
[image: cover]

Praise for Learning iOS Game Programming

“An excellent introduction into the world of game development explaining every aspect of game design and implementation for the iPad, iPhone, and iPod touch devices. A great way for anyone interested in writing games to get started.”

—Tom Bradley, Software Architect, Designer of TBXML

“A great developer and a great game. That’s everything you can find in this book to learn how to write an awesome game for iPhone. Maybe you’re the next AppStore hit!”

—Sebastien Cardoso

“With Learning iOS Game Programming, you’ll be writing your own games in no time. The code included is well explained and will save you hours of looking up obscure stuff in the documentation and online forums.”

—Pablo Gomez Basanta, Founder, Shifting Mind

“I always thought that to teach others one has to be an expert and a person with an established reputation in the field. Michael Daley proved me wrong. He is teaching others while studying himself. Michael’s passion in teaching and studying, ease of solutions to problems, and a complete game as a resulting project makes this book one of the best I have ever read.”

—Eugene Snyetilov

“If you’re interested in 2D game programming with the iOS using OpenGL and OpenAL directly, this book walks you through creating a complete and fun game without getting bogged down in technical details.”

—Scott D. Yelich

“Michael Daley brings clarity to the haze of iPhone application development. Concrete examples, thorough explanation, and timesaving tips make this book a must have for the up and coming iPhone game developer.”

—Brandon Middleton, Creator of Tic Tac Toe Ten

“This is the A-Z guide to iOS game development; Michael’s book takes you from the basics and terminology to using the techniques in practice on a fully working game. Before you know it, you will find yourself writing your own game, fueled by a firm grasp of the principles and techniques learned within. I could not ask for a better reference in developing our own games.”

—Rod Strougo, Founder Prop Group

Learning iOS Game Programming

Michael Daley

[image: image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress cataloging-in-publication data is on file.

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-69942-8
ISBN-10: 0-321-69942-4
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing September 2010

Senior Acquisitions Editor
Chuck Toporek

Senior Development Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editors
Barbara Campbell and Jovana San Nicolas-Shirley

Copy Editor
Water Crest Publishing

Indexer
Lisa Stumpf

Proofreader
Sheri Cain

Publishing Coordinator
Romny French

Cover Designer
Chuti Prasertsith

Dedicated to my mum, Jen

Contents at a Glance

Preface

1 Game Design

2 The Three Ts: Terminology, Technology, and Tools

3 The Journey Begins

4 The Game Loop

5 Image Rendering

6 Sprite Sheets

7 Animation

8 Bitmap Fonts

9 Tile Maps

10 The Particle Emitter

11 Sound

12 User Input

13 The Game Interface

14 Game Objects and Entities

15 Collision Detection

16 Putting It All Together

Index

Table of Contents

Preface

1 Game Design

The Game That Started It All (For Me)

So, What’s the Big Idea?

A Game That Fits with the iPhone

The Storyline

What’s in a Name?

The Game’s Objective

Game Play Components

Time

Lives

Health

Objects

Doors

Weapons

Entities

Player

Summary

2 The Three Ts: Terminology, Technology, and Tools

Terminology

Sprite

Sprite Sheet

Animation

Bitmap Fonts

Tile Maps

Particle System

Collision Detection

Artificial Intelligence (AI)

Game Loop

Technology

Objective-C

Cocoa Touch

OpenGL ES

OpenAL

Tools

The iPhone SDK

Summary

3 The Journey Begins

Creating the Project in Xcode

Running the Project

Under the Hood

Application Delegate

Examining the Header File

Examining the Implementation File

EAGLView

EAGLView.h

EAGLView.m

ES1Renderer

Examining ES1Renderer.h

Examining ES1Renderer.m

Creating the Framebuffer and Renderbuffer

Defining the Color Values

Positioning

How OpenGL Works

Applying Transformations on the Model

Rendering to the Screen

Summary

4 The Game Loop

Timing Is Everything

Collision Detection

The Game Loop

Frame-Based

Time-Based, Fixed Interval

Getting Started

Inside the EAGLView Class

Inside the EAGLView.m File

ES1Renderer Class

Configuring the View Port

Game Scenes and the Game Controller

Creating the Game Controller

The GameController Class

Creating the Singleton

Inside GameController.m

AbstractScene Class

GameScene Class

Summary

Exercises

5 Image Rendering

Introduction to Rendering

Rendering a Quad

Texture Mapping

Texture Coordinates

Interleaved Vertex Arrays

Structures

Image Rendering Classes

Texture2D Class

TextureManager Class

ImageRenderManager Class

The Image Class

Initialization

Retrieving a Sub-Image

Duplicate an Image

Rendering an Image

Getters and Setters

Summary

Exercise

6 Sprite Sheets

Introduction to Sprite Sheets

Simple Sprite Sheet

Complex Sprite Sheets

Using Zwoptex

The SpriteSheet Class

Initialization

Retrieving Sprites

PackedSpriteSheet Class

Initialization

Parsing the Control File

Retrieving a Sprite

Summary

Exercise

7 Animation

Animation Chapter Project

Introduction to Animation

Frames

State

Type

Direction

Bounce Frame

Animation Class

Initialization

Adding Frames

Animation Updates

Animation Rendering

Finishing Things Off

Summary

Exercise

8 Bitmap Fonts

Bitmap Font Project

Introduction to Bitmap Fonts

Creating the Bitmap Font Sprite Sheet

The BitmapFont Class

Header File

What’s with the C?

Initializer

Parsing the Control File

Rendering Text

Rendering Justified Text

Text Width and Height

Deallocation

Summary

Exercise

9 Tile Maps

Getting Started with the Tile Map Project

Introduction to Tile Maps

Tile Map Editor

Tile Palette

Layers

Creating a Tile Map

Create a New Tile Set

Creating Map Layers

Creating Object Layers

Drawing the Map

Placing Objects

Understanding the Tiled Configuration File

Map Element

Tileset Element

Layer Element

Object Group Element

Tile Map Classes

Layer Class

TileSet Class

TiledMap Class

Initialization

Parsing a Map File

Creating the Layer Images

Rendering a Layer

Getting Tile Informaiton

Summary

Exercise

10 The Particle Emitter

Particle Emitter Project

Introduction to Particle Systems

Particle System Parameters

Life Cycle of a Particle

A Particle Is Born

A Particle Lives

A Particle Dies

A Particle Is Reborn

Particle Emitter Configuration

Particle Emitter Classes

TBXMLParticleAdditions Class

ParticleEmitter Class

Have a Play

Summary

11 Sound

Sound Project

Introduction to Sound on the iPhone

Audio Sessions

Playing Music

Playing Sound Effects

Creating Sound Effects

Stereo Versus Mono

Sound Manager Classes

SoundManager Class

Sound Effect Management

Loading Sound Effects

Playing Sound Effects

Stopping Sound Effects

Setting Sound Effect and Listener Position

Handling Sound Interruptions

Summary

12 User Input

User Input Project

Introduction to User Input

Touch Events

Processing Touch Events

The touchesBegan Phase

The touchesMoved Phase

The touchesEnded Phase

Processing Taps

Accelerometer Events

Summary

13 The Game Interface

Game Interface Project

OpenGL ES Interface

Rendering the Interface

Defining Button Bounds

Handling Touches

Handling Transitions

OpenGL ES Orientation

UIKit Interfaces

Creating the Interface

Wiring Up the Interface

UIKit Orientation

Showing and Hiding a UIKit Interface

Summary

14 Game Objects and Entities

Game Objects and Entities Project

Game Objects

AbstractObject Class

EnergyObject Class

Game Entities

AbstractEntity Class

Artificial Intelligence

Player Entity Class

Saving a Game Object or Entity

Summary

15 Collision Detection

Introduction to Collision Detection

Collision Pruning

Frame-Based Versus Time-Based

Axis-Aligned Bounding Boxes

Detecting Collisions

Collision Map

Entity-to-Map Collision Detection

Entity-to-Entity Collision Detection

Summary

16 Putting It All Together

The “Camera”

Saving the Game State and Settings

Saving Game State

Loading Game State

Saving Game Settings

Loading Game Settings

Saving High Scores

Adding a Score

Saving High Scores

Loading High Scores

Performance and Tuning

Using Instruments

Leaks Instrument

Using the OpenGL ES Instrument

Compiling for Thumb

Beta Testing

Multiple Device Types

Feedback

Summary

Index

Acknowledgments

Writing this book has been an amazing journey, and it’s only through the efforts of many other people that you are reading this today. Without these people, I don’t believe the book would have even been published, let alone become the valuable resource I believe it to be. For this reason, I would like to acknowledge those people who have supported me on this journey:

• First of all, I’d like to thank my editor at Addison-Wesley, Chuck Toporek, and his faithful sidekick/editorial assistant, Romny French. Chuck stumbled upon the video tutorials on my blog and encouraged me to write this book based on what he saw there. Along the way, Romny helped keep things moving, chased/supported me in getting my tax information in place so I could get paid, and helped us deliver the book to production. Without their support, guidance, and encouragement, I would never have been able to make the leap from game development blogger to author.

• John Bloomfield is a professional web designer and is responsible for the design and administration of the 71Squared.com blog. Without his great work on the blog, Chuck would never have seen my tutorials, and the opportunity to write this book may never have arisen. John is also my oldest and closest friend, and even though he is now living on the other side of the world in Australia, it didn’t stop him from supporting and contributing to this project.

• Tom Bradley, a good friend, talented developer, and creator of TBXML,1 spent many hours working with me, even into the early hours of the morning, helping me track down bugs and improve performance. Tom’s support helped me through some sticky moments in the development of Sir Lamorak’s Quest and was instrumental in getting the game finished on time.

• Ryan Sumo is a freelance video game artist residing in Manila, The Philippines. He created all the artwork used in Sir Lamorak’s Quest that gives the game its retro look. He is a true professional and a pleasure to work with. His rapid delivery of art and great feedback and suggestions really helped give the game its great look. If you ever run into Ryan in Manila and show him a copy of this book, he is sure to buy you a drink. Examples of Ryan’s work can be found at ryansumo.carbonmade.com.

• Vince Webb is an award-winning composer currently enrolled on an undergraduate music course in London and is the creator of the music and sound effects used in Sir Lamorak’s Quest. His ability to create an atmosphere with his music really took Sir Lamorak’s Quest to a new level. Vince is currently working on a number of projects, and more information about him and his work can be found at www.vincewebb.com. Vince is a real talent, and I’m pleased to have had the opportunity to work with him.

• Games such as Sir Lamorak’s Quest need a lot of testing, and through my 71Squared.co.uk blog, I was able to get help from a great team of beta testers. These testers were all followers of the iPhone game development tutorials on the blog and provided fantastic feedback and suggestions. This feedback really helped polish the final product. Details of all those involved can be found in the credits in Sir Lamorak’s Quest: The Spell of Release game.

