set, which Java adopted as part of its character support.

You must use an explicit cast to convert a value in a large type to a smaller type. Explicit casts take the following form:

(typename) value

Here typename is the name of the primitive data type to which you’re converting, such as short, int, or float. value is an expression that results in the value of the source type. For example, in the following statement, the value of x is divided by the value of y, and the result is cast into an int in the following expression:

int result = (int)(x / y);

Note that because the precedence of casting is higher than that of arithmetic, you have to use parentheses here. Otherwise, first the value of x would be cast into an int, and then it would be divided by y, which could easily produce a different result.

Casting Objects

Objects of classes also can be cast into objects of other classes when the source and destination classes are related by inheritance and one class is a subclass of the other.

Some objects might not need to be cast explicitly. In particular, because a subclass contains all the same information as its superclass, you can use an object of a subclass anywhere a superclass is expected.

For example, consider a method that takes two arguments, one of type Object and another of type Component in the java.awt package.

You can pass an instance of any class for the Object argument because all Java classes are subclasses of Object.

For the Component argument, you can pass in its subclasses, such as Button, Container, and Label (all in java.awt).

This is true anywhere in a program, not just inside method calls. If you had a variable defined as class Component, you could assign objects of that class or any of its subclasses to that variable without casting.

This also is true in the reverse, so you can use a superclass when a subclass is expected. There is a catch, however: Because subclasses contain more behavior than their superclasses, a loss of precision occurs in the casting. Those superclass objects might not have all the behavior needed to act in place of a subclass object.

Consider this example: If you have an operation that calls methods in objects of the class Integer, using an object of its superclass Number won’t include many methods specified in Integer. Errors occur if you try to call methods that the destination object doesn’t have.

To use superclass objects where subclass objects are expected, you must cast them explicitly. You won’t lose any information in the cast, but you gain all the methods and variables that the subclass defines. To cast an object to another class, you use the same operation as for primitive types, which takes this form:

(classname) object

In this template, classname is the name of the destination class, and object is a reference to the source object. Note that casting creates a reference to the old object of the type classname; the old object continues to exist as it did before.

The following example casts an instance of the class VicePresident to an instance of the class Employee. VicePresident is a subclass of Employee with more information:

Click here to view code image

Employee emp = new Employee();
VicePresident veep = new VicePresident();
emp = veep; // no cast needed for upward use
veep = (VicePresident) emp; // must cast explicitly

As you’ll see when you begin working with graphical user interfaces during Week 2, “The Java Class Library,” casting one object is necessary whenever you use Java2D graphics operations. You must cast a Graphics object to a Graphics2D object before you can draw onscreen. The following example uses a Graphics object called screen to create a new Graphics2D object called screen2D:

Click here to view code image

Graphics2D screen2D = (Graphics2D) screen;

Graphics2D is a subclass of Graphics, and both belong to the java.awt package. You explore this subject fully during Day 13, “Creating Java2D Graphics.”

In addition to casting objects to classes, you can cast objects to interfaces, but only if an object’s class or one of its superclasses actually implements the interface. Casting an object to an interface means that you can call one of that interface’s methods even if that object’s class does not actually implement that interface.

Converting Primitive Types to Objects and Vice Versa

One thing you can’t do under any circumstance is cast from an object to a primitive data type, or vice versa.

Primitive types and objects are very different things in Java, and you can’t automatically cast between the two.

As an alternative, the java.lang package includes classes that correspond to each primitive data type: Float, Boolean, Byte, and so on. Most of these classes have the same names as the data types, except that the class names begin with a capital letter (Short instead of short, Double instead of double, and the like). Also, two classes have names that differ from the corresponding data type: Character is used for char variables, and Integer is used for int variables.

Using the classes that correspond to each primitive type, you can create an object that holds the same value. The following statement creates an instance of the Integer class with the integer value 7801:

Click here to view code image

Integer dataCount = new Integer(7801);

After you have created an object in this manner, you can use it as you would any object (although you cannot change its value). When you want to use that value again as a primitive value, there are methods for that as well. For example, if you wanted to get an int value from a dataCount object, the following statement shows how that would work:

Click here to view code image

int newCount = dataCount.intValue(); // returns 7801

A common translation you need in programs is converting a String to a numeric type, such as an integer. When you need an int as the result, this can be done by using the parseInt() class method of the Integer class. The String to convert is the only argument sent to the method, as in the following example:

Click here to view code image

String pennsylvania = "65000";
int penn = Integer.parseInt(pennsylvania);

The following classes can be used to work with objects instead of primitive data types: Boolean, Byte, Character, Double, Float, Integer, Long, Short, and Void. These classes are commonly called object wrappers because they provide an object representation that contains a primitive value.

Caution

If you try to use the preceding example in a program, your program won’t compile. The parseInt() method is designed to fail with a NumberFormatException error if the argument to the method is not a valid numeric value. To deal with errors of this kind, you must use special error-handling statements, which are introduced during Day 7, “Exceptions and Threads.”

Working with primitive types and objects that represent the same values is made easier through autoboxing and unboxing, an automatic conversion process.

Autoboxing automatically converts a primitive type to an object, and unboxing converts in the other direction.

If you write a statement that uses an object where a primitive type is expected, or vice versa, the value is converted so that the statement executes successfully.

This feature was unavailable in the first several versions of the language.

Here’s an example of autoboxing and unboxing:

Click here to view code image

Float f1 = new Float(12.5F);
Float f2 = new Float(27.2F);
System.out.println("Lower number: " + Math.min(f1, f2));

The Math.min() method takes two float values as arguments, but the preceding example sends the method two Float objects as arguments instead.

The compiler does not report an error over this discrepancy. Instead, the Float objects automatically are unboxed into float values before being sent to the min() method.

Caution

Unboxing an object works only if the object has a value. If no constructor has been called to set up the object, compilation fails with an error.

Comparing Object Values and Classes

In addition to casting, you often will perform three other common tasks that involve objects:

• Comparing objects

• Finding out the class of any given object

• Testing to see whether an object is an instance of a given class

Comparing Objects

Yesterday, you learned about operators for comparing values—equal to, not equal, less than, and so on. Most of these operators work only on primitive types, not on objects. If you try to use other values as operands, the Java compiler produces errors.

The exceptions to this rule are the == operator for equality and the != operator for inequality. When applied to objects, these operators don’t do what you might first expect. Instead of checking whether one object has the same value as the other, they determine whether both sides of the operator refer to the same object.

To compare objects of a class and have meaningful results, you must implement special methods in your class and call those methods.

A good example of this is the String class. It is possible to have two different String objects that represent the same text. If you were to employ the == operator to compare these objects, however, they would be considered unequal. Although their contents match, they are not the same object.

To see whether two String objects have matching values, a method of the class called equals() is used. The method tests each character in the string and returns true if the two strings have the same value. The EqualsTester application shown in Listing 3.5 illustrates this. Create the application with NetBeans and save the file, either by choosing File, Save or by clicking the Save All toolbar button.

Listing 3.5. The Full Text of EqualsTester.java

Click here to view code image

 1: class EqualsTester {
 2: public static void main(String[] arguments) {
 3: String str1, str2;
 4: str1 = "Free the bound periodicals.";
 5: str2 = str1;
 6:
 7: System.out.println("String1: " + str1);
 8: System.out.println("String2: " + str2);
 9: System.out.println("Same object? " + (str1 == str2));
10:
11: str2 = new String(str1);
12:

13: System.out.println("String1: " + str1);
14: System.out.println("String2: " + str2);
15: System.out.println("Same object? " + (str1 == str2));
16: System.out.println("Same value? " + str1.equals(str2));
17: }
18: }

Here’s the output:

Output [image: Image]

Click here to view code image

String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? true
String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? false
Same value? true

The first part of this program declares two variables (str1 and str2), assigns the literal “Free the bound periodicals.” to str1, and then assigns that value to str2 (lines 3–5). As you learned earlier, str1 and str2 now point to the same object, and the equality test at line 9 proves that.

In the second part of this program, you create a new String object with the same value as str1 and assign str2 to that new String object.

Now you have two different string objects in str1 and str2, both with the same value. Testing them to see whether they’re the same object by using the == operator (line 15) returns the expected answer: false. They are not the same object in memory. Testing them using the equals() method in line 16 also returns the expected answer of true, which shows they have the same value.

Note

Why can’t you just use another literal when you change str2, instead of using new? String literals are optimized in Java. If you create a string using a literal and then use another literal with the same characters, Java knows enough to give you back the first String object. Both strings are the same object; you have to go out of your way to create two separate objects.

Determining the Class of an Object

Want to find out what an object’s class is? Here’s how you do so for an object assigned to the variable key:

Click here to view code image

String name = key.getClass().getName();

The getClass() method is defined in the Object class, so it can be called in all objects. It returns a Class object that represents the object’s class. That object’s getName() method returns a string holding the name of the class.

Another useful test is the instanceof operator, which has two operands: a reference to an object on the left, and a class name on the right. The expression produces a Boolean value: true if the object is an instance of the named class or any of that class’s subclasses, or false otherwise, as in these examples:

Click here to view code image

boolean check1 = "Texas" instanceof String; // true

Point pt = new Point(10, 10);
boolean check2 = pt instanceof String; // false

The instanceof operator also can be used for interfaces. If an object implements an interface, the instanceof operator returns true when this is tested.

Unlike other operators in Java, instanceof is not defined as some form of punctuation. Instead, the instanceof keyword is the operator.

Summary

Now that you have spent three days exploring how object-oriented programming is implemented in Java, you’re in a better position to decide how useful it can be in your programming.

If you are a “glass half empty” kind of person, object-oriented programming is a level of abstraction that gets in the way of using a programming language. You learn more about why OOP is thoroughly ingrained in Java in the coming days.

If you are a “glass half full” kind of person, object-oriented programming is beneficial because of its benefits: improved reliability, reusability, and maintenance.

Today, you learned how to deal with objects: creating them, reading their values and changing them, and calling their methods. You also learned how to cast objects from one class to another, cast to and from primitive data types and classes, and take advantage of automatic conversions through autoboxing and unboxing.

Q&A

Q I’m confused about the differences between objects and the primitive data types, such as int and boolean.

A The primitive types (byte, short, int, long, float, double, boolean, and char) are not objects, although in many ways they can be handled like objects. They can be assigned to variables and passed in and out of methods.

Objects are instances of classes and as such usually are much more complex data types than simple numbers and characters. They often contain numbers and characters as instance or class variables.

Q The length() and charAt() methods in the StringChecker application (Listing 3.3) don’t appear to make sense. If length() says that a string is 38 characters long, shouldn’t the characters be numbered from 1 to 38 when charAt() is used to display characters in the string?

A The two methods look at strings differently. The length() method counts the characters in the string, with the first character counting as 1, the second as 2, and so on. The charAt() method considers the first character in the string to be located at position number 0. This is the same numbering system used with array elements in Java. Consider the string "Charlie Brown". It has 13 characters ranging from position 0 (the letter C) to position 12 (the letter n).

Q If Java lacks pointers, how can I do something like linked lists, where there’s a pointer from one node to another so that they can be traversed?

A It’s incorrect to say that Java has no pointers; it just has no explicit pointers. Object references are effectively pointers. To create something like a linked list, you could create a class called Node, which would have an instance variable also of type Node. To link node objects, assign a node object to the instance variable of the object immediately before it in the list. Because object references are pointers, linked lists set up this way behave as you would expect them to. (You work with the Java class library’s version of linked lists on Day 8, “Data Structures.”)

Quiz

Review today’s material by taking this three-question quiz. Answers are at the end of the book.

Questions

1. Which operator do you use to call an object’s constructor and create a new object?

A. +

B. new

C. instanceof

2. What kind of methods apply to all objects of a class rather than an individual object?

A. Universal methods

B. Instance methods

C. Class methods

3. If you have a program with objects named obj1 and obj2, what happens when you use the statement obj2 = obj1?

A. The instance variables in obj2 are given the same values as obj1.

B. obj2 and obj1 are considered to be the same object.

C. Neither A nor B.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java programming certification test. Answer it without looking at today’s material or using the Java compiler to test the code.

Given:

Click here to view code image

public class AyeAye {
 int i = 40;
 int j;

 public AyeAye() {
 setValue(i++);
 }

 void setValue(int inputValue) {
 int i = 20;
 j = i + 1;
 System.out.println("j = " + j);
 }
}

What is the value of the j variable at the time it is displayed inside the setValue() method?

A. 42

B. 40

C. 21

D. 20

The answer is available on the book’s website at www.java21days.com. Visit the Day 3 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a program that turns a birthday in MM/DD/YYYY format (such as 04/29/2013) into three individual strings.

2. Create a class with instance variables for height, weight, and depth, making each an integer. Create a Java application that uses your new class, sets each of these values in an object, and displays the values.

Where applicable, exercise solutions are offered on the book’s website at www.java21days.com.

Day 4. Lists, Logic, and Loops

Today, you learn about three of the most boring features in the Java language:

• How to organize groups of the same class or data type into lists called arrays

• How to make a program decide whether to do something based on logic

• How to make part of a Java program repeat itself by using loops

If these features don’t sound boring to you, that’s good. Most of the significant work that you will accomplish with your Java software will use all three.

These topics are boring for computers. They enable software to do one of the things at which it excels: performing repetitive tasks repeatedly.

Arrays

At this point, you have dealt with only a few variables in each Java program. In some cases, it’s manageable to use individual variables to store information, but what if you had 20 items of related information to track? You could create 20 different variables and set up their initial values, but that approach becomes progressively more cumbersome as you deal with larger amounts of information. What if there were 100 items or even 1,000?

Arrays are a way to store a list of items that have the same primitive data type, the same class, or a common parent class. Each item on the list goes into its own numbered slot so that you can easily access the information.

Arrays can contain any type of information that is stored in a variable, but after the array is created, you can use it for that information type only. For example, you can have an array of integers, an array of String objects, or an array of arrays, but you can’t have an array that contains both String objects and integers.

Java implements arrays differently than other languages—as objects treated like other objects.

To create an array in Java, you must do the following:

1. Declare a variable to hold the array.

2. Create a new array object and assign it to the array variable.

3. Store information in that array.

Declaring Array Variables

The first step in array creation is to declare a variable that will hold the array. Array variables indicate the object or data type that the array will hold and the array’s name. To differentiate from regular variable declarations, a pair of empty brackets ([]) is added to the object or data type, or to the variable name.

The following statements are examples of array variable declarations:

String[] requests;

Point[] targets;

float[] donations;

You also can declare an array by putting the brackets after the variable name instead of the information type, as in the following statements:

String requests[];

Point targets[];

float donations[];

Note

The choice of which style to use is a matter of personal preference. The sample programs in this book place the brackets after the information type rather than the variable name, which is the more popular convention among Java programmers.

Creating Array Objects

After you declare the array variable, the next step is to create an array object and assign it to that variable. To do this

• Use the new operator.

• Initialize the contents of the array directly.

Because arrays are objects in Java, you can use the new operator to create a new instance of an array, as in the following statement:

Click here to view code image

String[] players = new String[10];

This statement creates a new array of strings with 10 slots that can contain String objects. When you create an array object by using new, you must indicate how many slots the array will hold. This statement does not put actual String objects in the slots; you must do that later.

Array objects can contain primitive types, such as integers or Booleans, just as they can contain objects:

int[] temps = new int[99];

When you create an array object using new, all its slots automatically are given an initial value (0 for numeric arrays, false for Booleans, '\0' for character arrays, and null for objects).

Note

The Java keyword null refers to a null object (and can be used for any object reference). It is not equivalent to 0 or the '\0' character as the NULL constant is in C.

Because each object in an array of objects has a null reference when created, you must assign an object to each array element before using it.

The following example creates an array of three Integer objects and then assigns each element an object:

Click here to view code image

Integer[] series = new Integer[3];
series[0] = new Integer(10);
series[1] = new Integer(3);
series[2] = new Integer(5);

You can create and initialize an array at the same time by enclosing the array’s elements inside braces, separated by commas:

Click here to view code image

Point[] markup = { new Point(1,5), new Point(3,3), new Point(2,3) };

Each of the elements inside the braces must be the same type as the variable that holds the array. When you create an array with initial values in this manner, the array is the same size as the number of elements you include within the braces. The preceding example creates an array of Point objects named markup that contains three elements.

Because String objects can be created and initialized without the new operator, you can do the same when creating an array of strings:

Click here to view code image

String[] titles = { "Mr.", "Mrs.", "Ms.", "Miss", "Dr." };

The preceding statement creates a five-element array of String objects named titles.

All arrays have an instance variable named length that holds a count of the number of elements in the array. Extending the preceding example, the variable titles.length contains the value 5.

The first element of an array has a subscript of 0 rather than 1, so an array with five elements has array slots accessed using subscripts 0 through 4.

Accessing Array Elements

After you have an array with initial values, you can retrieve, change, and test the values in each slot of that array. The value in a slot is accessed using the array name followed by a subscript enclosed in square brackets. This name and subscript can be put into expressions, as in the following:

testScore[40] = 920;

This statement sets the 41st element of the testScore array to a value of 920. The testScore part of this expression is a variable holding an array object, although it also can be an expression that results in an array. The subscript expression specifies the slot to access within the array.

All array subscripts are checked to make sure that they are inside the array’s boundaries as specified when the array was created. In Java, it is impossible to access or assign a value to an array slot outside the array’s boundaries. This avoids the problems that result from overrunning the bounds of an array in other languages. Note the following two statements:

Click here to view code image

float[] rating = new float[20];
rating[20] = 3.22F;

The compiler reports an error with these lines of code. The error occurs because the rating array does not have a slot numbered 20; it has 20 slots that begin at 0 and end at 19. The Java compiler would make note of this by stopping with an ArrayIndexOutOfBoundsException error.

The Java interpreter also notes an error if the array subscript is calculated when the program is running and the subscript is outside the array’s boundaries. You learn more about errors, which are called exceptions, on Day 7, “Exceptions and Threads.”

One way to avoid accidentally overrunning the end of an array in your programs is to use the length instance variable. The following statement displays the number of elements in the rating object:

Click here to view code image

System.out.println("Elements: " + rating.length);

Changing Array Elements

As you saw in the previous examples, you can assign a value to a specific slot in an array by putting an assignment statement after the array name and subscript, as in the following:

temperature[4] = 85;

day[0] = "Sunday";

manager[2] = manager[0];

It’s important to remember that an array of objects in Java is an array of references to those objects. When you assign a value to a slot in that kind of array, you are creating a reference to that object. When you move around values inside arrays, you are reassigning the reference rather than copying a value from one slot to another. Arrays of a primitive data type, such as int and float, do copy the values from one slot to another, as do elements of a String array, even though they are objects.

Arrays are reasonably simple to create and modify, and they provide an enormous amount of functionality for Java. The HalfDollars application, shown in Listing 4.1, creates, initializes, and displays elements of three arrays. Create a new empty Java file in NetBeans called HalfDollars, and enter the listing’s source code.

Listing 4.1. The Full Text of HalfDollars.java

Click here to view code image

 1: class HalfDollars {
 2: public static void main(String[] arguments) {
 3: int[] denver = { 1_900_000, 1_700_000, 1_700_000 };
 4: int[] philadelphia = new int[denver.length];
 5: int[] total = new int[denver.length];
 6: int average;
 7:
 8: philadelphia[0] = 1_900_000;
 9: philadelphia[1] = 1_800_000;
10: philadelphia[2] = 1_750_000;
11:
12: total[0] = denver[0] + philadelphia[0];
13: total[1] = denver[1] + philadelphia[1];
14: total[2] = denver[2] + philadelphia[2];
15: average = (total[0] + total[1] + total[2]) / 3;
16:
17: System.out.print("2009 production: ");
18: System.out.format("%,d%n", total[0]);
19: System.out.print("2010 production: ");
20: System.out.format("%,d%n", total[1]);
21: System.out.print("2011 production: ");
22: System.out.format("%,d%n", total[2]);
23: System.out.print("Average production: ");
24: System.out.format("%,d%n", average);
25: }
26: }

The HalfDollars application uses three integer arrays to store production totals for U.S. half-dollar coins produced at the Denver and Philadelphia mints. When you run the program, the following output appears:

Output [image: Image]

Click here to view code image

2009 production: 3,800,000
2010 production: 3,500,000
2011 production: 3,450,000
Average production: 3,583,333

The class created here, HalfDollars, has three instance variables that hold arrays of integers.

The first, which is named denver, is declared and initialized on line 3 to contain three integers: 1_900_000 in element 0, 1_700_000 in element 1, and 1_700_000 in element 2. These figures are the total half-dollar production at the Denver mint for three years. The integers use an underscore character (_) after every three digits to make the numbers more human-readable, a new feature of Java 7. The compiler ignores the underscores.

The second and third instance variables, philadelphia and total, are declared in lines 4 and 5. The philadelphia array contains the production totals for the Philadelphia mint, and total is used to store the overall production totals.

No initial values are assigned to the slots of the philadelphia and total arrays in lines 4 and 5. For this reason, each element is given the default value for integers: 0.

The denver.length variable is used to give both of these arrays the same number of slots as the denver array. Every array contains a length variable that you can use to keep track of the number of elements it contains.

The rest of the main() method of this application does the following:

• Line 6 creates an integer variable called average.

• Lines 8–10 assign new values to the three elements of the philadelphia array.

• Lines 12–14 assign new values to the elements of the total array. In line 12, total element 0 is given the sum of denver element 0 and philadelphia element 0. Similar expressions are used in lines 13 and 14.

• Line 15 sets the value of the average variable to the average of the three total elements. Because average and the three total elements are integers, the average is expressed as an integer rather than a floating-point number.

• Lines 17–24 display the values stored in the total array and the average variable, using the System.out.format() method to display the numeric values in a more readable form using commas.

This application handles arrays inefficiently. The statements are almost identical, except for the subscripts that indicate the array element to which you are referring. If the HalfDollars application were being used to track 100 years of production totals instead of 3 years, this approach would require a lot of redundant statements.

When dealing with arrays, you can use loops to cycle through an array’s elements instead of dealing with each element individually. This makes the code a lot shorter and easier to read. When you learn about loops later today, you’ll see a rewrite of the current example (Listing 4.3).

Multidimensional Arrays

Arrays can be multidimensional, containing more than one subscript to store information in multiple dimensions.

A common use of a multidimensional array is to represent the data in an (x,y) grid of array elements.

Java supports this by enabling an array to hold arrays as each of its elements. Those arrays can also contain arrays, and so on, for as many dimensions as needed.

For example, consider a program that needs to accomplish the following tasks:

• Record an integer value each day for a year.

• Organize those values by week.

One way to organize this data is to create a 52-element array in which each element contains a 7-element array:

Click here to view code image

int[][] dayValue = new int[52][7];

This array of arrays contains a total of 364 integers, one for each day in 52 weeks. You could set the value for the first day of the 10th week with the following statement:

dayValue[9][0] = 14200;

Remember that array indexes start at 0 instead of 1, so the 10th week is at element 9 and the first day at element 0.

You can use the length instance variable with these arrays as you would any other. The following statement contains a three-dimensional array of integers and displays the number of elements in each dimension:

Click here to view code image

int[][][] century = new int[100][52][7];
System.out.println("Elements in the first dimension: " + century.length);
System.out.println("Elements in the second dimension: " + century[0].length);
System.out.println("Elements in the third dimension: " + century[0][0].length);

Block Statements

Statements in Java are grouped into blocks. The beginning and ending boundaries of a block are noted with brace characters—an opening brace ({) for the beginning and a closing brace (}) for the ending.

You have used blocks to hold the variables and methods in a class definition and define statements that belong in a method.

Blocks also are called block statements because an entire block can be used anywhere a single statement could be used. Each statement inside the block then is executed from top to bottom.

You can put blocks inside other blocks, just as you do when you put a method inside a class definition.

An important thing to note about using a block is that it creates a scope for the local variables created inside the block. Scope is the part of a program where a variable exists and can be used. If you try to use a variable outside its scope, an error occurs.

In Java, the scope of a variable is the block in which it was created. When you can declare and use local variables inside a block, those variables cease to exist after the block is finished executing. For example, the following method contains a block:

Click here to view code image

void testBlock() {
 int x = 10;
 { // start of block
 int y = 40;
 y = y + x;
 } // end of block
}

Two variables are defined in this method: x and y. The scope of the y variable is the block it’s in, which is marked by the start of block and end of block comments. The variable can be used only within that block. An error would result if you tried to use the y variable in another part of the method.

The x variable was created inside the method but outside the inner block, so it can be used anywhere in the method. You can modify the value of x anywhere within the method.

Block statements are used in class and method definitions and the logic and looping structures you learn about next. The way the preceding example uses the inner block is not common.

If Conditionals

A key aspect of any programming language is how it enables a program to make decisions. This is handled through a special type of statement called a conditional, a statement executed only if a specific condition is met.

The most basic conditional in Java is if. The if conditional uses a Boolean expression to decide whether a statement should be executed. If the expression produces a true value, the statement is executed.

Here’s a simple example that displays the message Not enough arguments only if the value of an instance variable is less than 3:

Click here to view code image

if (arguments.length < 3)
 System.out.println("Not enough arguments");

If you want something else to happen when an if expression produces a false value, you can use the else keyword. The following example uses both if and else:

Click here to view code image

String server;
int duration;
if (arguments.length < 1) {

 server = "localhost";
} else {
 server = arguments[0];
}

The if conditional executes different statements based on the result of a single Boolean test.

Note

A difference between if conditionals in Java and those in other languages is that Java conditionals produce only Boolean values (true or false). In C and C++, the test can return an integer.

Using if, you can include only a single statement as the code to execute if the test expression is true and another statement if the expression is false.

However, as you learned earlier today, a block can appear anywhere in Java that a single statement can appear. If you want to do more than one thing as a result of an if statement, you can enclose those statements inside a block. Note the following snippet of code, which was used on Day 1, “Getting Started with Java”:

Click here to view code image

int temperature = 530;
if (temperature > 660) {
 status = "returning home";
 speed = 5;
}

The if statement in this example contains the test expression temperature > 660. If the temperature variable contains a value higher than 660, the block statement is executed, and two things occur:

• The status variable is given the value “returning home.”

• The speed variable is set to 5.

If the temperature variable is equal to or less than 660, the entire block is skipped, so nothing happens.

All if and else statements use Boolean tests to determine whether statements are executed. You can use a boolean variable itself for this test, as in the following:

boolean outOfGas = true;
if (outOfGas)
 status = "inactive";

The preceding example uses a boolean variable called outOfGas. It functions exactly like the following:

if (outOfGas == true)
 status = "inactive";

Switch Conditionals

A common programming practice is to test a variable against a value, and if it doesn’t match, test it again against a different value, and so on.

This approach can become unwieldy if you’re using only if statements, depending on how many different values you have to test. For example, you might end up with a set of if statements something like the following:

Click here to view code image

if (operation == '+')
 add(object1, object2);
else if (operation == '-')
 subtract(object1, object2);
else if (operation == '*')
 multiply(object1, object2);
else if (operation == '/')
 divide(object1, object2);

This use of if statements is called a nested if statement because each else statement contains another if until all possible tests have been made.

A better way to handle this situation in Java is by grouping actions with the switch statement. The following example demonstrates switch usage:

Click here to view code image

char grade = 'D';
switch (grade) {
 case 'A':
 System.out.println("Great job!");
 break;
 case 'B':
 System.out.println("Good job!");
 break;
 case 'C':
 System.out.println("You can do better!");
 break;
 default:
 System.out.println("Consider cheating!");
}

A switch statement is built on a test variable. In the preceding example, the variable is the value of the grade variable, which holds a char value.

The test variable can be the primitive types byte, char, short, or int or, as of Java 7, the class String. The following code uses the value of a String object named command to decide which method to call:

Click here to view code image

String command = "close";
switch (command) {
 case "open":
 openFile();
 break;
 case "close":
 closeFile();
 break;
 default:
 System.out.println("Invalid command");
 }
}

The test variable is compared in turn with each case value. If a match is found, the statement or statements after the test are executed.

If no match is found, the default statement or statements are executed. Providing a default statement is optional. If it is omitted and there is no match for any of the case statements, the switch statement might complete without executing anything.

The test cases in a switch statement are limited to primitive types that can be cast to an int, such as char or strings. You cannot use larger primitive types such as long or float or test for any relationship other than equality.

The following is a revision of the nested if example shown previously. It has been rewritten as a switch statement:

Click here to view code image

switch (operation) {
 case '+':
 add(object1, object2);
 break;
 case '-':
 subtract(object1, object2);
 break;
 case '*':
 multiply(object1, object2);
 break;
 case '/':
 divide(object1, object2);
 break;
 }

After each case, you can include a single result statement or as many as you need. Unlike with if statements, multiple statements don’t require a block statement.

The break statement included with each case section determines when to stop executing statements in response to a matching case. Suppose a case section has no break statement. After a match is made, the statements for that match and all the statements further down the switch are executed until a break or the end of the switch is found.

In some situations, this might be exactly what you want to do. Otherwise, you should include break statements to ensure that only the right code is executed. The break statement, which you use again later in the section “Breaking Out of Loops,” stops execution at the current point. Then it jumps to the statement after the closing brace that ends the switch statement.

One handy use of falling through without a break occurs when multiple values need to execute the same statements. To accomplish this task, you can use multiple case lines with no result; the switch executes the first statement it finds.

For example, in the following switch statement, the string “x is an even number” is printed if x has a value of 2, 4, 6, or 8. All other values of x cause the string “x is an odd number” to be printed.

Click here to view code image

int x = 5;
switch (x) {
 case 2:
 case 4:
 case 6:
 case 8:
 System.out.println("x is an even number");
 break;
 default:
 System.out.println("x is an odd number");
}

The DayCounter application, shown in Listing 4.2, takes two arguments, a month and a year, and displays the number of days in that month. A switch statement, if statements, and else statements are used. Create this application in NetBeans as an empty Java file.

Listing 4.2. The Full Text of DayCounter.java

Click here to view code image

 1: class DayCounter {
 2: public static void main(String[] arguments) {
 3: int yearIn = 2012;
 4: int monthIn = 1;
 5: if (arguments.length > 0)
 6: monthIn = Integer.parseInt(arguments[0]);
 7: if (arguments.length > 1)
 8: yearIn = Integer.parseInt(arguments[1]);
 9: System.out.println(monthIn + "/" + yearIn + " has "
10: + countDays(monthIn, yearIn) + " days.");
11: }

12:
13: static int countDays(int month, int year) {
14: int count = -1;
15: switch (month) {
16: case 1:
17: case 3:
18: case 5:
19: case 7:
20: case 8:
21: case 10:
22: case 12:
23: count = 31;
24: break;
25: case 4:
26: case 6:
27: case 9:
28: case 11:
29: count = 30;
30: break;
31: case 2:
32: if (year % 4 == 0)
33: count = 29;
34: else
35: count = 28;
36: if ((year % 100 == 0) & (year % 400 != 0))
37: count = 28;
38: }
39: return count;
40: }
41: }

This application uses command-line arguments to specify the month and year to check. The first argument is the month, which should be expressed as a number from 1 to 12. The second argument is the year, which should be expressed as a full four-digit year. If the application is run without setting the arguments, it uses 1 as the month and 12 as the year, displaying this output:

Output [image: Image]

1/2012 has 31 days.

To set command-line arguments in NetBeans, choose Run, Set Project Configuration, Customize. The Project Properties dialog opens, as shown in Figure 4.1.

[image: Image]

Figure 4.1. Setting command-line arguments for an application in NetBeans.

In the Main Class field, enter the name of the class that contains the main() method that will be run: DayCounter.

In the Arguments field, enter the command-line arguments separated by spaces, such as 9 2013. Click OK to save this configuration.

To run the application with these arguments in NetBeans, choose Run, Run Project (instead of Run, Run File). When run with 9 and 2013 as arguments, the output is the following:

Output [image: Image]

9/2013 has 30 days.

The DayCounter application uses a switch statement to count the days in a month. This statement is part of the countDays() method in lines 13–40 of Listing 4.2.

The countDays() method has two int arguments: month and year. The number of days is stored in the count variable, which is given an initial value of –1 that is replaced by the correct count later.

The switch statement that begins on line 15 uses month as its conditional value.

The number of days in a month is easy to determine for 11 months of the year. January, March, May, July, August, October, and December have 31 days. April, June, September, and November have 30 days.

The count for these 11 months is handled in lines 16–30 of Listing 4.2. Months are numbered from 1 (January) to 12 (December), as you would expect. When one of the case statements has the same value as month, every statement after that is executed until break or the end of the switch statement is reached.

February is more complex and is handled in lines 31–37. Every leap year has 29 days in February, whereas other years have 28. A leap year must meet either of the following conditions:

• The year must be evenly divisible by 4 and not evenly divisible by 100.

• The year must be evenly divisible by 400.

As you learned on Day 2, “The ABCs of Programming,” the modulus operator (%) returns the remainder of a division operation. This is used with several if-else statements to determine how many days there are in February, depending on what year it is.

The if-else statement in lines 32–35 sets count to 29 when the year is evenly divisible by 4 and sets it to 28 otherwise.

The if statement in lines 36 and 37 uses the & operator to combine two conditional expressions: year % 100 == 0 and year % 400 != 0. If both these conditions are true, count is set to 28.

The countDays method ends by returning the value of count in line 39.

When you run the DayCounter application, the main() method in lines 2–11 is executed.

In all Java applications, command-line arguments are stored in an array of String objects. This array is called arguments in DayCounter. The first command-line argument is stored in argument[0], the second in argument[1], and upward until all arguments have been stored. If the application is run with no arguments, the array is created with no elements.

Lines 3 and 4 create yearIn and monthIn, two integer variables to store the year and month that should be checked.

The if statement in line 5 uses arguments.length to make sure that the arguments array has at least one element. If it does, line 6 is executed.

Line 6 calls parseInt(), a class method of the Integer class, with arguments[0] as an argument. This method takes a String object as an argument, and if the string could be a valid integer, it returns that value as an int. This converted value is stored in monthIn. A similar thing happens in line 8: parseInt() is called with arguments[1], and this is used to set yearIn.

The program’s output is displayed in lines 9–10. As part of the output, the countDays() method is called with monthIn and yearIn, and the value returned by this method is displayed.

Note

At this point, you might want to know how to collect input from a user in a program rather than using command-line arguments to receive it. There isn’t a method comparable to System.out.println() that receives input. Instead, you must learn a bit more about Java’s input and output classes before you can receive input in a program without a graphical user interface. This topic is covered during Day 15, “Working with Input and Output.”

The Ternary Operator

An alternative to using the if and else keywords in a conditional statement is to use the ternary operator, also called the conditional operator. This operator is ternary because it has three operands (the word “ternary” refers to anything with three parts).

The conditional operator is an expression, meaning that it returns a value—unlike the more general if, which can result in only a statement or block being executed. The conditional operator is most useful for short or simple conditionals and takes the following form:

Click here to view code image

test ? trueresult : falseresult;

The test is an expression that returns true or false, just like the test in the if statement. If the test is true, the conditional operator returns the value of trueresult. If the test is false, the conditional operator returns the value of falseresult. For example, the following conditional tests the values of myScore and yourScore and sets the variable ourBestScore equal to one of them:

Click here to view code image

int ourBestScore = myScore > yourScore ? myScore : yourScore;

The larger value of myScore and yourScore is copied to ourBestScore.