• Saving the best for last, I want to thank my family. Developing Sir Lamorak’s Quest and writing this book have taken a considerable amount of time. Throughout this period, my wife, Alison, and fantastic children, Caragh, Alex, and Matthew, have had to deal with me being locked away for hours and days at a time. Without their patience, love, and support, I would still be hunting for the game-development book of my dreams.

I certainly hope that you find this book to be the useful resource I believe it is, and I would appreciate any suggestions or feedback you have.

—Michael Daley
mike@71squared.com

About the Author

By day, Michael Daley works for the largest enterprise software company in the world supporting large corporate customers in communications. By night, Michael has taken on the task of learning how to build games for the iPhone. Michael started writing adventure games in BASIC on a Sinclair Spectrum 48k and progressed onto the Commodore 64 and the Amiga A500. Never having lost a passion for game programming, Michael got inspired to learn Objective-C when the iPhone came out, and he set out to learn how to build games for the iPhone.

Having written many games for his children over the years, the launch of the iPhone inspired him to create games for the platform that would be available to more than his children. Michael has a passion for learning new technologies and how to apply them. He’s a true Apple fan, spending far too much time and money on the latest Apple equipment.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and phone or email address. I will carefully review your comments and share them with the author and editors who worked on the book.

Email: chuck.toporek@pearson.com

Mail: Chuck

 Toporek Senior Acquisitions Editor, Addison-Wesley

 Pearson Education, Inc.

 75 Arlington St., Ste. 300

 Boston, MA 02116 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/register for convenient access to any updates, downloads, or errata that might be available for this book.

Preface

Writing a game can be a daunting task. Even if you’re an experienced programmer, the design patterns, terminology, and thought processes can seem strange and unusual. Having spent most of my working life creating business applications, writing games has been a hobby that has seen me create many games my children have played and enjoyed over the years. With the release of the iPhone and iPod touch, it was time to unleash one of my creations on the world.

My first task was to find a good book on developing games on the iPhone. After a lot of research, I decided that the book I wanted just didn’t exist, and having had great feedback on a number of online tutorials I had created, I decided to write my own book. This was a perfect opportunity for me to create the game programming book I’ve always wanted myself.

Over the years, I’ve read many game development books and have been left wanting. Although they provide information on the individual components required to make a game and include small examples, they never go all the way to creating a complete game good enough to publish. I’ve always believed that a good book should both tell the reader what is required to make a game but also demonstrate how those components can be implemented inside a complete game project.

So, this book not only describes the components and technology needed to create a game on the iPhone, but it does so through the creation of a complete game: Sir Lamorak’s Quest: The Spell of Release. This game is currently available for free download from the App Store, and is the game you learn how to build as you work your way through this book.

Download the Game!

You can download Sir Lamorak’s Quest from the App Store:
http://itunes.apple.com/us/app/sir-lamoraks-quest-the-spell/id368507448?mt=8. The game is freely available, so go ahead and download the game, start playing around with it, and help Sir Lamorak escape from the castle!

This book describes the key components needed to create this 2D game. It covers both the technology, such as OpenGL ES and OpenAL, as well as the key game engine components required, including sprite sheets, animation, touch input, and sound.

Each chapter describes in detail a specific component within the game, along with the technology required to support it, be it a tile map editor, or some effect we’re trying to create with OpenGL ES. Once an introduction to the functionality and technology is complete, the chapter then provides details on how the component has been implemented within Sir Lamorak’s Quest. This combination of theory and real-world implementation helps to fill the void left by other game development books.

About Sir Lamorak’s Quest

My game-playing experiences started when I was given a Sinclair Spectrum 48k for Christmas in 1982. I was hooked from that moment, and I have had a close relationship with computers ever since.

While thinking about the game I wanted to develop for this book, my mind kept wandering back to the games I played in the 1980s. They may not have been visually stunning, although at the time I was impressed, but they were fun to play.

I spent some time working on the design of the game, which included not only the features I wanted in the game, but also how it should be implemented on the iPhone. One key aspect of the game is that it should be casual—that is, the concept of the game should be simple and easy to pick up, and players should be able to start and stop the game easily without losing their progress.

I also wanted the controls to be easily recognizable and therefore decided to implement an onscreen joypad to control the main character. It was important, though, to allow the player to swap the position of this joypad so that both left- and right-handed players found the game comfortable.

As for the game play itself, I decided to take a number of design ideas from games I played in the ‘80s and went with a top-down scroller, in which the player is trapped in a haunted castle and has to find a magic spell so that he can escape.

Organization of This Book

There are 16 chapters in the book, each of which deals with a specific area of creating Sir Lamorak’s Quest, as follows:

• Chapter 1, “Game Design”—This chapter describes the design considerations I made while designing Sir Lamorak’s Quest. It provides an insight into the kind of thought process required when sitting down to create a game. It doesn’t cover every possible design decision needed for all genres of games, but it does cover the important ones.

• Chapter 2, “The Three Ts: Terminology, Technology, and Tools”—Even experienced programmers can become confused by the three Ts used within game development. This chapter runs through the common technology, terminology, and tools used to create Sir Lamorak’s Quest and games in general. This chapter helps you understand the terms and technology covered throughout the book.

• Chapter 3, “The Journey Begins”—This is where we start to get our hands on some code and get the iPhone to render something to the screen. This chapter covers the process of creating our first project using the OpenGL ES template project within Xcode. The template is described in detail and sets the scene for the chapters that follow.

• Chapter 4, “The Game Loop”—The heartbeat of any game is the game loop. This loop is responsible for making sure that all the core elements of the game, such as AI and rendering, are done at the right time and in the right order. This may sound simple, but there are a number of different approaches to the game loop, and this chapter discusses them and details the approach taken for Sir Lamorak’s Quest.

• Chapter 5, “Image Rendering”—Drawing images to the screen is a fundamental requirement for any game. This chapter provides an overview of OpenGL ES and runs through a number of classes created to simplify the creation and rendering of images to the screen.

• Chapter 6, “Sprite Sheets”—Sprite sheets are images that contain a number of smaller images. These sheets can be used to reduce the number of individual images held in memory and the number of different textures OpenGL ES needs to bind to improving performance. They are also commonly used when creating animated sprites. This chapter covers how to create sprite sheets that contain the images used in the game, regardless of whether they have fixed or variable dimensions.

• Chapter 7, “Animation”—Having created the means to store the different frames needed in an animation using sprite sheets, this chapter describes how separate images can be played in sequence to provide you with animation, such as the player character running.

• Chapter 8, “Bitmap Fonts”—The most common way to interact with your game’s user is through the use of text. Being able to render instructions and information (such as the player’s score or instructions on how to use the game) is important. This chapter describes how you can use open source tools to take any font and turn it into a bitmap font. Once the bitmap font is created, you’ll see how to create a sprite sheet that contains all the images needed to render the characters in that font. It also details the Bitmap font class used in Sir Lamorak’s Quest, which provides a simple API for rendering text to the screen.

• Chapter 9, “Tile Maps”—Tile maps allow large game worlds to be created from reusing a small number of tile images. This common approach has been used in the past to create large game worlds (think of the original Super Mario Brothers game for Nintendo) when memory is limited, back in the early days of home game systems. This technique is still popular today, and this chapter describes the use of an open source tile-editing tool to create tile maps, along with a class that can render these maps to the screen.

• Chapter 10, “The Particle Emitter”—Many games have impressive effects, such as fire, explosions, smoke, and sparks. These are created using a particle system. The particle system is responsible for creating and controlling a number of particles; each has its own properties, such as size, shape, direction, color, and lifespan. During a particle’s life cycle, its position, speed, color, and size are changed based on the particle’s configuration. This chapter details how to create a particle system that can be used to generate any number of organic effects.

• Chapter 11, “Sound”—Giving the player feedback using sound is important in today’s modern games. This chapter describes how the media player functionality of the iPhone, along with OpenAL, can be used to play a cool soundtrack in the game, as well as 3D (surround) sound effects.

• Chapter 12, “User Input”—This chapter describes how to use the iPhone’s unique touch and accelerometer capabilities to control your game. It details how to capture and process multiple touches at the same time and also how data from the accelerometer can be used within your own games.

• Chapter 13, “The Game Interface”—In this chapter, we start to look at how the game interface for Sir Lamorak’s Quest was implemented. This includes how to deal rotation events to make sure that the user interface is always oriented correctly. It also describes how to mix both OpenGL ES and UIKit interface controls.

• Chapter 14, “Game Objects and Entities”—As the player runs around the castle in Sir Lamorak’s Quest, we want him to be able to find objects, pick them up, and fight baddies. This chapter describes how objects and entities have been implemented within Sir Lamorak’s Quest.

• Chapter 15, “Collision Detection”—Having the player and baddies run through walls and doors would really spoil the game, so it’s important to be able to register collisions between either the player and the map or objects and entities within the castle. This chapter describes different types of collision detection and how this has been implemented within Sir Lamorak’s Quest.

• Chapter 16, “Pulling It All Together”—At this point, a great deal of ground has been covered. There is, however, a number of things you can do to the game to add polish. This chapter covers how to save the player’s game state for when he quits or leaves the game when he has an incoming call. Chapter 16 also covers performance tuning using instruments and tips for getting your game beta tested.

Audience for This Book

This book has been written for people who are already programmers but who have never written computer games before. Although it assumes that you already have some experience with Objective-C, each chapter provides enough information on both Objective-C and other technologies so you can follow the concepts and implementations.

By the time you complete this book, you will have an in-depth understanding of the game engine that was built for Sir Lamorak’s Quest and the key capabilities and considerations are needed to create a 2D game engine. This enables you to take the same game engine developed in this book and use it in your own games, or simply use the knowledge you have gained about creating games in general and use one of the many game engines available for the iPhone, such as Cocos2D.

Who This Book Is For

If you are already developing applications for the iPhone for other platforms, but want to make a move from utility applications to games, this book is for you. It builds on the development knowledge you already have and leads you into game development by describing the terminology, technology, and tools required, as well as providing real-world implementation examples.

Who This Book Isn’t For

If you already have a grasp of the workflow required to create a game or you have a firm game idea that you know requires OpenGL ES for 3D graphics, this is not the book for you.

It is expected that before you read this book, you are already familiar with Objective-C, C, Xcode, and Interface Builder. Although the implementations described in this book have been kept as simple as possible and the use of C is limited, a firm foundation in these languages is required.

The following titles can help provide you with the grounding you need to work through this book:

• Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-Wesley, 2008).

• Learning Objective-C 2.0, by Robert Clair (Addison-Wesley, 2011).

• Programming in Objective-C 2.0, by Stephen G. Kochan (Addison-Wesley, 2009).

• Cocoa Design Patterns, by Erik M. Buck and Donald A. Yacktman (Addison-Wesley, 2009).

• The iPhone Developer’s Cookbook, Second Edition, by Erica Sadun (Addison-Wesley, 2010).

• Core Animation: Simplified Animation Techniques for Mac and iPhone Development, by Marcus Zarra and Matt Long (Addison-Wesley, 2010).

• iPhone Programming: The Big Nerd Ranch Guide, by Aaron Hillegass and Joe Conway (Big Nerd Ranch, Inc., 2010).

These books, along with other resources you’ll find on the web, will help you learn more about how to program for the Mac and iPhone, giving you a deeper knowledge about the Objective-C language and the Cocoa frameworks.

Download the Source Code

Access to information is not only limited to the book. The complete, fully commented source code to Sir Lamorak’s Quest is also available for download on InformIT.com.

There is plenty of code to review throughout this book, along with exercises for you to try out, so it is assumed you have access to the Apple developer tools, such as Xcode and the iPhone SDK. Both of these can be downloaded from the Apple iPhone Dev Center.2

1. Game Design

I love games. That’s a fairly simple statement to make, but it really sums me up quite nicely. I’ve been playing games ever since I got my first computer back in 1982. That Sinclair Spectrum 48k (see Figure 1.1) was something I nagged my parents about for months! And there, among the torn wrapping paper on Christmas morning of 1982, was my first computer. It was black and shiny with little gray rubber keys, and as far as I was concerned, it was a thing of beauty and magic.

Figure 1.1 My original 1982 Sinclair ZX Spectrum.

[image: image]

I had no idea how or why it worked—it just did. As I sat and watched my first game slowly load and appear on my portable television and listened to the odd screaming noise coming from the cassette drive, I knew I was at the start of a long relationship with computers.

It wasn’t long after getting that Spectrum that I started playing as many games as I could get. I wanted to know how the computer—and the games—actually worked. At the time, there were a number of magazines you could buy that gave you information on how to program in BASIC on the Sinclair. Those magazines, such as Sinclair User or ZX Computing, contained all the code for the programs, which also meant that you had to very carefully type in that code line by line before you could run the program. I spent many hours trying to get something to work, only to be disappointed.

What seemed like an exercise in futility also proved to be a valuable learning exercise. By typing all that code, I learned how things worked and what necessary building blocks were needed for a game. It also showed me that anyone—including me in my bedroom with a Spectrum—could write computer games without being part of some giant company.

The process of sitting down and working out how to create games on the iPhone has been very much a repeat of those early years. I’ve worked on plenty of ideas that have not worked and been disappointed, but this has been easily forgotten, as other ideas have proved to be successful. The feeling of achievement when something you have been working on actually does what you expect is fantastic. To this day, I still get the same excited feeling when I see something I’ve written actually working. I’ve had the same feeling when writing software at work, but to be honest, it’s nothing like the feeling I get when I see something flying around the screen in a game. It’s just so much more exciting.

Writing games for the iPhone, I feel like I’m 12 again, minus the complexion problems and homework. I think that many people are realizing that it is possible to create and share their own games. Although the technology has moved on considerably and the mechanism for sharing these games is much easier than reproducing tape cassettes, coming up with the ideas and working on bringing your very own game to life is very much the same.

This chapter covers the key design principles and game elements that I considered when designing and developing the game that we cover in this book, such as the following:

• High-level game design

• Storyline

• Game play components

It’s important that we build a solid base from which the game will grow, and this chapter provides you with the information needed to start our journey into creating a game on the iPhone.

The Game That Started It All (For Me)

At the time, I was mostly inspired by Matthew Smith, the 17-year-old who created the hit title Manic Miner.1 Manic Miner (see Figure 1.2) was a platform game with 20 levels, and it even had an in-game soundtrack, which was a first back then. Matthew created Manic Miner in just six weeks, and although he was obviously talented, it proved that anyone with some imagination and technical ability could create a game.

Figure 1.2 First level of Manic Miner on the ZX Spectrum.

[image: image]

Since then, computers have been a huge part of my life, and I’ve made my career out of them. Not designing best-selling computer games, but within the enterprise. Although this is something I have enjoyed, a big part of me has always wanted to create a game for others to play. I’ve created plenty of simple prototypes over the years in all sorts of languages (with Java being the latest), but none of them have seen the light of day. Until now.

I was already a huge fan of Apple long before the iPhone was launched, but of course, fell in love with the device as soon as I saw it. When Apple then released the SDK, I immediately downloaded it and started to play, as did thousands of others, and I watched as more and more games started to appear on the App Store.

It felt just like those early days with my Spectrum. It was obvious that people sat in their bedrooms, creating games for the iPhone and using Apple and the App Store as their publisher and distributor. It wasn’t long before I was hunting the Internet high and low for information that would help me start to develop a game, and that journey has ultimately lead to you reading this book.

So, What’s the Big Idea?

Every game starts with a concept—an idea. When I started thinking about the game for this book, I went to the best source I could think of for ideas: my children. I must have sat there for about 30 minutes scribbling down notes as they described the most incredible world to me, how things should interact, what weapons you should have, and most importantly to them, how you die. When you have two boys, it’s all about the gory details. I don’t think I realized until then just how seriously they take their gaming, and once I explained that I would not be able to create Halo 10, they quickly scaled back their suggestions.

I have to admit that a number of ideas for this game have come from classic Spectrum games I played in the 1980s. I enjoyed them so much, I just could not resist using some of their classic game play within my first public iPhone game.

A Game That Fits with the iPhone

One of the big considerations while working on the concept for the game was how people actually use the iPhone. I love playing games on the iPhone, but I don’t spend hours and hours playing those games like my boys do on their Xbox. Most people pick up their iPhone, launch a game, and play for a few minutes (often while in meetings), and then put them down again. This also seems to be an ever-increasing theme among games that I’ve seen on the App Store.

This is an important consideration and can impact the game design in different ways, including the following:

• Players should be able to quit and resume play where they left off (or at the beginning of the level from which they quit).

• The game controls need to be intuitive and easy to master, quickly. If your user is only expected to play in bits and spurts, having an easy-to-use set of controls is key. They also need to be designed specifically for the iPhone. Making use of the accelerometer and multi-touch are mechanisms that should be considered carefully.

• The storyline should not be so complex that time away from the game causes the players to lose the plot and feel lost when they play again.

• There needs to be a clear and easy-to-understand objective to the game. This could be a goal or simply score- or time-based.

These are just a few of the things I considered when designing the game. Given that I wanted the game to be casual, I decided that players would be allowed to carry on from where they left off at the last session. For the controls, the game makes use of an onscreen joypad that will be both familiar to most players and easy for them to use.

Note

I toyed around with a lot of options for the game controls, and discuss those options and the decision-making process later in Chapter 12, “User Input.”

Based on the casual nature of the game (and that there’s just no way I could build Halo 10), I ended up with a classic 2D game based in a haunted castle. The castle is inhabited by ghosts and ghouls, and it is a place where only the foolhardy dare to venture. With this in mind, I wrote a storyline to the game to help me build an image of how it was going to look and also give me something to refer back to as I programmed the game.

Tip

In the past, I’ve found it easy to wander off track when you get into the thick of the code for a game, so having something you can refer back to will help keep you on track.

The Storyline

You play the role of a young knight, Sir Lamorak, who seeks adventure—as well as fame, fortune, and the attention of the fair maidens in the local village—by proving that there is no such thing as ghosts in the long-abandoned Egremont Castle near the Forest of Ulpha.

As Sir Lamorak arrives at the old moss-covered castle, he starts to feel uneasy—as though a thousand eyes are watching him approach the main entrance. After jumping down from his trusty steed, Buttercup, his horse turns, snorts, and bolts back to town, leaving our brave Sir Lamorak all alone. With nothing but the wind pushing against him, Sir Lamorak is blown (or sucked, maybe) into the large wooden castle doors as they open with a loud creak, as the rusty hinges give way to years of neglect.

Slowly, Sir Lamorak moves forward into the main entrance of the castle and peers into the darkness before him. He sees nothing, but can hear the wind moaning through the castle and the dripping of water in the distance. Suddenly, a large gust of wind rips through the hallway with a howl, the main doors behind him slam shut, and Sir Lamorak jumps forward in panic. He turns and runs to the door, grabbing and pulling on the handles, but it will not open. He is trapped.

Standing in the darkness, wondering why on earth he decided to visit this place, Sir Lamorak hears an evil voice through the darkness:

“Only those who can cast the Spell of Release can leave this place, else, you are trapped here with us forever…mwahahahahaha!”

Shaking with fear, Sir Lamorak is now standing in a dark castle and has absolutely no idea what the Spell of Release is, where it can be found, or who the evil voice belonged to. One thing, however, is certain…he is not alone.

What’s in a Name?

I love creepy stories, and this storyline sets us up nicely for the rest of the design. At this point, I also wanted to give the game a name. I can then refer to the game using this name going forward, and it helps build the game’s identity.

You would not think that naming your game could cause problems, but you need to be aware of a couple of important issues when it comes to deploying your game to the App Store. At the time of writing, there are over 150,000 apps in the App Store. That’s a lot of apps and a lot of names that have already been used up, and that is the tip. Before you spend time, and maybe money, on artwork for the game using its name, you need to make sure that no one else has used that name on the App Store. There is nothing more annoying than having everything done, only to find that someone else has used your cool name before you.

You also want to make sure you are not using a name that is copyrighted in some way, as it would also be a real pain to be asked to take down your game because of copyright issues. This goes for all content in your game, really. You are asked during the process of loading your app onto the App Store whether all the content is yours so as to make sure you are not infringing any copyrights. It’s worth checking.

As for the name, all you can do is keep checking the App Store for the name you want to use and hope that someone else does not use it before you. For example, it is easier if you don’t name your game something beginning with “i,” as there are thousands of those being used.

You are also limited to the number of characters that are shown under app icons on the Springboard screen of the iPhone: It’s around ten. For this reason, you either need a small catchy name or to use the initials of your full game name. If you use more than the max number of characters, the name will be shortened to fit under the icon.

The full name I’m using for this game is Sir Lamorak’s Quest: The Spell of Release, and the shortened name for it is SLQTSOR.

The Game’s Objective

Having created a gripping story for the game, I needed to come up with the game’s objective. After all, once Sir Lamorak is in the castle, you’ve got to do something to get him out, and it appears the only way to do that is with the Spell of Release, whatever that is. Based on the game’s storyline, I knew the objective was reasonably simple: The player would need to navigate Sir Lamorak around the castle looking for the Spell of Release. Building on the preceding storyline, I started to add some more detail. For example, the Spell of Release is written on an old parchment that has been torn onto three pieces by an evil wizard and is hidden throughout the castle.

Once all the pieces of the spell are found, the player needs to return to the entrance hall and escape through the main doors. Although that might sound simple, the evil wizard isn’t going to make it so easy for Sir Lamorak to escape. The wizard placed nasty specters and obstacles to make the hunt for the spell harder. As Sir Lamorak moves throughout the castle, he accumulates a score based on the baddies he kills and is timed to see how quickly he completes the quest.