This use of the conditional operator is equivalent to the following if-else code:

Click here to view code image

int ourBestScore;
if (myScore > yourScore) {
 ourBestScore = myScore;
} else {
 ourBestScore = yourScore;
}

The conditional operator has low precedence. Usually it is evaluated only after all its subexpressions have been evaluated. The only operators lower in precedence are the assignment operators. For a refresher on operator precedence, refer to Table 2.6 in Day 2, “The ABCs of Programming.”

Note

The ternary operator is of primary benefit to experienced programmers creating complex expressions. Because its functionality is duplicated in simpler use of if-else statements, there’s no need to use this operator while you’re beginning to learn the language. The main reason it’s introduced in this book is because you’ll encounter it in the source code of other Java programmers.

For Loops

A for loop is used to repeat a statement until a condition is met. Although for loops frequently are used for simple iteration in which a statement is repeated a certain number of times, for loops can be used for just about any kind of loop.

The for loop in Java has the following structure:

Click here to view code image

for (initialization; test; increment) {
 statement;
}

The start of the for loop has three parts:

• The initialization is an expression that initializes the start of the loop. If you have a loop index, this expression might declare and initialize it, such as int i = 0. Variables that you declare in this part of the for loop are local to the loop itself. They cease to exist after the loop is finished executing. You can initialize more than one variable in this section by separating each expression with a comma. The statement int i = 0, int j = 10 in this section would declare the variables i and j, and both would be local to the loop.

• The test is the test that occurs before each pass of the loop. The test must be a Boolean expression or a function that returns a boolean value, such as i < 10. If the test is true, the loop executes. When the test is false, the loop stops executing.

• The increment is any expression or function call. Commonly, the increment is used to change the value of the loop index to bring the state of the loop closer to returning false and stopping the loop. The increment takes place after each pass of the loop. Similar to the initialization section, you can put more than one expression in this section by separating each expression with a comma.

The statement part of the for loop is the statement that is executed each time the loop iterates. As with if, you can include either a single statement or a block statement. The previous example used a block because that is more common. The following example is a for loop that sets all slots of a String array to the value Mr.:

Click here to view code image

String[] salutation = new String[10];
int i; // the loop index variable
for (i = 0; i < salutation.length; i++)
 salutation[i] = "Mr.";
}

In this example, the variable i serves as a loop index; it counts the number of times the loop has been executed. Before each trip through the loop, the index value is compared with salutation.length, the number of elements in the salutation array. When the index is equal to or greater than salutation.length, the loop is exited.

The final element of the for statement is i++. This causes the loop index to increment by 1 each time the loop is executed. Without this statement, the loop would never stop.

The statement inside the loop sets an element of the salutation array equal to "Mr.". The loop index is used to determine which element is modified.

Any part of the for loop can be an empty statement; in other words, you can include a semicolon with no expression or statement, and that part of the for loop is ignored. Note that if you do use an empty statement in your for loop, you might have to initialize or increment any loop variables or loop indexes yourself elsewhere in the program.

You also can have an empty statement as the body of your for loop if everything you want to do is in the first line of that loop. For example, the following for loop finds the first prime number higher than 4,000. (It assumes the existence of a method called notPrime() that returns a Boolean value to indicate when i is not prime.)

Click here to view code image

for (i = 4001; notPrime(i); i += 2);

The semicolon at the end of the for statement indicates that the loop has no statements in its body.

A common mistake in for loops is to accidentally put a semicolon at the end of the line that includes the for statement:

Click here to view code image

int x = 1;
for (i = 0; i < 10; i++);
 x = x * i; // this line is not inside the loop!

In this example, the semicolon outside the parentheses in the for statement ends the loop without executing x = x * i as part of the loop. The x = x * i line is executed only once because it is outside the for loop. Be careful not to make this mistake in your Java programs.

The next project you undertake is a rewrite of the HalfDollar application that uses for loops to remove redundant code.

The original application works with an array that is only three elements long. The new version shown in Listing 4.3, called HalfLooper, is shorter and more flexible and returns the same output. Create an empty Java file with that class name in NetBeans.

Listing 4.3. The Full Text of HalfLooper.java

Click here to view code image

 1: class HalfLooper {
 2: public static void main(String[] arguments) {
 3: int[] denver = { 1_900_000, 1_700_000, 1_700_000 };
 4: int[] philadelphia = { 1_900_000, 1_800_000, 1_750_000 };
 5: int[] total = new int[denver.length];
 6: int sum = 0;
 7:
 8: for (int i = 0; i < denver.length; i++) {
 9: total[i] = denver[i] + philadelphia[i];
10: System.out.format((i + 2009) + " production: %,d%n",
11: total[i]);
12: sum += total[i];
13: }
14:
15: System.out.format("Average production: %,d%n",
16: (sum / denver.length));
17: }
18: }

The output is as follows:

Output [image: Image]

2009 production: 3,800,000
2010 production: 3,500,000
2011 production: 3,450,000
Average production: 3,583,333

Instead of going through the elements of the three arrays one by one, this example uses a for loop. The following things take place in the loop, which is contained in lines 8–13:

• Line 8—The loop is created with an int variable called i as the index. The index increments by 1 for each pass through the loop and stops when i is equal to or greater than denver.length, the total number of elements in the denver array.

• Lines 9–11—The value of one of the total elements is set using the loop index and then is displayed with some text identifying the year.

• Line 12—The value of a total element is added to the sum variable, which is used to calculate the average yearly production.

Using a more general-purpose loop to iterate over an array enables you to use the program with arrays of different sizes and still have it assign correct values to the elements of the total array and display those values.

Note

Java also includes a for loop that can be used to iterate through all the elements of data structures, such as array lists, linked lists, hash maps, and other collections. This loop is covered along with those structures on Day 8, “Data Structures.”

While and Do Loops

The remaining types of loops are while and do, which also enable a block of Java code to be executed repeatedly until a specific condition is met.

While Loops

The while loop repeats a statement for as long as a particular condition remains true. Here’s an example:

Click here to view code image

while (i < 13) {
 x = x * i++; // the body of the loop
}

The condition that accompanies the while keyword is a Boolean expression—i < 13 in the preceding example. If the expression returns true, the while loop executes the body of the loop and then tests the condition again. This process repeats until the condition is false.

Although the preceding loop uses opening and closing braces to form a block statement, the braces are unneeded because the loop contains only one statement: x = x * i++. Using the braces does not create any problems, though, and the braces will be required if you add another statement inside the loop later.

The ArrayCopier application, shown in in Listing 4.4, uses a while loop to copy the elements of an array of integers (in array1) to an array of float variables (in array2), casting each element to a float as it goes. The one catch is that if any of the elements in the first array is 1, the loop immediately exits at that point.

Listing 4.4. The Full Text of ArrayCopier.java

Click here to view code image

 1: class ArrayCopier {
 2: public static void main(String[] arguments) {
 3: int[] array1 = { 7, 4, 8, 1, 4, 1, 4 };
 4: float[] array2 = new float[array1.length];
 5:
 6: System.out.print("array1: [");
 7: for (int i = 0; i < array1.length; i++) {
 8: System.out.print(array1[i] + " ");
 9: }
10: System.out.println("]");
11:
12: System.out.print("array2: [");
13: int count = 0;
14: while (count < array1.length && array1[count] != 1) {
15: array2[count] = (float) array1[count];
16: System.out.print(array2[count++] + " ");
17: }
18: System.out.println("]");
19: }
20: }

The output is as follows:

Output [image: Image]

array1: [7 4 8 1 4 1 4]
array2: [7.0 4.0 8.0]

Here is what’s going on in the main() method:

• Lines 3 and 4 declare the arrays. array1 is an array of integers, which are initialized to some suitable numbers. array2 is an array of floating-point numbers that is the same length as array1 but doesn’t have any initial values.

• Lines 6–10 are for output purposes; they simply iterate through array1 using a for loop to print its values.

• Lines 12–18 are where the interesting stuff happens. This bunch of statements both assigns the values of array2 (converting the numbers to floating-point numbers along the array) and prints them. You start with a count variable, which keeps track of the array index elements. The test in the while loop keeps track of the two conditions for exiting the loop, where those two conditions are running out of elements in array1 or encountering a 1 in array1. (Remember, that was part of the original description of what this program does.)

You can use the logical conditional && operator to keep track of the test; remember that && makes sure that both conditions are true before the entire expression is true. If either one is false, the expression returns false, and the loop exits.

The program’s output shows that the first four elements in array1 were copied to array2, but a 1 in the middle stopped the loop from going any further. Without the 1, array2 should end up with all the same elements as array1. If the while loop’s test initially is false the first time it is tested (for example, if the first element in that first array is 1), the body of the while loop will never be executed. If you need to execute the loop at least once, you can do one of two things:

• Duplicate the body of the loop outside the while loop.

• Use a do loop (which is described in the following section).

The do loop is considered the better solution.

Do-While Loops

The do loop is just like a while loop, with one major difference—the place in the loop where the condition is tested.

A while loop tests the condition before looping, so if the condition is false the first time it is tested, the body of the loop never executes.

A do loop executes the body of the loop at least once before testing the condition. So if the condition is false the first time it is tested, the body of the loop already will have executed once.

The following example uses a do loop to keep doubling the value of a long integer until it is larger than 3 trillion:

Click here to view code image

long i = 1;
do {
 i *= 2;
 System.out.print(i + " ");
} while (i < 3_000_000_000_000L);

The body of the loop is executed once before the test condition, i < 3_000_000_000_000L, is evaluated. Then, if the test evaluates as true, the loop runs again. If it is false, the loop exits. Keep in mind that the body of the loop executes at least once with do loops.

The for, while, and do loops all accomplish the same purpose in slightly different ways. When writing your own code, you may have trouble deciding which one to use. There’s often no wrong answer. Whether you use a for, while, or do loop is largely a matter of programming style.

Breaking Out of Loops

All loops end when a tested condition is met. There might be times when something occurs during execution of a loop, and you want to exit the loop early. In that case, you can use the break and continue keywords.

You already have seen break as part of the switch statement; break stops execution of the switch statement, and the program continues. The break keyword, when used with a loop, does the same thing—it immediately halts execution of the current loop. If you have nested loops within loops, execution picks up with the next outer loop. Otherwise, the program simply continues executing the next statement after the loop.

For example, recall the while loop from Listing 4.4. It copied elements from an integer array into an array of floating-point numbers until either the end of the array or a 1 was reached. You can test for the latter case inside the body of the while loop and then use break to exit the loop:

Click here to view code image

int count = 0;
while (count < array1.length) {
 if (array1[count] == 1)
 break;
 array2[count] = (float) array2[count++];
}

The continue keyword starts the loop over at the next iteration. For do and while loops, this means that the execution of the block statement starts over again; with for loops, the increment expression is evaluated, and then the block statement is executed.

The continue keyword is useful when you want to make a special case out of elements within a loop. With the previous example of copying one array to another, you could test for whether the current element is equal to 1 and use continue to restart the loop after every 1 so that the resulting array never contains 0. Note that because you’re skipping elements in the first array, you now have to keep track of two different array counters:

Click here to view code image

int count = 0;
int count2 = 0;
while (count++ <= array1.length) {

 if (array1[count] == 1)
 continue;

 array2[count2++] = (float)array1[count];
}

Labeled Loops

Both break and continue can have an optional label that tells Java where to resume execution of the program. Without a label, break jumps outside the nearest loop to an enclosing loop or to the next statement outside the loop. The continue keyword restarts the loop it is enclosed within. Using break and continue with a label enables you to use break to go to a point outside a nested loop or to use continue to go to a loop outside the current loop.

To use a labeled loop, add the label before the initial part of the loop, with a colon between the label and the loop. Then, when you use break or continue, add the name of the label after the keyword itself, as in the following:

Click here to view code image

out:
 for (int i = 0; i <10; i++) {
 while (x < 50) {
 if (i * x++ > 400)
 break out;
 // inner loop here
 }
 // outer loop here
 }

In this code snippet, the label out labels the outer loop. Then, inside both the for and while loops, when a particular condition is met, a break causes the execution to break out of both loops. Without the label out, the break statement would exit the inner loop and resume execution with the outer loop.

Summary

Now that you have been introduced to lists, loops, and logic, you can make a computer decide whether to repeatedly display the contents of an array.

You’ve learned how to declare an array variable, assign an object to it, and access and change elements of the array. With the if and switch conditional statements, you can branch to different parts of a program based on a Boolean test. You learned about the for, while, and do loops, and you learned that each enables a portion of a program to be repeated until a given condition is met.

It bears repeating: You’ll use all three of these features frequently in your Java programs.

You’ll use all three of these features frequently in your Java programs.

Q&A

Q I declared a variable inside a block statement for an if. When the if was done, the definition of that variable vanished. Where did it go?

A In technical terms, block statements form a new lexical scope. This means that if you declare a variable inside a block, it’s visible and usable only inside that block. When the block finishes executing, all the variables you declared go away.

It’s a good idea to declare most of your variables in the outermost block in which they’ll be needed—usually at the top of a block statement. The exception might be simple variables, such as index counters in for loops, where declaring them in the first line of the for loop is an easy shortcut.

Q Why can’t I use switch with strings?

A This is one of the most common questions Java programmers ask after they learn about the switch conditional. With the release of Java 7, you can use strings with each case in the statement. You have to make sure that you have Java 7 installed and that your development environment has been set up to use it.

In NetBeans, to see whether the current project is set up for Java 7, choose File, Project Properties to open the properties dialog. Choose Libraries in the Categories pane, then set Java Platform to JDK 7 if it isn’t already. Click OK to save the change and exit the dialog.

Quiz

Review today’s material by taking this three-question quiz. Answers are at the end of the book.

Questions

1. What kind of loop is used to execute the statements in the loop at least once before the conditional expression is evaluated?

A. do-while

B. for

C. while

2. Which of the following cannot be used as the test in a case statement?

A. characters

B. strings

C. objects

3. Which instance variable of an array is used to find out how big it is?

A. size

B. length

C. MAX_VALUE

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java programming certification test. Answer it without looking at today’s material or using the Java compiler to test the code.

Given:

Click here to view code image

public class Cases {
 public static void main(String[] arguments) {
 float x = 9;
 float y = 5;
 int z = (int)(x / y);
 switch (z) {
 case 1:
 x = x + 2;
 case 2:
 x = x + 3;
 default:
 x = x + 1;
 }
 System.out.println("Value of x: " + x);
 }
}

What will be the value of x when it is displayed?

A. 9.0

B. 11.0

C. 15.0

D. The program will not compile.

The answer is available on the book’s website at www.java21days.com. Visit the Day 4 page and click the Certification Practice link.

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Using the countDays() method from the DayCounter application, create an application that displays every date in a given year in a single list from January 1 to December 31.

2. Create a class that takes words for the first 10 numbers (“one” to “ten”) and converts them into a single long integer. Use a switch statement for the conversion and command-line arguments for the words.

Where applicable, exercise solutions are offered on the book’s website at www.java21days.com.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/131pro01.jpg
java ECchoArgs Niekro Hough Waketield "R. A. Dickey 49

OEBPS/html/graphics/131pro02.jpg
public static void main(String[] arguments) {
/1 body of method
}

OEBPS/html/graphics/2_sams_register_your.jpg
SAMS

REGISTER

THIS PRODUCT

Register the Addison-Wesley, Exam Registering your products can unlock

Cram, Prentice Hall, Que, and the following benefits
Sams products you own to unlock « Access to supplemental content,
great benefits. including bonus chapters,

source code, or project files.
A coupon to be used on your
next purchase.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account

You will then be prompted to enter Registration benefits vary by product
the 10- or 13-digit ISBN that appears Benefits will be listed on your Account
on the back cover of your product. page under Registered Products

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Gisco Press, Exam Gram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you wil gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you're
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformiT has a solution for you.

Addison-Wasley | GiscoP
180 Press | Que | Prenics Hall | Sams

informiT.com

L

e —

OEBPS/html/graphics/04fig01.jpg
Configuration: | <default confia>

[DayCounter
Arguments: o013

PER—
VM Options:: ‘
(e.g. -Xms10m)

] it J2va Web sart
(To run and debug the appiication with Java Web Start, first enable Java Web Start)

OEBPS/html/graphics/114pro02.jpg
int count
int count2 = 0;
while (count++ <= array1.length) {
if (arrayl[count] == 1)
continue;

array2[count2++] = (float)array1[count];

OEBPS/html/graphics/114pro01.jpg
int count = @;
while (count < arrayl.length) {
if (array1[count] 1)
break;
array2[count] = (float) array2[count++];

OEBPS/html/graphics/430pro01.jpg
Writing:
45678910 11 12 13
Reading:
45678910 11 12 13

OEBPS/html/graphics/21fig01.jpg
Create Android Project
@ Project nsme must be speciied

Prject Name: |
© Create new project in workspace

(© Create project from existing source:
(© Create project from existing sample

Use default location

IR =

Working sets
[7)Add project to working sets

Waking e

OEBPS/html/graphics/21fig03.jpg
B suidConision_(Chgingtimiitiie,

 Android Resources (default)

"“@@@@@@@mk‘lmnwwummw -

Hem
ents

© hello string)

(® Strings, with optional simple
formatting, can be stored and
retrieved as resources. You can
‘add formatting to your string by
using three standard HTML tags:
b, i, and u. If you use an
apostrophe or a quote in your
Sring, you must eithe escape t
or enclose the whole sring in
the other kind of enclosing
quotes.

Name® app_name

Value® Palindrome

strings.xml

OEBPS/html/graphics/21fig02.jpg
o B Baiindrome]
RS
4 org.cadenhead.android
» [0 PalindromeActivtyjava
‘gen [Generated Java Files]
4 £ org.cadenhead.android
» [BuildConfigjava
o [Rjava
» B Android 403
» B Android Dependencies
& assets
4 & bin
& e
joristcache
4 G drawable-hdpi
 ic_Jauncherpng
4 & drawsble-ldpi
& ic_launcherpng
4 & drawable-mdpi
& ic_Jauncherpng
4 & drawable-xhdpi
& ic_launcherpng
4 @ layout
) mainaml
4 (& values
4 stringsami
4 AndroidManifestam
proguard-projectxt
project properties

| F—— 0

OEBPS/html/graphics/19pro07b.jpg
Element item = items.get(i);

/1 Look for a <title> element inside it

Element itemTitle = item.getFirstChildElement("title");

/1 Tf found, look for its contents
if (itemTitle != null) {

Text itemTitleText = (Text) itemTitle.getChild(0);

I/ If the search text is not found in the item,

// delete it from the tree

if (itemTitleText.toString().indexOf (searchTerm) =

channel.renoveChild(iten);

}

// Display the results with a serializer
Serializer output = new Serializer(System.out);
output.setIndent(2);
output.write(doc);

} catch (Exception exc) {
System.out.println("Error: ' + exc.gethessage());
exc.printStackTrace();

-1)

OEBPS/html/graphics/19pro07a.jpg
Attribute rssVersion = rss.getAttribute("version");
String version = rssVersion.getValue();

/1 Add the DTD for RSS 0.91 feeds, if needed
if ((version.equals(*0.91')) & (doc.getDocType() == null)) {
DocType rssDtd = new DocType(“rss’,
"http://my.netscape.con/publish/formats/rss-0.91.dtd");
doc.insertChild(rssDtd, 0);

}

// Get the first (and only) <channel> element
Element channel = rss.getFirstChildElement (“channel®);

// Get its <title> element
Element title = channel.getFirstChildElement("title");
Text titleText = (Text)title.getChild(0);

// Change the title to reflect the search term
titleText.setValue(titleText.getValue() + ": Search for " +
searchTerm + " articles");

// Get all of the <item> elements and loop through them
Elements items = channel.getChildElements("iten");
for (int i = @; i < items.size(); i++) {

// Get an <item> element

OEBPS/html/graphics/244pro01.jpg
ArrayList<Integer> zipCodes = new ArrayList<Integer>();
Hashllap<String, Float> quality = new HashMap<String,
Float>():

OEBPS/html/graphics/244pro02.jpg
ArraylList<Integer> zip(odes = new ArraylList<>();
HashMap<String, Float> quality = new HashMap<>():

OEBPS/html/graphics/21fig09.jpg
Application Info
Configure the new Android Prject

Application Name: ~ Contact Santa Claus.

et (]

] Creste Actvty: SantaActvity
Minimum SOk~ 15

Crestea Test roject

Test Prect Nomne: [SamaTest

Test Applicotion: [ContactSata G Tt

e

OEBPS/html/graphics/21fig08.jpg
Select a device compatible with target Android 40.3.

[Choose 3 running Android devics

Seril Nomber AVD Name
8 orovseaassses A

Torget
v

Debug State

© Launch 2 new Android Virtual Device

AVD Name Target Name
StarterAVD. Android 403

Platform
403

APILevel
15

Details..

Use same device for future launches

OEBPS/html/graphics/413pro01.jpg
int|] result = (1nt|[] worker.get(),

OEBPS/html/graphics/21fig05.jpg
{8} Create new Android Virtual

Name: StarterAVD

Taget [(Androia403 - APILev 15 B

CPU/ABE [ARM (armesbi-v7a)

$ocus
e —
o e ==

Sopi
[] Enabled

e

e

Prapey Vaue ==

Abstracted LCD density 240
MaxVM application hea... 48
Device ram size 512

Delete

Override the existing AVD with the same name

e

OEBPS/html/graphics/21fig04.jpg
[

8 Z- BiK

Android Virtual Device Manager

OEBPS/html/graphics/21fig07.jpg
w807

1 Palindrome.

cooe

o@o

200
11215 s[5 [s |7 |8 [s [o]
o w e [[r |y [ufi]o e |
2 |s [o [r fo [n [[[u [&]
2]z Ix [c v [oIn |
1 S O P P

OEBPS/html/graphics/21fig06.jpg
Android Application

3 Wk ig-n et
b oS ramesont

. Remete s picsion
5 R st
[T iy

o Tk o Tt
o

SteAD Ao 03

o)
|

C1Wpeiroaa

OEBPS/html/graphics/188pro01.jpg
int status = loadTextFile();
if (status 1= 1) {
/1 something unusual happened; report it
switch (status) {
case

Systen.out.println(*File not found");
break;
case

System.out.println(“Disk error”);
break;
case 4:
Systen.out.println(*File corrupted");
breal
default:
System.out.println("Error”);

i
} else {

1/ file loaded OK; continue with program
}

OEBPS/html/graphics/14pro04a.jpg
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
551

for (int i = 0; i < 16; i++) {
/1 create a textfield and label
total[i] = new JTextField(*0", 4);
Jiabel label = new Jlabel((i + 3) + ": ');
/1 create this cell in the grid
JPanel cell = new JPanel();
cell.add(label);
cell.add(total[i]);
/1 add the cell to the top row
topPane. add(cell);

}

/1 set up bottom row

JPanel bottonPane = new JPanel();

Jiabel quantitylabel = new JLabel("Times to Roll: ");
quantity = new JTextField("0", 5);

roll = new JButton("Roll");
roll.addActionListener(this);

bottonPane.add (quantitylLabel) ;

bottonPane.add (quantity);

bottonPane.add(roll);

/1 set up frame
GridLayout frameGrid = new GridLayout(2, 1);
setLayout (frameGrid) ;

add(topPane) ;

add (bottonPane) ;

OEBPS/html/graphics/14pro04b.jpg
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
771
78:
79:
80:
81:
82:

setVisible(true);
}

/1 respond when the "Roll" button is clicked

public void actionPerformed(ActionEvent event) {

int timesToRoll;
try {

/] turn off the button

tinesToRoll = Integer.parselnt(quantity.getText());

roll.setEnabled(false);

/] set up the worker that will roll the dice

worker = new Dicelorker (tinesToRoll);

/1 add a listener that monitors the worker
worker. addPropertyChangeListener (this);

/1 start the worker
worker. execute () ;

} catch (Exception exc) {
systen.out.println(exc.getiessage());
exc.printStackTrace() ;

}

11 respond when the worker's task is complete

public void propertyChange(PropertyChangeEvent event) {

try {

/] get the worker's dice-roll results

int[] result

(int[]) worker.get();

OEBPS/html/graphics/14pro04c.jpg
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:

/1 store the results in text fields
for (int i = 0; i < result.length; i++) {
total[i].setText("" + result[i]);
1
} catch (Exception exc) {
Systen.out.println(exc.getlessage());
exc.printStackTrace() ;

}

private static void setLookAndFeel() {
try {
UlNfanager . setLookAndFeel (
“com.sun.java.swing.plaf.ninbus.NinbusLookAndFeel"
)5
} catch (Exception exc) {
/1 ignore error
}
}

public static void main(String[] arguments) {
new DiceRoller();
}

OEBPS/html/graphics/164pro02.jpg
1mport static java.lang.Math.

public class ShortConstants {
public static void main(String[] arguments) {
System.out.println("PI: * + PI);
System.out.println(** + (PI * 3));

OEBPS/html/graphics/164pro01.jpg
import static java.lang.Math.

OEBPS/html/graphics/19pro06a.jpg
doc.insertChild(timestamp, 0);

// Create a file output stream to a new file
FileOutputStream fos = new FileOutputStream("feed3.rss");

// Using a serializer with indention set to 2 spaces,
// write the XL document to the file
Serializer output = new Serializer(fos, "IS0-8859-1");
output.setIndent(2);
output.write(doc);
} catch (ParsingException pe) {
System.out.printIn(*Error parsing document: " + pe.gethessage());
pe.printStackTrace();
System.exit(-1);

OEBPS/html/graphics/203pro01.jpg
NotlnServicekxception nise = new NotInServicekxception();
throw nise:

OEBPS/html/graphics/203pro02.jpg
NotInServiceException nise = new
NotInServiceException(*Exception: Database Not in Service');
throw nise:

OEBPS/html/graphics/656pro02.jpg
java -Ditem.name="Microsoft Bob" ItemProp

OEBPS/html/graphics/656pro01.jpg
String[] 1ds = java.util.TimeZone.getAvailableIDs();

for (int i = 0; i < ids.length; i++) {
System.out.println(ids[i]);

}

OEBPS/html/graphics/21pro01.jpg
package org.cadenhead. android;

import android.app.Activity;
inport android.os.Bundle;

public class SantaActivity extends Activity {
/** Called when the activity is first created. */
eoverride
public void onCreate(Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R. layout.main) ;

OEBPS/html/graphics/21pro02.jpg
package org.cadenhead. android;

import
inport
import
inport
import

: public

android. app.Activity;
android.content.Inten
android.net.Uri;
android. os.Bundle;
android. view.View;

class SantaActivity extends Activity {

public static final String TAG = "Santa’;

/** Called when the activity is first created. */
@override
public void onCreate(Bundle savedInstanceState) {

}

super.onCreate (savedInstanceState) ;
setContentView(R. layout.nain);

public void processClicks(View display) {

Intent action = null;
int id = display.getId();

OEBPS/html/graphics/502pro02.jpg
select * from SYS.SYSTABLES

OEBPS/html/graphics/502pro01.jpg
2012-05-24 00:31:50.960 GMT : Security manager installed using the Basic
server security policy.

2012-05-24 00:31:51.205 GMT : Apache Derby Network Server - 10.6.2.1
(999685) started and ready to accept connections on port 1527

OEBPS/html/graphics/341pro01.jpg
JButton zap = new JButton(“Zap”);
zap.addActionListener (this):

OEBPS/html/graphics/316pro01.jpg
BorderLayout bl = new BorderLayout();
setLayout(bl):

OEBPS/html/graphics/155pro01.jpg
class AudioPlayer {

private boolean openSpeaker (Speaker sp) {
/1 inplementation here
}

OEBPS/html/graphics/12pro06.jpg
: import java.awt.*;
inport java.awt.event.
inport javax.swing. *

: public class KeyChecker2 extends JFrame {
JLabel keyLabel = new JLabel("Hit any key');

public KeyChecker2() {
super("Hit a Key');
setSize(300, 200);
setDefaultCloseOperation (JFrane. EXIT_ON_CLOSE) ;
setLayout (new FlowLayout (FlowLayout.CENTER));
KeyAdapter monitor = new KeyAdapter() {
public void keyTyped(KeyEvent event) {
keyLabel.setText("" + event.getKeyChar());
repaint();
i
b
setFocusable(true);
addKeyListener(monitor);

OEBPS/html/graphics/12pro05.jpg
import java.awt.*;
inport java.awt.event
inport javax.swing.*;

: public class KeyChecker extends JFrame {
JLabel keyLabel = new JLabel("Hit any key');

public KeyChecker () {
super(“Hit a Key');
setSize(300, 200);
setDefaultCloseOperation (JFrane.EXIT_ON_CLOSE) ;
setLayout (new FlowLayout (FlowLayout.CENTER)) ;
Keyllonitor monitor = new Keylonitor(this);
setFocusable(true);
addKeyListener (nonitor) ;
add(keyLabel) ;
setvisible(true);

}

private static void setLookAndFeel() {
try {
UTianager . setLookAndFeel (
*com. sun. java.swing.plaf.ninbus.NimbusLookAndFeel"

OEBPS/html/graphics/496pro01.jpg
pw.print(“name=YourNamessubject=Book&aemail=you€yourdomain.coms"
+ "comments= A+POST+example """):

OEBPS/html/graphics/21fig12.jpg
i Android Manifest Application

~ Boplication Toaqld
7 The spplication tag describes spplicstion-level components contsined i the package, s well s general spplication strbutes.
) Define an <spplicstion> tag in the AndroidManifestami

~ Application Attributes
Defines the attributes specific to the application.

Name -
Theme -
Labe sing/app_name
Tcon ‘@drawable/ic_launcher -
Logo Testonly -
i Backup agent

] Manifest (&) Application | (F) Permissions | (T] Instrumentation | =) AndroidManifestaml

Application tab

OEBPS/html/graphics/21fig11.jpg
1 Palindrome
2 santa
b @ st
b &3 gen [Generated Java Files]
» A Android 403
» BA Android Dependencies.
& assets

> &
Py-2

& drawable-hdpi
& drawable-ldgi
& drawable-mdpi
& drawableshdpi

4 & Tayout

g) mainam!
4 & values
@ stringsaml

i AndroidManifestaml

proguard-projectxt

) project properties

Errors

OEBPS/html/graphics/099pro01.jpg
void testBlock() {

int x = 10;

{1/ start of block
inty = 40;
V=YX

} /1 end of block

OEBPS/html/graphics/21fig14.jpg
w1
B Contact Santa Claus

OEBPS/html/graphics/21fig13.jpg
Set Horizontal Orientation

strings.xmi Santa Manife mainaxmi =0
Editing config: default Anylocale v 03 ~|[Create..
37in WVGA (Nexws C +[Portr ~|[ifom ~[Dayt ~[ThemeHolo ™
| Palette - | o aa|

() Form Widgets R
5 Tox ekt Contact Santa Claus
@ Layouts

() Composite
Images & Media

& 1 Gallery
Image Button B MediaController

¥ VideoView

() Time & Date
[Transitions
() Advanced

() Custom & Library Views
=] Graphical Layout| =] main.xmi

OEBPS/html/graphics/480pro01.jpg
Sat May 12 01:00:15 EDT 2012

Connection to host lost.
Press any key to continue...