I was trying to think of a reason why someone would want to play this game over and over. I felt that by having the player complete the game as quickly as possible, while at the same time attempting to get a good high score (and not get killed by the baddies), it would make someone want to play the game again to better their high score as well as their time. That meant that the parchment pieces for the Spell of Release would have to be placed around the castle randomly, so that each time the game is played, the player would need to hunt for the parchment all over again, rather than memorizing the locations.

Game Play Components

With the storyline and objective in place, it was time to think about the mechanics of the game. I had to think of things like how the player would lose and regain health points and kill baddies and what things aside from the baddies could hinder Sir Lamorak’s progress. To sort out these issues, I just started writing down my ideas. As part of the thought process, I wanted to make sure that the game play wasn’t too hard or too easy. The game needed to require some thought and some skill. I also knew that it was going to take a lot of play testing to get it just right. From my previous experiences at developing games, even simple ones, balancing the difficulty of the game can be tough. The following sections present the game mechanics that I started with. And although I knew they could change as the game developed, it was important to lay down ideas and start plotting the course.

Time

Time can either be used to limit the amount of time a player has to carry out a task or used to measure how long something has taken. For this game, I decided to use time to record how long it takes the player to complete the game. Having both a score and a time gives players a couple of different measurements they can use when tracking both their progress and level of achievement within the game.

Another form of timer in the game is the player’s health. The health of players will be constantly reducing, even when they are just standing still. This means they have to always be moving, looking for the food to make sure they don’t run out of energy.

Lives

Games are supposed to be challenging, so it’s inevitable that the player will die at some point. When this happens, we could slap them and make them start over again, or use up one of a predefined number lives and let them carry on. Although I have come across a number of games that make you start over from the beginning, I decided to give the player three lives.2 This is just an arbitrary number, but most arcade games give you three lives at the start, so I thought I should, too. When it comes to adding the game content and then testing the game, the number of lives could change if we find that the game is too easy or too hard.

Note

It may seem odd to make a statement like that last one. However, experience has shown me that although I can have many killer ideas at the start of a project, and I want to set some in stone as they are core to the game play, some of them just don’t end up in the game. They either were too complex to implement, they didn’t work well with the game play, or play testing showed that they made the game either too easy or too hard. You should certainly keep track of these ideas, but recognize that some of them may need to be adapted or dropped later on.

Health

The health of players is critical to the game and is something they will need to manage as the game progresses. I didn’t want to just have the player’s health reduced when a baddie hits him, as I felt it reduced the player’s involvement in the game. If he was quick to fire and move, then he could most likely move throughout the castle without too much effort. So, to add a little more depth to the game, I decided that the player’s health would continually decrease, even when ghosts are not attacking the player. Just moving around uses up energy, and our hero is moving around the castle at a somewhat frenetic pace. Sir Lamorak certainly does not want to be in the castle longer than he needs to be, so the running around means that his energy levels within the game are continually reducing. When he does get slimed by a baddie, his health reduces even further.

To help our hero survive while in the castle, Sir Lamorak stumbles upon items to increase his health. By consuming these (done by simply moving Sir Lamorak over them), his health is increased. To further increase the thought required by the player, there are also a limited number of these items around the castle. Once they are used up, no others will be provided. This makes the game challenging and causes players to think carefully about how and when they use these items so that they don’t run out of energy before completing the game. This also introduces an element of skill. Knowing when to find energy will be key to surviving while they hunt for the parchment pieces. Oh, and avoiding the baddies will be key to surviving, too.

Objects

All games have objects of one type or another. These could be weapons that are collected, energy packs, ammunition, extra lives, bonus points, and so on. What objects are needed within the game and how they should be used vary depending on the nature, storyline, and game mechanics that are going to be used. Although it would be cool to give Sir Lamorak an Uzi 9mm or the Ghostbuster backpacks, it doesn’t really fit with the story. We also don’t want him running around shouting “I’ll be back….”

For this game, I decided that I would not go too far and settled on just three types of objects in the game: energy to restore health, keys to open locked doors, and the parchment pieces to allow the player to escape. As I mentioned earlier, it’s good to get your ideas down, even if they may change later. Some of your ideas will be fundamental to the game story or plan and cannot change or be dropped, whereas others could be adapted based on how the game is progressing.

Keys

I decided that, to make things more challenging for the player, there are a couple of different door types. The first are normal doors that simply open and close randomly as the player is moving around the castle. The second type of door is a colored door. The idea is that these doors do not open unless the player is carrying the appropriately colored key with him. If he has the correctly colored key, the door opens as he approaches. If not, the door remains closed and blocks his way.

Game Hint

There is a second reason for allowing the player to carry and drop colored keys. Because the castle is like a maze, the keys could be dropped and used like breadcrumbs, enabling the player to identify rooms he has already visited and helping him to navigate his way around the castle.

Energy Items

A number of energy items can be found throughout the castle, each carrying a predefined amount of energy. As the player passes over these items, they are automatically collected and the player’s health is increased accordingly. The player’s health cannot increase beyond 100 percent, and once an item is absorbed, it’s no longer available.

Parchment Pieces

There are only three of these items within the game. As you will remember from the game’s storyline, the player has to guide Sir Lamorak around the castle to find these pieces of parchment. Once they have all been collected, our hero will be able to read the Spell of Release and exit the castle through the main doors. One further detail is that when picking up parchment pieces, they will be held within the player’s inventory. This inventory will only be able to carry a maximum of three items, including keys, so the player needs to place all the parchment pieces into his inventory to be able to read them.

Doors

Doors within the castle will open and close on their own, with some assistance from the ghosts that inhabit the castle, of course. For example, the ghosts might close an open door that Sir Lamorak was just about to go through, forcing him to find another route and expend more energy. This type of obstacle can make game play more challenging, especially if the player was about to enter a room where an energy item is located. The way the doors open and close is completely random and not based on some fixed time that players could memorize after playing the game a few times. A door stays open or closed from between one and ten seconds. This is something that could change once we start playing the game to adjust the difficulty.

Weapons

Many games have a collection of weapons the player can use. Being a knight in a haunted castle, I’ve decided to give the knight just one weapon, a mighty axe, which Sir Lamorak flings at the baddies with great skill. Only a single axe should be thrown at a time, and it will bounce off walls, killing all the baddies it touches, and then disappear after a couple seconds.

Once it has vanished, the player can fire the axe again. Only being able to fire a single axe at a time is an idea I have seen used in some classic Spectrum games, and I’m hoping to introduce a little more skill into the game by using this technique rather than the player just shooting blindly to get past the baddies. It also answers the question of where Sir Lamorak keeps finding all of those axes. With a single axe, it is easy to believe that it acts sort of like Thor’s Mighty Hammer, which boomerangs back after being thrown, and Sir Lamorak simply catches it on the rebound. Having a never-ending supply of axes is, well, just fantasy.

Entities

No game would be complete without entities. As Sir Lamorak runs around the castle looking for the Spell of Release, it would get rather boring if nothing happened but a few doors opening and closing on him. To really increase the challenge, we need to provide our hero with foes to battle. My idea here is to have a number of different entities that can appear and attack the player, such as the following:

• Ghost

• Pumpkin Head

• Witch

• Bat

• Zombie

• Frankenstein

• Vampires

These entities appear and hover around inside the castle and have two behaviors. First, they just move around randomly, changing direction and speed at will, with no defined path. This should stop the player from being able to get accustomed to their movement. The second behavior has them track and chase the player rather than just mill around. The entities may change some way to signify to the player which mode they are in, or stay the same and keep player guessing. These behaviors will also not be constant—that is, the ghost could change from wandering to chasing and back to wandering again at will, providing the player with further stress.

Player

This may be the last in the list of game components, but it is one of the most important. The player is the central character within the game around which the story has been built, and there are specific actions the player will need to be able to do. From the storyline created earlier, we know that the player is a knight trapped in a castle and that he carries an axe. Based on this and the game components we have already described, we can create a list of actions the player needs to be capable of, as follows:

• Move around the castle.

• Throw his axe in either the direction the player is facing or toward the player’s touch on the screen.

• Collect energy items by walking over them.

• Collect keys. This also means he will need some kind of simple inventory in which to store the keys he is carrying. This is also true of the parchment pieces; he will need to be able to carry these as well.

• Walk through locked doors when he is carrying the correctly colored key.

• Be blocked from passing through closed doors or locked doors if he does not have the right key.

• Walk through the main castle door if all three pieces of parchment are held in the player’s inventory.

These are the basic actions, based on our current game design, necessary to enable the player to interact with the game and achieve the objectives. How the player is to be actually implemented—his look and feel—will be covered through the rest of the book.

Summary

This has been a long, wordy chapter, but we have already covered a lot of ground. We have gone through what this book aims to provide and what to expect. We have also gone over the game idea that is going to be developed throughout this book. This led to us coming up with a storyline, the game’s objective, and the components that are needed to implement the story and game objectives.

We have only briefly covered the components that we need to create within our game. We go into more detail on that later in this book.

Now that we have decided on the name, storyline, objectives, and components, we need to look at the technology we are going to need. By this, I mean, “How are we going to take those concepts and actually code them up for the game?” We start covering this in the next chapter, as we discuss the terminology that is often used within games, such as sprites, texture atlases, and so on. We also cover, at a high level, the technologies we will use to implement our game, including Objective-C, OpenGL ES, and OpenAL.

There are areas we did not discuss in this chapter, such as In-App purchases. Although Sir Lamorak’s Quest isn’t making use of this capability, it is worth considering how In-App purchasing could be used within your game. Allowing the player to purchase new content (levels, weapons, energy, and such) extends the life span of the game and can create a loyal fan base that can be approached when launching a new game.

2. The Three Ts: Terminology, Technology, and Tools

As you learned in the previous chapter, we covered the basic game design, storyline, and game components for Sir Lamorak’s Quest. Although this is all-important information to have at the moment, it’s no more than a story. What we now need to do is take a look at the three Ts: the terminology, technology, and tools we are going to use to turn this story into a fully functional (and entertaining) iPhone game.

Note

It is not intended that this book will teach you how to develop in Objective-C or C or teach you everything you need to know about the other technologies in their own right; there are many excellent books1 and online resources that cover OpenGL and OpenAL in greater detail. We will, however, cover these topics in enough detail to allow you to understand why we are using them and how.

The terminology used when developing computer games can be very different from terminology you may have come across when creating other types of applications. The common terminology used in game development will be covered in this chapter, so you will more easily understand the concepts throughout the rest of this book.

The second area, technology, will discuss technologies such as Objective-C, which is Apple’s programming language of choice on their platforms, including the iPhone, as well as game-specific technology, such as OpenGL ES (Open Graphics Language Embedded Systems) and OpenAL (Open Audio Language).

The third area covers the tools that are required to create Sir Lamorak’s Quest. You will certainly have access to the development tools you need, but you may also have alternatives to some of the other tools I will use, such as Pixelmator (www.pixelmator.com). There is nothing to stop you from using your favorite graphics package.

By the time you finish this chapter, you will have a good understanding of the terminology you will see throughout this book, as well as having a high-level view of the technology and tools we are going to be using. Don’t worry if you’re unfamiliar with the technology mentioned so far; we will build up your knowledge of these areas as we run through this book. Google is a fantastic tool for getting more information on specific subjects you may become interested in as you read through the book. Knowing the technology and terminology that is going to be used will give you the ability to more easily find what you are looking for.

Terminology

First up is terminology. Whether you are an experienced programmer or novice, game development has a different terminology than what you’ve probably been accustomed to. This section covers the terms you will come across most frequently when reading this book.

Before deciding what technology you need to use for your game, such as how to render a sprite on the screen, you first need to know what a sprite is. If you think a sprite looks like a green fairy with wings, you really need to continue reading this chapter.

As you read through this section, you will find terms you see throughout this book. You may have an understanding of some of these terms already, such as sprite or animation, but I’ll still cover them, specifically looking at how they are used within computer games.

Sprite

The term sprite refers to a 2D bitmap image that can be moved around the screen independently of everything else. Because early home computers, such as the Sinclair Spectrum or the Commodore 64 (or worse, the VIC-20), didn’t have powerful CPUs and Graphics Processing Units (GPUs) to process and render graphics, sprites were used to render and move graphics around the screen.

Note

A GPU is a specialized processor that offloads graphics processing functions from the CPU. They are specially designed to support the mathematical calculations necessary when rendering 2D and 3D graphics.

On some of these early home computers, programmers assigned a bitmap image to a hardware sprite, which was then rendered on top of everything else drawn on screen. The sprite’s position could then be changed by simply updating the location within a CPU register. No other drawing code was needed. These hardware-based sprites allowed early home computers to perform functions that would just not have been possible with the limited hardware resources of the day. Sprites were most often used in games to represent the player ship, missiles, bullets, and the enemies you were fighting. Figure 2.1 shows the sprite for Sir Lamorak.

Figure 2.1 Example of a sprite. This particular sprite is the one used for Sir Lamorak.

[image: image]

The iPhone is many times more powerful than the home computers we had back in the 1980s. Its GPU, particularly in the iPhone 3GS, iPhone 4, and iPad, allows it to achieve some impressive visual effects, thanks to their support for OpenGL ES 2.0.

What Is OpenGL ES?

OpenGL ES is a subset of the OpenGL graphics language for mobile devices (ES stands for Embedded Systems). The first-generation iPhone and the second-generation iPhone 3G only supported OpenGL ES 1.1, and the iPhone 3GS, iPhone 4 and iPad support both OpenGL ES 1.1 and 2.0. The main benefit of OpenGL ES 2.0 is its support of shader language. This allows the programmer to define how the GPU should process data rather than only being able to use functions that have been predefined.

For Sir Lamorak’s Quest, I’m going to simply refer to sprites as images. We will display more than our hero and bad guys in the game, so we will build a generic Image class that will be used to display sprites, backgrounds, buttons, and such.

How Do I Create a Sprite?

At this point, you may well be asking how you create the sprite images. This is something covered in more detail later on, but the quick answer is to open up your favorite graphics app—such as Photoshop or Pixelmator—and draw your sprite.

Once you have your sprite, export it in a supported format such as PNG. PNG is not the only format we can use to get graphics onto the iPhone. Other formats, such as GIF and BMP, can also be used. We will be using the PNG format throughout the book because it’s the format recommended by Apple for use on the iPhone. In Chapter 5, “Image Rendering,” when we have created the Image class, you will see how to load the PNG file into an OpenGL texture and render it to the screen.

One important point I haven’t mentioned is that getting the sprite onto the screen is much easier (in my opinion) than actually creating the sprite. Of course, this could be because I seriously lack any artistic talent, but the code you’ll use to display, animate, and move the sprite around the screen is actually pretty straightforward. If drawing isn’t your strongest suit, there are plenty of freelance designers you can call upon to help make your dream game a reality.2

Sprite Sheet

As described earlier, a sprite is a single image that is used (and reused) to represent an individual element onscreen, such as the player’s character, an enemy, and so on. As you can imagine, having many individual sprites within a game—and having a separate file for each sprite, which is then loaded into the game—could be difficult to manage. To simplify sprite management and, more importantly, improve performance, it is common to store more than one sprite in a single image. Images that hold more than a single sprite are called sprite sheets.

The idea is that a single image contains a series of sprite images in the form of a grid. Each sprite can then accessed by using its column and row location within the larger image. Simple sprite sheets contain individual sprites, each with the same dimensions. This makes it easy to access a specific sprite on that sheet using its row and column location. For example, if we had a sprite sheet that contained sprites whose dimensions were all 40 pixels square, it would take a simple calculation to work out in pixels where a given sprite was using its row and column; for example:

x = column * 40
y = row * 40

Calculating these values for a sprite at column 3, row 2 would result in 120 for x and 80 for y. This calculation would give you the exact pixel location for the top-left corner of that sprite image. Figure 2.2 shows an example 4 × 4 sprite sheet with each sprite being 40 pixels square. The origin of this sprite sheet (that is, x = 0 and y = 0) is the top-left corner.

Figure 2.2 A simple 4 × 4 sprite sheet, containing 16 sprite images.

[image: image]

Note

Sprites don’t have to be square; they just are in this example. A sprite could easily be a rectangle that does not have the same width and height, as long as each sprite has the same width and height.

More complex sprite sheets, or packed sprite sheets (like the one shown in Figure 2.3), are images that contain a number of smaller sub-images, each of which could be another sprite sheet or image. As you’ll notice by looking at Figure 2.3, a packed sprite sheet can contain a number of different-sized sprites.

Figure 2.3 A packed sprite sheet can contain different-sized images; you’ll just need to be more careful when providing the coordinates for each image.

[image: image]

These more complex sprite sheets mean you cannot perform a fixed calculation as seen already to work out where inside the sprite sheet a specific sprite may be. Instead, you need to include a control file, which does two things:

• It defines the location of each sprite within the sprite sheet.

• It defines a key for each sprite in the sprite sheet (for example, the name of the sprite).

Control files can be either plain text or XML, and are often created when the sprite sheet is created. The data contained in the control sheet can be populated manually (that is, you sort out the coordinates for each sprite in the sprite sheet), or using a tool such as Zwoptex3, which can generate the sprite sheet and control file from separate images. When your game launches, the control file is parsed so the game knows where the sprites are located within the sprite sheet.

Note

For the purposes of this game, we will be using both simple and complex sprite sheets. We look at how to use applications that help to create sprite sheets when we cover sprite sheets in Chapter 6, “Sprite Sheets.”

Just to make things interesting, you will likely see a different term used for sprite sheets when dealing with OpenGL ES as a sprite sheet is often referred to as a texture atlas. OpenGL ES and textures are covered later in this chapter, but for now, it is good to know that a texture is basically another term for an image that is mapped onto a shape drawn using OpenGL ES. Just as a sprite sheet contains many sprite images, a texture atlas is an image that contains many smaller texture images.

Creating a sprite sheet is basically the same as creating a sprite. You can use your favorite graphics package to place individual sprites into a larger image. Care must be taken to ensure that each sprite occupies the correct location within the sprite sheet. Because this can be a complex exercise, using tools to help with their creation is a recommended approach.

Sprite sheets are also useful when it comes to animation, which we review next, as well as tile images used within tile maps (again, something we cover later in this chapter).

Animation

I find it very hard to create animated sprites, but as I mentioned earlier, this could easily be because I have no skill when it comes to drawing. Animation is perhaps one of the most important elements of a game. Even with a simple game like Tetris, things move—they animate. Having your hero move around the screen in a fixed pose like some kind of statue is not much fun to watch. It’s much more exciting to see your characters arms and legs moving as they walk around the screen. With most modern 3D games, the objects within the game (such as bad guys) are 3D models with many triangles used to represent a complex shape. Movement of these objects is achieved by applying mathematical transformations to the triangles making up the 3D object, causing them to move as required. Some games even employ a skeletal system allowing the animator to simply move the bones of a character and have their body follows as necessary.

Because Sir Lamorak’s Quest is a simple 2D game, we won’t need anything that complex. Instead, we’ll use a simple form of animation that’s very similar to stop-motion animation. This process shows one image (sprite) after another, with the new image (sprite) being in a slightly different position to the last. When pieced together (with code), the images appear to animate as one-image transitions to the next.

By now, you should start to see the benefits of having a sprite sheet. The sprite sheet defines the animation’s different frames; then we use code to load each sprite (or frame) into the animation and display the animated sprites onscreen. Figure 2.4 shows a simple sprite sheet containing sprites that can be used within an animation. The first line shows the character running down, the next line running up, then right, and finally left.

Note

The ability to easily refer to each sprite on a sprite sheet when defining each frame of the animation makes the sprite sheet a very powerful tool, and one we will be using when we create the Animation class in Chapter 7, “Animation.”

Figure 2.4 An animation sprite sheet.

[image: image]

We all want the best graphics available, but unless you or someone you know has the necessary graphics skills, you will need to use whatever you can find—legally, of course—to keep your project moving along. If you know you will be stuck with developer art, try to come up with a game that suits your drawing abilities. The game Parachute Panic4 is a great example of what a developer can do with limited drawing skills; it’s stick figure art at its best. Another great example is Neon Tango by Freeverse.5 These two games are proof that you can use simple geometric shapes instead of complex art and still create a cool game that’s fun to play.

Prototyping with Placeholders

Because I’m not the world’s greatest graphic artist, one trick I’ve learned is to use images or animations I find on the Internet as a placeholder while prototyping a game. If you can find some graphics to stand in while you’re developing the game, things can move ahead, and then you can swap out the graphics later. I’ve seen many projects stall and fail due to people getting hung up on the graphics.

Bitmap Fonts

All the graphics in Sir Lamorak’s Quest will be rendered with OpenGL. In fact, the iPhone uses OpenGL ES (ES stands for Embedded Systems), which is a subset of OpenGL for mobile devices. We cover OpenGL ES in more detail in the section, “Technology.”

Sadly, though, OpenGL ES doesn’t support the ability to render fonts to the screen. As a result, we’ll have to use bitmap fonts.

Bitmap fonts aren’t too different from sprites and sprite sheets. In fact, we use sprites and sprite sheets to support bitmap fonts. This will be covered in Chapter 8, “Bitmap Fonts.”