OEBPS/html/graphics/357pro01.jpg
public void windowOpened(WindowEvent event) {
"
}

OEBPS/html/graphics/21fig10.jpg
5 Pelindrome]
4 & santa
> @ src
» @ gen (Genersted Jave Files]
» B Android403
» =i Android Dependencies
& assets
» & bin

4 & drawable-hdpi

& ic_launcherpng
4 @ drawsble-ldpi

5 ic_Jauncherpng
4 & drawable-mdpi

& ic_launcherpng
4 & drawable-xhdpi

& ic_launcherpng
4 @ layout

) mainaml
4 (& values

4 stringsami
4 AndroidManifestam
proguard-projectxt
project properties

| F—r—

OEBPS/html/graphics/12pro02.jpg
: inport java.awt.event.*;
: inport javax.swing.*;
: inport java.awt.*;

public class Calculator extends JFrame implements FocusListener {
JTextField valuel, value2, sun
JLabel plus, equals;

public Calculator() {
super("Add Two Numbers®);
setSize(350, 90);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setLookAndFeel () ;
Flowlayout flow = new FlowLayout(FlowLayout.CENTER)
setLayout (flow) ;
/1 create components
valuel = new JTextField("0", 5);
plus = new Jiabel("+');
value2 = new JTextField(“0", 5);
equals = new JLabel(
sun = new JTextField("0
/1 add listeners
value1.addFocusListener (this)
value2.addFocusListener (this);
/1 set up sun field
sun.setEditable (false);
/1 add components
add(valuel);
add(plus) ;
add (value2) ;
add(equals)
add(sum) ;
setVisible(true);

5);

OEBPS/html/graphics/12pro01.jpg
: import java.awt.event.*;
inport javax.swing.*;
: import java.awt.*;

public class TitleChanger extends JFrame implements ActionListener {
JButton bi;
JButton b2;

public TitleChanger() {
super(“Title Bar®);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLookAndFeel();
b1 = new JButton(*Rosencrantz");
b2 = new JButton(*Guildenstern®);
bi.addActionListener(this);
b2.addActionListener(this) ;
FlowLayout flow = new FlowLayout();
setLayout (flow);
add(bi);
add(b2) ;
pack();
setvisible(true);

}

public void actionPerforned(ActionEvent evt) {
Object source = evt.getSource();
if (source == b1) {
setTitle("Rosencrantz');

OEBPS/html/graphics/12pro04.jpg
: import java.awt.*;
: inport java.awt.event.®;
inport javax.swing.*;

: public class MousePrank extends JFrame inplements ActionListener {
public MousePrank() {
super('Message”) ;
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(420, 220);
BorderLayout border = new BorderLayout();
setLayout (border) ;
JLabel message = new JLabel('Click OK to close this program.
add (BorderLayout .NORTH, message);
PrankPanel prank = new PrankPanel();
prank.ok.addActionListener (this);
add (BorderLayout.CENTER, prank)
setVisible(true) ;
i

public void actionPerformed(ActionEvent event) {
System.exit(0);
i

public Insets getlnsets() {
return new Insets(40, 10, 10, 10);

}

private static void setLookAndFeel() {
try {
Ullanager . setLookAndFeel (
*com. sun. java.swing.plaf.ninbus.NimbusLookAndFeel"
)3
} catch (Exception exc) {

OEBPS/html/graphics/19pro04a.jpg
.gethlessage())

link.removeChild(@);
link.appendChild("http://www.cadenhead.org/");

}

/1 create new elements and attributes to add
Element item = new Element(“item");
Element itemTitle = new Element("title");

/] add then to the <channel> element
itenTitle.appendChild(

"Free the Bound Periodicals"
)5
iten.appendChild(itenTitle);
channel.appendChild(iten);

/1 Save the XML docunment

try (
FileWriter fw = new FileWriter('feed2.rss");
BufferedWriter out = new BufferedWriter(fw);

) {
out.write(doc. toXL());

} catch (IOException ioe) {
System.out.println(ioe.getMessage());

}

Systen.out.println(doc.toXML());

} catch (ParsingException pe) {

System.out.println(*Error parsing document: * +
pe.printStackTrace() ;
System.exit(-1);

OEBPS/html/graphics/253pro02.jpg
Ulkanager.setLookAndreel(
“com. sun. java. swing. plaf .ninbus . NinbusLookAndFeel’
3

OEBPS/html/graphics/12pro03.jpg
1: inport java.awt.*;
2: inport java.awt.event.*;
3: import javax.swing.*;

5: public class FormatChooser extends JFrame inplements ItenListener {

string[] formats = { '(choose format)®, ‘Aton’, 'RSS 0.92",
“RSS 1.0", "RSS 2.0" };

string[] descriptions = {

‘Aton weblog and syndication format',

“RSS syndication format 0.92 (Netscape)',

“RSS/RDF syndication format 1.0 (RSS/RDF)",

“RSS syndication format 2.0 (UserLand)"

b
JComboBox formatBox = new JComboBox () ;
JLabel descriptionlabel = new JLabel("');

public FormatChooser() {

super("Syndication Format');

setSize (420, 150);

setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;

setLayout (new BorderLayout());

for (int i = 05 i < formats.length; i++) {
formatBox.addIten(formats[i]);

Y

formatBox. addItenListener (this);

add (BorderLayout .NORTH, formatBox);

add (BorderLayout .CENTER, descriptionLabel):

OEBPS/html/graphics/21fig15.jpg
Eqﬂ Contact Santa Claus

4 & 12:30

0000

(@

®®609

P S PP PP P P
2]z [x [c v [o v |w[. [&]
1 2 N P P

OEBPS/html/graphics/253pro01.jpg
setbetaultCloselperation(Jrrame.D0 NOTHING ON CLOSE);

OEBPS/html/graphics/099pro03.jpg
String server;
int duration;
if (argunents.length < 1) {
server = 'localhost’;
} else {
server = arguments[0];

}

OEBPS/html/graphics/099pro02.jpg
1T (arguments.length < 3)
System.out.println("Not enough arguments"):

OEBPS/html/graphics/067pro01.jpg
Random seed = new Random(606843071);
point pt = new Point(@, 0);

OEBPS/html/graphics/405pro01.jpg
jarsigner -storepass password -keypass swordfish PageData.jar examplekey

OEBPS/html/graphics/405pro02.jpg
application/x-java-jnlp-file JNLP

OEBPS/html/graphics/552pro01.jpg
AmiRpcClientConfiglmpl contig = new XmlRpcClientConfiglmpl();
URL server = new URL("http://cadenhead.org:4413/");

config. setServerURL (server);

XmlRpcClient client = new XmlRpoClient();
client.setConfig(config):

OEBPS/html/graphics/19pro03a.jpg
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40: }

Element link = new Element("link");
Text linkText = new Text("http://workbench.cadenhead.org/");
Link.appendChild(linkText);
channel.appendChild(link);

// create a new document with <rss> as the root element
Document doc = new Document(rss);

/1 Save the XML document
try (
FileWriter fw = new FileWriter(*feed.rss");
Bufferediiriter out = new BufferedWriter(fw);

) A
out.write(doc.toXiL());

} catch (IOException ioe) {
System.out.println(ioe.getMessage());

}
System.out.print1n(doc. toXiL());

OEBPS/html/graphics/640pro01.jpg
javac -deprecation Sellltem.java

OEBPS/html/graphics/197pro01.jpg
010 17 13 29 38 2 20 **
120 112 15 19 24 20 30 12 **
106 25 125 69 176 **

OEBPS/html/graphics/252pro01.jpg
public class Payroll extends javax.swing.JFrame {
public Payroll() {
super("Edit Payroll');
setSize(300, 100);
setVisible(true);

OEBPS/html/graphics/383pro01.jpg
Arcel.rloat arc = new Arcel.Float(
27F, 22F, 42F, 30F, 33F, 90F, Arc2D.PIE):

OEBPS/html/graphics/383pro02.jpg
GeneralPath polly = new GeneralPath();

OEBPS/html/graphics/172pro01.jpg
public class Monitor implements Trackable {

public Trackable beginTracking(Trackable self) {
Monitor mon = (Monitor) self;
"o
return mon;

OEBPS/html/graphics/172pro02.jpg
interface Preciselylrackable extends lIrackable 1{
o
}

OEBPS/html/graphics/307pro02.jpg
FlowLayout righty = new FlowLayout(FlowLayout.RIGHT);

OEBPS/html/graphics/307pro01.jpg
mport java.awt.
inport javax.swing.*;

public class Starter extends JFrame {

public Starter() {
super (“Exanple Frane');
FlowLayout manager = new FlowLayout():
setLayout (manager) ;
1/ add components here

OEBPS/html/graphics/06tab01.jpg
Visibility Protected Default Private
From the same class Yes Yes Yes Yes
From any class in Yes Yes Yes No

the same package

From any class Yes No No No
outside the package

From a subclass in Yes Yes Yes No

the same package

From a subclass Yes Yes No No

outside the same
package

OEBPS/html/graphics/084pro01.jpg
Float 71 = new Float(12.5F);
Float f2 = new Float(27.2F);
System.out.println("Lower number: " + Math.min(f1, f2)):

OEBPS/html/graphics/19pro03.jpg
1
2:

inport java.io.*;
import nu.xom.*;

public class RssStarter {

public static void main(String[] arguments) {
// create an <rss> element to serve as the document's root
Element rss = new Element('rss’);

// add a version attribute to the element

Attribute version = new Attribute('version®, "2.0");
rss.addAttribute (version);

// create a <channel> element and make it a child of <rss>
Element channel = new Element("channel®);
rss.appendChild(channel) ;

// create the channel's <title>

Element title = new Element("title");

Text titleText = new Text('Workbench');
title.appendChild(titleText);
channel.appendChild(title);

/] create the channel's <link>

OEBPS/html/graphics/13pro01.jpg
: import java.awt.*;

inport java.awt.event.
inport javax.swing.*

public class TextFrame extends JFrame {

public TextFrame(String text, String fontName) {
super ("Show Font");
setSize(425, 150);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
TextFramePanel sf = new TextFramePanel(text, fontName);
add(sf);
setVisible(true);

i

public static void main(String(] arguments)
if (arguments.length < 1) {
Systen.out.printin(*Usage: java TextFrame message font')
systen.exit(-1);
}

TextFrame frame = new TextFrame(argunents[0], arguments[1])

OEBPS/html/graphics/19pro02.jpg
<?xml version="1.0"?>
i <rss version="2.0">
<channel>
<title>Workbench</title>
<Link>http: / /workbench. cadenhead.org/</1ink>
</channel>
7: </rss>

OEBPS/html/graphics/19pro01.jpg
1: <?xnl version="1.0" encoding="utf-8"?>
2: <rss version="2.0">

3: <channel>

4: <title>Workbench</title>

5: <link>http://workbench. cadenhead. org/</Llink>

6: <description>Programming, publishing, politics, and popes</description>
7 <docs>http: //wiw.rssboard.org/rss-specification</docs>

8: <item>

9: <title>Tech Journalist Quits the Internet</title>

10: <link>http://workbench. cadenhead. org/news/3678</ Link>

1: <pubDate>Wed, 02 WMay 2012 13:43:40 -0400</pubDate>

12: <guid isPermalink="false">tag:cadenhead.org,2012:weblog.3678</quid>
13: <enclosure length="2498623" type="audio/mpeg"

14: url="http://mp3.cadenhead.org/3678.mp3" />

15: </item>

16: <item>

17: <titlesMy First Trip into a Debate Spin Room</title>

18: <link>http: //workbench. cadenhead. org/news/3674</ Link>

19: <pubDate>Fri, 27 Jan 2012 19:36:35 -0500</pubDate>

20: <quid isPermalink="false">tag:cadenhead.org,2012:weblog.3674</quid>
21: </item>

22: <item>

23: <title>Anthony Weiner and the Infidelity Police</title>

24: <link>http: //workbench. cadenhead. org/news/3664</ Link>

25: <pubDate>Tue, 07 Jun 2011 10:37:06 -0400</pubDate>

26: <guid isPermaLink="false">tag:cadenhead.org,2012:weblog.3664</guid>
27: </item>

28: </channel>
29: </rss>

OEBPS/html/graphics/13pro02.jpg
import java.awt.*;
import java.awt.geom.*;
inport javax.swing.*;

public class Map extends JFrame {

public Map() {
super(“Map');
setSize(360, 350);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;
NapPane map = new MapPane() ;
add(map) ;
setVisible(true);

C®NOOABN =

}

public static void main(String[] arguments) {
Map frane = new Map();
}

!

21: class MapPane extends JPanel {

22: public void paintComponent (Graphics comp) {
23: Graphics2D comp2D = (Graphics2D)conp;
24: conp2D. setColor (Color.blue) ;

25: comp2D. setRenderingHint (RenderingHints.KEY ANTIALIASING,

OEBPS/html/graphics/509pro03.jpg
PreparedStatement ps = cc.prepareStatement(
"select * from SYS.SYSTABLES where (TABLETYPE=?) '
+ "ORDER BY TABLENAME"):

OEBPS/html/graphics/509pro02.jpg
select * from SYS.SYSTABLES order by TABLENAME;

OEBPS/html/graphics/509pro01.jpg
TABLEID:
TABLENAWI

TABLETYPE :

SCHEMAID:
TABLEID:

TABLENANE :

TABLETYP!
SCHEMAID:

TABLEID:

TABLENANE :

TABLETYP!
SCHEMAID:

TABLEID:
TABLENAN
TABLETYP!
SCHEMAID

€0138000-00a7 -
SYSALIASES

S

80000004 -00d0 -

80000056 -00d0 -
SYSCHECKS

S

80000004 -00d0 -

©013800d-0047 -
SYSTRIGGERS

S

8000000d -00d0 -

80000044 -00d0 -
SYSVIEWS

s

8000000d -00d0 -

‘ddba-08ce -

£d77-3ed8 -
£d77-3ed8 -

£d77-3ed8 -

0025-4809 -

£d77-3ed8 -

£d77-3ed8 -

fd77-3ed8 -

000a0a411400

000a0a0b 1900

00020a0b 1900

0002020b1900

00020411200

00020a0b1900

0002020b1900

000a0adb1900

OEBPS/html/graphics/19pro07.jpg
import nu.xom.*;

public class RssFilter {
public static void main(String[] arguments) {

if (arguments.length < 2) {
Systen.out.println("Usage: java RssFilter rssFile searchTern');

System.exit(-1);
}

// Save the RSS location and search term
String rssFile = arguments[0];
String searchTern = arguments[1];

try {
// Fill a tree with an RSS file's XL data
// The file can be local or something on the
// Web accessible via a URL.
Builder bob = new Builder();
Document doc = bob.build(rssFile);

// Get the file's root element (<rss>)
Element rss = doc.getRootElement();

// Get the element's version attribute

OEBPS/html/graphics/19pro06.jpg
: import java.io.*;

import nu.xom.*;

public class DomainWriter {
public static void main(String[] arguments) throws IOException {

try {
/1 Create a tree from an XML document

/1 specified as a command-line argument
Builder builder = new Builder();
Document doc = builder.build("feed2.rss");

/1 Create a comment with the current time and date
Comment timestamp = new Comment('File created "
+ new java.util.Date());

// Add the comment above everything else in the
/1 document

OEBPS/html/graphics/19pro05.jpg
ZSooNoaswon

<2xml version="1.0" encoding="IS0-8859-1'?>
<I--File created Mon May 14 16:11:17 EDT 2012-->
<rss version="2.0">
<channel>
<title>Workbench</title>
<link>http://www.cadenhead. org/</ink>
<item>
<title>Free the Bound Periodicals</title>
</item>
</channel>
</rss>

OEBPS/html/graphics/19pro04.jpg
import java.io.*;
import nu.xom.*;

public class DomainEditor {
public static void main(String[] arguments) throws IOException {

try {

// create a tree from the XiL document feed.rss
Builder builder = new Builder();

File xnlFile = new File(*feed.rss");

Document doc = builder.build(xnlFile);

/1 get the root element <rss>
Element root = doc.getRootElement ();

/1 get its <channel> element
Element channel = root.getFirstChildElement("channel);

1/ get its <link> elements
Elements children = channel.getChildElements();
for (int i = 0; i < children.size(); i*+) {

/1 get a <link> element
Elenent link = children.get(i);

/1 get its text
Text linkText = (Text) link.getChild(0);

/1 update any link matching a URL
if (linkText.getValue().equals(
"http:/ /workbench. cadenhead.org/")) {

// update the link's text

OEBPS/html/graphics/060pro02.jpg
System.out.println(4 + ° score and ~ + 7 + ° years ago),

OEBPS/html/graphics/060pro01.jpg
String brand = "Jif";
System.out.println("Choosy mothers choose " + brand):

OEBPS/html/graphics/066pro01.jpg
String name = new String(“"Hal Jordan®);
URL address = new URL("http://www.java21idays.con");

VolcanoRobot robbie = new VolcanoRobot();

OEBPS/html/graphics/3_informit_7_00.jpg
informiT.com ...

EPYRIP InformIT is a brand of Pearson and the online presence
for the world's leading technology publishers. It's your source
for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from
the tech community.

WAddison-Wesley Cisco Press Exavicram 1BM gue 3ERRNTSC SAMS | Safari”

LearniT at InformIT

Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

« Learn about new releases and special promotions by
subscribing to a wide variety of newsletters
Visit informit.com/newsletters.

« Access FREE podcasts from experts at informit.com/podcasts

* Read the latest author articles and sample chapters at
informit.com/articles.

« Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com

« Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

N\ | 4 Tou
R

NOrMIT.COM - e vece

AAddison-Wesley Cisco Press ExwvcRAM BM Que HESENTOE SAMS Safari®

OEBPS/html/graphics/560pro01.jpg
URL: http://www.oscommerce.com/
Title: osCommerce

Description: A free online shop program featuring order history,
shopping carts, full search capability, product reviews, secure
transactions, bestseller lists, and related items

OEBPS/html/graphics/075pro01.jpg
int accountBalance = 5005;
System.out.format("Balance: $%,d%n", accountBalance):

OEBPS/html/graphics/488pro01.jpg
Original byte data:
70 114 105 101 110 100 115 44 32 82 111 109 97 110 115 44 32
99 111 117 110 116 114 121 109 101 110 44 32 108 101 110 100
32 109 101 32 121 111 117 114 32 101 97 114 115 46 13 10 13
10

New character data:
Friends, Romans, countrymen, lend me your ears.

OEBPS/html/graphics/075pro02.jpg
double p1 = Math.PI;
System.out.format("%.11f%n", pi):

OEBPS/html/graphics/04pro01.jpg
class Halfbollars {
public static void main(String[] arguments) {
int[] denver = { 1.900_000, 1_700_000, 1_700_000 };

int[] philadelphia = new int[denver.length];
int[] total = new int[denver.length];
int average;

philadelphia[0] = 1_900_000;

philadelphia[1] = 1_800_000;
philadelphia[2] = 1_750_000;
total[0] = denver([0] + philadelphia[0];

total[1] = denver[1] + philadelphia[1];
total[2] = denver([2] + philadelphia[2];
average = (total[0] + total[1] + total[2]) / 3;

System.out.print("2009 production: ");
System.out.format ("%s,d%n", total[0]);
System.out.print("2010 production: ");
System.out.format("%,d%n", total[1]);
System.out.print("2011 production: ");
System.out.format("%,d%n", total[2]);
System.out.print ("Average production: ");
System.out.format("%,d%n", average);

OEBPS/html/graphics/04pro02.jpg
: class DayCounter {
public static void main(String[] arguments) {

int yearIn = 2012;

int monthIn = 1;

if (arguments.length > 0)
monthIn = Integer.parseInt(arguments[0]);

if (arguments.length > 1)
yearIn = Integer.parselnt(argunents[1]);

System.out.println(monthIn + "/* + yearIn + * has '
+ countDays (monthIn, yearIn) + * days.");

static int countDays(int month, int year) {
int count = -1;
switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:

OEBPS/html/graphics/04pro03.jpg
1: class HalfLooper {

2 public static void main(String[] arguments) {

3 int[] denver = { 1.900_000, 1_700_000, 1_700_000 };

4: int[] philadelphia = { 1_900_000, 1_800_000, 1_750_000 };
5: int[] total = new int[denver.length];

6: int sum = 0;

7

8

: for (int i = 0; i < denver.length; i++) {
9: total[i] = denver[i] + philadelphia[i];

10: System.out.format((i + 2009) + ' production: %,d%n",
11: total[i]);

12: sun += total[i];

18: }

14:

15: System.out. format (*Average production: %,d%n",

16: (sum / denver.length));

17: }

OEBPS/html/graphics/472pro01.jpg
String key;
String header;
int i=0;
do {
key = conn.getHeaderFieldKey (i);
header = conn.getHeaderField(i);
if (key == null) {
key = "*;
} else {
key = key + " *;

}
if (header 1= null) {
text.append (key);
text.append (header) ;
text.append(*\n");
s
} while (header !
text.append("\n"

null);

OEBPS/html/graphics/04pro04.jpg
1: class ArrayCopier {
2: public static void main(String[] arguments) {
3: int[] arrayl = { 7, 4, 8, 1, 4, 1, 4 };

4: float[] array2 = new float[arrayl.length];
5:

6: System.out.print(*arrayl: [");

7 for (int i = 0; i < arrayl.length; i++) {
8: System.out.print(arrayi[i] + " ");

9: }

10: System.out.println(*]");

1:

12: System.out.print("array2: [");

18: int count = 0;

14: while (count < arrayi.length & arrayi[count] != 1) {
15: array2[count] = (float) arrayi[count];
16: System.out.print (array2[count++] + " ");
17: }

18: System.out.println(*]*);

19: }

OEBPS/html/graphics/050pro02.jpg
String example = "Socrates asked, \"Hemlock 1s poison?\”

System.out.println("Sincerely,\nMillard Fillmore\n");
String title = "Sams Teach Yourself Ruby on Rails in the John\u2122"

OEBPS/html/graphics/050pro01.jpg
String quitMsg = "Are you sure you want to quit?

String password = "drowssap":

OEBPS/html/graphics/179pro01.jpg
public class cone {
int x, y, width, height;
class Center { // inner class begins
int cx, cy;

Center(int x, int y) {
ox = x;
cy

i

} I/ inner class ends

public Zone(int x1, int y1, int x2, int y2) {
x =x1;
v =yl
width = y2 - y1;
height = x2 - x1;
/1 create object of inner class
Center ¢ = new Center((x1 + x2) [2,
1 +y2) 1 2);

OEBPS/html/graphics/592pro01.jpg
public class CharCase {
public static void main(String[] arguments)
float x = 9;
float y = 5;
char ¢ = '1';
switch (c) {
case 1:
X =x+2;
case 2:
X =x+3;
defaul’
X =x+1;

}
System.out.println("Value of x: " + x);

OEBPS/html/graphics/293pro01.jpg
int Tilesbone = getNumberOTriles();
install.setValue(filesDone):

OEBPS/html/graphics/657pro01.jpg
The 1tem 1s named MicrosoTtTt Bob

OEBPS/html/graphics/03pro03.jpg
class StringChecker {

public static void main(String[] arguments) {

String str = " Would you like an apple pie with that?";
System.out.println("The string is: ' + str);
System.out.println("Length of this string: "
+ str.length());
System.out.println("The character at position 6:
+ str.charAt(6));
System.out.println("The substring from 26 to 32:
+ str.substring(26, 32));
System.out.println("The index of the first
+ str.index0f('a'));
System.out.println("The index of the beginning of the *
+ *substring \"IBM\": " + str.indexOf ("IBM"));
System.out.println("The string in uppercase: *
+ str.toUpperCase());

OEBPS/html/graphics/03pro04.jpg
import java.awt.Point;

class RefTester {

public static void main(String[] arguments) {
Point pti, pt2;
pt1 = new Point(100, 100);

pt2 = pti;

pt1.x = 200;

pti.y = 200;

System.out.println(*Point1: * + pti.x + *,
System.out.println("Point2: " + pt2.x + *,

t+optly)g
"t opt2.y);

OEBPS/html/graphics/03pro05.jpg
class EqualsTester {

public static void main(String[] arguments) {

String
stri
str2

Systen.
Systen.
Systen.

str2 =

System.
Systen.
systen.
Systen.

stri, strz;
“Free the bound periodicals.”;
stri;

out.println(*Stringt: * + stri);
out.println('String2: ' + str2);
out.println(*Same object? * + (stri == str2));

new String(str1);

out.println(*Stringt: * + stri);
out.println("String2: ' + str2);
out.println(*Same object? * + (stri == str2));
out.println(*Same value? " + stri.equals(str2));

OEBPS/html/graphics/657pro02.jpg
appletviewer -J-Dtimezon:

OEBPS/html/graphics/243pro02.jpg
comix|1)].setPrice(quality.get(comix|1).condition)),;

OEBPS/html/graphics/243pro01.jpg
HashMap<String, Float> quality = new HashMap<>();

OEBPS/html/graphics/03pro01.jpg
1: import java.util.StringTokenizer;

2:

3: class TokenTester {

4:

5: public static void main(String[] arguments) {

6: StringTokenizer sti, st2;

7

8 string quote! = "GOOG 604.43 -0.42";

9: st1 = new StringTokenizer (quotel);

10: System.out.println("Token 1: " + sti.nextToken());
1: System.out.println("Token 2: " + sti.nextToken());
12: System.out.println("Token 3: " + sti.nextToken());
13:

14: String quote2 = "RHT@60.39€0.78";

15: st2 = new StringTokenizer(quote2, 'e");

16: System.out.println("\nToken 1: " + st2.nextToken());
17: System.out.println(*Token 2: " + st2.nextToken());
18: System.out.println("Token 3: " + st2.nextToken());
19: }

OEBPS/html/graphics/03pro02.jpg
1: import java.awt.Point;
2:

3: class PointSetter {

4:

5: public static void main(String[] arguments) {
6: Point location = new Point(4, 13);

7

8 System.out.println("Starting location:");
9: System.out.println("X equals * + location.
10: System.out.println("Y equals " + location.
1:

12: System.out.println("\nlloving to (7, 6)");
13: location.x = 7;

14: location.y = 6;

15:

16: System.out.println(*\nEnding location:*);
17: System.out.println("X equals " + location
18: System.out.println("Y equals * + location
19: }

X);
V)5

OEBPS/html/graphics/03fig01.jpg

OEBPS/html/graphics/315pro01.jpg
JButton quitButton = new JButton('quit”);
add (quitButton, BorderLayout.NORTH):

OEBPS/html/graphics/129pro01.jpg
public static void main(String(] arguments) 1
/1 body of method
}

OEBPS/html/graphics/057pro02.jpg
boolean extralife = (score > 75000) |l (playerLevel

OEBPS/html/graphics/057pro01.jpg
boolean extralife = (score > 75000) & (playerlLives < 10);

OEBPS/html/graphics/0apro01.jpg
10

2: * To change this template, choose Tools | Templates
3: * and open the template in the editor.

40 %/
5:
6:
7

8

: * eauthor User
9: */
10: public class Spartacus {

12: [

13: * @paran args the command line arguments
14: */

15: public static void main(String[] args) {
16: // TODO code application logic here
17: System.out.println(*I an Spartacus!");

OEBPS/html/graphics/542pro01.jpg
public class NameDirectory {
String[] names;
int nameCount;

public NameDirectory() {
names = new String[20];
nameCount = 0;

}

public void addName(String newName)
if (nameCount < 20)
/1 answer goes here

OEBPS/html/graphics/511pro01.jpg
pS.setNull(5, Types.CHAR);

OEBPS/html/graphics/511pro02.jpg
nttp://quote.yahoo.com/q7?s=TD&ad=v1

OEBPS/html/graphics/209pro01.jpg
Thread runner
if (runner == null) {
runner = new Thread(this)
runner.start();

null;

OEBPS/html/graphics/511pro03.jpg
http://download.finance.yahoo.com/d/quotes.csv?:

OEBPS/html/graphics/511pro04.jpg
'FB,32.00,°5/23/2012", "

Qopm~,+1.00,31.41,32.50,31.36,73721136

OEBPS/html/graphics/325pro01.jpg
urldobaglLayout bag = new GridbaglLayout();
setLayout(bag);

OEBPS/html/graphics/486pro01.jpg
try {
String source = "prices.dat”;
FileInputStream inSource = new FileInputStream(source);
FileChannel inChannel = inSource.getChannel();

} catch (FileNotFoundException fne) {
System.out.println(fne.gethessage());

}

OEBPS/html/graphics/351pro01.jpg
public void keyPressed(KeyEvent event) {
1o
}

public void keyReleased(KeyEvent event) {
o
b

public void keyTyped(KeyEvent event) {
1o
}

OEBPS/html/graphics/486pro02.jpg
long 1nSize = inChannel.size();

ByteBuffer data = ByteBuffer.allocate((int)inSize);

inChannel.read(data, 0);

data.position(0);

for (int i = 0; data.remaining() > 0; i++) {
System.out.print(data.get() + * ");

}

OEBPS/html/graphics/074pro01.jpg
The

string 1s: Would you like an apple pie with that?

Length of this string: 38

The
The
The
The
The

character at position 6: y
substring from 26 to 32: e with

index of the first 'a': 15

index of the beginning of the substring "apple": 18

string in uppercase: WOULD YOU LIKE AN APPLE PIE WITH THAT?

OEBPS/html/graphics/15pro08a.jpg
FileReader fr = new FileReader(source.toFile());
BufferedReader in = new BufferedReader (fr);

/1 Create output strean
FileWriter fu = new FileWriter(temp.toFile());
Bufferedriter out = new

Bufferediiriter (fu);

boolean eof = false;
int inChar;
do {
inChar = in.read();
if (inChar 1= -1) {
char outChar = Character.toUpperCase((char)inChar);
out.write(outChar);
} else
eof = true;
} while (leof);
in.close();
out.close();

Files.delete(source);
Files.move(temp, source);

} catch (IOException|SecurityException se) {
System.out.println(*Error -- * + se.toString());

OEBPS/html/graphics/647pro01.jpg
javadoc -author -version AppInfo2.java

OEBPS/html/graphics/202pro01.jpg
public class RadioPlayer {
public void startPlaying() throws SoundException |
// body of method
}

public class StereoPlayer extends RadioPlayer {
public void startPlaying() {
/1 body of method
}

OEBPS/html/graphics/130pro01.jpg
java EchoArgs April 450 -10

OEBPS/html/graphics/165pro01.jpg
java.util.Date = new java.util.Date(),;

OEBPS/html/graphics/650pro01.jpg
<applet code="MusiclLoop.class” archive="lusicLoop.jar’ width="45" height="42

</applet>

I

OEBPS/html/graphics/650pro02.jpg
<object code="MusiclLoop.class’ width="45" heigh
<param name="archive" value="lusicLoop.jar">
</object>

OEBPS/html/graphics/137pro01.jpg
class VolcanoRobot {
String status;
int speed;
int power;

VolcanoRobot (String int, int in2, int in3) {
status = int;
speed = in2;
power = in3;

OEBPS/html/graphics/arrow.jpg

OEBPS/html/graphics/122pro01.jpg
returnlype methodName(typel argil, typez arges, typed argd
/1 body of the method

}

OEBPS/html/graphics/13fig08.jpg
\/v@

Arc2D OPEN Arc2D CHORD Are2D PIE

OEBPS/html/graphics/13fig07.jpg
90°

180° o°

180°

270°

OEBPS/html/graphics/13fig09.jpg
%/ Map

OEBPS/html/graphics/436pro01.jpg
2137 2141 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 22
51 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347
2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2
441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 255
7 2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677
5683 2687 2689 2693 26899 2707 2711 2713 2719 2799 2731 2741

OEBPS/html/graphics/536pro01.jpg
rileQutputStream Tos = new FileOutputStream(“Teed3.rss”);
Serializer output = new Serializer(fos, "IS0-8859-1"):

OEBPS/html/graphics/13fig02.jpg
|/ Show Font =]

Able was I ere I saw Elba

OEBPS/html/graphics/13fig01.jpg
Y

OEBPS/html/graphics/13fig04.jpg
iewer: Grades... S]]

Applet
Applet

Applet started.

OEBPS/html/graphics/13fig03.jpg
Acyclic Cyclic

OEBPS/html/graphics/13fig06.jpg
W NN

JOINMITER JOIN_ROUND JOIN_BEVEL

OEBPS/html/graphics/13fig05.jpg
CAP_BUTT CAP_ROUND CAP_SQUARE

OEBPS/html/graphics/649pro02.jpg
jar c¢f MusiclLoop.jar MusicLoop.class muskratLove.mp3 shopAround.mp3

OEBPS/html/graphics/649pro01.jpg
jar ¢t Animate.jar *.class *.gifT

OEBPS/html/graphics/599pro01.jpg
System.out.praintln("I am Spartacus!”

OEBPS/html/graphics/235pro01.jpg
String s3 = (String) s.peek();

OEBPS/html/graphics/11pro01.jpg
DNoO BN =

inport java.awt.*;
inport java.awt.event.
inport javax.swing.*;

public class Alphabet extends JFrame {

public Alphabet() {
super ("Alphabet") ;
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;
setLookAndFeel () ;
setSize(360, 120);
FlouLayout 1n = new FlowLayout(FlowLayout.LEFT)
setLayout (1n);
JButton a = new JButton("Alibi")
JButton b = new JButton("Burglar®)
JButton ¢ = new JButton("Corpse”)
JButton d = new JButton("Deadbeat”)
JButton e = new JButton('Evidence’);
JButton f = new JButton('Fugitive')
add(a) ;
add(b) ;
add(c);

OEBPS/html/graphics/11pro02.jpg
1: inport java.awt.*;
inport javax.swing.*;

4: public class Stacker extends JFrame {
public Stacker() {

super ("Stacker") ;

setSize(430, 150);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setLookAndFeel() ;

1/ create top panel

JPanel conmandPane = new JPanel();

BoxLayout horizontal = new BoxLayout(commandPane,
BoxLayout.X_AXTS) ;

commandPane . setLayout (horizontal);

JButton subscribe = new JButton(Subsoribe’);

JButton unsubscribe = new JButton("Unsubscribe");

JButton refresh = new JButton(*Refresh’);

JButton save = new JButton(’Save’);

commandPane . add (subscribe) ;

connandPane . add (unsubscribe) ;

commandPane.add(refresh);

commandPane.add(save) ;

11 create bottom panel

JPanel textPane = new JPanel();

JTextArea text = new JTextArea(4, 70);

OEBPS/html/graphics/11pro03.jpg
: import java.awt.*;
: import java.awt.event.*;
: import javax.swing.*;

public class Bunch extends JFrame {

public Bunch() {
super("Bunch") ;
setSize(260, 260);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setLookAndFeel() ;
JPanel pane = new JPanel();
GridLayout family = new GridLayout(3, 3, 10, 10);
pane.setLayout (family);
JButton marcia = new JButton("Marcia");
JButton carol = new JButton("Carol");
JButton greg = new JButton("Greg");
JButton jan = new JButton('Jan®);
JButton alice = new JButton("Alice’);
JButton peter = new JButton(*Peter”);
JButton cindy = new JButton(*Cindy");
JButton mike = new JButton("Mike");
JButton bobby = new JButton("Bobby");
pane.add(marcia);
pane.add(carol) ;
pane.add(greg) ;

OEBPS/html/graphics/11pro04.jpg
import java.awt.*;
import javax.swing.*;

public class Border extends JFrame {

public Border() {

}

super(“Border®) ;
setSize(240, 280);

setDefaultCloseOperation(JFrane.EXIT_ON_CLOSE);

setLookAndFeel();

setLayout (new BorderLayout());

JButton nButton = new JButton("North");
JButton sButton = new JButton("South");
JButton eButton = new JButton("East”);
JButton wButton = new JButton(West");
JButton cButton = new JButton(*Center”);
add(nButton, BorderLayout.NORTH);
add(sButton, BorderLayout.SOUTH);
add(eButton, BorderLayout.EAST);
add(wButton, BorderLayout.WEST);
add(cButton, BorderLayout.CENTER);
setvisible(true);

private void setLookAndFeel() {

}

public static void main(String(] arguments) {

}

try {
UIManager . setLookAndFeel(

"com. sun. java.swing.plaf.nimbus.NimbusLookAndFeel"

IH

SwingUtilities.updateComponentTreeUI(this);

} catch (Exception exc) {

System.err.println(“Couldn’'t use the system

+ "look and feel: " + exc):

Border frame = new Border();

OEBPS/html/graphics/11pro05.jpg
: inport java.awt.*;
import java.awt.event.*;
: import javax.swing.*;

public class SurveyWizard extends JPanel implements ActionListener {
int currentCard = 0;
CardLayout cards = new GardLayout();
SurveyPanel[] ask = new SurveyPanel[3];

public SurveyWizard() {

super();
setSize(240, 140);
setLayout (cards) ;

/1 set up survey

String question! = “What is your gender?";

string[] responsest = { 'female, "male’, "not telling" };

ask[0] = new SurveyPanel(question!, responsest, 2);

String question2 = “What is your age?’;

String[] responses2 = { 'Under 25°, '25-34", "35-54",
“Over 54" };

ask[1] = new SurveyPanel(question2, responses2, 1);

string questiond = "How often do you exercise each week?";

string[] responsesd = { "Never’, *1-3 times', 'More than 3"

ask[2] = new SurveyPanel(questiond, responses3, 1);

ask[2] .setFinalQuestion(true);

addListeners();

i

private void addListeners() {
for (int i = 0; i < ask.length; i++) {

OEBPS/html/graphics/11pro06.jpg
1: import java.awt.*;
2: inport javax.swing.*;

public class SurveyFrame extends JFrame {

public SurveyFrame() {
super (“Survey") ;
setSize(290, 140);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE);
setLookAndFeel () ;
SurveyWizard wiz = new SurveyWizard();
add(wiz);
setvisible(true);

}

private void setLookAndFeel() {
try {
UTianager . setLookAndFeel (
*com. sun. java. swing.plaf.ninbus.NinbusLookAndFeel®
)
SwingUtilities.updateConponentTreeUl (this);
} catch (Exception exc) {
System.err.println(“Couldn't use the system
+ "look and feel: " + exc);

i

public static void main(String[] arguments) {
SurveyFrame surv = new SurveyFrame();

i

OEBPS/html/graphics/11pro07.jpg
: import java.awt.*;

inport javax.swing.*;

public class MessagePanel extends JPanel {

GridBaglayout gridbag = new GridBagLayout();

public MessagePanel() {
super () ;
GridBagConstraints constraints;
setlLayout(gridbag) ;

JLabel tolabel = new JLabel('To: *);
JTextField to = new JTextField();

JLabel subjectlabel = new JLabel(Subject: *);
JTextField subject = new JTextField();

JLabel colabel = new JLabel("CC:);
JTextField co = new JTextField();

JLabel boclabel = new JLabel(*BCC:)3
JTextField boc = new JTextField();

addConponent (toLabel, 0, 0, 1, 1, 10, 100,
GridBagConstraints.NONE, GridBagConstraints.EAST);
addConponent (to, 1, 0, 9, 1, 90, 100,
GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
addConponent (subjectLabel, 0, 1, 1, 1, 10, 100,
GridBagConstraints.NONE, GridBagConstraints.EAST);
addConponent (subject, 1, 1, 9, 1, 90, 100,
GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST):

OEBPS/html/graphics/11pro08.jpg
1: import javax.swing.*;
2

public class MessageFrane extends JFrame {

public MessageFrame() {
super("Message") ;
setSize(380, 120);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setLookAndFeel () ;
MessagePanel nPanel = new MessagePanel();
add (nPanel) ;
setVisible(true);

private void setLookAndFeel() {
try {
UlVanager . setLookAndFeel (
"com.sun. java.swing.plaf.ninbus.NimbusLookAndFeel®
)5
SwingUtilities.updateComponentTreeUl(this);
} catch (Exception exc) {
Systen.err.println("Couldn't use the system *
+ "look and feel: " + exc);

i
public static void main(String[] arguments) {

NessageFrane frame = new MessageFrame();
i

OEBPS/html/graphics/534pro01.jpg
Element channel = domain.getFirstChildelement(channel”);
Elenent link = dns.getFirstChildElement ("link");
link.removeChild(0):

OEBPS/html/graphics/381pro02.jpg
Hectangle2b.rloat rc = new RectangleZ2D.rloat(10F, 13F, 40F, 20F);

OEBPS/html/graphics/456pro01.jpg
public transient int limit = 55;

OEBPS/html/graphics/381pro03.jpg
cllipse2D.Float ee

new Ellipse2D.Float(113, 25, 22, 490)

OEBPS/html/graphics/456pro02.jpg
private void readObject(ObjectInputStream 01s) {
ois.defaultReadObject () ;
v

OEBPS/html/graphics/217pro01.jpg
public class AverageValue {
public static void main(String[] argunents) {
float(] temps = new float[10];
float sum = @
int count = @

int i
for (i=0; i< argunents.length & i < 10; i++) {
try {
temps[i] = Float.parseFloat(argunents(il);
count++;

} catch (NumberFormatException nfe) {
System.out.println("Invalid input: " + arguments[i]);
i
sum += temps(il;
}
Systen.out.println(*Average: ' + (sun / i));

OEBPS/html/graphics/403pro01.jpg
http://cadenhead.org/book/java2idays/java/pageaataicon.gif

OEBPS/html/graphics/456pro03.jpg
private void readObject(ObjectInputStream o1s)
throws T0Exception, ClassNotFoundException {

ois.defaultReadObject () ;
if (from.length() < 1) {
throw new I0Exception("Null sender in message.");

}

OEBPS/html/graphics/381pro01.jpg
Line20.Float In = new Line2D.Float(60F, 5F, 13F, 28F),

OEBPS/html/graphics/082pro01.jpg
Employee emp = new Employee();

VicePresident veep = new VicePresident();

enp = veep; // no cast needed for upward use

veep = (VicePresident) emp; // must cast explicitly

OEBPS/html/graphics/082pro02.jpg
Graphics2D screen2D

Graphics2D) screen,

OEBPS/html/graphics/639pro01.jpg
javac Buyltem.java Sellltem.java

OEBPS/html/graphics/147pro01.jpg
public class Bigvalue {
float result;

public Bigvalue(int a, int b) {
result = calculateResult(a, b);
}

float calculateResult(int a, int b) {
return (a * 10) + (b * 2);
}

public static void main(String[] arguments) {
BiggerValue bgr = new BiggerValue(2, 3, 4);
System.out.println("The result is * + bgr.result);

3

class BiggerValue extends BigValue {

BiggerValue(int a, int b, int ¢) {
super(a, b);
result = calculateResult(a, b, ¢);
}

/1 answer goes here
return (c * 3) * result;
}

OEBPS/html/graphics/343pro01.jpg
17 (source
quit();

= quitbutton) {

}
if (source

sort();

sortRecords) {

}

OEBPS/html/graphics/343pro02.jpg
vold actionPerformed(Actiontvent event) {
Object source = event.getSource();
if (source instanceof JTextField) {
calculateScore() ;
} else if (source instanceof JButton) {
quit();
}

OEBPS/html/graphics/157pro01.jpg
public class Circle {
public static float PI = 3.14159265F;

public float area(float r) {
return PI * r * r;
¥

OEBPS/html/graphics/157pro02.jpg
Tloat circumTerence = 2 * (1ircle.Pl * getRadius();
float randomNumber = Math.random():

OEBPS/html/graphics/195pro02.jpg
try {
/1 code that reads a file from disk
} catch (EOFException|FileNotFoundException|IOException exc) {
System.out.println('File error: "
+ exc.getMessage());

OEBPS/html/graphics/195pro01.jpg
try {
/1 code that reads a file fron disk
} catch (EOFException|FileNotFoundException exc) {
systen.out.println(*File error: *
+ exc.getlessage());
} catch (IOException ioe) {
System.out.println(*I0 error: *
+ ioe.getMessage());

OEBPS/html/graphics/431pro01.jpg
BufferedInputStream command = new BufferedInputStream(System.1in),;

OEBPS/html/graphics/18fig05.jpg
select * from APP.STOCKS x

EEEEGE &K <>) Paese 2 | TotalRows: 1 Page: 1of 11 Matching Rows:

s Tom PRICE DATE cranGE Low HIGH PRICEOPEN VOLUME
1o 3200 s 4100 3141 25 3136 73721136 -

OEBPS/html/graphics/18fig04.jpg

OEBPS/html/graphics/100pro01.jpg
1nt temperature = 530;

if (temperature > 660) {
status = "returning home";
speed = 5;

OEBPS/html/graphics/13tab01.jpg
Method Name Description

stringWidth(String) Given a string, returns the full width of that string in pixels
charWidth(char) Given a character, returns the width of that character
getHeight () Returns the font’s total height

OEBPS/html/graphics/630pro01.jpg
txception 1in thread "main® java.lang.NoClassDefrounderror:
HelloUser/class

OEBPS/html/graphics/444pro01.jpg
String userFolder = System.getProperty("user.dir”);

OEBPS/html/graphics/0epro01a.jpg
}

public void init() {
name = getParameter("Name");
date = getParameter (“Date");
String versText = getParameter('Version');
if (versText != null) {
version = Integer.parselnt(versText);
¥

public void paint(Graphics screen) {
Graphics2D screen2D = (Graphics2D) screen;
screen2D.drawString(“Name: * + name, 5, 50);
screen2D.drawString(*Date: + date, 5, 100);
screen2D. drawString(*Version: * + version, 5, 150);

OEBPS/html/graphics/388pro01.jpg
Lmport java.awt.=®;
inport javax.swing.*;
public class Result extends JFrame {
public Result() {
super (*Result”) ;
JLabel width = new JLabel("This frane is * +
getSize().width + * pixels wide.");
add(“North", width) ;
setSize(220, 120);
}

public static void main(String[] arguments)
Result r = new Result();
r.setvisible(true);

OEBPS/html/graphics/safari_oned_caden.jpg
=) Safari

Books Online

S FREE
Java Online Edition

in 21 Days

Your purchase of Sams Teach Yourself Java in 21 Days includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every Sams book
is available online through Safari Books Online, along with thousands of books and videos
from publishers such as Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press,
O'Reilly Media, Prentice Hall, Que, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to
thousands of technology, digital media, and professional development books and videos from
leading publishers. With one monthly or yearly subscription price, you get unlimited access to
learning tools and information on topics including mobile app and software development, tips
and tricks on using your favorite gadgets, networking, project management, graphic design, and
much more.

Activate your FREE Online Edition at
informit.com/safarifree

STEP1: Enter the coupon code: HCPMOGA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

1f you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

OEBPS/html/graphics/07pro03a.jpg
21z if (finder[j] == null) continue;

22: if (Ifinder(j].finished) {
23: complete = false;

24:) else {

25: displayResult (finder(j])

26: finder(j] = null;

27:)

28:)

29: try (

30: Thread. sleep(1000) ;

31: } catch (InterruptedException ie) {
32: /1 do nothing

33: }

34: ¥

3:)

36:

37: private void displayResult(PrimeFinder finder)

Systen.out.println(*Prine " + finder. target
+ " is " + finder.prime);

OEBPS/html/graphics/230pro01.jpg
poolean 1sihere = golfer.contains(Webb").

OEBPS/html/graphics/473pro01.jpg
Socket connection = new Socket(hostName, portNumber),

OEBPS/html/graphics/150pro01.jpg
public class RedButton extends javax.swing.JButton {
o
b

private boolean offline;

static final double WEEKS = 9.5;

protected static final int MEANING_OF_LIFE = 42;
public static void main(String[] arguments) {

/1 body of method
}

OEBPS/html/graphics/326pro02.jpg
constraint.gridx 05

constraint.gridy = 0;

constraint.gridwidth = 2;
constraint.gridheight = 1;
constraint.weightx = 100;
constraint.weighty = 100;

constraint.fill = GridBagConstraints.NONE;
constraint.anchor = GridBagConstraints.CENTER:

OEBPS/html/graphics/326pro01.jpg
GridSaglayout gridbag = new GridbagLayout();
GridBagConstraints constraint = new GridBagConstraints();
setLayout(gridbag) ;

OEBPS/html/graphics/473pro02.jpg
connection.setSoTimeOut (50000) ;

OEBPS/html/graphics/225pro01.jpg
class ConnectionAttributes {

public
public
public
public

static
static
static
static

final
final
final
final

int READABLE
int WRITABLE
int STREAVABLE

int FLEXIBLE = 3;

o
1
2

OEBPS/html/graphics/309pro01.jpg
FlowLayout Tlo

new FlowLayout(FlowLayout.CENTER, 30, 10),;

OEBPS/html/graphics/225pro02.jpg
BitSet connex = new BitSet();

OEBPS/html/graphics/490pro03.jpg
Selector spy = Selector.open();
channel.register(spy, SelectionKey.OP READ + SelectionKey.OP WRITE, null):

OEBPS/html/graphics/039pro01.jpg
public static void main(String[] arguments) {
int total;
String reportTitle;
boolean active;

OEBPS/html/graphics/490pro01.jpg
Selector monitor = Selector.open();

OEBPS/html/graphics/0epro03a.jpg
public Sf
Stril

retul

}

Jun
* This
* for
* @ret
*/

public §

Stril
stri
Stri
Stril
retul

Jax
* This
*/
public v
nane

tring getAppletInfo() {

ng response = "This applet demonstrates the "
+ "use of the Applet's Info feature.';

rn response;

method describes the parameters that the applet can take

any browsing tool that requests this information.
urn An array of String[] objects for each parameter.

tring[][] getParameterInfo() {

ng[] p1 = { "Name", "String", *Programmer's name’ };
ng[] p2 = { "Date", "String’, "Today's date" };
ng[] p3 = { "Version", “int’, "Version number' };

ng[1(] response = { p1, p2, p3 };
rn response;

method is called when the applet is first initialized.

oid init() {
getParameter(“Name");

OEBPS/html/graphics/490pro02.jpg
Selector spy = Selector.open();
channel.register(spy, SelectionKey.OP READ, null);:

OEBPS/html/graphics/208pro03.jpg
StockTicker tix = new StockTicker();
Thread tickerThread = new Thread(tix):

OEBPS/html/graphics/208pro02.jpg
public class StockTicker implements Runnable {
public void run() {
"o
}

OEBPS/html/graphics/208pro01.jpg
try {
Thread.sleep(3000);

catch (InterruptedException ie) {
/1 do nothing

}

OEBPS/html/graphics/0epro03b.jpg
date = getParameter("Date");
String versText = getParameter('Version');
if (versText != null) {
version = Integer.parselnt(versText);
}
¥

Jun
* This method is called when the applet's display window is
* being repainted.
*/
public void paint(Graphics screen) {
Graphics2D screen2D = (Graphics2D)screen;
screen.dravString("Name: " + name, 5, 50);
screen.drawstring("Date: ' + date, 5, 100);
screen.dravString("Version: ' + version, 5, 150);

OEBPS/html/graphics/477pro01.jpg
ServerSocket servo = new ServerSocket(8888);

OEBPS/html/graphics/562pro01.jpg
public class Operation {
public static void main(String[] arguments) {

int x = 1;

inty = 3;

if ((x 1= 1) & (y++ == 3))
yEy+2;

OEBPS/html/graphics/423pro02.jpg
char sep = File.separator;
FileInputStrean f2 = new FileInputStream(sep + "data’
+ sep + "calendar.txt'):

OEBPS/html/graphics/423pro01.jpg
FilelnputStream T2 = new FilelnputStream(/data/calendar.txt’),

OEBPS/html/graphics/423pro03.jpg
int newByte
while (newByte 1= 1) {
newByte = diskfile.read();
System.out.print(newByte + " *);

OEBPS/html/graphics/237pro01.jpg
HashMap hash = new HashMap(20, ©@.5F);

OEBPS/html/graphics/376pro03.jpg
volor brush = new Color(zoo, 204, 10z);
comp2D. setColor (brush) :

OEBPS/html/graphics/237pro02.jpg
Rectangle box = new Rectangle(@, @, 5, 5);
hoolean isThere = hash.containsvValue (box):

OEBPS/html/graphics/237pro03.jpg
poolean 1sinere = nash.containsKkey(osmall”),;

OEBPS/html/graphics/376pro01.jpg
color c¢1 = new Color(@.807F, 1F, OF);

color c2 = new Color(255, 204, 102):

OEBPS/html/graphics/18fig01.jpg
JavaDB Services

Projects_[Files, | [services {1

- Databases
5 o
8 sample

) Drvers
*[§3 sdoc:derby:/focalhost: 1527/sample [app on APP]
B vieb Services
Gy Hudson Buiders
(55 1ssve Trackers

OEBPS/html/graphics/18fig03.jpg
select from SYS.SYSTABL... x |

BEEED 2K <> rese @

| otRoms: 2 pagr 1621 g o

#

/ TaBED
20570 1b-0103-0e35-be7-00000010f010
286cc016-0103-0e39-bBe7-00000010f010
'80000000-00 1-15F7-2570-00020a00 1500
‘80000000-00d3-£222-873f-00020a00 1900
/800000 10-00d0-fd77-3ed3-00020a00 1900
‘800000 15-00d0-Fd77-3ed3-00020a00 1900
‘800000 12-00d0-Fd77-3ed3-00020a00 1900

TABLENAME
SYSROUTINEPERMS S
SYSCOLPERMS s
SYSSTATEMENTS S
SYsFLES s
‘SYSCONGLOMERATES S
SYsTABLES s
SYScoLUMNS s

TABLETYPE SCHEMAID

'8000000G-00c0-Fd77-3ed5-00020a001900 R
/8000000-00c0-Fd77-3ed5-00020a051900 R
'8000000-00c0-Fd77-3ed3-00020a001900 R
/8000000-00c0-Fd77-3ed5-00020a001900 R
/8000000-00c0-Fd77-3ed5-00020a001900 R
/8000000-00c0-Fd77-3ed5-00020a051900 R
/8000000-00c0-Fd77-3ed5-00020a001900 R

i

LocKeH

OEBPS/html/graphics/234pro01.jpg
String s1 = (String) s.pop();
String s2 = (String) s.pop():

OEBPS/html/graphics/18fig02.jpg
Projects | Files | Services % |

&-[&] idoc:derby:/focahost: 1527/sample [app on APP]

& arp

- N

-6 sQu

&8 s

-0 Tables.
@[svsauses
[ssoeas
] svscowperus
[svscoms
[svsconaLomeRaTeSs
@[svsconsmans
[srsomos
&[] svsrnes
@ ssroraewers
&[] srsers
&[] svspmrms
&[] svseoles
@[srsroumnerERs
@[sssomms
&[] svssequences
@[] svssaTEneNTs
[svsstamisTics
@[] svsmaaLepERMs

o8 B

[e
[Taee
il TameeTvee

[screman

) LooxramLsRITy
@21 Tndexes

-1 ForeignKeys.

I

— SYSTABLES

OEBPS/html/graphics/453pro01.jpg
try 1
FileInputStrean disk = new FileInputStrean(
*SavedObject.dat");
ObjectInputStrean obj = new ObjectInputStrean(disk);
} catch (IOException ie) {
Systen.out.println("I0 error -- * + ie.toString());
}

OEBPS/html/graphics/453pro02.jpg
WorkData dd = (WorkData) disk.readObject();

OEBPS/html/graphics/199pro03.jpg
public void loadFormula() throws IOException {
"
}

OEBPS/html/graphics/267pro02.jpg
puttonGroup saverormat = new buttonGroup();
JRadioButton s1 = new JRadioButton("JSON', false);

saveFormat.add(s1);
JRadioButton s2 = new JRadioButton("XNL", true);

saveFormat.add(s2):

OEBPS/html/graphics/267pro01.jpg
ButtonGroup choice = new ButtonGroup();

OEBPS/html/graphics/322pro01.jpg
public void actionPerformed(Action evt) {
/1 more to come

}

OEBPS/html/graphics/136pro01.jpg
Calling buildBox with coordinates (25,25) and (50,50):
Box: <25, 25, 50, 50>

Calling buildBox with points (10,10) and (20,20):
Box: <10, 10, 20, 20>

Calling buildBox with point (10,10), width 50 and height 50:
Box: <10, 10, 60, 60>

OEBPS/html/graphics/519pro01.jpg
public class ArrayClass {

public static ArrayClass newInstance() {
count++;
return new ArrayClass();

}

public static void main(String arguments(]) {
new ArrayClass();

}

int count = -1;

OEBPS/html/graphics/497pro01.jpg
1mport java.nio.

public class ReadTemps {

public ReadTemps() {
int[] temperatures = { 78, 80, 75, 70, 79, 85, 92, 99, 90, 85, 87 };

IntBuffer tempBuffer = IntBuffer.wrap(temperatures);
int[] moreTemperatures = { 65, 44, 71 };
tempBuffer. put (noreTemperatures) ;
System.out.println("First int: ' + tempBuffer.get());

OEBPS/html/graphics/136pro02.jpg
Box buildBox(Point toplLeft, Point bottomRight) {
return buildBox(topLeft.x, topLeft.y,
bottonRight.x, bottomRight.y);

OEBPS/html/graphics/21pro02a.jpg
i}

switch (id) {
case (R.id.inageButtont):
action = new Intent(Intent.ACTION DIAL,
Uri.parse ('tel:877-446-6723"));
break;
case (R.id.inageButton2):
action = new Intent(Intent.ACTION_VIEW,
Uri.parse("http://ww.noradsanta.org"));
break;
case (R.id.inageButton3):
action = new Intent(Intent.ACTION_VIEW,
Uri.parse('ge0:0,027q=101 Saint Nicholas Dr., North Pole,
AK")) 5

startActivity(action);

OEBPS/html/graphics/11fig08.jpg
&) Meszage | B e

T

president@whitehouse.gov
‘Subject: Free the Bound Periodicals

cc: BCC:

OEBPS/html/graphics/11fig07.jpg
1,0 (9 wide)

1,1 (9 wide)

,Bo 70

teo

6,2 (4 wide)

SEETE HE
see:|
r N
2 40
5,2 (1 wide)

OEBPS/html/graphics/11fig06.jpg
Ze i gol (#e|l9s

OEBPS/html/graphics/11fig05.jpg
How often do you exercise each week?

O Never @ 1-3times () More than 3.

OEBPS/html/graphics/169pro01.jpg
Iterator loop = new lterator(),;

OEBPS/html/graphics/11fig04.jpg

OEBPS/html/graphics/183pro01.jpg
package org.cadenhead.bureau;

public class Information {
public int duration = 12;
protected float rate = 3.15F;
float average = 0.5F;

OEBPS/html/graphics/11fig03.jpg

OEBPS/html/graphics/11fig02.jpg
(“subscrve][unsuvscrve [Reresn || save |

OEBPS/html/graphics/11fig01.jpg
) Alphabet =]
Burglar | [comse | [Deadbeat
Edence | [Fugitve

OEBPS/html/graphics/199pro01.jpg
public void getFormula(int x, int y) throws NumberFormatkxception {
11 body of method
}

OEBPS/html/graphics/199pro02.jpg
public void storeFormula{int x, int y)
throws NunberFormatException, EOFException |
/1 body of method

OEBPS/html/graphics/107pro03.jpg
1nt ourBestScore;
if (myScore > yourScore) {
ourBestScore = myScore;
b else {
ourBestScore = yourScore;
}

OEBPS/html/graphics/107pro02.jpg
1nt ourBestScore = myScore > yourScore 7 myScore . yoursScore,

OEBPS/html/graphics/09pro04a.jpg
pane.add(commentsLabel);
pane..add (comments) ;
pane..add (ok) ;

pane .add(cancel) ;
add(pane) ;
setvisible(true);

}

private static void setLookAndFeel() {
try {
Ulifanager . setLookAndFeel(
*com. sun. java. swing.plaf.ninbus.NinbusLookAndFeel®
)3
} catch (Exception exc) {
Systen.out.println(exc.getiessage());
}
}

public static void main(String[] argunents) {
Authenticator . setLookAndFeel () ;
Authenticator auth = new Authenticator();

OEBPS/html/graphics/120pro00.jpg
class Ticker {
/1 body of the class

}

OEBPS/html/graphics/153pro01.jpg
1t (yard < @) {
System.out.println("Touchdown!");
score = score + Football.TOUCHDOWN;

OEBPS/html/graphics/107pro01.jpg
test 7 trueresult . falseresult,;

OEBPS/html/graphics/356pro01.jpg
JButton ok = new JButton("OK");
int buttonX = 110;

int buttonY = 110;
ok.setBounds (new Rectangle(buttonX, buttonY,

70, 20)):

OEBPS/html/graphics/356pro02.jpg
Rectangle box = new Rectangle(buttonX, buttonY, 70, 20);
ok .setBounds (box) ;

OEBPS/html/graphics/16tab01.jpg
Character Primitive Type

B byte
c char

D double
F float

int
long.
short

N oo =

boolean

OEBPS/html/graphics/10fig06.jpg
2 Feed nformation S

Name: | Monsuno

URL: hitp:/iwww.monsuno.com

Type: | Commercial

OEBPS/html/graphics/10fig07.jpg
0 10 20)

OEBPS/html/graphics/251pro01.jpg
public class FeedReader extends JFrame {
"
}

OEBPS/html/graphics/pub.jpg

OEBPS/html/graphics/10fig04.jpg
Message ==

V; R

=3

OEBPS/html/graphics/14pro04.jpg
: import java.awt.*;
import java.awt.event.*;
: import java.beans.*;

import javax.swing.

: public class DiceRoller extends JFrame implements ActionListener,
: PropertyChangeListener {

I/ the table for dice-roll results
JTextField[] total = new JTextField[16];
/1 the "Roll" button

JButton roll;

/1 the number of times to roll
JTextField quantity;

/1 the Swing worker

DiceWorker worker;

public DiceRoller() {
super("Dice Roller");
setDefaultCloseOperation (JFrane.EXIT_ON_CLOSE);
setLookAndFeel () ;
setSize(850, 145);

1/ set up top row
JPanel topPane = new JPanel();

GridLayout paneGrid = new GridLayout(1, 16);
‘topPane. setLayout (paneGrid) ;

OEBPS/html/graphics/10fig05.jpg

OEBPS/html/graphics/14pro03.jpg
import javax.swing.*;

public class DiceWorker extends Swinghorker {
int tinesToRoll;

/1 set up the Swing worker
public DiceWorker (int timesToRoll) {
super();
this.tinesToRoll = timesToRoll;

}

/1 define the task the worker performs
protected int[] doInBackground() {
int[] result = new int[16];
for (int i = 0; i < this.tinesToRoll; i++) {
int sum = 0
for (int j = 0; j < 3; j++) {
sun += Math.floor (Math.random() * 6);
¥

result[sun] = result[sun] + 1;

¥
/] transmit the result

return result;

OEBPS/html/graphics/14pro02.jpg
1:
2:
3:

<7xnl version="1.0" encoding="utf-8"7>
<1-- JNLP File for the PageData Application -->
<jnlp
codebase="http: //cadenhead. org/book/java-21-days/java"
href="PageData.jnlp">
<information>
<title>PageData Application</title>
<vendor>Rogers Cadenhead</vendor>
<homepage href="http://ww.java2idays.con"/>
<icon href="pagedataicon.gif"/>
<offline-allowed/>
</information>
<resources>
<j2se version="1.7"/>
<jar href='PageData.jar" />
</resources>
<security>
<all-permissions/>
</security>
<application-desc main-class="PageData" />

: </jnlp>

OEBPS/html/graphics/14pro01.jpg
: import java.awt.*;
import java.awt.event.*;
import java.net.*;
: import java.io.*;

: import javax.swing.

: public class PageData extends JFrame implements ActionListener,
Runnable {

Thread runner;

String[] headers = { "Content-Length”, "Content-Type',
"Date’, "Public", "Expires’, 'Last-Modified",
“Server" };

URL page;
JTextField url;

Jiabel[] headerLabel = new JLabel[7];
JTextField[] header = new JTextField[7];
JButton readPage, clearPage, quitLoading;
Jiabel status;

public PageData() {
super("Page Data");
setDefaultCloseOperation (JFrane. EXIT_ON_CLOSE);
setLookAndFeel();

OEBPS/html/graphics/10fig08.jpg

OEBPS/html/graphics/10fig09.jpg

OEBPS/html/graphics/09pro05a.jpg
}
add(panel) ;
setVisible(true);

}

private static void setLookAndFeel() {
try {
Uianager .setLookAndFeel (
“con.sun. java.swing.plaf.ninbus .NinbusLookAndFeel®
)3
} catch (Exception exc) {
Systen.out.println(exc.getiessage());
i
}

public static void main(String[] argunents) {
FornatFrane. setLookAndFeel() ;
FormatFrane ff = new FormatFrane();

OEBPS/html/graphics/10fig02.jpg

OEBPS/html/graphics/10fig03.jpg

OEBPS/html/graphics/10fig01.jpg
Select an Option =

(e (o J [_canen

OEBPS/html/graphics/094pro02.jpg
Point[] markup = { new Point(1,5), new Point(3,3), new Point(2,3) };

OEBPS/html/graphics/532pro02.jpg
suilder bullder = new Bullder();
File xnlFile = new File('feed.rss");
Document doc = builder.build(xmlFile);

OEBPS/html/graphics/094pro01.jpg
Integer(] series = new Integer{3];

series[0] = new Integer(10);
series[1] = new Integer(3);
series[2] = new Integer(5):

OEBPS/html/graphics/532pro03.jpg
clement root = Qoc.getRoottElement();

OEBPS/html/graphics/094pro03.jpg
String(] titles = { "Mr.", "NMrs.

OEBPS/html/graphics/532pro01.jpg
<1tem>
<title>Free the Bound Periodicals</title>
</item>

OEBPS/html/graphics/346pro02.jpg
JButton ok = new JButton("OK
ok.requestFocus():

OEBPS/html/graphics/346pro01.jpg
JButton sort = new JButton("Sort");
JWenuTten menuSort = new JWlenuItem("Sort");
sort.setActionCommand("Sort Files');
menuSort.setActionCommand("Sort Files'):

OEBPS/html/graphics/280pro01.jpg
String response = JOptionPane.showlnputDialog(null,
Enter your nam

OEBPS/html/graphics/346pro03.jpg
public void focusGained(FocusEvent event) {
"
b

public void focusLost(FocusEvent event) {
T
}

OEBPS/html/graphics/204pro02.jpg
public void readvessage() throws lObxception {
MessageReader nr = new MessageReader () ;

try {
mr.loadHeader () ;
} catch (IOException e) {
// do something to handle the
/1 10 exception and then rethrow
/1 the exception ...
throw e;

OEBPS/html/graphics/204pro01.jpg
public class SunSpotkxception extends Exception {
public SunSpotException() {}
public SunSpotException(String msg) {
super(msg) ;

}

OEBPS/html/graphics/10fig10.jpg
sme g subscrbe 5P Unsubscre

OEBPS/html/graphics/192pro01.jpg
public Squarefool{String input) {
try {
float in = Float.parseFloat(input);
1o
} catch (NumberFormatException nfe) {
Systen.out.println(input + " is not a valid nunber.");
i

OEBPS/html/graphics/10fig11.jpg
2| Tabbed Panes

[wain | Aovancea | Privacy [[E-mail]| Securty

[E=E(EcR =]
[

OEBPS/html/graphics/626pro01.jpg
Palindrome.java

Class Font not found 1n type aeclaration.

OEBPS/html/graphics/231pro03.jpg
for (lterator 1
String name = (String) i.next()
Systen.out.println(nane);

golfer.lterator(); i.hasNext();) {

OEBPS/html/graphics/231pro02.jpg
Iterator 1t = golfer.1iterator().

OEBPS/html/graphics/561pro01.jpg
pyte|] aata = (byte|]) fromServer,

OEBPS/html/graphics/214pro02.jpg
public void run() {
Thread thisThread = Thread.currentThread();
while (runner == thisThread) {
"o
}

OEBPS/html/graphics/214pro01.jpg
public void run() {
while (okToRun == true) {
1o
}

OEBPS/html/graphics/17fig01.jpg
<link>hitp:www rssboard org/<fink>
<description=RSS Advisory Board announcements and Really Simple Syndication news</descriptio
<language>en-us</language>

‘<docs>hitp:iwww.rssboard.orgirss-specification<idocs>
<generator>Wordzilal0.58</generator>
<ti=10<1>

<feedbumerinfo uri="rssboard" ><atom10:ink xmins:atom 10="Titp:/vww.w3.0rg/2005/Atom” rel="hu
<tille=RSS Board hloves to New Server<fitle>
<link>hitp:/feeds rssboard orgi~rirssboardi~3hmagrcbl RUgirss-board-moves-new-senver<fink>
<description><pagtThe <a href="hiip:/www rssboard orgr 8gtRSS Advisory Boardalt/asat has

OEBPS/html/graphics/17pro03.jpg
import java.io.*;
import java.net.*;
import java.util.*;

public class TimeServer extends Thread {
private ServerSocket sock;

public TimeServer() {

super();
try {
sock = new ServerSocket (4415);
System.out.println(*TineServer running ...");

} catch (IOException e) {
System.out.println("Error: couldn't create socket.
System.exit(1);

}

public void run() {
Socket client = null;

while (true) {
if (sock
return;

try {

null)

OEBPS/html/graphics/17pro02.jpg
import java.io.*;
import java.net.*;
import java.util.

public class Finger {
public static void main(String[] arguments) {

String user;
string host;

if ((arguments.length == 1) & (arguments[0].indexOf("@") > -1)) {

StringTokenizer split = new StringTokenizer(arguments(o],
fri
user = split.nextToken();
host = split.nextToken();
} else {
System.out.println("Usage: java Finger user@host');
return;

¥
try (Socket digit = new Socket (host, 79);

BufferedReader in = new BufferedReader (
new InputStreanReader (digit.getInputStrean()));
) {

OEBPS/html/graphics/17pro05.jpg
: import
import
import

: import

: public

java.io.*;
java.net.*;
java.nio.channels.*;
java.util.s;

class FingersServer {

public FingerServer() {

try {
/1 Create a nonblocking server socket channel
ServerSocketChannel sockChannel = ServerSocketChannel.open();
sockChannel.configureBlocking(false);

/1 Set the host and port to monitor

InetSocketAddress server = new InetSocketAddress(
*localhost”, 79);

ServerSocket socket = sockChannel.socket();

socket.bind(server);

/I Create the selector and register it on the channel
Selector selector = Selector.open();
sockChannel.register (selector, Selectionkey.OP_ACCEPT);

/1 Loop forever, looking for client connections
while (true) {

// Wait for a connection

selector.select();

/1 Get list of selection keys with pending events

OEBPS/html/graphics/17pro04.jpg
import
import
inport
import

public

java.nio.*;
java.nio.channels.
java.nio.charset.*;
java.io.*;

class BufferConverter {

public static void main(String[] arguments) {

try {
// read byte data into a byte buffer

String data = "friends.dat";

FileInputStream inData = new FileInputStrean(data);

FileChannel inChannel = inData.getChannel();

long inSize = inChannel.size();

ByteBuffer source = ByteBuffer.allocate((int) inSize);

inChannel. read(source, 0);

source.position(0);

System.out.println("Original byte data:');

for (int i = 0; source.remaining() > 0; i++) {
System.out.print(source.get() + * ");

OEBPS/html/graphics/228pro01.jpg
ArrayList golter

new ArraybList();

OEBPS/html/graphics/17pro01.jpg
import javax.swing.*;
import java.net.*;
import java.io.*;

public class WebReader extends JFrame {
JTextArea box = new JTextArea("Getting data ...");

public WebReader() {
super(“Get File Application”);
setDefaultCloseOperation(JFrame.EXIT_ON_GLOSE);
setSize(600, 300);
JscrollPane pane = new JScrollPane (box);
add(pane) ;
setVisible(true);

}

void getData(String address) throws MalformedURLException {
setTitle(address);
URL page = new URL(address);
StringBuilder text = new StringBuilder();
try {
HttpURLConnection conn = (HttpURLConnection)
page.openConnection () ;
conn. connect () ;
InputStreamReader in = new InputStreamReader (
(InputStrean) conn.getContent());
BufferedReader buff = new BufferedReader(in);

OEBPS/html/graphics/163pro02.jpg
import java.util.*;
inport java.util.jar.*;
import java.util.prefs.*

OEBPS/html/graphics/163pro01.jpg
java.awt.Font text = new java.awt.Font().

OEBPS/html/graphics/643pro01.jpg
This applet demonstrates the use of the Applet's Info feature.

OEBPS/html/graphics/460pro01.jpg
int mods = current.getModitiers();
System.out.println(Modifier.toString(mods));

OEBPS/html/graphics/460pro02.jpg
Class kc = KeyClass.class;

Class(] cons = new Class[2];

cons[0] = String.class;

cons[1] = int.class;

Constructor ¢ = kc.getConstructor(cons):

OEBPS/html/graphics/329pro01.jpg
public MessagePanel() {
GridsagLayout gridbag = new GridBaglLayout();
setLayout (gridbag) ;
/1 add the label
JLabel toLabel = new JLabel("To: *);
GridagConstraints constraint = new GridBagConstraints();
constraint.gridx = 0;
constraint.gridy = 0;
constraint.gridwidth
constraint.gridheight
constraint.weightx = 10;
constraint.veighty = 100;
constraint.fill = GridBagConstraints.NONE;
constraint.anchor = GridBagConstraints.EAST;
gridbag. setConstraints (toLabel, constraint);
add(tolabel);
// add the text field
JTextField to = new JTextField();
constraint = new GridBagConstraints();
constraint.gridx = 1;
constraint.gridy = 0;
constraint.gridwidth
constraint.gridneight
constraint.veightx = 90;
constraint.veighty = 100;
constraint.fill = GridBagConstraints.HORIZONTAL;
constraint.anchor = GridBagConstraints.WEST;
gridbag. setConstraints(to, constraint);
add(to);

15

1

OEBPS/html/graphics/457pro03.jpg
Class keyClass = KeyClass.classj
Class thr = Throwable.class;
Class floater = float.class;

Class floatArray = float[].class:

OEBPS/html/graphics/457pro02.jpg
String keyName = kKeyClass.getName(),;

OEBPS/html/graphics/457pro01.jpg
Class keyClass = kKey.getClass(),

OEBPS/html/graphics/342pro01.jpg
public void actionPerformed(Actiontvent event) {
/1 handle event here
}

OEBPS/html/graphics/342pro02.jpg
public void actionPerformed(Actiontvent event) {
Object source = evt.getSource();
}

OEBPS/html/graphics/02tab07.jpg
Operator Meaning

+ Addition
- Subtraction

- Multiplication
/ Division

% Modulus

< Less than

> Greater than

Less than or equal to
Greater than or equal to
Equal to

Not equal to

Logical AND

OEBPS/html/graphics/02tab06.jpg
Operator

Notes

L0

instanceof

new (type)expression

Y%
-
<< >> >>>

<> <= >=

Parentheses (()) are used to group expressions. A period
(.) is used for access to methods and variables within
objects and classes. Square brackets ([]) are used for
arrays.

The instanceof operator returns true or false based on
whether the object is an instance of the named class or
any of that class's subclasses.

The new operator is used to create new instances of
classes. The parentheses in this case are for casting a
value to another type.