Because OpenGL ES lacks font support, you’ll have to define a font as a series of images. To do this, you’ll need to create a complex sprite sheet that contains an image for each character in the font. If we were doing this manually, it would be a real pain, but luckily, tools such as Hiero6 and bmfont7 make the process of turning a font into a sprite sheet really easy. More detail on Hiero can be found in the section, “Tools.”

AngelCode has created the bmfont tool, and it is this tool and its generated output that Hiero has been based. Although bmfont is much more feature-rich compared to Hiero, it is currently only available on the Windows platform. For this reason, I will be using the Java-based Hiero that will run on a Mac.

Tile Maps

Throughout this book, I have been referring to the 1980s, where my love of games and game programming started. Although technology has moved on greatly since then, those concepts are still valid to this day.

One of the issues with the old 8-bit (and even 16-bit) home computers and consoles was the availability of memory (RAM). When creating a platform-based game or role-playing game (RPG), it was not feasible to have large images of each level held in memory. It doesn’t make sense to hold a huge image in memory either, especially when the player is only able to see the portion of the image that fits into their display. For the iPhone and iPod devices pre the iPhone 4 and iPad, the maximum display size in landscape mode is 480 × 320 pixels. The iPhone 4 has a display size of 960 x 640 pixels in landscape mode and the iPad has 1024 x 768.

To overcome this issue, tile maps were created. A tile map is usually a two-dimensional grid. Each grid cell contains information about that location within the tile map, such as the ID of the image that should be rendered when that tile location is displayed, as well as information on the type of tile in that location. For example, is this a solid tile that the player cannot move through, such as a wall, or is it an object that could hurt the player should they walk into it?

This method of storing and building environments greatly reduces the amount of memory needed to store images and provides benefits later on when you need to know where a player actually is within a map. Although the iPhone is many times more powerful than the old 8-bit machines, memory is still a limited resource, and anything that can reduce the amount of memory being used is a good thing.

Tile maps are usually made up of two elements, as follows:

• A sprite sheet that contains separate tile images that can be used to build the environment.

• A map file that specifies which tile should be used in specific tile locations in the map, and so on. This can be done manually, but it becomes complex very quickly as your map gets bigger.

In Sir Lamorak’s Quest, our hero will be walking around inside a castle. Although we could create the necessary tile maps manually, it’s much easier to draw the tile maps visually, and that is exactly what we are going to do. We cover the creation of tile maps in Chapter 9, “Tile Maps.”

Most large games, such as Doom 3 or Quake Arena, have some kind of level editor, which allows the level designers to freely create new 3D levels. Although we don’t need anything that complex, I still want to be able to easily create and change the map used in Sir Lamorak’s Quest. Allowing your game to be data driven means that tuning and developing the game becomes a lot easier than when everything is hard coded.

One tool you can use for creating tile maps is Tiled.8 More information on this free open-source application can be found in the section, “Tools.”

Particle System

I’m sure you will have played many games where effects, such as smoke and fire, are used. There are two ways to create these effects. The first is to use sprite animation, and the second is to use a particle emitter. To use a sprite animation, you would need to create a number of frames for each phase of the effect and then play them back in sequence. This sprite animation technique was popularized by arcade games over 20 years ago and is still in use by game developers today.

However, today’s desktops and console games pack powerful CPUs and GPUs that we could only dream of back then. Even the iPhone packs more processor and graphical punch than early arcade games. Rather than employing 20-year-old technology, we can create a particle system to animate effects in real-time.

Don’t Panic

The particles we are talking about are not the same as those created within the Large Hadron Collider (LHC), which is rumored to be a harbinger of doom that will create a huge black hole that ends the world. We won’t be creating exotic particles and hurling them around our iPhones.

The term “particle system” refers to a technique that enables you to simulate certain organic behaviors, such as fire, smoke, moving water, rain, and snow. A particle system enables you to configure the number of particles you want to generate and how you would like them to move, including the following:

• Their speed

• Their lifespan

Even with these simple settings, it is possible to create some impressive effects with a particle system.

What Is a Particle?

You may be wondering what we mean when we say particle. Don’t think of it in terms of atoms or quarks like you would in a physics class. When it comes to game development, what we really mean when we say “particle” is “image”. Each “particle” is in fact an image that is rendered to the screen at the particle’s current location with the particle’s size and color. The image could be a simple circle, a star, or whatever you want, just as long as it gives you the effect you are looking for.

A particle system normally has a particle emitter. The emitter is responsible for generating new particles and tracking their progress through their life before removing them when they die. When a particle is created, the particle emitter sets some parameters, including the following:

• Speed: The speed at which the particle moves.

• Life span: The amount of time a particle will live for. Each cycle through the game loop causes the particles lifespan to reduce until it reaches 0. The particle is then removed from the update list.

• Direction: The direction that particle will move. This direction could change over time based on other settings such as gravity.

• Start color: The color the particle will have when it is created.

• End color: The color the particle should have when it reaches the end of its life cycle.

•Size: The size of the particle.

Although the particle emitter will ask each particle to update itself, it is the particle’s responsibility to track its own position, color, life span, and so on. This allows each particle to move independently of each other. Add to this a level of randomness, and it is possible to create very organic-looking effects, such as fog and smoke.

You’ll see how to create a particle system in Chapter 10, “The Particle Emitter.”

As with tile maps, it is possible to configure particle emitters manually, but this can take up a lot of time. It certainly speeds things up to use a visual editor for creating these effects, such as Particle Designer.9

Collision Detection

Collision detection is the ability to identify when one object collides with another. Sounds pretty simple, I know, but there’s a bit more to it.

As Sir Lamorak walks around the castle, we don’t really want him walking through walls or doors (well, not until he is dead and turns into yet another ghost who haunts the castle, which is not part of the game design). We also want to know when Sir Lamorak has been hit by a ghost or has walked over an energy item or that a ghost has been hit by Sir Lamorak’s mighty axe.

There are many ways to detect collisions. Some are simple and involve checks to see if the box inside which our player’s sprite is drawn intersects the bounding box of another object, such as a ghost or wall. Other techniques are much more complex, especially when you start to work with physics engines, which is beyond the scope this book. These collisions are not just a binary yes or no; they can provide you with information on exactly where the two objects collided, and so on.

Note

We won’t need a sophisticated collision detection system in Sir Lamorak’s Quest; simple collision detection will do. What technique you use in your own game really depends on what is needed.

Collision detection is made up of two key elements:

• Detection of the collision

• How an object, such as the player, should react to that collision

For example, when the player walks into a wall, the only consequence will be that the player won’t be able to move any further in the direction of the collision. However, if the player were to walk into a ghost, the reaction would be to remove the ghost from the game and reduce the player’s health by a specified number of units.

Artificial Intelligence (AI)

Artificial intelligence (AI) is what makes your game “smart.” The intent is not to create Skynet10 and cause our iPhones to become sentient and take over the planet. And although they are in some sense, we want the enemies in our game to have some kind of artificial intelligence. We don’t want our baddies to be so predictable that it’s no challenge to fool them, so the AI in Sir Lamorak’s Quest will control how the bad guys move around and how they decide to chase Sir Lamorak, as opposed to just moving around in some random way.

Note

AI really can make or break your game. Although we won’t introduce or use more complex AI methods, such as A* path finding, you’ll learn how to create a form of AI that makes the game more addictive to play.

Even when you’re not using clever algorithms and decision graphs, the simple rules about how something should move or interact is still a form of AI. This basic entity control should give you a good start on your road to creating the next world-dominating game bent on the destruction of the human race—or maybe just a racing game—it’s up to you.

Game Loop

The last term I’m going to run through is the game loop. This is an important part of any game and is responsible for making sure that your game performs all the right functions at the right time and in the right order. There are a number of core activities that a game loop must do, such as the following:

• Take input from the user.

• Update the state of the player based on the user’s input.

• Update the state of the other entities in the game, such as baddies.

• Check for collisions between entities.

• Render the game to the screen.

This is not all the items that need to be handled within a game loop, but it is an example of what needs to be done. The game loop is responsible for making sure that even when the player is not doing anything, the rest of the game is being updated. For example, the baddies are still moving around, ambient sounds still play, and so on.

Tip

You may read about game cycles, tick count, and so on, but they are all referring to the game loop or iteration through that loop.

At its most basic level, the game loop is exactly that—a loop—and functions are called within that loop for things that make the game tick. We will create our own game loop for Sir Lamorak’s Quest in Chapter 4, “The Game Loop,” but as we have been through so much and not seen a single line of code, I thought it might be helpful to put the basic game loop code here in Listing 2.1. The idea here is not for you to fully grasp what’s going on within that loop. My intent is to show you that a simple game loop can actually be very small.

Listing 2.1 The Game Loop

[image: image]

The loop shown in Listing 2.1 is an open loop, which means it runs at regular intervals using a timer external to the loop. The other type of game loop is called a tight loop. Once a tight loop starts, it continues to loop as fast as it can, running code within the loop over and over again. There are benefits and drawbacks to both methods, and the one you use will greatly depend on the type of game you are writing (more on this in Chapter 4).

The second function of the game loop is to make sure that the game runs at a constant speed. If you were to run a tight loop that just went as fast as it could, you would have a game in which objects would move around the screen faster on quick hardware and slower on slow hardware. This isn’t something you want to happen. You want to give the players of the game a consistent experience regardless of the hardware the game is running on.

For the iPhone, it is a little easier, as we are dealing with a limited number of device types:

• iPhone (first generation, or Gen1)

• iPhone 3G

• iPhone 3GS

• iPhone 4

• iPod Touch (first generation, or Gen1)

• iPod Touch (second generation, or Gen2)

• iPad

Although similar, each device is different. For example, the iPhone 4 is faster than the iPhone 3GS, which is faster than the iPhone 3G, and the Gen2 iPod Touch is significantly faster than the iPhone 3G. The game loop is where we can handle these differences.

At its simplest, the game loop measures the amount of time, normally in milliseconds, that passes between each loop. The amount of time between each loop is called the delta. This delta value is then passed to the functions that update the logic of the entities within the game and is used to calculate game elements, such as movement. For example, if you specify how far a ghost should move per millisecond, the ghost will only move that far regardless of the device’s speed. Sure, the movement will appear smoother on faster devices than slower ones, but the amount of movement, as well as the game play, will be at a consistent speed.

Technology

So far, this chapter has gone through the basic terminology you will come across throughout this book and as a game developer. This section talks about the technologies you’ll use to create the sample game, Sir Lamorak’s Quest.

Objective-C

As the name implies, Objective-C is an object-oriented superset of the C programming language. Because Objective-C is a superset of C, it shouldn’t take you long to learn Objective-C. If you have already have experience working with C or C++, you can continue to build iPhone games in those languages, but you’ll need to know a bit of Objective-C to make use of the Cocoa Touch API. The key difference between Objective-C and C is that Objective-C fully supports object-oriented programming techniques, such as the use of classes and their instantiation.