Multiplication, division, modulus
Addition, subtraction
Bitwise left and right shift
Relational comparison tests
Equality

AND

XOR

OR

Logical AND

Logical OR

Ternary operator

Various assignments

More assignments

OEBPS/html/graphics/02tab05.jpg
Operator Meaning Example
Equal to x == 3
Not equal to x 1= 3
< Less than X <

Greater than
Less than or equal to
Greater than or equal to

OEBPS/html/graphics/02tab04.jpg
Expression Meaning

X +=y X=x+y
X .=y X=x-y
X *=y X=x*y
x /=y x=x/y

OEBPS/html/graphics/02tab03.jpg
Operator Meaning Example
+ Addition 3+ 4
- Subtraction 5.7
* Multiplication 5+5
/ Division 14 /7
% Modulus 20 % 7

OEBPS/html/graphics/02tab02.jpg
Escape Meaning

\n New line

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

W Backslash

v Single quotation mark
\ Double quotation mark
\d Octal

\xd Hexadecimal

Unicode character

OEBPS/html/graphics/02tab01.jpg
Type Size Values That Can Be Stored

byte 8 bits -128 to 127

short 16 bits. -32,768 to 32,767

int 32 bits -2,147,483,648 to 2,147,483,647
long 64 bits. -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

OEBPS/html/graphics/196pro01.jpg
try {
readTextFile();

} catch (IOException ice) {
/1 deal with I0 errors

} finally {
closeTextFile();

}

OEBPS/html/graphics/410pro01.jpg
public void propertyChange(PropertyChangetvent event) {
...
}

OEBPS/html/graphics/055pro01.jpg
nt x, y, z; // X, y, and z are all declared

X =

y

42;
X++;

X

/1 x is given the value of 42
/1y is given x's value (42) before it is incremented

/1 and x is then incremented to 43
/] x is incremented to 44, and z is given x's value

OEBPS/html/graphics/407pro01.jpg
<description>The PageData application.</description>

<description kind="one-line">An application to learn more about web
servers and pages.</description>

<description kind="tooltip">Learn about web servers and
pages.</description>

<description kind="short'>PageData, a simple Java application that
takes a URL and displays information about the URL and the web
server that delivered it.</description>

OEBPS/html/graphics/404pro01.jpg
<application-desc main-class="PageData >
<argument>http: //java.con</argument>
<argument>yes</argument>
</application-desc>

OEBPS/html/graphics/407pro02.jpg
<icon kind='splash” href="pagedatasplash.git” width="300

200" />

OEBPS/html/graphics/319pro02.jpg
setlLayout(cards);
String question! = ‘What is your gender?";

String[] responsesi = { "female', "male", "not telling” };
ask[0] = new SurveyPanel(questioni, responsesi, 2);
add(ask[@], "Card 0");

OEBPS/html/graphics/404pro02.jpg
Keytool -genkey -alias examplekey -Keypass swordfish

OEBPS/html/graphics/319pro01.jpg
SurveyPanel[] ask = new SurveyPanel[3];
CardLayout cards = new CardLayout():

OEBPS/html/graphics/483pro01.jpg
int[] temps = { 90, 85, 87, 78, 80, 75, 70, 79, 85, 92, 99 };
IntBuffer tempBuffer = IntBuffer.allocate(temps.length);
for (int i = 0; i < temps.length; i++) {
float celsius = ((float) temps[i] - 32) / 9 * 5;
tempBuffer.put((int) celsius);

}
tempBuffer.position(0);
for (int i = 0; tempBuffer.remaining() > 0; i++) {

System.out.println(tempBuffer.get());
}

OEBPS/html/graphics/379pro03.jpg
GradientPaint pat = new GradientPaint(0f, 0f, Color.white,
100f, 45f, Color.blue);
comp2D.setPaint (pat):

OEBPS/html/graphics/231pro01.jpg
1Nt 1 = golvter.1inaexOT(Stantora’),

OEBPS/html/graphics/379pro01.jpg
GradientPaint gp = new GradientPaint(
x1, y1, colort, x2, y2, color2):

OEBPS/html/graphics/379pro02.jpg
GradientPaint gp = new GradientPaint(
x1, y1, colort, x2, y2, color2, true):

OEBPS/html/graphics/xcfig04.jpg
07/26/2011 8% 1llT3 12:03 AM

Lkl

Wi-Fi Bluetooth ~ GPS

4G

Ongoing

: USB debugging connected
Select to disable USB debugging.

<> USB connected
Select to copy files to/from your computer.

Notifications

OEBPS/html/graphics/653pro02.jpg
stop 1n AppInfo.getAppletInfo

OEBPS/html/graphics/10pro02.jpg
: inport java.awt.event.
inport javax.swing.*

public class Slider extends JFrame {

public Slider() {
super("Slider*);
setDefaultCloseOperation (JFrame . EXIT_ON_CLOSE);

9 setLookAndFeel();

10: Jslider pickNum = new JSlider(JSlider.HORIZONTAL, 0, 30, 5);
11 pickNun.setajorTickSpacing(10);

12: pickNum. setiinorTickSpacing(1);

13: pickNum. setPaintTicks(true);

14: pickNun.setPaintLabels(true);

15: add (pickNun) ;

16: pack();

17: setVisible(true);

18: ¥

19:

20: private void setLookAndFeel() {

21: try {

22: Ullianager . setLookAndFeel (

23: "com.sun. java.swing.plaf.ninbus .NimbusLookAndFeel"
24:)

25: SwingUtilities.updateConponentTreeUI (this);
26: } catch (Exception e) {

27: Systen.err.println(*Couldn't use the systen *
28: + *look and feel: * + e);

29: }

30: }

public static void main(String[] args) {
Slider frame = new Slider();

OEBPS/html/graphics/10pro01.jpg
: import java.awt.GridLayout;
: import java.awt.event.*;
inport javax.swing.*;

: public class FeedInfo extends JFrame {

private JLabel naneLabel = new JLabel("Name: ",
SwingConstants.RIGHT) ;

private JTextField name;

private JLabel urlLabel = new JLabel("URL: ",
SwingConstants.RIGHT) ;

private JTextField url;

private JLabel typeLabel = new JLabel(Type: ',
SwingConstants.RIGHT) ;

private JTextField type;

public FeedInfo() {
super("Feed Information®);
setSize(400, 145);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
setLookAndFeel () ;
/| Site name
string responsel = JOptionPane.showInputDialog(null,
"Enter the site name:*);
nane = new JTextField(responsel, 20);

// Site address

String response2 = JOptionPane.showInputDialog(null
“Enter the site address:*);

url = new JTextField(response2, 20)

11 Site type
String[] choices = { ‘Personal, “Commercial®, "Unknown"
int responsed = JOptionPane.showOptionDialog(null,

“What type of site is it?",

“Site Type',

OEBPS/html/graphics/653pro01.jpg
appletviewer -debug ApplInfo.ntml

OEBPS/html/graphics/xcfig01.jpg
Install

Available Software
Check the items that you wish to install.

| Workwith: http/dl-ssl.google.comy/android/eclipse/

Find more software by working with the *Availsble Softuware Sites" preferences.

[typefittertex

Name
{1 Developer Tools

5 Android DOMS

5 Android Development Tools
%5 Android Hierarchy Viewer
%5 Android Traceview

Version

180,0.¥201203301601-306762
180,0.¥201203301601-306762
180,0.¥201203301601-306762
180,0.¥201203301601-306762

ow only the stest versions of svaisble software
roup items by category

ow only software applicable o target nvironment
Contactal update sites during nstll o find required software

Hide tems that are already installed
What is slready installed?

@

OEBPS/html/graphics/xcfig02.jpg
TErE—

General =~
Android

Ant SDK Location: C:\Program Files (86)\Android\android-sdk Browse...
Note: The list of SDK Targets below is only reloaded once you hit ‘Apply’ or 'OK..

Android Preferences

Data Management
Help
Install/Update Target Name Vendor Platform API...

Javs Android 403 Android Open Source Project 403 15
Java EE

Java Persistence
Javascript

My

Plug-in Development
Remote Systems
Run/Debug

Server

Team
Terminal Standerd Android platform 403

Usage Data Collector
Validation

®

OEBPS/html/graphics/xcfig03.jpg
Packages Tools
SDK Path: C:\Program Files (86)\Android\android-sdk\

“Android 4.0.3 (API15)}
% Google APIs
Android 40 (API14)
ndroid 32 (API13)
Android 31 (API12)
ndroid 30 (API11)
Android 233 (API10)
ndroid 22 (APIS)
Android 21 (API7)
ndroid 16 (APL4)
Android 15 (AP13)

@8 Google AdMob Ads SDK
[71@8 Google Analytics SDK.

bsolete Select New or Updates

Deselect All

&
Done loading packages.

OEBPS/html/graphics/306pro01.jpg
FlowLayout flo = new FlowLayout();

OEBPS/html/graphics/10pro06.jpg
: import java.awt.*;
: import javax.swing.*;

: public class TabPanels extends JFrame {

public TabPanels() {
super ("Tabbed Panes");

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setLookAndFeel() ;
setSize(480, 218);
Jpanel mainSettings = new JPanel();

JPanel advancedSettings = new JPanel();
JPanel privacySettings = new JPanel();

Jpanel emailSettings = new JPanel();

Jpanel securitySettings = new JPanel();
new JTabbedPane () ;

JTabbedPane tabs
tabs.addTab("lMain", mainSettings);

tabs.addTab("Advanced" , advancedSettings);
tabs.addTab("Privacy", privacySettings);
tabs.addTab("E-nail®, emailSettings);
tabs.addTab('Security®, securitySettings);

OEBPS/html/graphics/10pro05.jpg
: import java.awt.*;
inport javax.swing.*;

: public class FeedBar2 extends JFrame {

public FeedBar2() {
super("FeedBar 2');
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setLookAndFeel();
/1 create icons
InageIcon loadIcon = new InageIcon(*load.gif');
InageIcon savelcon = new Inagelcon(*save.gif');
InageIcon subscribelcon = new ImageIcon("subscribe.gif');
InageIcon unsubscribelcon = new Imagelcon("unsubscribe.gif’);
/1 create buttons
JButton load = new JButton(‘Load", loadIcon);
JButton save = new JButton('Save', savelcon);
JButton subscribe = new JButton(*Subscribe”, subscribelcon);
JButton unsubscribe = new JButton('Unsubscribe’, unsubscribeIcon);
/1 add buttons to toolbar
JToolBar bar = new JToolBar();
bar.add(load) ;
bar.add(save);
bar.add (subscribe) ;
bar.add (unsubscribe) ;

/1 create
JilenuIten j1 = new JNenuItem(*Load");
JilenuIten j2 = new JNenuItem("Save');

JllenuTten j3 = new JienuIten("Subscribe');
JienulIten j4 = new JMenuItem(*Unsubscribe);
JilenuBar menubar = new JWenuBar ();

Jienu menu = new Jilenu ('Feeds");
menu.add(j1);

OEBPS/html/graphics/352pro01.jpg
public void mouseReleased(MouseEvent event) {
"o
}

OEBPS/html/graphics/10pro04.jpg
1: import java.awt.*;
inport java.awt.event.*;
inport javax.swing.*

4

5: public class Progresshlonitor extends JFrame {

JProgressBar current;
JTextArea out;
JButton find;

Thread runner;

int num = 0;

public Progresshonitor() {
super("Progress Monitor);
setDefaultCloseOperation(JFrane . EXIT_ON_CLOSE) ;
setLookAndFeel () ;
setSize(205, 68);
setLayout (new FlowLayout());
current = new JProgressBar (0, 2000);
current.setValue(0);
current.setStringPainted(true);
add(current) ;

}

public void iterate() {
while (num < 2000) {

OEBPS/html/graphics/10pro03.jpg
: import java.awt.*;
: import java.awt.event.*;
: inport javax.swing.*

: public class FeedBar extends JFrame {

public FeedBar() {
super ("FeedBar") ;
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setLookAndFeel () ;
/1 create icons
InageIcon loadIcon = new InageIcon(*load.gif')
InageIcon saveIcon = new Inagelcon('save.gif')
InageIcon subscribelcon = new ImageIcon ("subscribe.gif')
InageIcon unsubscribeIcon = new ImageIcon("unsubscribe.gi
/1 create buttons
JButton load = new JButton('Load", loadIcon)
JButton save = new JButton('Save', saveIcon)
JButton subscribe = new JButton("Subscribe’, subscribeIcon)
JButton unsubscribe = new JButton("Unsubscribe’, unsubscribeIcon)
// add buttons to toolbar
JToolBar bar = new JToolBar();
bar.add(load);
bar.add(save) ;
bar.add(subscribe) ;
bar.add(unsubscribe) ;
/1 prepare user interface

OEBPS/html/graphics/505pro01.jpg
Connection payday = DriverhManager.getConnection(
"jdbc:derby: //localhost:1527/payroll®,
"doc”, "1roveri"):

OEBPS/html/graphics/505pro02.jpg
Statement lookSee

ayday.createstatement();

OEBPS/html/graphics/166pro02.jpg
public class Visible {
I e
}

OEBPS/html/graphics/166pro01.jpg
package org.caaenhead.rss,

OEBPS/html/graphics/369pro01.jpg
public volid paintLomponent{Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
i v

OEBPS/html/graphics/14fig05.jpg
o

lear Fields

Content-Length: |p3216.

Content-Type: texthim; charset=UTF-8

Date: | Tue, 08 May 2012 04:32:45 GMT

Expires: | Tue, 08 May 2012 04:33:09 GT.

LastHodified:

Senver: | nginx

Done

OEBPS/html/graphics/14fig04.jpg
Files tab

prerre [y e

B buitar.properties

« i)

OEBPS/html/graphics/14fig06.jpg
| Dice Roller =
T & 5 & T o8& & 1 1 12 1% % 15 & 1 18

53] | 14052 |27670 |45028 |s0a35 |aser | 115558 | 125598 | 124700 | 16020 |07208 |esess | 46260 |28076 |1320 |4737

Times toRoll: 1000000 | R

OEBPS/html/graphics/14fig01.jpg
5] Jova Web Stat Demos

€« C A | © www.oracle.com/technetwork/java/javase/demos-nojavascript-137100.htmi

oy
Java iagazne
Java Advanced

Draw
Atwo dimensional
drawing program
allowing youto
create rectangles,
polygons, circles.

Java 2 SE,v1.2&v1.3

The SwingSet Demo
Avery swingin' app,
this demo shows
how Swing can be
usedto create fun
and exciing
applications using
the Java Foundation
Classes.

Java 2 SE,v1.3

Military Game
Asimple butnon-
trivial board game.

A Simple NotePad
‘Shows howa
sandboxed
application can save
andload flles, print,
and access the

clippoard in a safe
and secure manner
using the JNLP AP

Java 2 SE,v1.2&v1.3

OEBPS/html/graphics/14fig03.jpg
Security Warning

The application has requested write access to a file on
the machine. Do you want to allow this action?

Name: Notepad App
From: _ http:/java.sun.com

7] vy son s cton.

[imn] [nonein]

OEBPS/html/graphics/14fig02.jpg
) Military Game
Actions Help

Man vs Maching
Expertlevel
You are Black

OEBPS/html/graphics/372pro01.jpg
compzb.setRenderingHint (Renderingrints.KEY_ANTIALIASING,
RenderingHints.VALUE ANTIALIAS ON):

OEBPS/html/graphics/04pro02a.jpg
s}

case 12:
count
break;

case 4:

case 6:

case 9:

case 11:
count
break;

case 2:
if (vear % 4

count
else

count
if ((year

count

31;

30;

W

}
return count;

29;

28;
100 =
28;

0) & (year % 400

0))

OEBPS/html/graphics/098pro01.jpg
int{]|] qayValue

new 1nt|[52]|7];

OEBPS/html/graphics/098pro02.jpg
int[JLI[] century = new 1nt[100][52]][7];

System.out.println("Elements in the first dimension: ' + century.length);
System.out.println("Elements in the second dimension: " + century[0].length);
System.out.println("Elements in the third dimension: " + century[@][@].length):

OEBPS/html/graphics/123pro01.jpg
int{] makeRange(1int lower, 1nt upper) {
// body of this method
}

OEBPS/html/graphics/05pro05a.jpg
Boxz rect;

System.out.println("Calling Box2 with coordinates *
+ "(25,25) and (50,50):");

rect = new Box2(25, 25, 50, 50);

rect.printBox();

System.out.println(*\nCalling Box2 with points "
+"(10,10) and (20,20):");

rect= new Box2(new Point(10, 10), new Point(20, 20));

rect.printBox();

System.out.println(*\nCalling Box2 with 1 point "
+ "(10,10), width 50 and height 50:");

rect = new Box2(new Point(10, 10), 50, 50);

rect.printBox();

OEBPS/html/graphics/103pro01.jpg
it x = 55
switch (x) {
case 2:
case 4:
case 6:
case 8:
System.out.println('x is an even number");
break;
default:

System.out.println("x is an odd number”);

OEBPS/html/graphics/525pro01.jpg
DOCTYPE Library SYSTEM "librml.dtd">

OEBPS/html/graphics/633pro01.jpg
\"Program Files"\Java\jdk1.7.0 04\lib\tools.)

OEBPS/html/graphics/07pro02a.jpg
32:

35:
36:

nunPrimes++;
prime = candidate;
}
candidate++;
}
finished = true;
}

boolean isPrine(long checkNunber) {
double root = Wath.sqrt(checkNunber);
for (int i = 2; i <= root; i++) {
if (checkNumber % i == 0)
return false;

}

return true;

OEBPS/html/graphics/05pro04a.jpg
void printBox(){

System.out.print(*Box: <* + x1 + *, * + y1);
System.out.println(", " + x2 + ", '+ y2 + '>*);

public static void main(String[] arguments) {

Box rect = new Box();

System.out.println("Calling buildBox with '

+ *coordinates (25,25) and (50,50):");
rect.buildBox(25, 25, 50, 50);
rect.printBox();

System.out.println("\nCalling buildBox with *

+ *points (10,10) and (20,20):");
rect.buildBox(new Point(10, 10), new Point(20, 20));
rect.printBox();

System.out.println(*\nCalling buildBox with *
+ "point (10,10), width 50 and height 50:");

rect.buildBox(new Point(10, 10), 50, 50);
rect.printBox();

OEBPS/html/graphics/20pro03.jpg
import
inport
import
inport
import

public

java.io.*;

java.net.*;

java.util.*;
org.apache.xnlrpc. *;
org.apache.xmlrpc.client.*;

class SiteClient {

public static void main(String arguments[]) {

SiteClient client = new SiteClient();
try {
Hashllap<String, String> response = client.getRandonSite();
/1 Report the results
if (response.size() > 0) {
System.out.println("URL: * + response.get(*url")
+ "\nTitle: " + response.get('title")
+ "\nDescription: " + response.get(*description));
}
} catch (IOException ioe) {
System.out.println("10 Exception: ' + ioe.getMessage());
} catch (XnlRpcException xre) {
System.out.println("XML-RPC Exception

" + xre.getMessage());

OEBPS/html/graphics/20pro02.jpg
HTTP/1.0 200 OK

Date: Tue, 15 Mar 2012 05:19:17 GMT

Server: Apache/1.3.26 (Unix) mod_virgule/i.41 PHP/4.1.2 mod_perl/1.26
ETag: "PbT9cMgXsXnW520qREFNAA=
Content -MD5: PbTICMgXSXnu520GREFNAA==
Content-Length: 157

Connection: close

Content-Type: text/xnl

: <7xnl version="1.0"2>
: <methodResponse>

<parans>
<param>
<value>
<int>169</int>
</value>
</paran>
</params>

: </methodResponse>

OEBPS/html/graphics/20pro05.jpg
import java.util.*;

public interface DmozHandler {
public HashMap getRandonSite();

T}

OEBPS/html/graphics/113pro01.jpg
long 1
do {
i*=2;
System.out.print(i + * ");
} while (i < 3 000 000 000 00OL):

Lt

OEBPS/html/graphics/20pro04.jpg
import java.io.*;
inport org.apache.xnlrpc.*;

import org.apache.xmlrpc.server. *;
inport org.apache.xnlrpc.webserver. *;

public class DmozServer {
public static void main(String[] arguments) {
try {
startServer();
} catch (IOException ioe) {
System.out.println("Server error: ' +
ioe. getMessage());
} catch (XmlRpcException xre) {
System.out.println("XNL-RPC error: * +
xre.getMessage());

OEBPS/html/graphics/20pro06.jpg
inport java.sql.*;
inport java.util.*;

public class DmozHandlerImpl implements DmozHandler {

public Hashiap getRandonSite() {
Connection conn = gethySqlConnection();
HashMap<string, String> response = new Hashlap<>();
try {
Statement st = conn.createStatement();
ResultSet rec = st.executeQuery(
"SELEGT * FROM cooldata ORDER BY RAND() LIMIT 1°);
if (rec.next()) {
response.put(“url", rec.getString("url"));
response.put(“title”, rec.getString("title"));
response.put ("description”, rec.getString("description"));
} else {
response.put ("error”, "no database record found");
}
} catch (SQLException sqe) {
response.put("error”, sqe.getMessage());

OEBPS/html/graphics/349pro01.jpg
void itemStateChanged(ItemEvent event) {
1"
}

OEBPS/html/graphics/352pro02.jpg
public void mouseUragged(Mousetvent event) {

...
b

public void mouseMoved (MouseEvent event) {
1o
}

OEBPS/html/graphics/201pro02.jpg
public void readFloat(String input) throws NumberFormatException {
float in = Float.parseFloat(input);

}

OEBPS/html/graphics/201pro01.jpg
public WebRetriever() throws MalformedURLException {
"
}

OEBPS/html/graphics/07pro02.jpg
1: public class PrineFinder implements Runnable {
: public long target;

public long prine;

public boolean finished = false;

private Thread runner;

PrineFinder(long inTarget) {
target = inTarget;
if (runner == null) {
runner = new Thread(this);
runner.start () ;

}

public void run() {
long nunPrines = 0;
long candidate = 2;

while (nunPrimes < target) {

if (isPrime(candidate)) {

OEBPS/html/graphics/07pro01.jpg
: class HexReader {
string[] input = { "000A110D1D266219 *

"78700F1318141EQC ",
"6A197DASBOFFFFFF * };

public static void main(String[] argunents)
HexReader hex = new HexReader ()

for (int i = 0; i < hex.input.length; it++
hex.readLine hex.input[i])

}

void readLine(String code) {

try {
for (int j = 05 j + 1 < code.length(); j += 2) {

String sub = code.substring(j, j+2);
int nun = Integer.parselnt(sub, 16);
if (num 255)

return;
Systen. out.print (nun + *

}
} finally {
Systen.out.println(***

}

return;

OEBPS/html/graphics/437pro01.jpg
Fi1leReader look = new FileReader(index.txt"),;

OEBPS/html/graphics/623pro01.jpg
PATH rightfoldername ;%PATH%

OEBPS/html/graphics/623pro02.jpg
“Program Files \Java\]ak1.7.0 04\bin;%PATH%

OEBPS/html/graphics/06pro02a.jpg
return 1;

else if (this.price > temp.price)
return -1;

return 0;

i

public String getId() {
return id;

i

public String getName() {
return name;

i

public double getRetail() {
return retail;

}

public int getQuantity() {
return quantity;
}

public double getPrice() {
return price;

}

OEBPS/html/graphics/437pro02.jpg
FileReader text = new FileReader(readme.txt");
int inByte;
do {

inByte = text.read();

if (inByte != -1)

System.out.print((char)inByte);

} while (inByte != -1);
System.out.println("");
text.close();

OEBPS/html/graphics/02tab07a.jpg
I Logical OR
Logical NOT
& AND

] OR

" XOR

= Assignment
b Increment

- Decrement

Add and assign
Subtract and assign
Multiply and assign
Divide and assign
Modulus and assign

OEBPS/html/graphics/450pro02.jpg
disko.writeObject(userData);

OEBPS/html/graphics/450pro01.jpg
FileOutputStream disk
“Savedobject.dat");
ObjectOutputStream disko

new FileQutputStream(

ew ObjectOutputStream(disk);

OEBPS/html/graphics/20pro01.jpg
1: POST /XMLRPC HTTP/1.0
2: Host: www.advogato.org
3: Connection: Close

4: Content-Type: text/xml
5: Content-Length: 151

6: User-Agent: OSE/XML-RPC
7
8
9

1 <?xml version="1.0"?>

: <methodCall>
10: <methodName>test.square</methodName>
11: <params>
12: <param>
13: <value>
14: <int>13</int>
15: </value>
16: </param>
17: </parans>

18: </methodCall>

OEBPS/html/graphics/07pro03.jpg
1: public class PrineThreads {
public static void main(String[] arguments) {
PrineThreads pt = new PrineThreads (arguments);

}

public PrineThreads(String[] argunents) {
PrimeFinder(] finder = new PrimeFinder[argunents.length];
for (int i = 0; i < argunents.length; i++) {
try {
long count = Long.parseLong(argunents[i]);
finder[i] = new PrimeFinder (count);
System.out.println("Looking for prime " + count);
} catch (NumberFormatException nfe) {
Systen.out.println("Error: " + nfe.getiessage());

}
}
boolean complete = false;
while (1complete) {
complete = true;
for (int j = 0; j < finder.length; j++) {

OEBPS/html/graphics/16pro01.jpg
1: import java.io.*;
2: inport java.util.*;

3:
4: public class ObjectWriter {

5 public static void main(String[] arguments) {
6: Message mess = new Message();

7 String author = "Sam Wainwright, London';
8

: string recipient = "George Bailey, Bedford Falls";
9: string[] letter = { "Mr. Gower cabled you need cash. Stop.",

10: "My office instructed to advance you up to twenty-five',
11: “thousand dollars. Stop. Hee-haw and Merry Christmas.” };
12: Date now = new Date();

18: mess.writeMessage (author, recipient, now, letter);

14: try {

15: FileOutputStrean fo = new FileOutputStream(

16: "Message.obj");

17: ObjectOutputStrean 0o = new ObjectOutputStrean(fo);

18: 00.writeObject (mess);

19: 00.close();

20: System.out.println(“Object created successfully.");

21: } catch (IOException e) {

22: System.out.println(*Error -- * + e.toString());

23: }

OEBPS/html/graphics/16pro02.jpg
1:
2:
3

5:
6:
7:
8:

import java.io.*;
import java.util.*;

4: public class ObjectReader {

public static void main(String[] arguments) {

try {
FileInputStream fi = new FileInputStream(

"message.obj");

ObjectInputStrean oi = new ObjectInputStream(fi);

Message mess = (Message) oi.readObject();
System.out.println("Message:\n");
System.out.println(*From: * + mess.from);
System.out.println("+ mess.to);

System.out.println(*Date: * + mess.when + *\n");

for (int i = 0; i < mess.lineCount; i++)
Systen.out.println(mess.text[i]);
oi.close();
} catch (Exception e) {

System.out.println("Error -- * + e.toString());

}

OEBPS/html/graphics/16pro03.jpg
import java.lang.reflect.*;

: public class MethodInspector {

public static void main(String[] arguments) {
Class inspect;
try {
if (arguments.length > 0)
inspect = Class.forName (argunents[@]);
else
inspect = Class. forName("MethodInspector®);
Method[] methods = inspect.getDeclarediethods ();
for (int i = 0; i < methods.length; i++) {
Method methval = methods[i];
Class returnval = methval.getReturnType();
int mods = methVal.getModifiers();
String modval = Modifier.toString(mods);
Class[] paranVal = methval.getParameterTypes();
StringBuffer params = new StringBuffer();
for (int j = 0; j < paramval.length; j++) {
if (5 >0)
parans.append(*, *);
parans.append (paranval(j].getNane());
1
System.out.println("Method: ' + methval.getName() + "()");
Syste.out.println(*Modifiers: * + modval);
System.out.println("Return Type: " + returnval.getName());
System.out.println(*Parameters: * + params + "\n');
}
} catch (ClassNotFoundException c) {
System.out.println(c.toString());

OEBPS/html/graphics/345pro01.jpg
public void actionPerformed(Actiontvent event) {
"o
}

OEBPS/html/graphics/08pro01a.jpg
public static void main(String[] arguments) {
HolidaySked cal = new HolidaySked();
if (arguments.length > 0) {
try {
int whichDay = Integer.parseInt(argunents[0]);
if (cal.isHoliday(whichDay)) {
System.out.println("Day number ' + whichDay +
" is a holiday.
} else {
System.out.println("Day number ' + whichDay +
" is not a holiday.");

+
} catch (NumberFormatException nfe) {
Systen.out.println('Error: * + nfe.getiessage());

i

OEBPS/html/graphics/159pro01.jpg
public static fTinal int TOUCHDOWN = 6;

static final String TITLE = "Captain®:

OEBPS/html/graphics/193pro02.jpg
try 1
/1 code that might generate exceptions

} catch (IOException ioe) {
Systen.out.println(*Input/output error’);
Systen.out.println(ioe.getilessage()) ;

} catch (ClassNotFoundException cnfe) {
Systen.out.println("Class not found");
Systen.out.println(cnfe.getilessage()) ;

} catch (InterruptedException ie) {
Systen.out.println("Progran interrupted");
Systen.out.println(ie.getMessage());

OEBPS/html/graphics/193pro01.jpg
try {
float in = Float.parseFloat(input);

} catch (NumberFormatException nfe) {
Systen.out.println(*0ops: ' + nfe.getessage());

}

OEBPS/html/graphics/289pro01.jpg
JocrollPane scroller = new JocrollPane(textBox,
VERTICAL_SCROLLBAR_ALWAYS,
HORIZONTAL SCROLLBAR NEVER):

OEBPS/html/graphics/458pro01.jpg
Class lab

Class.forName("javax.swing.JLabel

OEBPS/html/graphics/046pro02.jpg
/* This program occasionally deletes all files on
your hard drive and renders it unusable
forever when you click the Save button. */

OEBPS/html/graphics/312pro02.jpg
GridLayout gr2

new GriaLayout(10, 3, 5, 8);

OEBPS/html/graphics/046pro01.jpg
int creditHours

/| set up credit hours for course

OEBPS/html/graphics/312pro01.jpg
GridLayout gr = new GridLayout(10, 3),;

OEBPS/html/graphics/08pro03a.jpg
comix[2] = new Comic("Cerebus", "1A", "good", 144.00F);

conix[2] .setPrice((Float) quality.get(comix[2].condition));

for (int i = 0; i < comix.length; i++) {
System.out.printn(*Title: * + conix[i].title);
Systen.out.println(*Issue: " + comix[i].issueNunber);
Systen.out.println("Condition: * + comix[i].condition);
Systen.out.println("Price: $' + comix[i].price + '\n");

: class Comic {

String title;
String issueNumber;
string condition;
float basePrice;
float price;

Comic(String inTitle, String inIssueNumber, String inCondition,
float inBasePrice) {

title = inTitle;
issueNunber = inIssueNunber;
condition = inCondition;
basePrice = inBasePrice;

}

void setPrice(float factor) {
price = basePrice * factor;

}

OEBPS/html/graphics/256pro01.jpg
JButton play = new JButton(
JButton stop = new JButton(
JButton rewind = new JButton('Rewind"):

OEBPS/html/graphics/256pro02.jpg
JButton quit = new JButton('Quit
JPanel panel = new JPanel();
panel.add(quit):

OEBPS/html/graphics/16pro01a.jpg
:)

: class Message implements Serializable {

int lineCount;
string from, to;
Date when;
string[] text;

void writeMessage(String inFrom,
string inTo,
Date iniihen,
String[] inText) {

text = new String[inText.length];

for (int i = 0; i < inText.length; i++)
text([i] = inText[i];

lineCount = inText.length;

to = inTo;

from = inFrom;

when = inWhen;

OEBPS/html/graphics/572pro01.jpg
<?xml versio
<resources>
<string name="hello">Sit on a Potato Pan, Otis!</string>
<string name="app_name">Palindrome</string>
</resources>

1.07 utft-8"7>

OEBPS/html/graphics/096pro01.jpg
2009 productiot
2010 production: 3,500,000
2011 production: 3,450,000
Average production: 3,583,333

3,800,000

OEBPS/html/graphics/282pro01.jpg
string[] gender = { "Male", “Female”,
“None of Your Business' };
int response = JOptionPane.showoptionDialog(null,
“What is your gender?",
“Gender",
o,
JOptionPane . INFORMATION_MESSAGE,
null,
gender,
gender([2]);
System.out.println(“You chose * + gender[response]):

OEBPS/html/graphics/102pro01.jpg
String command = “close”;
switch (command) {
case "open":
openFile();
break;
case "close”:
closeFile();
break;
default:
System.out.println("Invalid conmand");

}

OEBPS/html/graphics/102pro02.jpg
switch (operation) {
case '+':
add(object1, object2);
break;

case '-':
subtract (object!, object2);
break;
case '*':
multiply(object1, object2);
break;
case '/':
divide(object, object2);
break;

OEBPS/html/graphics/555pro01.jpg
WebServer server = new WebServer(4413);
XmlRpcServer xmlRpcServer = server.getXmlRpcServer():

OEBPS/html/graphics/152pro01.jpg
class Logger {
private String format;

public String getFormat() {
return this.format;

}

public void setFormat(String format) {

if ((format.equals("common”)) || (format.equals(’combined"))) {
this.format = format;

}

OEBPS/html/graphics/401pro01.jpg
<title>PageData Application</title>

OEBPS/html/graphics/143pro01.jpg
1T (condition == true)

super(1,2,3); // call one superclass constructor
else

super(1,2): // call a different constructor

OEBPS/html/graphics/p637_01.jpg
jJava version "1.7.0_04"
Java(TM) SE Runtime Environment, Standard Edition (build1.7.0_04-b22)
Java HotSpot(TM) 64-Bit Server VM (build 23.0-b21, mixed mode)

OEBPS/html/graphics/p637_02.jpg
public static void main(sString[| arguments) {
/1 Method here
}

OEBPS/html/graphics/20pro04a.jpg
public static void startServer() throws IOException, XmlRpoException {
/1 Greate the server
System.out.println("Starting Dnoz server
WebServer server = new WebServer(4413);
XnlRpcServer xmlRpcServer = server.getXnlRpcServer();
PropertyHandlerliapping phm = new PropertyHandleriapping();

/1 Register the handler
phn. addHandler ("dmoz", DmozHandlerImpl.class);
xnlRpcServer. setHandlerMapping (phn) ;

/1 Start the server
server.start();
System.out.println("Accepting requests ...");

OEBPS/html/graphics/636pro01.jpg
java VideoBook ada DVD "Invasion of the Bee Girls®

OEBPS/html/graphics/12pro06a.jpg
add(keyLabel);
setvisible(true);

}

private static void setLookAndFeel() {
try {
Uianager . setLookAndFeel (
“com.sun. java.swing.plaf.nimbus.NimbusLookAndFeel"
)3
} cateh (Exception exc) {
System.err.println(*Couldn't use the systen "
+ "look and feel: ' + exc);

}
public static void main(String[] arguments) {

KeyChecker2. setLookAndFeel () ;
new KeyChecker2();

OEBPS/html/graphics/022pro01.jpg
void checklemperature() {
if (temperature > 660) {
status = "returning home
speed

OEBPS/html/graphics/336pro01.jpg
lmport java.awt.
import javax.swing.*;

public class Absolute extends JFrame {

public Absolute() {
super ("Exanple");
setSize(300, 300);
Container pane = getContentPane();
pane. setLayout (null);
JButton myButton = new JButton("Click Me");
myButton. setBounds (new Rectangle(10, 10, 120, 30));
pane. add(myButton) ;
setContentPane (pane) ;
setVisible(true);

}

public static void main(String[] arguments) {
Absolute ex = new Absolute();
}

OEBPS/html/graphics/297pro01.jpg
JMenubar bar
bar.add(n7);
qui.setJMenuBar (bar) ;

new JlenuBar();

OEBPS/html/graphics/224pro02.jpg
while (users.hasNext{}) {
Object ob = users.next();
Systen.out.println(ob);

OEBPS/html/graphics/224pro03.jpg
whileé (users.hashext()) {
String ob = (String) users.next();
Systen.out.println(ob);

OEBPS/html/graphics/08fig03.jpg
keyo f——>{ Elemento
eyl f——> Element1
key2 f——>{ Element2
keys [——>{ Elements

OEBPS/html/graphics/08fig02.jpg
Position
from
top
0

Element3

Element2

Elementl

Element0

Top

Botiom

OEBPS/html/graphics/08fig01.jpg
index

Value

9

Booleand

Booleanl

Boolean2

Boolean3

OEBPS/html/graphics/224pro01.jpg
public boolean hasNext();
public Object next();

sublic void remove():

OEBPS/html/graphics/038pro02.jpg
dante.speed = 2, dante.temperature = 510;

OEBPS/html/graphics/038pro01.jpg
int weight = 2255
System.out.println("Free the bound periodicals!");

song.duration = 230;

OEBPS/html/graphics/241pro01.jpg
comix[@].setPrice((Float) quality.get(comix[@].condition));

OEBPS/html/graphics/022pro02.jpg
void showAttributes() {
System.out.println("Statu + status);
System.out.println("Speed: * + speed);
System.out.println("Temperature: " + temperature);

OEBPS/html/graphics/320pro02.jpg
JPanel subl = new JPanel();
JLabel quesLabel = new JLabel(ques);
sub1.add(quesLabel):

OEBPS/html/graphics/320pro01.jpg
surveyPanel(String ques, Stringl] resp, int def) {

question = new JLabel(ques);
response = new JRadioButton[resp. lengthl;
/1 more to come

OEBPS/html/graphics/0dpro01.jpg
: public class HelloUser {

public static void main(String[] arguments) {
String username = System.getProperty(‘user.nane");
System.out.println("Hello * + username);

OEBPS/html/graphics/337pro01.jpg
import java.awt.*;
inport javax.swing.*;

public class ThreeButtons extends JFrame {
public ThreeButtons() {
super(*Progran) ;
setSize(350, 225);
setDefaultCloseOperation(JFrane . EXIT_ON_CLOSE)
JButton alpha = new JButton("Alpha’);
JButton beta = new JButton('Beta');
JButton ganma = new JButton('Gamna');
JPanel content = new JPanel();
11 answer goes here
content.add(alpha) ;
content.add(beta) ;
content.add(ganma) ;
add(content) ;
pack();
setvisible(true);

i

public static void main(String[] arguments) {
ThreeButtons b3 = new ThreeButtons ();

i

OEBPS/html/graphics/134pro01.jpg
Box buildBox(int x1, int y1, int x2, 1int y2) {

this.x1 = x1;

this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

return this;

OEBPS/html/graphics/20pro03a.jpg
:)

}

public Hashiap getRandonSite()

throws I0Exception, XmlRpoException {

/] Create the client

XnlRpcClientConfigInpl config = new XmlRpcClientConfigImpl();

URL server = new URL("http://localhost:4413/");

config.setServerURL (server) ;

XmlRpcClient client = new XmlRpcClient();

client.setConfig(config);

// Create the parameters for the request

ArraylList params = new ArrayList();

// Send the request and get the response

Hashllap result = (HashMap) client.execute('dmoz
parans);

return result;

.getRandonSite",

OEBPS/html/graphics/134pro03.jpg
Box buildBox(Point toplLeft, int w, 1int h)

x1 = topleft.x;
y1 = topLeft.y;
X2 = (x1 +w);
y2 = (y1 +h);

return this;

OEBPS/html/graphics/134pro02.jpg
Box buildBox(Point toplLeft, Point bottomRight) {

x1 = topLeft.x;
y1 = topLeft.y;
X2 = bottomRight.x;
y2 = bottomRight.y;

return this;

OEBPS/html/graphics/01fig07.jpg
Method is overridden
by this definition

iniial method
definiion

Message sent o object and
passed up class hierarchy.
uniil a definiion s found

OEBPS/html/graphics/01fig06.jpg
Method
dofiniion

Message sent to object and
passed up class hierarchy.
Uniil a definiion s found

OEBPS/html/graphics/20pro06a.jpg
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

}
return response;

}

private Connection gethySqlConnection() {
Connection conn = null;
String data = "jdbc:nysql://localhost/cool" ;
try {
Class. forName("con.nysql. jdbc.Driver);
conn = Driverhanager.getConnection(
data, "cool", 'mrfreeze");
} catch (SQLException s) {
system.out.println("sQL Error: ' + s.toString() + * '
+ s.getErrorCode() + * * + s.getSQLState());
} catch (Exception e) {
systen.out.println("Error: " + e.toString()
+ e.getlessage());

}

return conn;

OEBPS/html/graphics/320pro04.jpg
JPanel sub3 = new JrPanel();
nextButton.setEnabled(true) ;
sub3.add (nextButton) ;
finalButton.setEnabled(false);
sub3.add(finalButton):

OEBPS/html/graphics/320pro03.jpg
JPanel subz = new JPanel();

for (int i = 0; i < resp.length; i++) {
if (def == 1) {
response[i] = new JRadioButton(resp[i], true)
} else {
response[i] = new JRadioButton(resp[i], false)

}
group.add(response[i]);
sub2.add(response[i]);

OEBPS/html/graphics/01fig01.jpg
Internal Modem
Uses COM1
Supports error-control
(Concrete)

0000

External Modem
Uses COM1
Supports ertor-control
(Concrete)

Modem Class
(Abstract)

External Modem
Uses COM2
No error-control
(Concrete)

OEBPS/html/graphics/425pro01.jpg
9 0 33 254 79 67 111 112 121 114 105 103 104 116 32
50 48 48 48 32 98 121 32 83 117 110 32 77 105 99 114
111 115 121 115 116 101 109 115 44 32 73 110 99 46
32 65 108 108 32 82 105 103 104 116 115 32 82 101
115 101 114 118 101 100 46 13 10 74 76 70 32 71 82
32 86 101 114 32 49 46 48 13 10 0 59 -1

Bytes read: 266

OEBPS/html/graphics/01fig03.jpg
Class A |

+Class Als the superclass of B
+Class B s a subclass of A
+Class B i the superclass

o C,D, and E
+Clasées C, D, and £

are subclasses of B

Class B |
— T —1

Class C

Class D

Class E

OEBPS/html/graphics/01fig02.jpg
i

- Java21x (run) %

El AT

Scacus: exploring
Spesa: 2

Temperacure: 510.0
Tncreasing speed to 3.
Scacus: exploring
Spesa: 3

Temperacure:
Changing temperature to 670
Scacus: exploring

Spesa: 3

Temperacure: €70.0

Chacking the tempersture.
Stacus: recurning home
Spesa: §

Temperacure: €70.0

s10.0

OEBPS/html/graphics/01fig05.jpg
Walking Robot

Two-Legged Four-Legged
Walking Robot Walking Robot

Guard Robot I Science Rnbml Search Robot I

OEBPS/html/graphics/01fig04.jpg
Object

Robot

Walking Robot I Driving Robot I

OEBPS/html/graphics/xefig01.jpg
Applet Viewer:frog.class
Applet

Applet started.

OEBPS/html/graphics/xefig03.jpg
[This applet demonstrates the use of the Applets Info feature.

IName — String — Programmers name
[Date — String — Today's date
|Version — int — Version number

OEBPS/html/graphics/xefig02.jpg
2/ Appiet. [|

Applet

Narne: Rogers Cadenhead
Date: 0530112

Version: 6

Applet started.

OEBPS/html/graphics/321pro04.jpg
ask[0] .nextButton.addActionListener(tnis);
ask[0].finalButton.addActionListener (this):

OEBPS/html/graphics/xefig04.jpg
Method Summary

Methods

Modifier and Type Method and Description

Java.lang.String getAppletinto()
‘This method describes the appletfor any browsing tool that requests information from the program.
java.lang.String(1(] getParaneterInfo()

“This method describes the parameters that the applet can take for any browsing tool that requests
this information.

init()

This method s called when the appletis firstnitialized.

paint (java.awe.Graphics screen)

‘This method s called when the applets display window is being repainted.

Methods inherited from class javax.swing.JApplet

addlupl, createRootPane, getAccessibleContext, getContentPane, getGlassane, getGraphics, getdVenuBar,
getlayeredbane, getRootPane, getlransferdandler, isRootPaneCheckingEnsbled, paramString, remove, repaint,
setContentPane, setGlassPane, setVenuBar, setlayeredPane, setlayout, setRootPane,
setRootPeneCheckingEnebled, setTransferfiendler, update

OEBPS/html/graphics/321pro02.jpg
void setfinalQuestion(boolean TinalQuestion) {
if (finalQuestion) {
nextButton.setEnabled(false);
finalButton.setEnabled(true);

OEBPS/html/graphics/321pro03.jpg
public class SurveyWizard extends JPanel implements ActionListener {
/1 more to cone
}

OEBPS/html/graphics/321pro01.jpg
GridLayout grid = new GridLayout(3, 1)
setLayout (grid);

add(sub1) ;

add (sub2) ;

add (sub3) ;

OEBPS/html/graphics/17pro04a.jpg
20: ¥

21: /1 convert byte data into character data

22: source.position(0);

23: Charset ascii = Charset.forName("US-ASCII");

24: CharsetDecoder toAscii = ascii.newDecoder();

25: CharBuffer destination = toAscii.decode(source);
26: destination.position(0);

27: System.out.println(*\n\nNew character data:");
28: for (int i = 0; destination.remaining() > 0; i++) {
29: System.out.print (destination.get());

30: }

31: System.out.println();

32: } catch (FileNotFoundException fne) {

33: System.out.println(fne.getMessage());

34: } catch (IOException ioe) {

35: System.out.println(ioe.getMessage());

36: }

37: ¥

38: }

OEBPS/html/graphics/330pro01.jpg
private vold addComponent(Component component, int gridx, int gridy,
int gridwidth, int gridheight, int weightx, int weighty, int fill
int anchor) {

GridBagConstraints constraint = new GridBagConstraints();
constraint.gridx = gridx;

constraint.gridy = gridy;

constraint.gridwidth = gridwidth;
constraint.gridheight = gridheight;
constraint.weightx = weightx;
constraint.weighty = weighty;

constraint.fill = fill;

constraint.anchor = anchor;

gridbag. setConstraints(conponent, constraint);
add (conponent) ;

OEBPS/html/graphics/09pro07a.jpg
setVisible(true);

}

private static void setLookAndFeel() {
try {
Ulifanager . setLookAndFeel(
*com. sun. java. swing.plaf.ninbus.NinbusLookAndFeel®
)3
} catch (Exception exc) {
Systen.out.println(exc.gethessage());
}
}

public static void main(String[] argunents) {
Subscriptions.setLookAndFeel () ;
Subscriptions app = new Subscriptions();

OEBPS/html/graphics/17pro05a.jpg
30:
31:
32:
33:
34:
35:
36:
a7:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

Set keys = selector.selectedKeys();
Iterator it = keys.iterator();

// Handle each key
while (it.hasNext()) {

/1 Get the key and remove it from the iteration
Selectionkey selkey = (Selectionkey) it.next();

it.remove();
if (selKey.isAcceptable()) {

/] Create a socket connection with the client
ServerSocketChannel selChannel =
(ServerSocketChannel) selKey.channel();
ServerSocket selSocket = selChannel.socket();
Socket connection = selSocket.accept();

// Handle the finger request
handleRequest (connection) ;
connection.close();

}
}
} catch (IOException ioe) {
System.out.println(ioe.getMessage());
}

OEBPS/html/graphics/17pro05b.jpg
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71
72:
73:
74:
75:
76:
778
78:
79:
80:
81:
82:
83:
84:
85:

private void handleRequest(Socket connection) throws IOException {

/1 Set up input and output

InputStreamReader isr = new InputStreanReader (
connection.getInputStrean());

BufferedReader is = new BufferedReader (isr);

PrintWiriter pw = new PrintWriter (new
BufferedOutputStream (connection.getOutputStrean()),
false);

/1 Output server greeting
pw.println("Nio Finger Server");
pw.flush();

// Handle user input
String outLine = null;
String inLine = is.readLine();

if (inLine.length() > 0) {
outLine = inLine;

}
readPlan(outLine, pw);

// Clean up
pw.flush();
pw.close();
is.close():

OEBPS/html/graphics/662pro01.jpg
Color ¢c3 = new Color(OxFF, OxCC, 0x66),

OEBPS/html/graphics/17pro05c.jpg
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
11:
112:
113:
114:
115:

}

private void readPlan(String userName, PrintWriter pw) {

try {
FileReader file = new FileReader (userName + ".plan");
BufferedReader buff = new BufferedReader(file);
boolean eof = false;

pw.println("\nUser name: * + userName + "\n");

while (leof) {
string line = buff.readLine();

if (line == null) {
eof = true;

} else {
pw.println(line);

}

}

buff.close();
} catch (IOException e) {
pw.println(“User " + userName + * not found.");
}
}

public static void main(String[] arguments) {
FingerServer nio = new FingerServer();
}

OEBPS/html/graphics/529pro05.jpg
Document doc = new Document(rss),;

OEBPS/html/graphics/529pro04.jpg
Text titlelText = new Text(Workbench"),;

OEBPS/html/graphics/529pro03.jpg
rss.addAttribute(version);

OEBPS/html/graphics/529pro02.jpg
Attribute version = new Attribute("version”, "2.0");

OEBPS/html/graphics/529pro01.jpg
clement rss = new element(rss’);

OEBPS/html/graphics/361pro01.jpg
Joutton bl
b1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
setTitle("Rosencrantz");
}

b
b2.addActionListener (new ActionListener() {
public void actionPerformed(ActionEvent evt) {
setTitle('Guildenstern");
¥
1)

OEBPS/html/graphics/095pro01.jpg
float[] rating = new Tloat[20];
rating[20] = 3.22F;

OEBPS/html/graphics/095pro02.jpg
System.out.println(“Elements: " + rating.length);

OEBPS/html/graphics/15fig01.jpg

OEBPS/html/graphics/281pro03.jpg
JOptionPane.showMessageDialog(null,
"An asteroid has destroyed the Earth.",
"Asteroid Destruction Alert",
JOptionPane .WARNING MESSAGE):

OEBPS/html/graphics/303pro01.jpg
import java.awt.*;
inport javax.swing.*;

public class AskFrame extends JFrame {

public AskFrame() {
setDefaultCloseOperation(JFrane.EXIT_ON_CLOSE)
Jslider value = new JSLider(0, 255, 100);
add(value);
setSize (450, 150);
setVisible (true);
super();

Y

public static void main(String[] argunents) {
AskFrane af = new AskFrame();
}

OEBPS/html/graphics/556pro01.jpg
PropertyHanalerMapping phm = new PropertyHandlerMapping().

OEBPS/html/graphics/281pro02.jpg
JOptionPane.showMessageDialog(null,
"The program has been uninstalled

OEBPS/html/graphics/556pro02.jpg
phm.addHandler("dmoz", DmozHandlerImpl.class);
xmlRpcServer.setHandlerMapping (phm) @

OEBPS/html/graphics/120pro01.jpg
class SportsTicker extends Ticker {
/1 body of the class

}

OEBPS/html/graphics/281pro01.jpg
String response = JOptionPane.showlnputDialog(null,
"What is your ZIP code?",
"Enter ZIP Code',
JOptionPane.QUESTION MESSAGE):

OEBPS/html/graphics/117pro01.jpg
public class Cases {
public static void main(String[] arguments)
float x = 9;
float y = 5;
int z = (int)(x / y);
switch (z) {
case 1:
X =x+2;
case 2:
X =x+3;
default:
X=x+1;

}
System.out.println("Value of x: " + x);

OEBPS/html/graphics/247pro01.jpg
public class Recursion {
public int dex

public Recursion() {
dex = getvValue(17);
i

public int getValue(int dexvalue) {
if (dexValue > 100)
return dexvValue;
else
return getValue(dexValue * 2);
i

public static void main(String[] arguments) {
Recursion r = new Recursion();
Systen.out.println(r.dex);

OEBPS/html/graphics/363pro01.jpg
mport java.awt.event.®;

inport javax.swing.*;

inport java.awt.*;

public class Interface extends JFrame implements ActionListener {
public boolean deleteFile;

public Interface() {
super("Interface');
JLabel comnandLabel = new JLabel("Do you want to delete the file?");
JButton yes = new JButton("Yes');
JButton no = new JButton(*No');
yes.addActionListener (this);
no.addActionListener(this);

setLayout(new BorderLayout());
JPanel botton = new JPanel();
botton.add(yes);
botton.add(no) ;
add("North*, commandLabel);
add("South”, bottom);

pack();
setVisible(true);

}

public void actionPerformed(ActionEvent evt) {
JButton source = (JButton) evt.getSource();
/1 answer goes here
deleteFile = true;
else
deleteFile = false;
}

public static void main(String(] arguments) {
new Interface();
}

OEBPS/html/graphics/474pro02.jpg
DatalnputStream 1n = new DatalnputStream(
new BufferedInputStrean(
sock.getInputStream())):

OEBPS/html/graphics/474pro01.jpg
ButferedInputStream bis = new
BufferedInputStrean(connection. getInputStrean());
DatalnputStrean in = new DatalnputStream(bis);

BufferedOutputStrean bos = new
BufferedOutputStrean(connection.getOutputStrean());
DataOutputStream out = new DataOutputStream(bos):

OEBPS/html/graphics/288pro01.jpg
JTextArea textBox = new JTextArea(7, 30);
JscrollPane scroller = new JScrollPane (textBox);
mainPane.add(scroller):

OEBPS/html/graphics/288pro02.jpg
Dimension pref = new Dimension(350, 100);
scroller.setPreferredSize(pref):

OEBPS/html/graphics/587pro01.jpg
action = new Intent(Intent.ACTION_DIAL, Uri.parse(
"tel:877-446-6723"));

action = new Intent(Intent.ACTION_VIEW, Uri.parse(
"http://www.noradsanta.org"));

action = new Intent(Intent.ACTION_VIEW, Uri.parse(
"9e0:0,070=101 Saint Nicholas Dr., North Pole, AK")):

OEBPS/html/graphics/170pro02.jpg
public interface Expandable {
public abstract void expand(); // explicitly public and abstract
void contract(); // effectively public and abstract

OEBPS/html/graphics/170pro01.jpg
1nterface Expandable {
I
}

OEBPS/html/graphics/08pro04.jpg
1: import java.util.*;
2

3: public class CodeKeeper2 {

4 ArrayList<String> list;

5: string[] codes = { 'alpha“, "lambda’, "ganma’, 'delta’, "zeta' };
6:

7 public CodeKeeper2(String[] userCodes) {

8: list = new ArrayList<>();

9: 1/ 1oad built-in codes

10: for (int i = 0; i < codes.length; i++) {

1: addCode (codes[i]);

12: ¥

13: 11 1oad user codes

14: for (int j = 0; j < userCodes.length; j++) {
15: addCode (userCodes(j1);

16: }

17: 11 display all codes

18: for (String code : list) {

19: System.out.println(code);

20: }

21: }

22:

23: private void addCode(String code) {

if (!list.contains(code)) {
List.add(code) ;

public static void main(String[] argunents) {
CodeKeeper2 keeper = new CodeKeeper2(argunents) ;

OEBPS/html/graphics/506pro01.jpg
select TABLEID, TABLENAME from SYS.SYSTABLES
where (TABLETYPE = 'S') order by TABLENAME:

OEBPS/html/graphics/08pro01.jpg
inport java.util.*;

public class HolidaySked {

BitSet sked;

public HolidaySked() {
sked = new BitSet(365);
int[] holiday = { 1, 15, 50, 148, 185, 246,
281, 316, 326, 359 };
for (int i = 0; i < holiday.length; i++) {
addHoliday (holiday[i]);
}

¥

public void addHoliday(int dayToAdd) {
sked. set (dayToAdd) ;
i

public boolean isHoliday(int dayToCheck) {
boolean result = sked.get(dayToCheck);
return result;

OEBPS/html/graphics/506pro02.jpg
ResultSet set = looksee.executeQuery(
“select TABLEID, TABLENAME from SYS.SYSTABLES "
+ " where (TABLETYPE = 'S') order by TABLENAVE';

OEBPS/html/graphics/08pro02.jpg
DNoOs LN =

inport java.util.*;

: public class CodeKeeper {
ArrayList list;
string(] codes = { "alpha’, 'lambda’, gamma‘, ‘delta’, ‘zeta" }

public CodeKeeper (String[] userCodes)

List = new ArrayList()

// load built-in codes

for (int i = @; i < codes.length; i++) {
addCode (codes[1]);

Y

/1 1oad user codes

for (int j = @; j < userCodes.length; j++) {
addCode (userCodes(j]);

i

11 display all codes

for (Iterator ite = list.iterator(); ite.hashext();) {
String output = (String) ite.next();
System.out.println(output);

}

private void addCode(String code) {
if (!list.contains(code)) {
list.add(code) ;
i
}

public static void main(String[] arguments) {
CodeKeeper keeper = new CodeKeeper (arguments);

OEBPS/html/graphics/08pro03.jpg
1: inport java.util.®;
public class ComicBooks {

public ComicBooks() {
}

public static void main(String[] arguments) {
/1 set up hash map
Hashifap quality = new Hashiap();
float pricet = 3.00F;
quality.put(‘mint", pricet);
float price2 = 2.00F;
quality.put(“near mint®, price2);
float priced = 1.50F;
quality.put(*very fine’, price3);
float priced = 1.00F;
quality.put(fine", priced);
float price5 = 0.50F;
quality.put(“good", prices);
float price6 = 0.25F;
quality.put(‘poor", price6);
/1 set up collection
Conic[] comix = new Comic[3];
conix[0] = new Comic('Amazing Spider-Man', "1A", ‘very fine',
5_000.00F) ;
conix[0].setPrice((Float) quality.get(conix[0].condition));
conix[1] = new Comic(*Incredible Hulk®, "181", ‘near mint’,
240.00F) ;
comix[1].setPrice((Float) quality.get(comix[1].condition));

OEBPS/html/graphics/652pro02.jpg
beterring breakpolnt writeBytes:14
I+ will be set after the class is loaded.

OEBPS/html/graphics/652pro01.jpg
stop 1n Sellltem.SetPrice

OEBPS/html/graphics/652pro03.jpg
run WriteBytes
VM Started: Set deferred breakpoint WriteBytes:14

Breakpoint hit: "thread=nain', WriteBytes.main(), line=14 bci=413
14 for (int i = 0: i < data.length: i++)

OEBPS/html/graphics/371pro03.jpg
try {
File ttf = new File('Verdana.ttf');
FileInputStrean fis = new FileInputStream(ttf);
Font font = Font.createFont (Font.TRUETYPE_FONT, fis);
} catch (IOExceptionFontFormatException exc) {
Systen.out.println("Error: * + exc.getlessage());
}

OEBPS/html/graphics/371pro02.jpg
public vold paintlomponent{Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
Font f = new Font("Arial Narrow", Font.PLAIN, 72);
compaD. setFont (f);
compD. drawstring(*1'n deeply font of you*, 13, 100);

OEBPS/html/graphics/371pro01.jpg
Font T = new Font(Dialog , Font.BOLD + FoOnt.ITALIC, 24),

OEBPS/html/graphics/06pro01.jpg
public class InstanceCounter {

private static int nunInstances = 0;

protected static int getCount() {
return numInstances;

}

private static void addInstance() {
nunInstances++;

}

InstanceCounter() {
InstanceCounter.addInstance () ;

}

public static void main(String[] arguments) {
System.out.println("Starting with * +
InstanceCounter.getCount() + * objects’);
for (int i = 0; i < 500; ++i)
new InstanceCounter();
System.out.println("Created * +
InstanceCounter.getCount() + * objects’);

OEBPS/html/graphics/06pro04.jpg
package org.cadenhead. econnerce;

public class Giftshop {
public static void main(String[] arguments) {

Storefront store = new Storefront();
store.addItem("C01", "WUG", "9.99", "150");
store.addItem("C02", "LG WUG", "12.99", "82");
store.addIten("C03", "MOUSEPAD', "10.49", "800");
store.addIten("D01", "T SHIRT", "16.99", '90");
store.sort();

for (int i = 0; i < store.getSize(); it++) {
Ttem show = (Item)store.getTten(i);
System.out.println(*\nIten ID: * + show.getId() +
"\nName: " + show.getName() +
“\nRetail Price: $ + show.getRetail() +
"\nPrice: §' + show.getPrice() +
"\nQuantity: " + show.getQuantity());

OEBPS/html/graphics/06pro05.jpg
1: public class SquareTool {
public SquareTool (String input) {

try {
float in = Float.parseFloat(input);

Square sq = new Square(in);
float result = sq.value;
Systen.out.println('The square of ' + input
+ %45 '+ result);
} catch (NumberFormatException nfe) {
Systen.out.println(input
+* is not a valid number.");

}

class Square {
float value;

Square(float x) {
value = x * x;

}

public static void main(String[] argunents) {
if (argunents.length < 1) {
Systen.out.println('Usage: java SquareTool number®);
} else {
SquareTool dr = new SquareTool(arguments[0]);
i

OEBPS/html/graphics/06pro02.jpg
1: package org.cadenhead.ecommerce;

i public class Item implements Comparable {
: private String id;

private String name;

private double retail;

private int quantity;

private double price;

Tten(String idIn, String nameIn, String retailln, String quanIn) {
id = idIn;
name = nameIn;
retail = Double.parseDouble (retailln);
quantity = Integer.parseInt(quanIn);

if (quantity > 400)
price = retail * .5D;
else if (quantity > 200)
price = retail * .6D;
else
price = retail * .7D;
price = Math.floor(price * 100 + .5) / 100;
i

public int compareTo(Object obj) {
Ttem temp = (Ttem)obj;
if (this.price < temp.price)

OEBPS/html/graphics/06pro03.jpg
: package org.cadenhead.econmerce;

inport java.util.*;

public class Storefront {
private LinkedList catalog = new LinkedList();

public void addIten(String id, String name, String price,
String quant) {

Ttem it = new Iten(id, name, price, quant);
catalog.add(it);
}

public Item getItem(int i) {
return (Ttem)catalog.get(i);

}

public int getSize() {
return catalog.size();
}

public void sort() {
Collections.sort(catalog);
¥

OEBPS/html/graphics/079pro01.jpg
float gpa = 2.25F;
System.out.println("Honest, mom, my GPA is a " + (gpa + 1.5));

OEBPS/html/graphics/087pro02.jpg
boolean checkl = "Texas™ instanceof String; // true

Point pt = new Point(10, 10);
hoolean check2 = pt instanceof String; // false

OEBPS/html/graphics/142pro02.jpg
void doMethod(String a, String b) {
/1 do stuff here
super.dolethod(a, b);
/1 do more stuff here

OEBPS/html/graphics/484pro01.jpg
Charset 1soset = Charset.forName("IS0-8859-1"),;

OEBPS/html/graphics/087pro01.jpg
String name = kKey.getClass().getName(),;

OEBPS/html/graphics/142pro01.jpg
void printhe() {
System.out.println('x is " + x + ", y is " +y +
Yzds '+ z7);
System.out.println("I an an instance of the class * +
this.getClass().getName());

OEBPS/html/graphics/109pro02.jpg
for (1 = 4001; notPrime(1); 1 += 2);

OEBPS/html/graphics/109pro03.jpg
int x
for (i = 0; i< 10; it+);
X = x * i: // this line is not inside the loop!

OEBPS/html/graphics/109pro01.jpg
String[] salutation = new String[10];

int i; // the loop index variable

for (i = 0; i < salutation.length; it++)
salutation[i] = 'Mr.";

}

OEBPS/html/graphics/408pro02.jpg
doInBackground() {
int sum = 0;
for (int i = 0; i < timesToRoll; i++) {
for (int j = 05 j < 3; j++) {
sun += Math. floor(Math.random() * 6);
}
}

result[sun] = result[sun] + 1;
return result;

OEBPS/html/graphics/441pro00.jpg
Path source = FileSystems.getDetault().getPath(essay.txt");

OEBPS/html/graphics/441pro01.jpg
File sourceFile - source.toFile(),;

OEBPS/html/graphics/408pro01.jpg
public class DiceWorker extends SwingWorker {
...
}

OEBPS/html/graphics/160pro01.jpg
public final void getSignature() {
/1 body of method
}

OEBPS/html/graphics/160pro02.jpg
public final class ChatServer {
/1 body of method
}

OEBPS/html/graphics/072pro02.jpg
FamilyMember dad = new FamilyMember();
System.out.println(*Family's surname is: * + dad.surname);
System.out.println("Family's surname is: " + FamilyMember.surname):

OEBPS/html/graphics/072pro01.jpg
class FamilyMember {
static String surname = "Mendoza';
String name;
int age;

OEBPS/html/graphics/368pro01.jpg
Jrrame maln = new Jrrame(‘Welcome Screen”);
JPanel pane = new JPanel();
nain.add(pane):

OEBPS/html/graphics/01pro01.jpg
class VolcanoRobot {
String status;
int speed;
float temperature;

void checkTemperature() {
if (temperature > 660) {

status = "returning home";

speed =

}

void showAttributes() {
System.out.println("Status: * + status);
System.out.println("Speed: * + speed);
System.out.println("Temperature: * + temperature);

OEBPS/html/graphics/01pro02.jpg
1: class VolcanoApplication {

2 public static void main(String[] arguments) {

3 VolcanoRobot dante = new VolcanoRobot ();

4 dante.status = "exploring";

5: dante.speed = 2;

6: dante.temperature = 510;

7

8 dante.showAttributes();

9 System.out.println("Increasing speed to 3.");
10: dante.speed = 3;

1: dante. showAttributes();

12: System.out.println("Changing temperature to 670."
13: dante.temperature = 670;

14: dante. showAttributes();

15: System.out.println("Checking the temperature.”);
16: dante.checkTenperature() ;

17: dante.showAttributes();

18: }

OEBPS/html/graphics/145pro01.jpg
int total(int argil, 1int argz, int arg3d) {.
float total(int argl, int arg2, int arg3) {

OEBPS/html/graphics/02pro02.jpg
25: }

public class Weather {

public static void main(String[] arguments) {
float fah = 86;

System.out.println(fah + * degrees Fahrenheit is ..

// To convert Fahrenheit into Celsius
// begin by subtracting 32

fah = fah - 82;

// Divide the answer by 9

fah = fah / 9;

// Multiply that answer by 5

fah = fah * 5;

systen.out.println(fah + * degrees Celsius\n');

float cel = 33;

System.out.println(cel + " degrees Celsius is ..
// To convert Celsius into Fahrenheit

// begin by multiplying by 9

cel = cel * 9;

// Divide the answer by 5

cel = cel / 5;

// Add 32 to the answer

cel = cel + 82;

System.out.println(cel + " degrees Fahrenheit");

)

i

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/02pro01.jpg
public class Variables {

public static void main(String[] arguments) {
final char UP = 'U’
byte initiallevel = 12;
short location = 13250;
int score = 3500100;
boolean newGame = true;

System.out.println("Level: * + initiallevel);
System.out.println("Up: * + UP);

OEBPS/html/graphics/275pro01.jpg
mport javax.swing.®;

public class Display extends JFrame {
public Display() {
super (“Display”);
/1 answer goes here
JLabel hello = new JLabel("Hello");
JPanel pane = new JPanel();
add(hello);
pack();
setVisible (true);
Y

public static void main(String[] arguments) {
Display ds = new Display();
}

OEBPS/html/graphics/128pro03.jpg
1nt count = Integer.parselnt(42"),

OEBPS/html/graphics/128pro01.jpg
System.ex1t(0);

long now = System.currentTimeMillis():

OEBPS/html/graphics/128pro02.jpg
static void exit(int argl) {
/1 body of the method
}

OEBPS/html/graphics/089pro01.jpg
public class AyeAye {
int i = 40;
int j;

public AyeAye() {
setValue(i++);

}

void setValue(int inputValue) {
int i = 20;
j=i+1;
System.out.println('j = * + j);

OEBPS/html/graphics/213pro01.jpg
Looklng Tor prime 1
Looking for prime 10
Looking for prime 100
Looking for prime 1000
Prine 1 is 2

Prine 10 is 29

Prine 100 is 541

brime 1000 is 7919

OEBPS/html/graphics/213pro02.jpg
Looklng Tor prime 1
Looking for prime 10
Looking for prime 100
Looking for prime 1000
Prine 1 is 2

Prine 100 is 541

Prine 10 is 29

brime 1000 is 7919

OEBPS/html/graphics/263pro01.jpg
JPasswordField codePhrase = new JPasswordrield(20);
codePhrase.setEchoChar('#'):

OEBPS/html/graphics/432pro01.jpg
What 1s your name? Amerigo Vespuccil

Hello, Amerigo Vespucci

OEBPS/html/graphics/191pro01.jpg
Exception java.lang.InterruptedException
nust be caught or it must be declared in the throws clause
of this method.

OEBPS/html/graphics/10pro01a.jpg
o,
JOptionPane .QUESTION_WESSAGE,
null,
choices,
choices[0]);
type = new JTextField(choices[responsed], 20);

setLayout (new GridLayout(3, 2));
add(naneLabel) ;

add(nane) ;

add(urlLabel);

add(url);

add(typeLabel);

add(type) ;

setLookAndFeel () ;
setVisible(true);

}

private void setLookAndFeel() {
try {
UTiianager . setLookAndFeel (
com.sun. java.swing.plaf.ninbus . NinbusLookAndFeel”

)3
SwingUtilities.updateComponentTreeUI (this);
} catch (Exception e) {
Systen.err.println("Couldn't use the system "
+ "look and feel: ' + e);

}

public static void main(String[] argunents) {
FeedInfo frane = new FeedInfo();
}

OEBPS/html/graphics/331pro02.jpg
(f RGO A Lt LAbe AL (8,5) 1 CR1L Waae.