The code throughout this book uses Objective-C 2.0 with a little C thrown in where necessary.

Note

C and C++ have historically been the most popular languages for writing games. Although you can use other languages, such as Java or Python, for game development, those languages are not supported on the iPhone. You’ll have to stick to Objective-C, C, C++ or a mixture of these.

There are some great resources available for learning Objective-C. Apple itself has a number of great documents available that help you learn Objective-C such as “The Objective-C Language.”11 There are also great books available, such as the following:

• Cocoa Programming for Mac OS X, Third Edition, by Aaron Hillegass (Addison-Wesley, 2008).

• Learning Objective-C 2.0, by Robert Clair (Addison-Wesley, 2011).

• Programming in Objective-C 2.0, Second Edition, by Stephen G. Kochan (Addison-Wesley, 2008).

• Cocoa Design Patterns, by Erik M. Buck and Donald A. Yacktman (Addison-Wesley, 2009).

Cocoa Touch

Cocoa Touch is a set of object-oriented frameworks that provide a runtime environment for applications running on iOS. Cocoa Touch is an iPhone-specific framework that enables you to create touch-based user interface elements as well as access hardware-specific features of the iPhone, iPod touch and iPad, such as the accelerometer, gyroscope, camera, and the magnetometer.

You need to use Objective-C to access the Cocoa Touch API. This is why even if you want to develop your entire game in C or C++, there will also be small aspects of the game that are in Objective-C, so that you can gain access to Cocoa Touch-based functions, such as touch.

iOS 3.0 introduced some great features that provide access to the iPod functions on the iPhone, and these are all Cocoa Touch APIs. If you want to go deeper, though, and start to control the audio services at a lower level, you need to use C functions that the iOS SDK makes available to you, which can become a little trickier. We talk about this more in Chapter 11, “Sound.”

OpenGL ES

OpenGL ES is a lightweight version of OpenGL for embedded systems (that’s the ES), and is a software interface to the graphics hardware on your iOS device. OpenGL ES is a standard governed by the Khronos Group and implemented by graphics hardware manufacturers within their GPUs.

Note

There are currently two versions of OpenGL ES: 1.1 and 2.0. At the time of this writing, only the iPad, iPhone 3GS, iPhone 4 and iPod 3rd Gen support OpenGL ES 2.0; every other version of the iPhone and iPod Touch supports OpenGL ES 1.1. That said, the iPad, iPhone 4 and iPhone 3GS support both versions (1.1 and 2.0), so if you write your game on OpenGL ES 1.1, it will run on all the current iPhone, iPod Touch and iPad devices.

OpenGL has been around for a long time and has pretty much been the de-facto standard when it comes to software interfaces with graphics hardware. OpenGL is a huge API with around 700 different commands. On the other hand, OpenGL ES is a much smaller API that is really focused on performance. Within the full OpenGL standard, there are many ways of doing the same thing, but with OpenGL ES, they decided to only provide support for the fastest methods, which is important when you are running on a mobile device with limited memory, bandwidth, and CPU capabilities.

What OpenGL ES Can (And Can’t) Do

OpenGL ES on the iPhone provides you with a great interface to access the features of the GPU. This interface enables you to create objects in both 2D and 3D space and apply color, texture, and transformations to these objects. Because OpenGL ES uses the GPU instead of the CPU, the graphics rendering is hardware accelerated, which means it’s really fast. The GPU is capable of performing floating-point operations over 100 times faster than the CPU. It is a real number-crunching monster.

The objects themselves are made up of triangles. Mapping together different-sized triangles can make any shape you can think of, and this approach is taken by OpenGL ES. To define a shape, simply provide the points (known as vertices) for each point on the triangles, and then ask OpenGL ES to render those points to the screen. For example, you would use two triangles to create a square, as shown in Figure 2.5. There is, of course, more going on than meets the eye, but for the purposes of this book and our game, we’ll keep OpenGL as simple as possible.

Figure 2.5 Two triangles making up a square.

[image: image]

Once you have defined your shape using vertices, you can optionally define the color (or colors) along with a texture (image) you want to be applied. Applying a texture (image) to the shape is a technique known as texture mapping. Texture mapping enables you to basically glue an image onto a geometric shape you have created. Doing so then allows OpenGL ES to make sure that the image is rendered correctly based on the position of the polygon onto which it has been placed. For example, if you are working in 3D and you are looking at your polygon in perspective with it turned away from the viewer, the image that has been texture mapped onto the polygon will be rendered correctly to appear in perspective (see Figure 2.6). OpenGL ES takes care of this, so it’s not something you need to worry about.

Texture mapping is a large and complex subject with many different ways of doing things. When you start to create more complex games, it’s worth delving further into texture mapping using sources, such as OpenGL Programming Guide: The Official Guide to Learning OpenGL Versions 3.0 and 3.1, Seventh Edition (Addison-Wesley, 2009).

We are not going to be working in 3D, which makes our lives easier for now as we start using OpenGL ES. We are going to be working in 2D, however, with our objects being flat polygons onto which we will place a texture (image) that will represent an entity within our game, such as the player or a ghost.

When we cover the creation of the Image class in Chapter 5, we cover in more detail how you create your polygon and how you apply a texture to it.

Figure 2.6 A textured polygon in perspective.

[image: image]

OpenGL ES 1.1 vs. 2.0

I’ve mentioned that there are two different versions of OpenGL ES currently, and it’s worth going through the key difference between them. OpenGL ES 1.1 has what is called a fixed pipeline architecture, which means that the operations available are fixed. You provide data to OpenGL ES regarding vertex, color, material, lighting, and texture, and specific functions are then carried out using that data. You can change the data that is passed in, but you cannot change the functions themselves.

With OpenGL ES 2.0, you no longer have a fixed pipeline; instead, it has a shader pipeline. This means that instead of having the fixed functions into which you pass your data, you can write code to be executed inside OpenGL on the GPU in something called shader language. This code is compiled onto the GPU, and is then called whenever you need that function. This means you can pretty much do anything you like—you are not restricted to what is delivered out of the box with OpenGL ES, but perform any action you like on the data that you pass in.

On the up side, you are able to achieve some spectacular effects being able to control the functions that are performed on the GPU, and because these functions are being performed on the GPU, they are very quick. On the down side, it means there is more work to do because you have to create the functions you want to use. I expect to see more and more games taking advantage of OpenGL ES 2.0 now that it is supported on the iPhone 3GS, iPhone 4, and iPad, and over time, this will most likely be the way everyone goes. For our game and throughout this book, I will be using OpenGL ES 1.1, so as to get maximum compatibility with the currently available devices and also to keep things simple.

Note

Although a game written using OpenGL ES 1.1 will run on the iPad, iPhone 3GS and iPhone 4, a game written using OpenGL ES 2.0 will only work on the iPad, iPhone 3GS and iPhone 4. It is not possible to run these games on older hardware unless the game supports two rendering methods: one for OpenGL ES 1.1 and OpenGL ES 2.0. Creating different rendering methods within the same game and then deciding which should be used based on the hardware is a complex undertaking. Currently, most indie developers are sticking with a single OpenGL ES 1.1 render method.

iPhone GPUs

iPhones currently use two different Graphics Processing Units, as follows:

• PowerVR MBX

• PowerVR SGX

All iPhone devices prior to the iPhone 3GS used the PowerVR MBX chip. From the iPhone 3GS, they use the PowerVR SGX chip. This is where the difference in OpenGL ES support comes from. The MBX chip only supports the OpenGL ES 1.1, whereas the SGX chip supports both OpenGL ES 2.0 and emulates OpenGL ES 1.1.

A company called Imagination manufactures the PowerVR chips. Their website is a good source of technical information on their chips and they provide a number of resources for developers. The Imagination website for the PowerVR chips can be found at www.imgtec.com/powervr/powervr-technology.asp.

OpenAL

OpenAL stands for Open Audio Library. It is a cross-platform 3D audio API that is well-suited for use with games.

The concept behind OpenAL is very similar to that of OpenGL ES. OpenAL is a software interface to the sound hardware that enables you to create audio sources that can be positioned within and moved through 3D space. In order to hear the sounds being generated, a listener is required. There is a single listener that can also be configured, which defines where in OpenAL 3D space the listener is located and also which way it is facing. The listener is normally located at the same location as the player.

Based on this information, OpenAL will then play the sound to the listener using the appropriate volume and pitch. This allows OpenAL to provide a real sense of 3D sound around the player. If the sound source or listener is moving, OpenAL will even apply the Doppler effect, much as you get when you hear an emergency siren coming toward you and then moving away from you. For Sir Lamorak’s Quest, we are working in 2D, but that still allows us to play sounds around the player based in that 2D space. Having doors slam shut in the distance along with spooky sounds positioned around the player can add a lot of depth to the game.

There are many other items that can be configured within OpenAL, such as the distance model, which defines how quickly sound drops off as the listener moves away from the sound source among other things.

OpenAL enables us to play multiple sounds simultaneously. At a high level, you load audio data into a sound buffer and associate it with a sound source. Once that has been done, the sound in the sound buffer can then be played. The iPhone supports a total of 32 sound buffers, allowing you to play up to 32 sounds simultaneously.

OpenAL is covered in more detail in Chapter 11.

Tools

We have covered the terminology and technology, so now it’s time to look at the tools we’ll use to create Sir Lamorak’s Quest.

From a developer point of view, everything you need to develop using the iPhone SDK can be downloaded from the iPhone Dev Center (developer.apple.com/iphone), as shown in Figure 2.7. This section also covers other tools that are useful when developing games. These are not available directly from the Apple Developer websites, but I have included their locations on the Internet with their descriptions so you know where to get them.

Figure 2.7 Apple’s iPhone Dev Center.

[image: image]

The iPhone development center provides a huge amount of information about developing on the iPhone platform, including documents on getting started, a reference library, and other useful guides. It is also from this site that you can register as an iPhone developer. This is important, as you need to be a registered iPhone developer before you can download the tools necessary to develop on the iPhone. You can register for free, which gives you access to the development tools you will need as well as documentation, and this is where most people start. It also enables you to have a play with the iPhone SDK before parting with any money, which is always nice.

If you plan to submit iPhone games or applications to the App Store, you need to sign up to the iPhone Developer Program. For this, you pay $99 per year for the Standard Program.

Once you have signed up and registered, you will then be able to download all the tools and examples you need to start rocking and rolling on the iPhone.

The iPhone SDK

The iPhone SDK (available at developer.apple.com/iphone) includes everything you need to start developing on the iPhone. It includes the following:

• Xcode and Interface Builder

• The iPhone Simulator

• Additional tools for debugging and performance, such as Shark and Instruments

Once you have downloaded and installed the iPhone SDK, you will have a full development environment allowing you to develop for the iPhone.