JLabel ccolabel = new JLabel("CC: *);

addConponent (ccLabel, 0, 2, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints EAST);

/] add a CC text field at (1,2) 4 cells wide

JTextField oc = new JTextField();

addConponent (cc, 1, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,
GridBagConstraints WEST);

// add a BCC label at (5,2) 4 cells wide

JLabel boclabel = new JLabel('BCC: *);

addConponent (bceLabel, 5, 2, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints.EAST);

/1 add a BOC text field at (6,2) 4 cells wide

JTextField bec = new JTextField();

addComponent (bce, 6, 2, 4, 1, 40, 100, GridBagConstraints.HORIZONTAL,
GridBagConstraints.WEST):

OEBPS/html/graphics/331pro01.jpg
JLabel subjectLabel = new JLabel{ subject: "),

addComponent (subjectLabel, 0, 1, 1, 1, 10, 100, GridBagConstraints.NONE,
GridBagConstraints.EAST) ;

JTextField subject = new JTextField();

addConponent (subject, 1, 1, 9, 1, 90, 100, GridBagConstraints.HORIZONTAL.
GridBagConstraints.WEST):

OEBPS/html/graphics/15pro03a.jpg
BufferedOutputStream buff = new
BufferedOutputStrean(file)) {

for (int out = start; out <= finish; out++) {
buff.urite(out);
System.out.print(* * + out);

}

buff.close();

return true;

} catch (IOException e) {
System.out.println(*Exception: * + e.getMessage());
return false;

}

boolean readStrean() {
try (FileInputStream file = new
FileInputStream("numbers.dat");
BufferedInputStrean buff = new
BufferedInputStrean(file)) {

int in;
do {
in = buff.read();
if (in 1= -1)
System.out.print(* * + in);
} while (in 1= -1);
buff.close();
return true;
} catch (IOException e) {
System.out.println(*Exception: ° + e.getiessage());
return false;

OEBPS/html/graphics/625pro01.jpg
Program rilles\Java\jak1.7.0 04\pbin

OEBPS/html/graphics/073pro01.jpg
customer.addToCart(i1temNumber, price, quantity),

OEBPS/html/graphics/533pro02.jpg
Elements children = channel.getChildElements()

OEBPS/html/graphics/533pro01.jpg
Element channel = root.getFirstChildElement("channel

OEBPS/html/graphics/533pro04.jpg
Text linklext = (Text) link.getChila(9);

OEBPS/html/graphics/533pro03.jpg
for (int 1 = 0; 1 < children.size(); 1++) {
Element link = children.get(i);
}

OEBPS/html/graphics/06fig01.jpg
Projects ® | Files | Services | a

=& B
&l Source Packages.
& <defat package>
8 ArayCoerjava
(6 Averager jave
6 Boxava
6 Boxzjeve
) DayCounter.java.
(8 EqasTesterjova
(8 Holfoolars ove
[Holflooperave
(8 InstanceCounter ave
S ——
(8 passersava E
(8 Ponisetterjava
(8 prersava
{8 Rangeliter v
[RefTesterjova
[spersas.iove
(6 StingCheckerjava
& Testiava
(6 TokenTester v
(6 variables.java
(8 vokanoappication java
8] vokanoRobotava
L[weather ava
[org.cadenhead.ecommerce .
Item java 2

Packages

OEBPS/html/graphics/533pro05.jpg
1t (linkText.getValue().equals("http://workbench.cadenhead.org/"))
o
}

OEBPS/html/graphics/439pro01.jpg
FlleWriter letters = new FileWriter(alphabet.txt’);
for (int i = 65; i < 91; i++)

letters.write((char)i);
letters.close():

OEBPS/html/graphics/439pro02.jpg

OEBPS/html/graphics/121pro02.jpg
static int SUM;
static final int MAXOBJECTS = 10:

OEBPS/html/graphics/310pro01.jpg
JPanel optionPane = new JPanel();

BoxLayout box = new BoxLayout(optionPane,
BoxLayout.Y_AXS)

optionPane.setLayout (box):

OEBPS/html/graphics/360pro01.jpg
KeyAdapter monitor = new KeyAdapter() {
public void keyTyped(KeyEvent event) {
keyLabel.setText("" + event.getKeyChar());
repaint();

OEBPS/html/graphics/121pro01.jpg
class VolcanoRobot extends ScienceRobot {
String status;
int speed;
float temperature;
int power;

OEBPS/html/graphics/124pro03.jpg
// the X i1nstance variable for this object

OEBPS/html/graphics/124pro01.jpg
Ihe array: [4 56 78 9 10 11 12 13 |

OEBPS/html/graphics/124pro02.jpg
t = this.x; /1 the x 1nstance variable for this object

z.resetData(this); // call the resetData method, defined in
/1 the z class, and pass it the current object

return this: // return the current object

OEBPS/html/graphics/077pro01.jpg
1nt firstPrice = 225;
int secondPrice = 217;
int higherPrice = Math.max(firstPrice, secondPrice):

OEBPS/html/graphics/18pro01.jpg
inport java.sql.*;

public class SysTableReporter {
public static void main(String(] arguments) {

String data = "jdbc:derby://localhost:1527/sample" ;
try (
Connection conn = DriverManager.getConnection(
data, "app*, "APP");
Statement st = conn.createStatement()) {

Class. forName(*org.apache.derby. jdbc.ClientDriver®);

ResultSet rec = st.executeQuery(
“select * ' +
“from SYS.SYSTABLES * +
“order by TABLENAWE");
while(rec.next()) {
System.out.println("TABLEID: \t" + rec.getString(1));
System.out.println("TABLENAVE:\t" + rec.getString(2));
System.out.println(“TABLETYPE:\t* + rec.getString(3));
Systen.out.println("SCHEMAID: \t" + rec.getString(4));
Systen.out.println();
}
st.close();
} catch (SQLException s) {
System.out.println("SQL Error: * + s.toString() + * "
+ s.getErrorCode() + " ' + s.getSOLState());
} catch (Exception e) {
System.out.println("Error: * + e.toString()
+ e.getMessage());

OEBPS/html/graphics/18pro02.jpg
inport
import
import
import

public

java.io.*;
java.net.*;
java.sql.*;
java.util.*;

class QuoteData {

private String ticker;

public QuoteData(String inTicker) {

}

ticker = inTicker;

private String retrieveQuote() {

StringBuilder builder = new StringBuilder();
try {
URL page = new URL("http://quote.yahoo.com/d/quotes.csv2s=" +
ticker + "&f=sliditiciohgvée=.csv");
string line;
URLConnection conn = page.openConnection();
conn.connect () ;
InputStreanReader in= new InputStreanReader(
conn.getInputStrean());
BufferedReader data = new BufferedReader (in);
while ((line = data.readLine()) != null) {
builder.append(line);
builder.append(*\n");
}
} catch (MalformedURLException mue) {
System.out.println("Bad URL: " + nue.getMessage());
} catch (IOException ioe) {

OEBPS/html/graphics/070pro02.jpg
float total = store.customer.orderTotal;

OEBPS/html/graphics/070pro01.jpg
float total = customer.orderTotal;

OEBPS/html/graphics/198pro01.jpg
Socket digit = new Socket(host, 79);
BufferedReader in = new BufferedReader(
new InputStreamReader (digit.getInputStream())):

OEBPS/html/graphics/040pro01.jpg
String zipCode = "02134°;
int box = 350;

boolean pbs = true;

String name = "Zoom", city = "Boston", state = "MA

OEBPS/html/graphics/xdfig09.jpg
classpath system

User variables for Rogers.

variable

Create new variable —

Variable Value E

INCLUDE. CVProgram Fies (x86) Wicrosoft Visual

i) CtProgram Fies (x86) Wicrosoft Visual

Path CiProgram Fies (x36) Uitragdit)

TEWP. HUSERPROFILE%AppData\LocallTemp =

System varizbles

Variable: Valve =

ATISTREAVSOK... C:Program Fies (8)ATisweam| |

CLassPATH 4C:\Program Fies (x86) Uava\re6Vb. .

ComSpec Co\Windows\system32iond.exe.

FP_NO_HOST C... NO -
New.

o] Cema]

OEBPS/html/graphics/340pro01.jpg
public class Suspense extends Jrrame implements ActionListener,
TextListener {
"o

OEBPS/html/graphics/452pro01.jpg
Object created successfully.

OEBPS/html/graphics/09pro02.jpg
1: import javax.swing.*;
2:

public class ButtonFrame extends JFrame {
JButton load = new JButton("Load");
JButton save = new JButton("Save);
JButton unsubscribe = new JButton('Unsubscribe’);

public ButtonFrame() {
super (“Button Frame');
setSize (340, 170);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE);
JPanel pane = new JPanel();
pane.add(load) ;
pane.add(save) ;
pane.add(unsubscribe) ;
add(pane) ;
setVisible(true);

private static void setLookAndFeel() {
try {
Ulianager . setLookAndFeel (
“con.sun. java.swing. plaf.ninbus.NinbusLookAndFeel*
)i
} catch (Exception exc) {
Systen.out.println(exc.getilessage()) ;
}
}

public static void main(String[] arguments) {
setLookAndFeel () ;
ButtonFrame bf = new ButtonFrame();

OEBPS/html/graphics/504pro02.jpg
jdbc:derby://localhost:1527/sample

OEBPS/html/graphics/09pro01.jpg
: import javax.swing.*;

: public class SinpleFrame extends JFrame {

public SimpleFrame() {
super(“Frame Title');
setSize (300, 100);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;
setLookAndFeel() ;
setVisible(true);

}

1

2

3

4

5

6

7

8

9

10

1:

12: private static void setLookAndFeel()

13 try {

14 UIManager.setLookAndFeel(
5 “con.sun. java. swing. plaf . ninbus. NinbusLookAndFeel®
16)i

17 } catch (Exception exc) {

18 /{ ignore error

19 }

20

}

22: public static void main(String[] arguments) {
23: setLookAndFeel() ;
24: SimpleFrane sf = new SimpleFrame();

OEBPS/html/graphics/504pro01.jpg
Class.forName("org.apache.derby.jdbc.ClientDriver"”);

OEBPS/html/graphics/09pro04.jpg
1: import javax.swing.*;

: public class Authenticator extends javax.swing.JFrame {
i JTextField username = new JTextField(15);
JPasswordField password = new JPasswordField(15);
JTextArea conments = new JTextArea(4, 15);

JButton ok = new JButton("0K');

JButton cancel = new JButton('Cancel’);

public Authenticator() {
super("Account Information');
setSize(300, 220);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JPanel pane = new JPanel();

JLabel usernameLabel = new JLabel('Username: *);
JLabel passwordLabel = new JLabel('Password:);
JLabel conmentsLabel = new JLabel('Comments: *);
conments. setLinelirap (true);

conments. setlirapStyleliord (true) ;

pane..add (usernaneLabel) ;

pane..add (usernane) ;

pane..add (passwordLabel) ;

pane.add (password) ;

OEBPS/html/graphics/09pro03.jpg
1: dnport javax.swing.*;

public class IconFrame extends JFrame {
JButton load, save, subscribe, unsubscribe;

public Iconframe() {
super(*Icon Frame');
setDefaultCloseOperation (JFrane.EXIT_ON_CLOSE) ;
JPanel panel = new JPanel();
// create icons
InageIcon loadIcon = new InageIcon(*load.gif');
Inagelcon savelcon = new Inagelcon(*save.gif');
Inagelcon subscribelcon = new InageIcon('subscribe.gif');
InageIcon unsubscribelcon = new InageIcon('unsubscribe.gif*);
// create buttons
load = new JButton("Load", loadIcon);
save = new JButton("Save’, savelcon);
subscribe = new JButton(Subscribe’, subscribeIcon);
unsubscribe = new JButton(*Unsubscribe®, unsubscribeIcon);
// add buttons to panel
panel. add(Load) ;
panel.add(save) ;
panel.add(subscribe) ;
panel.add (unsubscribe) ;
/1 add the panel to a frame
add(panel) ;
pack();
setVisible(true);

}

public static void main(String[] arguments) {
TconFrane ike = new IconFrame();
}

OEBPS/html/graphics/09pro06.jpg
inport javax.swing.*;

3: public class FormatFrame2 extends JFrame {
4: string[] formats = { “Aton, 'RSS 0.92", 'RSS 1.0, 'RSS 2.0° };
JConboBox formatBox = new JComboBox (fornats) ;

public FormatFrame2() {
super (“Choose a Fornat");
setSize (220, 150);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;
JPanel pane = new JPanel();
JLabel formatLabel = new JLabel(Output formats:
pane.add(fornatLabel) ;
pane..add (fornatBox) ;
add(pane) ;
setVisible(true);

}

private static void setLookAndFeel() {

try {

Ulifanager . setLookAndFeel (
“com.sun. java.swing.plaf.ninbus.NinbusLookAndFeel®

)3

} catch (Exception exc) {
Systen.out.println(exc.getiessage()) ;

}

}

public static void main(String[] arguments) {
FormatFrane2. setLookAndFeel () ;
FormatFrane2 ff = new FormatFrame2();

OEBPS/html/graphics/xdfig02.jpg
8 Command Prompt

icrosoft Windows LUersion 6.1.76811
opyright Cc> 2889 Microsoft Corporation. A1l rights reserved.

C:\Users\R
ava HotSpot(TH> 64-Bit Server UM (huild 23.8-b21, mixed node>

:\Users\Rogers>._

ommand line

OEBPS/html/graphics/09pro05.jpg
inport javax.swing.*;

3: public class FormatFrame extends JFrame {
JRadioButton[] teams = new JRadioButton[4];

public FormatFrame() {
super("Choose an Output Format');
setSize(320, 120);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

teams[0] = new JRadioButton(*Aton");
teams[1] = new JRadioButton('RSS 0.92");
teams[2] = new JRadioButton("RSS 1.0");
teams[3] = new JRadioButton('RSS 2.0', true);

JPanel panel = new JPanel();
JLabel chooseLabel = new JLabel(

“Choose an output format for syndicated news items.);
panel.add(chooseLabel) ;
ButtonGroup group = new ButtonGroup();
for (JRadioButton team : teams) {

group.add(tean) ;

panel.add(team);

OEBPS/html/graphics/xdfig01.jpg
ORACLE

Select optional features to nstal from the st below. You can change your chaice of features after
installation by using the Add/Remove Programs utity n the Control Panel

Festure Description

Java SE Development Kt 7
Update 4 (64it), incuding
private JRE 7Update 4. This wil
require 300VB on your hard
dive.

Instal tor

CoVrogram Fies\lavalidk1.7.0_04\ henge...

OEBPS/html/graphics/xdfig04.jpg
Creating a folder

Command Prompt

Microsoft Windous [Version 6.1.|16011
[Copyright Cc> 2089 i poration. A1l rights reserved.

[C:\Users\Rogersdnd
[c:\Users Rogersded cinstutf ==

o s\stufF>_

Opening the new folder

OEBPS/html/graphics/09pro07.jpg
: import javax.swing.*;

public class Subscriptions extends JFrame {
string[] subs = { 'OXDECAFBAD', "Cafe au Lait’,
"Hack the Planet’, "Ideoplex”, ‘Inessential, 'Intertwingly’,
"Markpasc®, 'Postneo”, "RC3', "Workbench® };
JList sublist = new JList(subs);

public Subscriptions() {
super(*Subscriptions®) ;
setSize (150, 335);
setDefaultCloseOperation(JFrane EXIT_ON_CLOSE) ;
JPanel panel = new JPanel();
JLabel subLabel = new JLabel(*RSS Subscriptions:’);
panel.add(subLabel) ;
subList.setVisibleRowCount (8);
JscrollPane scroller = new JScrollPane(subList);
panel.add(scroller);
add(panel) ;

OEBPS/html/graphics/xdfig03.jpg
MS-DOS command

Command Prompt

C:\Users\Rogersded \tenp
c:ntenp>

OEBPS/html/graphics/17pro01a.jpg
box.setText("Getting data .

String line;

do {
line = buff.readLine();
text.append(line);
text.append("\n");

} while (line 1= null);

box. setText (text.toString());

} catch (IOException ioe) {
System.out.println("10 Error:" + ioe.getMessage());

}
}

public static void main(String[] arguments) {
if (arguments.length < 1) {
System.out.println(*Usage: java WebReader url®);
System.exit(1);
}

try {
WebReader app = new WebReader () ;
app.getData(argunents(0]);

} catch (MalformedURLException mue) {
System.out.println("Bad URL: " + arguments[0]);

}

OEBPS/html/graphics/xdfig06.jpg
Path system variable

User variables for Rogers

B
Path
=R

Vave

Co\Program Fies (x85) Wicrosoft Visual .
Co\Program Fies (x85) Wicrosoft Visual .
C:rogram Fies (x86) Litrasdtl
HUSRPROFILE%VippData\ocallTemp_ ~

System varisbles

Variable

—path
PATHEXT
PCBRAND
Platform

Valve B
CProgran Fles Common s oo
.COM; EXE; BAT; .CMD; VBS;.VEE: JS;.

Paviion

o] Cemai]

OEBPS/html/graphics/xdfig05.jpg
nning a program

Command Prompt

[Java HotSpot(TH> 64-Bit Server UN (huild 23

C:\Users\Rogers>_

OEBPS/html/graphics/xdfig08.jpg
mmand Prompt

icrosoft Yindous LUersion 6.1.76011
opyright Cc) 2089 Microsoft Corporation.

\Users\Rogersded \J21uork
:\J21vork>javac HelloUser. java

:\J21uork>java HelloUser
o110 Rogers

\J21uork>_

A1l rights reserved.

OEBPS/html/graphics/xdfig07.jpg
Varsbleyshe: | eZCoProgram Fies\iavalik1 7.0 09

OEBPS/html/graphics/537pro01.jpg
Builder builder = new Builder();

Document doc = builder.build(arguments(0]);

Conment timestamp = new Comment(“File created " +
new java.util.Date());

doc.insertChild(timestamp, 0);

OEBPS/html/graphics/318pro01.jpg
CardLayout cc = new CardlLayout();

OEBPS/html/graphics/242pro01.jpg
quality.put

near mint", 1.50F);

OEBPS/html/graphics/317pro02.jpg
JTextField nameField = new JTextField(80);
pane.add (naneField);

OEBPS/html/graphics/317pro01.jpg
FlowLayout flo = new FlowLayout();
hane.setlLayout (flo):

OEBPS/html/graphics/481pro01.jpg
int]] temperatures

=190, 8, 87, 78, 80, 75, 70, 79, 85, 92, 99 };
IntBuffer tempBuffer =

lntBuffer wrap(temperatures) :

OEBPS/html/graphics/17pro02a.jpg
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:

}

digit.setSoTineout(20000);
PrintStream out = new PrintStrean(digit.getOutputStrean());
out.print (user + *\015\012");

boolean eof = false;
while (teof) {
String line = in.readLine();
if (line != null) {
System.out.println(line);
} else {
eof = true;
}
¥

digit.close();

} catch (IOException e) {

}

System.out.println(*I0 Error:" + e.gethlessage());

OEBPS/html/graphics/296pro02.jpg
Jienu m1 = new JMenu(“File");
n.add(j1);
n.add(j2);
mi.add(j3);
n1.addSeparator () ;
m1.add(j4);
mi.add(j5);
n1.addSeparator () ;
n1.add(i6);
n1.addSeparator () ;
mi.add(j7):

OEBPS/html/graphics/296pro01.jpg
JMenultem new JMenultem(“Open”);

JNenuTtem new JilenuTtem("Save");

JNenuTtem new JilenuTtem("Save as Template);

JWenuIten j4 = new JlenuItem('Page Setup');

JWenuTten j5 = new JMenuItem(*Print");

JWenulten j6 = new JMenuIten(“Use as Default Message Style');
JMenuItem j7 = new JMenuItem("Close"):

OEBPS/html/graphics/655pro01.jpg
java -Duser.timezone=Asia/Jakarta Auctioneer

OEBPS/html/graphics/586pro01.jpg
public void processClicks(View display) {
Intent action;
int id = display.getId();

OEBPS/html/graphics/233pro02.jpg
tor (Object name : golver) {
System.out.println(nane);
}

OEBPS/html/graphics/586pro02.jpg
switch (1d) {
case (R.id.imageButton1):
1o
break;
case (R.id.imageButton2):
"o
break;
case (R.id.imageButton3):
o
break;
default:
break;

OEBPS/html/graphics/125pro01.jpg
class ScopeTest {
int test = 10;

void printTest() {
int test = 20;
System.out.println("Test: " + test);

}

public static void main(String[] arguments) {
ScopeTest st = new ScopeTest();
st.printTest();

OEBPS/html/graphics/482pro01.jpg
for (i1nt 1 = 0; tempBuffer.remaining() > 0; 1++)
System.out.println(tempBuffer.get());

OEBPS/html/graphics/18pro02b.jpg
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:

prep2.setString(8, fields[8]);
prep2. executeUpdate () ;
conn.close();
} catch (SQLException sqe) {
System.out.println(*SQL Error: * + sqe.getMessage());
} catch (ClassNotFoundException onfe) {
System.out.println(cnfe.gethessage());
}
}

private String stripQuotes(String input) {
StringBuilder output = new StringBuilder();
for (int i = 0; i < input.length(); i++) {
if (input.charAt(i) 1= "\"') {
output.append (input.charAt (i));
¥
}
return output.toString();
}

public static void main(String[] arguments) {

if (arguments.length < 1) {
System.out.println("Usage: java QuoteData tickerSymbol');
System.exit(0);

}

QuoteData qd = new QuoteData(argunents[0]);

String data = qd.retrieveQuote();

qd. storeQuote (data) ;

OEBPS/html/graphics/18pro02a.jpg
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

System.out.println("I0 Error:" + ioe.getMessage());

}

return builder.toString();

}

private void storeQuote(String data) {

StringTokenizer tokens

= new StringTokenizer(data, ","

string[] fields = new String[9];
= 0; i< fields.length; i++) {
fields[i] = stripQuotes(tokens.nextToken());

for (int i

}

String datasource = “jdbc:derby://localhost:1527/sample" ;

try (
Connec’

tion conn

Driverhanager. getConnection

datasource, "app", "APP")

) {

Class. forNane ("org. apache.derby. jdbc.ClientDriver®);

PreparedStatenent prep2 = conn.prepareStatement (
"INSERT INTO " +

"APP.STOCKS (TICKER, PRICE, DATE, CHANGE, LOW, * +

"HIGH, PRICEOPEN, VOLUME) * +

'VALUES(?, 7, 2, 2, 2, ?,

prep2.
prep2.
prep2.
prep2.
prep2.
prep2.
prep2.

setString(1,
setString(2,
setString(3,
setString(4,
setString(s,
setString(s,
setString(7,

2"
fields[0]);
fields[1]);
tields[2]);
fields[4]);
tields[5]);
fields[6]);
fields[7]);

OEBPS/html/graphics/469pro01.jpg
trry 1
URL load = new URL("http://www.sanspublishing.con”);
} catch (MalformedURLException e) {
Systen.out.println("Bad URL");
}

OEBPS/html/graphics/0epro03.jpg
import java.awt.*;

/** This class displays the values of three parameters:
* Name, Date and Version.
* @author Rogers Cadenhead
* @version 6.0
*l
public class AppInfo2 extends javax.swing.JApplet {
e
* @serial The programmer's name.
*/
String name;
e
* @serial The current date.
*/
string date;
[
* @serial The program's version number.
*
int version;

s

* This method describes the applet for any browsing tool that
* requests information from the program.

* @return A String describing the applet.

*f

OEBPS/html/graphics/327pro01.jpg
JButton okButton = new JButton("OK");
gridbag.setConstraints(okButton, constraint);
pane.add(okButton):

OEBPS/html/graphics/0epro04.jpg
: class ItenProp {

public static void main(String[] arguments) {
String n = Systen.getProperty("iten.name’);
System.out.println("The item is named * + n);

OEBPS/html/graphics/0epro01.jpg
import java.awt.*;

public class AppInfo extends javax.swing.JApplet {
String name, date;
int version;

public String getAppletInfo() {
String response = This applet demonstrates the
+ "use of the Applet's Info feature

return response;

¥

public String[][] getParameterInfo() {
String[] p1 = { "Name", "String", "Programmer's name' };
string[] p2 = { "Date”, "String", "Today's date" };
string[] p3 = { "Version", “int’, "Version number' };
string[][] response = { pi, p2, p3 };
return response;

OEBPS/html/graphics/17pro03a.jpg
client = sock.accept();

BufferedOutputStream bos = new BufferedOutputStrean(
client.getOutputStrean());

Printliriter os = new PrintWriter(bos, false);

String outlLine;

Date now = new Date();
os.println(now);
os.flush();

os.close();
client.close();
} catch (IOException e) {
Systen.out.println("Error: couldn't connect to client.");
systen.exit(1);

}

public static void main(String[] arguments) {
TimeServer server = new TimeServer();
server.start();

OEBPS/html/graphics/0epro02.jpg
<applet cod
<paran nam
<param nam
<paran nam
: </applet>

"AppInfo.class" height="200" width="170">
Name" value="Rogers Cadenhead">

Date" value="05/30/12">

Version" value="6">

OEBPS/html/graphics/154pro01.jpg
public static void main(String[] arguments) {
I
}

OEBPS/html/graphics/229pro01.jpg
ArrayList golfer = new ArrayList(30);

OEBPS/html/graphics/229pro02.jpg
otring s = (string) golvter.lastelement(),

OEBPS/html/graphics/198pro02.jpg
try (Socket digit = new Socket(host, 79);
BufferedReader in = new BufferedReader (
new InputStreamReader (digit.getInputStream()));
)

/1 code goes here
} catch (IOException e) {

System.out.println("I0 Error:* + e.getlessage())
}

OEBPS/html/graphics/415pro01.jpg
1mport java.awt.*;
import javax.swing.*;

public class SliderFrame extends JFrame {

public Sliderframe() {
super();
setDefaultCloseOperation(JFrame.EXIT_ON_GLOSE);
Container pane = getContentPane();
Jslider value = new JSlider(0, 255, 100);
setContentPane (pane) ;
setSize(325, 150);
setvisible(true);

}

public static void main(String[] arguments) {
new Sliderframe();

}

OEBPS/html/graphics/645pro01.jpg
/** A descriptive sentence or paragraph.
* @tag? Description of this tag.
* @tag2 Description of this tag.

* |

OEBPS/html/graphics/229pro03.jpg
String s1 = (String) golfer.get(0);
String s2 = (String) golfer.get(2):

OEBPS/html/graphics/242pro04.jpg
ArrayList<integer> zipCodes = new ArrayList<>(),

OEBPS/html/graphics/229pro04.jpg
go.ter.add(1, ‘Miyazato®);
golfer.add(0, 'Kerr");
golfer.remove(3):

OEBPS/html/graphics/15pro05a.jpg
DataOutputStream data = new
DataOutputStrean(buff);
)L

for (int i = 0; i < 400; i++)
data.writeInt(primes(i]);
data.close();
} catch (IOException e) {
System.out.println(*Error -- ' + e.toString());
}
}

public static boolean isPrime(int checkNumber) {
double root = Wath.sqrt (checkNumber);
for (int i =2; i <= root; i++) {
if (checkNumber % i == 0)
return false;

}
return true;

OEBPS/html/graphics/242pro02.jpg
quality.put(near mint , "1.90);

OEBPS/html/graphics/242pro03.jpg
comix[1].setPrice((Float) quality.get(comix[1].condition));

OEBPS/html/graphics/076pro03.jpg
customer.oraeriotal.putOnLayaway(1temNumber, price, quantity),

OEBPS/html/graphics/11pro05b.jpg
JPanel sub2 = new JPanel();

for (int i = 0; i < resp.length; i++)
if (def == 1) {
response[i] = new JRadioButton(resp[i], true);
} else {
response[i] = new JRadioButton(resp[i], false);

}
group.add(response[i])
sub2.add(response[i]);
}
JPanel sub3 = new JPanel()
nextButton. setEnabled (true);
sub3.add (nextButton) ;
finalButton.setEnabled(false);
sub3.add (f inalButton) ;
Gridlayout grid = new GridlLayout(3, 1)
setLayout (grid);
add(sub1);
add(sub2) ;
add(sub3) ;
}

void setFinalQuestion(boolean finalQuestion) {
if (finalQuestion) {
nextButton.setEnabled (false);
finalButton.setEnabled(true);

OEBPS/html/graphics/11pro05a.jpg
ask[i].nextButton.addActionListener (this);
ask[1].finalButton.addActionListener (this);
add(ask[i], "Card " + i);

i

public void actionPerformed(ActionEvent evt) {
currentCard++;
if (currentCard >= ask.length) {
System.exit(0);
}

cards.show(this, "Card * + currentCard);

1y}

class SurveyPanel extends JPanel {
JLabel question;
JRadioButton[] response;

JButton nextButton = new JButton('Next");
JButton finalButton = new JButton('Finish");

SurveyPanel(String ques, String[] resp, int def) {
super();
setSize(160, 110);
question = new JLabel (ques);
response = new JRadioButton[resp.lengthl;
JPanel subi = new JPanel();
ButtonGroup group = new ButtonGroup();
JLabel quesLabel = new JLabel(ques);
sub1.add(quesLabel);

OEBPS/html/graphics/076pro01.jpg
String label = “From™;
String upper = label.toUpperCase():

OEBPS/html/graphics/076pro02.jpg
customer.cancelOrader().f1leComplaint();

OEBPS/html/graphics/12pro02a.jpg
public void focusGained(FocusEvent event) {

try {

float total = Float.parseFloat(valuel.getText()) +
Float.parsefloat (value2.getText());

sun.setText("' + total);

} catch (NumberFormatException nfe) {
valuel.setText("0");
value2.setText("0");
sun.setText("0%);

}

public void focusLost(FocusEvent event) {
focusGained(event) ;
}

private void setLookAndFeel() {
try {
UIManager.setLookAndFeel(
“con.sun. java. swing.plaf . ninbus. NinbusLookAndFeel®
)i
SwingUtilities.updateComponentTreeUl (this);
} catch (Exception exc) {
System.err.println('Couldn’t use the system "
+ "look and feel: " + exc);

}

public static void main(String[] arguments) {
Calculator frame = new Calculator();
}

OEBPS/html/graphics/445pro01.jpg
1mport java.io0.*;

public class Unknown {
public static void main(String(] argunents) {
String command = **;
BufferedReader br = new BufferedReader (new
InputStreanReader (Systen. in));
try {
conmand = br.readLine();

}
catch (IOException e) { }

OEBPS/html/graphics/262pro02.jpg
Jiextrield rssUrl = new Jiextrield|6d);
JTextField rssUrl2 = new JTextField(
Enter feed URL here', 60):

OEBPS/html/graphics/262pro01.jpg
JLabel feedsLabel = new JLabel("Feeds”, SwingConstants.LEFT);
JLabel urllabel = new JLabel(*URL: ", SwingConstants.CENTER);
JLabel dateLabel = new JLabel("Date: ", SwingConstants.RIGHT):

OEBPS/html/graphics/530pro02.jpg
<channel>

<link>http://workbench.cadenhead.org/</1ink>
</channel>

OEBPS/html/graphics/530pro03.jpg
/workbench.cadenhead.org,

OEBPS/html/graphics/259pro01.jpg
imagelcon subscribe = new lmagelcon(subscribe.git”);
JButton button = new JButton(subscribe) ;

JPanel pane = new JPanel();

pane.add (button) ;

add (pane) ;

setVisible(true):

OEBPS/html/graphics/459pro01.jpg
Throwable thr2 = (Throwable) thr.newInstance(),;

OEBPS/html/graphics/530pro01.jpg
Element channel = new Element("channel”);
Element link = new Element(*link");

Text linkText = new Text("http://workbench.cadenhead.org/"):
Link.appendChild(linkText)

channel.appendChild(link):

OEBPS/html/graphics/093pro01.jpg
String[] players = new String[10];

OEBPS/html/graphics/11pro04a.jpg
add(cButton, BorderLayout.CENTER)
setVisible(true);
i

private void setLookAndFeel() {
try {
Ulanager . setLookAndFeel (

"con.sun. java.swing. plaf..ninbus.NinbusLookAndFeel"
)

SwingUtilities.updateComponentTreeUl(this)
} catch (Exception exc)

System.err.println(“Couldn't use the systen *
+ "look and feel: * + exc);

}

public static void main(String[] argunents) {
Border frame = new Border();

OEBPS/html/graphics/194pro02.jpg
try {
/1 code that reads a file fron disk
} catch (IOException|EOFException|FileNotFoundException exc) {
Systen.out.println('File error: '
+ exc.getessage());

OEBPS/html/graphics/12pro03a.jpg
29:

472

51:
52:

setVisible(true);

}

public void itemStateChanged(ItemEvent event) {
int choice = formatBox.getSelectedIndex()
if (choice > 0) {
descriptionLabel.setText (descriptions[choice-1]);
i
}

public Insets getlnsets() {
return new Insets(so, 10, 10, 10);
}

private static void setLookAndFeel() {
try {
Uifanager . setLookAndFeel (
“con.sun. java.swing.plaf.ninbus .NinbusLookAndFeel®
)
} catch (Exception exc) {
Systen.err.println('Couldn't use the system
+ "look and feel: ' + exc);

}

public static void main(String[] arguments) {
FormatChooser .setLookAndFeel () ;
FormatChooser fo = new FormatChooser();

OEBPS/html/graphics/194pro01.jpg
try 1
// code that reads a file fron disk
} catch (EOFException|FileNotFoundException exc) |
System.out.println("File error: "
+ exc.getllessage()) ;

OEBPS/html/graphics/377pro01.jpg
comp2D.setColor(getBackground()),

OEBPS/html/graphics/380pro01.jpg
basicotroke pen = new basicotroke(z.of,
BasicStroke.CAP_BUTT,
BasicStroke.JOIN_ROUND) ;

comp2D . setStroke (pen) ;

OEBPS/html/graphics/101pro02.jpg
char grade
switch (grade)
case 'A':

systen.

break;
case 'B':

systen.

break;
case 'C':

systen.

break;
default:

systen.

¢

out.println("Great job!");

out.println("Good job!");

out.println("You can do better!");

out.println("Consider cheating!");

OEBPS/html/graphics/101pro01.jpg
1T (operation == "+)
add(object1, object2);
else if (operation == '-')
subtract (object!, object2);
else if (operation == '*')
nultiply(object!, object2);
else if (operation == '/')
divide(object!, object2):

OEBPS/html/graphics/462pro01.jpg
Method: next()
Modifiers: protected
Return Type: int
Parameters: int

Method: readobject ()

Modifiers: private

Return Type: void

Parameters: java.io.ObjectInputStrean

Method: setSeed()
Nodifiers: public synchronized
Return Type: void
Parameters: long

OEBPS/html/graphics/9780132841658.jpg
“If you get only one Java book, it should be
Sams Teach Yourself Java in 21 Days.”

Rogers Cadenhead —PC Magazine

Sixth Edition

Covers Java 7
and Android

SEIRCET) GITE

Java

in 21 Days

OEBPS/html/graphics/115pro01.jpg
out:
for (int i = 0; i <10; i++) {
while (x < 50) {
if (1% x++ > 400)
break out;
// inner loop here

}
/1 outer loop here

OEBPS/html/graphics/161pro01.jpg
public abstract class Palette {
1o
}

OEBPS/html/graphics/05pro06.jpg
class Printer {
int x = 0;
inty

void printhle() {
System.out.println('x is " + x + ", y is " + y);
Systen.out.println("I an an instance of the class * +
this.getClass().getNane());

: class SubPrinter extends Printer {

int z = 3;

public static void main(String[] arguments) {
SubPrinter obj = new SubPrinter();
obj.printhle();

OEBPS/html/graphics/05pro05.jpg
inport java.awt.Point;

class Box2 {

int x1 = 0;
int yi = 0;
int x2 = 0;

int y2

0;

Box2(int x1, int y1, int x2, int y2) {
this.x1 = x1;

this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

}

Box2(Point topLeft, Point bottomRight) {
this(topLeft.x, topLeft.y, bottomRight.x,
bottonRight.y);
}

Box2(Point topLeft, int w, int h) {
this(topLeft.x, topLeft.y, topLeft.x + w,
topLeft.y + h);
}

void printBox() {
System.out.print("Box: <" + x1 + *, " + y1);
System.out.println(", " + x2 + ", " + y2 + ">");

}

public static void main(String[] arguments) {

OEBPS/html/graphics/517pro02.jpg
Statement lookSee = payday.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY,
ResultSet.CLOSE CURSORS AT COMMIT):

OEBPS/html/graphics/05pro07.jpg
1: import java.awt.Point;
2:

3: class NamedPoint extends Point {

4: String name;

5:

6: NamedPoint (int x, int y, String name) {

7 super(x,y);

8: this.name = name;

9: ¥

10:

1 public static void main(String[] arguments) {

12: NamedPoint np = new NamedPoint(5, 5, SmallPoint");
13: System.out.println("x is " + np.x);

14: System.out.println('y is " + np.y);

15: System.out.println(*Name is ' + np.name);

16: }

OEBPS/html/graphics/517pro01.jpg
Connection payday = DriverManager.getConnection(
"jdbc:odbe:Payroll”, "Doc”, "iroveri®);
Statement lookSee = payday.CreateStatement():

OEBPS/html/graphics/05pro02.jpg
class Passer {

void toUpperCase(String[] text) {
for (int i = 0; i < text.length; i++) {
text[i] = text[i].toUpperCase();
}
}

public static void main(String[] arguments) {
Passer passer = new Passer();
passer. toUpperCase (argunents) ;
for (int i = 0; i < arguments.length; i++) {
System.out.print (arguments[i] + ' *);

}
System.out.println();

OEBPS/html/graphics/12pro04b.jpg
repaint();
i
if (Math.abs((mouseY + 10) - buttonY) < 50) {
buttonY = moveButton(mouseY, buttonY, height);
repaint();

}

public void mouseDragged (NouseEvent event) {
/1 ignore this event
}

private int moveButton(int mouseAt, int buttonAt, int border) {
if (buttonAt < mouseAt) {
buttonAt--;
} else {
buttonAts+;
}
if (buttonAt > (border - 20)) {
buttonAt = 10;

}

if (buttonAt < 0) {
buttonAt = border - 80;

}

return buttonAt;
}

public void paintComponent(Graphics comp) {
super. paintConponent (comp) ;
ok.setBounds (buttonX, buttonY, 70, 20);

OEBPS/html/graphics/05pro01.jpg
1: class Rangelister {
2: int[] makeRange(int lower, int upper) {

3 int[] range = new int[(upper-lower) + 1];
4

5: for (int i = 0 i < range.length; i++) {
6: range[i] = lower++;

7 }

8: return range;

9: }

10:

1: public static void main(String[] arguments) {
12: int[] range;

13: RangeLister lister = new RangeLister();
14:

15: range = lister.makeRange(4, 13);

16: System.out.print("The array: [*);

17: for (int i = 0; i < range.length; i++) {
18: System.out.print(range[i] + ' ");
19: }

20: System.out.println(*]");

21: }

22:

OEBPS/html/graphics/10pro06a.jpg
add(tabs);
setVisible(true);

).

private void setLookAndFeel() {
try {
UlManager . setLookAndFeel (
“com. sun. java. swing. plaf .ninbus . NinbusLookAndFeel®
)3
SwingUtilities.updateConponentTreeUl (this);
} cateh (Exception e) {
Systen.err.println("Couldn't use the systenm "
+ "look and feel: ' + e);

}

public static void main(String[] arguments) {
TabPanels frame = new TabPanels();

OEBPS/html/graphics/12pro04a.jpg
System.err.println('Couldn’t use the system "
+ "look and feel: " + exc);

}
public static void main(String[] arguments) {

WousePrank . setLookAndFeel () ;
new MousePrank () ;

}
}
class PrankPanel extends JPanel implements NouseMotionListener {
JButton ok = new JButton(*OK');
47: int buttonX, buttonY, mouseX, mouseY;
48: int width, height;

PrankPanel() {

super();

setLayout (null);

addilouseotionListener (this);

buttonX = 110;

buttonY = 110;

ok.setBounds (new Rectangle (buttonX, buttonY,
70, 20));

add(ok) ;

}

public void mouseloved(MouseEvent event) {
mouseX = event.getX();
mouseY = event.getY();
width = (int)getSize().getWidth();
height = (int)getSize().getHeight();
if (Math.abs((mouseX + 35) - buttonX) < 50) {
buttonX = moveButton(mouseX, buttonX, width):

OEBPS/html/graphics/05pro04.jpg
import java.awt.Point;

class Box {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;
Box buildBox(int x1, int y1, int x2, int y2) {

Box

Box

this.x1 = x1;

this.y1 = y1;
this.x2 = x2;
this.y2 = y2;

return this;

buildBox(Point topLeft, Point bottomRight) {
x1 = topLeft.x;

y1 = topLeft.y;

X2 = bottomRight.x;

y2 = bottomRight.y;

return this;

buildBox(Point topLeft, int w, int h) {

x1 = topLeft.x;
y1 = topleft.y;
X2 = (x1 +w);
y2 = (y1 + h);

return this;

OEBPS/html/graphics/05pro03.jpg
class Averager {
public static void main(String[] arguments) {
int sum = 0;

if (arguments.length > 0) {
for (int i = 0; i < arguments.length; i++) {
sun += Integer.parselnt (argunents(i]);
}
System.out.println(*Sun is: * + sum);
System.out.println("Average is: " +
(float)sun / arguments.length);

OEBPS/html/graphics/111pro01.jpg
while (1 <13) {
X = x * i+ // the body of the loop

OEBPS/html/graphics/641pro01.jpg
appletviewer http://www.javaonthebrain.com

OEBPS/html/graphics/108pro01.jpg
for (1nitialization; test; increment) {
statement;
}

OEBPS/html/graphics/455pro01.jpg
nessage:

From: Sam Wainwright, London
To: George Bailey, Bedford Falls
Date: Wed Jun 13 15:15:53 EDT 2012

Ir. Gower cabled you need cash. Stop.
My office instructed to advance you up to twenty-five
thousand dollars. Stop. Hee-haw and Merry Christmas.

OEBPS/html/graphics/11pro07a.jpg
addComponent (ccLabel, 0, 2, 1, 1, 10, 100,
GridBagConstraints.NONE, GridBagConstraints.EAST);
addComponent (cc, 1, 2, 4, 1, 40, 100,
GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
addComponent (beclabel, 5, 2, 1, 1, 10, 100,
GridBagConstraints.NONE, GridBagConstraints.EAST);
addConponent (bce, 6, 2, 4, 1, 40, 100,
GridBagConstraints.HORIZONTAL, GridBagConstraints.WEST);
}

private void addConponent (Conponent component, int gridx, int gridy,
int gridwidth, int gridheight, int weightx, int weighty, int fill,
int anchor) {

GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = gridx;

constraints.gridy = gridy;
constraints.gridwidth = gridwidtn;
constraints.gridheight = gridheight;
constraints.veightx = weightx;
constraints.veighty = weighty;
constraints.fill = fill;

constraints.anchor = anchor;

gridbag. setConstraints (component, constraints);
add(component) ;

OEBPS/html/graphics/15pro08.jpg
: import java.io.*;
: import java.nio.file.*;

1
2
3:
4: public class AllCapsDemo {

5: public static void main(String[] arguments) {

6: if (arguments.length < 1) {

7 Systen.out.println("You must specify a filename as an argument’);
8 System.exit(-1);

}

AllCaps cap = new AllCaps(argunents[0]);

cap.convert();

)

: class AllCaps {
String sourceName;

AllCaps(String sourceArg) {
sourceName = sourceArg;
}

void convert() {

try {
/1 Create file objects

Path source = FileSystems.getDefault().getPath(sourceNane);
Path temp = FileSystens.getDefault().getPath("tmp_" + sourceName);

/| Create input stream

OEBPS/html/graphics/266pro01.jpg
Jranel pane = new JrPanel();

JTextArea comments = new JTextArea(4, 15);

JScrollPane scroll = new JScrollPane(comments,
ScrollPaneConstants. VERTICAL_SCROLLBAR_ALWAYS,
ScrollPaneConstants. HORIZONTAL_SCROLLBAR_NEVER)

pane .add(scroll);

add(pane);

OEBPS/html/graphics/12pro05a.jpg
} catch (Exception exc) {
Systen.err.println(’Couldn't use the system *
+ "look and feel: " + exc);

}

public static void main(String[] arguments) {
KeyChecker . setLookAndFeel () ;
new KeyChecker () ;

}

: class Keyllonitor extends KeyAdapter {
KeyChecker display;

KeyMonitor (KeyChecker display) {
this.display = display;
i

public void keyTyped(KeyEvent event) {
display.keyLabel.setText("* + event.getKeyChar());
display.repaint();

OEBPS/html/graphics/086pro01.jpg
Stringl: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? true

String1: Free the bound periodicals.
String2: Free the bound periodicals.
Same object? false

Bars-valie? triio

OEBPS/html/graphics/083pro03.jpg
String pennsylvania = "65000°;
int penn = Integer.parselnt(pennsylvania):

OEBPS/html/graphics/083pro01.jpg
Integer dataCount = new Integer(7801);

OEBPS/html/graphics/083pro02.jpg
1nt newCount = aataCount.intValue(); // returns 7801

OEBPS/html/graphics/631pro01.jpg
SET CLASSPATH=%CLASSPATH%; . ;rightlocation

OEBPS/html/graphics/631pro02.jpg
sC:\"Program Files \Java\jak1.7.0 04\lib\tools.jar

OEBPS/html/graphics/15pro03.jpg
import java.io.*;

public class BufferDemo {

P}

public static void main(String[] arguments) {
int start = 0;
int finish = 255;
if (arguments.length > 1) {
start = Integer.parselnt (argunents[0]);
finish = Integer.parseInt(argunents[1]);
} else if (arguments.length > 0) {
start = Integer.parselnt(argunents(0]);
}
ArgStrean as = new ArgStrean(start, finish);
System.out.println("\nWriting: *);
boolean success = as.writeStrean();
System.out.println("\nReading: *);
boolean readSuccess = as.readStrean();

: class ArgStrean {

int start = 0;
int finish = 255;

ArgStrean(int st, int fin) {
start = st;
finish = fin;

}

boolean writeStrean() {
try (FileOutputStrean file = new
FileOutputStream("numbers.dat");

OEBPS/html/graphics/15pro02.jpg
import java.io.*;

public class ByteWriter {
public static void main(String[] arguments) {

int[] data = { 71, 73, 70, 56, 57, 97, 13, 0, 12, 0, 145, 0,
0, 255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 0, 0, 44, 0,
0, 0,0, 13, 0, 12, 0, 0, 2, 38, 132, 45, 121, 11, 25,
175, 150, 120, 20, 162, 132, 51, 110, 106, 239, 22, 8,
160, 56, 137, 96, 72, 77, 33, 130, 86, 37, 219, 182, 230,
137, 89, 82, 181, 50, 220, 103, 20, 0, 59 };

try (FileOutputStrean file = new
FileOutputStrean(“pic.gif")) {

for (int i = 0; i < data.length; i++) {
file.write(data[i]);

}
file.close();

} catch (IOException e) {
System.out.println("Error -- ' + e.toString());
}

OEBPS/html/graphics/15pro01.jpg
inport java.io.*;

public class ByteReader {
public static void main(String(] arguments) {
try (
FileInputStrean file = new
FileInputStrean("save.gif")
)1

boolean eof
int count = 0;
while (leof) {
int input = file.read();
System.out.print(input + * ");

false;

if (input == -1)
eof = true;
else
count++;

}

file.close();

System.out.println(*\nBytes read: " + count);
} catch (IOException e) {

System.out.println("Error -- " + e.toString());

}

OEBPS/html/graphics/168pro02.jpg
public class AnimatedSign extends Sign
inplements Runnable, Observer {

I

OEBPS/html/graphics/168pro01.jpg
public class AnimatedSign extends Sign
inplements Runnable {
...

OEBPS/html/graphics/15pro07.jpg
import java.io.*;

public class SourceReader {
public static void main(String[] arguments) {
try (
FileReader file = new
FileReader("SourceReader. java");
BufferedReader buff = new
BufferedReader (file)) {

boolean eof = false;
while (leof) {
String line = buff.readLine();

if (line == null) {
eof = true;
} else {

System.out.println(line);
1

}
buff.close();

} catch (IOException e) {
System.out.println("Error -- * + e.toString());

}

OEBPS/html/graphics/15pro06.jpg
import java.io.*;

public class PrimeReader {
public static void main(String[] arguments) {
try (FileInputStream file = new
FileInputStrean("400prines.dat®);
BufferedInputStrean buff = new
BufferedInputStrean(file);
DatalnputStrean data = new
DataInputStrean(buff)) {

try {
while (true) {
int in = data.readInt();
System.out.print(in + ');
}
} catch (EOFException eof) {
buff.close();
¥

} catch (IOException e) {
System.out.println(*Error -- * + e.toString());

}

OEBPS/html/graphics/15pro05.jpg
import java.io.*;

public class PrimeWriter {
public static void main(String[] arguments) {
int[] primes = new int[400];
int nunPrines = 0;
// candidate: the number that might be prime
int candidate = 2;
while (nunPrimes < 400) {
if (isPrime(candidate)) {
prines[nunPrimes] = candidate;

nuMPrines++;
}
candidate++;

}

try (

/1 Wirite output to disk

FileOutputStrean file = new
FileOutputStrean(*400prines.dat");

BufferedOutputStrean buff = new
BufferedOutputStream(file);

OEBPS/html/graphics/15pro04.jpg
import java.io.*;

public class ConsoleInput {
public static String readLine() {
StringBuilder response = new StringBuilder();
try (BufferedInputStrean buff = new
BufferedInputStrean(Systen.in)) {

int in;
char inChar;
do {
in = buff.read();
inChar = (char) in;

if ((in = -1) & (in 1= "\n') & (in 1= \r')) {
response. append (inChar) ;
}
} while ((in = -1) & (inChar 1= '\n') & (in 1= '\r'));

buff.close();
return response.toString();

} catch (IOException e) {
System.out.println("Exception: ' + e.getMessage());
return null;

}

public static void main(String[] arguments) {
System.out.print("\nWhat is your name? ');
String input = ConsoleInput.readLine();
System.out.println(*\nHello, " + input);

:}

OEBPS/html/graphics/12fig02.jpg
2/ Add Two Numbers

7

52

50.0

OEBPS/html/graphics/12fig03.jpg
] Syndication Format =

=m

IRSSIRDF syndication format 1.0 (RSSIRDF)

OEBPS/html/graphics/553pro01.jpg
String code = “conical”;

Double xValue = new Double(175);
ArrayList parameters = new ArrayList();
paraneters. add(code) ;
parameters.add(xvalue):

OEBPS/html/graphics/12fig04.jpg
4] Message

(Click OKto close this program.

OEBPS/html/graphics/184pro01.jpg
package org.cadenhead.bureau;
inport org.cadenhead.bureau.*;
public class HoreInfornation extends Information f

public int quantity = 8;
}

OEBPS/html/graphics/12fig05.jpg

OEBPS/html/graphics/184pro02.jpg
package org.cadenhead.bureau.us;

inport org.cadenhead.bureau. *;

public class EvenMoreInfornation extends MoreInformation {
public int quantity = 9;

EvenMoreInformation() {

super () ;

int i1 = duration;
float i2 = rate;
float i3 = average;

OEBPS/html/graphics/11pro01a.jpg
27:

30:
31:

33:
34:

add(d);
add(e);
add(f);
setvisible(true);

}

private void setLookAndFeel() {
try {
UIManager.setLookAndFeel (
“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
H
SwingUtilities.updateComponentTreeUl (this) ;
} catch (Exception exc) {
Systen.err.println("Couldn't use the systen "
+ "look and feel: ' + exc);

}

public static void main(String(] argunents) {
Alphabet frame = new Alphabet();

OEBPS/html/graphics/12fig01.jpg

OEBPS/html/graphics/422pro02.jpg
FilelnputStream 1 = new FilelnputStream(" \\data\\calendar.txt),

OEBPS/html/graphics/370pro01.jpg
public void paintComponent(Graphics comp) {
Graphics2D comp2D = (Graphics2D) comp;
conp2D.drawString("Free the bound periodicals’, 22, 100);

OEBPS/html/graphics/1_gen_safari_15ft.jpg
Try Safari Books Online FREE for 15 days

Get online access to Thousands of Books and Videos

com livelessons®
The Clean Coder Videoverier @

C# 2010

Fundamentals
1,1l and Il

Peul.Detel

pem fu video

FREE 15-DAY TRIAL + 15% OFF

saonne INfOrmit.com/safaritrial

Feed your brain

Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O'Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers

See it, believe it
Watch hundreds of expert-led instructional videos on today's hottest topics.

WAIT, THERE'S MORE!

Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts

Accelerate your project

Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for first
12 consecutive monthly billing cycles. Safari Library is not available in al countries,

OEBPS/html/graphics/422pro01.jpg
FileInputStream fis = new FileInputStream(“"scores.dat");

OEBPS/html/graphics/09fig05.jpg
4 Accountnformation =l

Username: | rcade

Password: |+

Free the bound periodicals!

OEBPS/html/graphics/236pro03.jpg
boolean 1isEmpty = look.isEmpty();

OEBPS/html/graphics/09fig04.jpg
Files tab

Search (Ctl+1)

e 8 Bt jove - | B Sl jova] B lorrrame v

ReFEPe a2 en|da

<o View Avalable>

1[0 import javax.swing.*:

public class IconFrame extends JFrame {
JButton load, save, subscribe, unsubscribe;

public IconFrame() {
super ("Icon Frame®):
setDefaultCloseOperation (JFrame.EXIT_ON CLOSE) ;
JPanel panel = new JPanel():
7 e
ImageIcon loadIcon = new Imagelcon("load.gif");
ImageIcon savelcon = new Imagelcon("save.gif");
ImageIcon subscribelcon = new ImageIcen ("subscribe.
ImageIcon unsubscribelcon = new Imagelcon("unsubscri
// create
load = new JButten("Load"
save = new JButton("Saver,
subscribe = new JButton("Subscribe”, subscribelcon);
unsubscribe = new JButton("Unsubscribe”, unsubscribe

« v

3ava21 (un) [nnng.... JE (more) @] 4219 |ms

OEBPS/html/graphics/09fig03.jpg
|2 leon Frame =S EoR S

ﬁmi|E|s-|| i suscie | | G unsusscrve |

OEBPS/html/graphics/09fig02.jpg
|/ Button Frame. =] ==

[save | [unsubscrive |

OEBPS/html/graphics/14pro01a.jpg
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:

setlayout (new GridLayout(10, 1));

JPanel first = new JPanel();
first.setLayout (new FlowLayout (FlowLayout.RIGHT));
Jiabel urllabel = new JLabel("URL:");

url = new JTextField(22);
urllabel.setLabelFor(url);

first.add(urllabel);

first.add(url);

add(first);

JPanel second = new JPanel();
second. setLayout (new FlowLayout());

readPage = new JButton("Read Page’);

clearPage = new JButton("Clear Fields');

quitLoading = new JButton("Quit Loading");

readpage. sethnemonic('r');

clearPage. setnemonic('c');

quitLoading. setlinenonic('q');

readPage. setToolTipText (*Begin Loading the Web Page");

clearPage.setToolTipText("Clear All Header Fields Below');
quitLoading. setToolTipText("Quit Trying to Load the Web Page');

readPage. setEnabled(true);
clearPage. setEnabled(false);
quitLoading.setEnabled(false);

OEBPS/html/graphics/09fig01.jpg

OEBPS/html/graphics/236pro01.jpg
nectangle ri = new Rectangle(©, 0, 5, 9);
Look.put(“small’, r1);

Rectangle r2 = new Rectangle(0, 0, 15, 15);
Look.put (*mediun*, r2);

Rectangle r3 = new Rectangle(0, 0, 25, 25);
look.put(“large", r3):

OEBPS/html/graphics/236pro02.jpg
Hectangle r = (Rectangle) look.get("medium’

OEBPS/html/graphics/10pro04a.jpg
current.setvalue(num);
try {
Thread.sleep(1000);
} catch (InterruptedException e) { }
nun += 95;

}

private void setLookAndFeel() {
try {
Ulianager .setLookAndFeel
“com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel”
)3
SwingUtilities. updateConponentTreeUl (this);
} catch (Exception e) {
Systen.err.println("Couldn't use the system "
+ "look and feel: ' + e);

}

public static void main(String[] arguments) {
Progressionitor frame = new ProgressMonitor ();
frame.setVisible (true)
frame.iterate();

OEBPS/html/graphics/14pro01b.jpg
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:

readPage.addActionListener(this);
clearPage.addActionListener(this);
quitLoading.addActionListener(this);
second. add(readPage) ;
second.add(clearPage) ;

second.add (quitLoading) ;

add(second) ;

JPanel[] row = new JPanel[7];

for (int i=0; i <7; it+) {
row[i] = new JPanel();
row[i].setLayout (new FlowLayout (FlowLayout.RIGHT));
headerLabel[i] = new JLabel(headers[i]+":");
header[i] = new JTextField(22);
headerLabel[i].setLabelFor (header(i]);
row[i].add(headerLabel[i]);
row[i].add(header[i]);
add(row[i]);

}

JPanel last = new JPanel();
last. setLayout (new FlowLayout(FlowLayout.LEFT));
status = new JLabel("Enter a URL address to check.
last.add(status);

add(last);

OEBPS/html/graphics/14pro01c.jpg
76: pack();

77: setVisible(true);

78: }

79:

80: public void actionPerformed(ActionEvent evt) {
81: Object source = evt.getSource();

82: if (source == readPage) {

83: try {

84: page = new URL(url.getText());
85: if (runner == null) {

86: runner = new Thread(this);
87: runner.start();

88: ¥

89: quitLoading. setEnabled (true);
90: readPage . setEnabled (false);
9f: }

92: catch (MalformedURLException e) {
93: status.setText("Bad URL: * + page);
94: }

95: } else if (source == clearPage) {

96: for (int i = 0; i < 7; i++)

o7: header(i].setText("");

98: quitLoading. setEnabled(false);

99: readPage. setEnabled(true);

100: clearPage.setEnabled(false);

OEBPS/html/graphics/14pro01d.jpg
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
11:
112:
13:
14:
115:
116:
17:
118:
119:
120:
121:
122:
123:
124:
125:

} else if (source

}

quitLoading) {
runner = null;

url.setText("");

quitLoading. setEnabled(false);
readPage. setEnabled(true);
clearPage.setEnabled(false);

public void run() {
URLConnection conn;
try {

}

conn = this.page.openConnection();
conn. connect ()
status.setText ("Connection opened ...");
for (int i = 0; i < 7; i++)

header[1].setText (conn.getHeaderField(headers[i]));
quitLoading. setEnabled(false);
clearpage.setEnabled(true);
status. setText (“Done");
runner = null;

catch (I0Exception e) {

3

status.setText (10 Error:* + e.getMessage());

OEBPS/html/graphics/171pro02.jpg
public intertace Irackable {
public abstract Trackable beginTracking(Trackable self);
}

OEBPS/html/graphics/14pro01e.jpg
126: }

127:
128: private static void setLookAndFeel() {

129: try {

130: UlManager . setLookAndFeel

181: "com. sun. java. swing.plaf.nimbus. NinbusLookAndFeel"
182:)s

183: } catch (Exception exc) {

184: /1 ignore error

135: }

136: }

187:

138:

139: public static void main(String[] arguments) {

140: PageData frame = new PageData();

141: }

142:)

OEBPS/html/graphics/171pro01.jpg
public interface Expandable {
public static final int INCREMENT = 10;
long CAPACITY = 15000; // becomes public static and final

public abstract void expand(); //explicitly public and abstract
void contract(); // effectively public and abstract

OEBPS/html/graphics/41658.jpg

OEBPS/html/graphics/10pro05a.jpg
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:

menu.add(j2);
menu..addSeparator ()

menu.add(j3) ;

menu.add(j4) ;

menubar .add (nenu) ;

/1 prepare user interface

JTextArea edit = new JTextArea(8, 40)
JScrollPane scroll = new JScrollPane (edit)
BorderLayout bord = new BorderLayout();
setLayout (bord) ;

add(“North", bar);

add("Center", scroll);

setJllenuBar (menubar) ;

pack();

setvisible(true);

}

private void setLookAndFeel() {

try {
UTianager . setLookAndFeel (

*com. sun. java.swing.plaf.ninbus.NimbusLookAndFeel"

)3

SwingUtilities.updateComponentTreeUI (this);

} catch (Exception e) {

Systen.err.println("Couldn’t use the system "

+ "look and feel: ' + e);
}

public static void main(String[] arguments) {
FeedBar2 frame = new FeedBar2();
}

OEBPS/html/graphics/13pro02a.jpg
RenderingHints.VALUE_ANTIALIAS_ON);
Rectangle2D.Float background = new Rectangle2D.Float(
OF, OF, (float)getSize().width, (float)getSize().height);
conp2D. 111 (background) ;
/1 Draw waves
conp2D. setColor (Color.white) ;
BasicStroke pen = new BasicStroke (2F,
BasicStroke.CAP_BUTT, BasicStroke.JOIN_ROUND);
conp2D. setStroke (pen) ;
for (int ax = 0; ax < 340; ax += 10)
for (int ay = 0; ay < 340 ; ay += 10) {
ArcaD.Float wave = new ArcaD.Float(ax, ay,
10, 10, 0, -180, Arc2D.OPEN);
conp2D. draw(wave) ;

}
/1 Draw Florida
GradientPaint gp = new GradientPaint(0F, OF, Color.green,
350F ,350F, Color.orange, true);
conp2D.setPaint (gp) ;
GeneralPath f1 = new GeneralPath();
f1.moveTo(10F, 12F);
1.1ineTo(234F, 15F);
1.1ineTo(253F, 25F);
f1.1ineTo(261F, 71F);
f1.1ineTo(344F, 209F):

OEBPS/html/graphics/xafig01.jpg
New project

NetBeansipe

by eigeans.

OEBPS/html/graphics/13pro02b.jpg
Tl.1lineTo(336F, 278F);
1.1ineTo(295F, 310F);

1.1ineTo(250F, 274F);

1.1ineTo(205F, 188F);

1.1ineTo(211F, 171F);

1.1ineTo(195F, 174F);

1.1ineTo(191F, 118F);

f1.1ineTo(120F, 56F);

f1.1ineTo(94F, 68F);

f1.1ineTo(81F, 49F);

f1.1ineTo(12F, 37F);

f1.closePath();

conp2D. fill(fl);

/1 Draw ovals

conp2D. setColor (Color .black) ;

BasicStroke pen2 = new BasicStroke();
conp2D..setStroke (pen2) ;

Ellipse2D.Float el = new Ellipse2D.Float(235, 140, 15, 15);
Ellipse2D.Float e2 = new Ellipse2D.Float(225, 130, 15, 15);
Ellipse2D.Float e3 = new Ellipse2D.Float(245, 130, 15, 15);
comp20. fill(el);

compD. ill(e2);

comp2D. fill(ed);

OEBPS/html/graphics/xafig04.jpg
5

Fie Edt View Novigate Source Refactor Run Debug Profie Team Tools Window Help

PEES D ower.] TH DB-®-

Projects [Files | Service(s] | 1| [Startpage _u[[soartsas.ova] CHEE

& Javazix S oy |[@B-8-ARSFEG L (AU 0D (LS
&l Source Padkages. T

ol -

10 public class Spartacus (

u

B .

13 * eparam args line arguments
14 .

15 public static void main(String(] args) {

16 ode app on logic here
17 System.ont._printin("I am Spartacus!”):

Output pane

OEBPS/html/graphics/09fig08.jpg
Hackthe Planet
Ideoplex
Inessential
Intertwingly
Markpasc.
Postneo

RC3

Workbench

OEBPS/html/graphics/xafig05.jpg
e gdit View Nvigate Source Refyctor Bun Debug Profle Team Tools Window Help
el @ b -] TG D BB

Projects | Files | Serviceid | 51| [Statpage u/ 5 Spartacusjava x|

5 & vzt e »-mml a iis
I‘MW

& <defoult package> -
& Spartacssave

3

4

s
(B vibraries 6
7
e
s
o

public class Spartacus {

public static void main(String[] args) {
on logic

"1 am Spartac

L:
:T .
T

<o View Avalable>

Error icon

OEBPS/html/graphics/09fig07.jpg

OEBPS/html/graphics/638pro01.jpg
java org.cadennhead.auction.sSelllitem

OEBPS/html/graphics/xafig02.jpg
projects:

Descripton:

[& Java Appication

S 3sva Clsss Lbrary

& 3ava roctuith Exsting Sources
|5 Java Free-Form Project

your project.

Creates a new Java SE application i a standard IDE project. You can also generate a main dass
i the project. Standard projects use an IDE-generated Ant build script o bud, run, and debug

e (hem

J [s | (ol][eep]

OEBPS/html/graphics/09fig06.jpg
|4 Choosean Output Format [-

Ghoose an output format o synccated news e,
© om O Rss 092 O RS 10 O RSS20

OEBPS/html/graphics/xafig03.jpg
Save All Files
Project pane

Sowce Relctor un Debug Brfle Tea Jook Window Help

HlEAY D ¢ m—— b 5O

Projects | Fles | servceie | | Swipae u [Seartacusiova 5
5:1’:;—;“ e] ey |2 - - Q%
5 Mudoon .dders. OB /o

R T

8 public cless Spartacms (

o

ETM*

[ERpr— -

5 /7000 ace somnionchee_sowiaasina

[——

i

o001 e

OEBPS/html/graphics/465pro01.jpg
public class Classlype {
public static void main(String[] arguments)
Class ¢ = String.class;
try {
Object o = c.newInstance();
if (o instanceof String)
System.out.println(*True");
else
System.out.println(*False");
} catch (Exception e) {
System.out.println("Error");
}

OEBPS/html/graphics/279pro01.jpg
int response = JOptionPane.showConfirmDialog(null,
“Should I delete all of your irreplaceable personal files

OEBPS/html/graphics/334pro01.jpg
Insets whitespace = new Insets(20, 13, 20, 13);

OEBPS/html/graphics/279pro02.jpg
int response = JOptionPane.showConfirmDialog(null,
"Error reading file. Want to try again?’,
"File Input Error’,
JoptionPane . YES_NO_OPTION,
JOptionPane.ERROR MESSAGE);

OEBPS/html/graphics/334pro02.jpg
public Insets getlnsets() {
return new Insets(10, 30, 10, 30);
}

OEBPS/html/graphics/495pro01.jpg
N1o Finger Server
User name: franklin

Franklin Armstrong plan file (franklin@localhost)

OEBPS/html/graphics/11pro03a.jpg
pane.add(jan);
pane.add(alice) ;
pane.add(peter);
pane.add(cindy) ;
pane.add(mike) ;
pane.add(bobby) ;
add (pane) ;
setVisible(true) ;
}

private void setLookAndFeel() {
try {
Ullanager . setLookAndFeel (
"com.sun. java.swing.plaf.ninbus.NimbusLookAndFeel"
)5
SwingUtilities.updateComponentTreeUl(this);
} catch (Exception exc) {
Systen.err.println(*Couldn't use the system *
+ "look and feel: " + exc);

i

public static void main(String[] arguments) {
Bunch frame = new Bunch();

OEBPS/html/graphics/13pro01a.jpg
+ class TextFramePanel extends JPanel {
string text;
string fontNane;

public TextFramePanel(String text, String fontName) {
super();
this.text = text;
this.fontName = fontName;

}

public void paintConponent (Graphics comp) {
super.paintComponent (comp) ;
Graphics2D comp2D = (Graphics2D)comp;
comp2D. setRenderingHint (RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON) ;

Font font = new Font(fontName, Font.BOLD, 18);
Fontlletrics metrics = getFontletrics(font);
comp2D. setFont (font) ;
int x = (getSize().width - metrics.stringWidth(text)) / 2;
int y = getSize().height / 2;
comp2D. drauString (text, X, y);

OEBPS/html/graphics/151pro01.jpg
String version = "0.7a";

boolean processorder () {
11
return true;

OEBPS/html/graphics/402pro01.jpg
<homepage hre

http://www.java2idays.com" />

OEBPS/html/graphics/402pro02.jpg
http://cadenheada.org/book/java-21-days/java/PageData.inlp

OEBPS/html/graphics/510pro01.jpg
Preparedstatement ps = cc.prepareStatement(
“insert into SYS.SYSTABLES VALUES(?, 2, 2, 2, 2)"):

OEBPS/html/graphics/11pro02a.jpg
JScrollPane scrollPane = new JScrollPane(text);
11 put them together

Flowlayout flow = new FlowLayout();
setLayout (flow);

add(comnandPane) ;

add(scrollPane);

setVisible(true);

i

private void setLookAndFeel() {
try {
UIlianager . setLookAndFeel (

"com.sun. java.swing.plaf.ninbus . NinbusLookAndFeel”
)i
SwingUtilities.updateConponentTreeUl (this);
} catch (Exception exc) {
System.err.println(“Couldn't use the systen *
+ "look and feel: * + exc);

}

public static void main(String[] arguments) {
Stacker st = new Stacker();
+

OEBPS/html/graphics/12pro01a.jpg
291
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
412
42:
43:
4a:
45:
46:
47:
48:
49:
50:

} else if (source == b2) {
setTitle("Guildenstern");
i
repaint();
}

private void setLookAndFeel() {
try
Uliianager .setLookAndFeel (
“con.sun. java. swing. plaf . ninbus. NinbusLookAndFeel”
)3
SwingUtilities.updateComponentTreeUI(this);
} catch (Exception exc) {
System.err.println('Couldn’t use the system "
+ "look and feel: " + exc);

}

public static void main(String[] arguments) {
TitleChanger frame = new TitleChanger();
}

OEBPS/html/graphics/485pro01.jpg
Lharset set = Charset.forName("150-8859-17);
CharsetDecoder decoder = set.newDecoder () ;
netBuffer.position(0);

CharBuffer netText = decoder.decode(netBuffer);

OEBPS/html/graphics/141pro01.jpg
Xx1s 0, y 1s 1
I am an instance of the class SubPrinter

OEBPS/html/graphics/138pro01.jpg
VolcanoRobot vic = new VolcanoRobot(exploring , 5, 200);

OEBPS/html/graphics/138pro02.jpg
class Circle {
int x, y, radius;

Circle(int xPoint, int yPoint, int radiusLength)
this.x = xPoint;
this.y = yPoint;
this.radius = radiusLength;

}

Circle(int xPoint, int yPoint) {
this(xPoint, yPoint, 1);
}

OEBPS/html/graphics/648pro01.jpg
javadoc -autnhor -version -d C:\JavaDocs\ ApplntoZ2.java

OEBPS/html/graphics/053pro01.jpg
86.0 degrees Fahrenheit 1s ...

30.0 degrees Celsius

33.0 degrees Celsius is ...
91.4 degrees Fahrenheit

OEBPS/html/graphics/10pro03a.jpg
JTextArea edit = new JTextArea(8, 40);
JScrollPane scroll = new JScrollPane (edit);
BorderLayout bord = new BorderLayout();
setLayout (bord) ;

add("North*, bar);

add("Center”, scroll);

pack();

setVisible(true);

i

private void setLookAndFeel() {
try {
UIlanager . setLookAndFeel (
"com.sun.java.swing.plaf.ninbus.NimbusLookAndFeel®
)5
SwingUtilities.updateConponentTreeUl (this);
} catch (Exception e) {

Systen.err.println(*Couldn't use the systen *
+ "look and feel: * + e);

i

public static void main(String[] arguments) {
FeedBar frame = new FeedBar ();

OEBPS/html/graphics/226pro01.jpg
connex.set(CLonnectionAttributes.WR1TABLE) ;
connex. set (ConnectionAttributes. STREAUABLE) ;
connex. set (ConnectionAttributes. FLEXIBLE) ;

connex.clear(ConnectionAttributes.WRITABLE) ;

OEBPS/html/graphics/226pro00.jpg
B1tSet connex = new BitSet(4),;

OEBPS/html/graphics/226pro02.jpg
poolean 1isWriteable = connex.get(ConnectionAttributes.WRITABLE),