Xcode

Xcode (shown in Figure 2.8) is Apple’s integrated development environment (IDE) for developing Mac and iPhone applications. Xcode is a full-featured IDE and provides you with access to all the features you need to develop on the iPhone. These features include syntax highlighting, context-based access to documentation, and code sense, which automatically provides suggestions for the commands you are typing in. This can save you a significant amount of type when writing your code.

From within Xcode, you can create and manage your projects, debug your code, and also read Apple’s developer documentation, without ever having to leave Xcode. Having access to all of these things in one place makes Xcode a great development environment.

Interface Builder

Interface Builder is an Apple tool that enables you to visually design views to be used on the iPhone. This application is used heavily when developing native view-based applications on the iPhone. As with most things, being able to visually design your views and then wire it up to the code you write greatly speeds up the development process. Figure 2.9 shows what Interface Builder looks like.

Figure 2.8 The Xcode IDE.

[image: image]

Figure 2.9 Using Interface Builder to create the Settings screen for Sir Lamorak’s Quest.

[image: image]

Although we will not be making much use of Interface Builder when building Sir Lamorak’s Quest, we will be using it to design items such as the settings screen, so it’s important to know that this tool exists.

The iPhone Simulator

The iPhone Simulator (shown in Figure 2.10) is a small application within Xcode that lets you to test your application on your desktop, without installing the app on your iPhone. Although the iPhone Simulator is a great tool for most applications, there is no substitute for testing your games on a real device.

Figure 2.10 The iPhone simulator running Sir Lamorak’s Quest during testing.

[image: image]

Testing on the actual device is extremely important because the iPhone Simulator, which runs on your desktop, uses your Mac’s CPU, memory, and graphics card, which are quite different from the iPhone’s internal components. Let me reiterate that the differences between the iPhone Simulator and an actual device are substantial—game testing should really be done only on the device. Here’s why:

• Different CPUs—Because the iPhone Simulator uses your Mac’s CPU, the performance you see in the Simulator will be much different from what you experience on the device.

• More (or Less) RAM—Because you’re using your Mac for development, design, and a host of other things, you probably have at least 2 GB of RAM on your development system. This provides you with a great deal of memory for textures. The iPhone device only lets you use 24 MB of memory for textures, sounds, and program code, so you have to watch how much texture data you are loading and remember to release what you don’t need.

• Different graphics capabilities—Your Mac does not have the same graphics card as your iPhone, and the Simulator uses a software rasterizer for rendering to the screen.

• Different OpenGL/OpenGL ES support—Because the iPhone Simulator runs on your Mac, it supports the full implementation of OpenGL—not just OpenGL ES. Although this might sound like a good thing, it can be really problematic. You can end up with something that works great in the iPhone Simulator, but just crashes or runs slowly on the iPhone. All your real testing should be on the real device.

• Different device capabilities—The iPhone and iPod Touch use technologies such as core location (a GPS/cellular location), Bluetooth, wireless, accelerometer, and with the iPhone 3GS, iPhone 4, and iPad, a magnetometer. Sure, your Mac has Bluetooth and wireless, but those can’t be tested in the iPhone Simulator, nor can any game feature that relies on the accelerometer or magnetometer. If your game uses any device-specific technologies, you really should tether your iPhone and install and test the game there.

The bottom line here is that you should always test your game on a real device, and only rely on the iPhone Simulator for testing simple things, such as game preferences and prototyping your code. There really is nothing like the real thing.

Instruments

Instruments (shown in Figure 2.11) is great for tracking down things like memory leaks and identifying bottlenecks within your game. It is used to dynamically trace and profile your application when running on the iPhone Simulator or the iPhone device.

Figure 2.11 Instruments analyzes your application’s code to help you find memory leaks and provide information that could help your game run faster and more efficiently.

[image: image]

Instruments has a graphical interface that is much easier to interpret than other debugging and performance tools, such as the command line-based GDB. It takes a little while to master the information it provides, but once you get the hang of using Instruments, you’ll quickly wonder how you lived without it.

Shark

Shark is not some throwback to the Jaws movies, but it will attack your code in a good way. Shark is used to track down performance problems you may find in your code. Although you should always strive to get the best performance out of your applications, it is even more important with a game on a mobile device. You can be running a game quite happily, with everything working well, and then bang—suddenly the game starts chewing up a ton of memory or starts to act glitchy. The only way to really find out what’s wrong with your code is to run Shark and profile the code at a low level.

Interpreting the information Shark provides (as shown in Figure 2.12) can be difficult, but it normally points you to the problematic code fairly quickly. Once Shark isolates the problem, it gives you clues on where to start focusing your attention.

Figure 2.12 Shark, like Instruments, analyzes your application’s code and helps you locate code that could be hindering performance.

[image: image]

Hiero

As each character of the font could be a different size, we cannot use the simple sprite sheet approach. In addition to creating a sprite sheet of font characters, Hiero (shown in Figure 2.13) also creates a control file that defines where each character image is within that sprite sheet. When we create our bitmap font class in Chapter 8, we will be using the control file produced by Hiero to get access to the characters within the bitmap font sprite sheet.

Figure 2.13 Hiero can be used to create sprite sheets for bitmap fonts you want to use in your game.

[image: image]

Tiled

This is a free open source tile map editor. Tiled (shown in Figure 2.14) enables you to load tile images and then graphically draw your map. You can have multiple layers of tiles and multiple tile sets, and you can even define parameters associated with either the entire map, levels, or tile images.

Tiled will be covered in more detail in Chapter 9 when we build the tile map class to use as the output from the Tiled application for the game.

Figure 2.14 Tiled tile map editor.

[image: image]

Summary

This chapter covered a lot of material, but it was important to provide you with some insight into the terminology, technology, and tools we are going to use to build Sir Lamorak’s Quest.

Before going any further, make sure you download and install the following applications on your system:

• The Xcode Tools (these get installed in a /Developer directory at the root level of your hard drive). This includes Instruments and Shark automatically.

• Hiero, the bitmap font creation tool (www.n4te.com/hiero/hiero.jnlp).

• Tiled, the tile map editor (mapeditor.org).

What About Instruments and Shark?

After you’ve installed the Xcode Tools, you can find Instruments in /Developer/Applications, and Shark in /Developer/Applications/Performance Tools.

You might want to drag all of these applications to your dock so they’re easier to get to during the development process.

With the information we have covered in this chapter, you will now be able to follow what is happening in the rest of this book. In the next chapter, we create a project in Xcode using the OpenGL ES project and take a detailed look at what the code does and why.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/08ligp05.jpg
Effects.

Color

Outline

Outline (Wobble)
Outline (Zigzag)
Shadow

Color X
Color: [

Gradient X

Top color:
Bottom color:
Offset: 0
Scale: 1.0

Cyclic: false

OEBPS/html/graphics/08ligp04.jpg
Rendering

Background: [

\/ ll($00&%
2086766432
12V WU TS
RIPON ML JIE
GFEDCBAZY

KWV UTSRPO

N ML I JIRIGF IS
MITIE) /A o000 W=

O sample text @ Giyph cache.

View: (Page 1 [v)
Page width: (256 _|v)
Page height: (1024)

Pages: 1
Glyphs: 83

===

OEBPS/html/graphics/08ligp06.jpg

OEBPS/html/graphics/08ligp01.jpg

OEBPS/html/graphics/08ligp03.jpg
Coor
I
TrRoyevesiars | | | | owoe mans
(oo (o | |2 =
oo
O ssmotein @ Gnaacn | | et =
v (e 115 o
Fase B et
e (256 Bk

Paoe b (1024 [
Figes: 1
s 83

Resecacm

OEBPS/html/graphics/08ligp02.jpg
\ / lN(S0e&%

21096768432
1ZYRXWYVTTS
RIP QN ML J R
BFEDCBAZY
XW VITSRPO
NS KEII (G R
MR A Sorims=

OEBPS/html/graphics/11list04.jpg
)

BOOL success = [self initOpenAL];
i£ (1success) {
NSLog(8"ERROR - SoundManage:
return nil;

Brror

currentiusicvolune = 0.56;
musicvolune = 0.5¢;
£xvolune = 0.5£;
playlistindex = 0;

isFading = NO;
isMusicPlaying = NO;
stopiusicAfterrade = YES;
usePlaylist = n0;
looprastelaylisttrack = HO;

return self;

initializing OpenAL");

OEBPS/html/graphics/11list05.jpg
(BOOL)initOpenaL {
NSLOg(@"INFO - Sound Manager: Initializing sound manager');

wint maxopenALSources = 16;
device = alcopenDevica(NULL);
if(device) {
context = alcCreateContext(device, NULL);

aloHakeContextCurrent (context);
alpistancetode] (AL_LINEAR DISTANCE_CLAMPED:

OEBPS/html/graphics/11list06.jpg
NSUInteger sourceId;
for(int index = 0; index < maxOpemALSources; index+t) {
alcensources(1, sourceld);

alsourcef (sourcelD, AL REFERENCE_DISTANCE, 25.0f);
alsourcef (sourcerp, AL MAX_DISTANCE, 150.0f);
alsourcef (sourceTn, AL_ROLLOFE_FACTOR, 6.0f);

[soundSources addobject: (NSNunber
numberii thunsigned nt: sourceId] 1;

3

OEBPS/html/graphics/11list07.jpg
float listener_pos(] = {0, 0, 0};
£loat listener_ori(] = {0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
float listener_vel(] = 0, 0, 0}
alListenerfy(AL_POSITION, listener_pos);

alListener fv(AL_ORTENTATION, listener_ori):
alListenerfv(AL_VELOCITY, listener_vel);

NSLog(@"INFO - Sound Manager: Finished initializing the sound
managez”);
return vES;

)

NSLog(@"ERROR - SoundManager: Unable to allocate a device for
sound.");

return no;

OEBPS/html/graphics/11list08.jpg
- (void)loadMusicWithKeys (NSString*)aMusicKey
musioRiles (NSSerings)aMusicPile {

NSString *fileName = [[aMusioFile lastPathComponent]
stringbyDeletingPathExtension];
NSString *filelype = [aMusicFile pathExtension);

usstring *path = [nusic

rary objectForkey:auusicKey];

if(path 1= nil) {

NSLog(§"WARNING - Soundianager: Music with the key '3¢' already

exists.”, aNusicKey);
return;

path = [[NSBundle mainBundle] pathForResourcesfileliae
ofType:£ileType];

1if (tpath) {
NSLOG(E"WARNING - SoundManagers Canmot find fils '38.3'",
filoNane, fileType);
return;

faus: £y setObjectipath forkey:aMusicKeyl;
NSLog(€°1NFO - Soundanager: Loaded background music with key '3¢'
amusicKey);

OEBPS/html/graphics/11list09.jpg
- (void)removeNusicWithKey: (NSString*)aMusicKey {
NSString *path = (musicLibrary objectrorkey:aMusickey);
i (path == WULL) {

NSLog(#"WARNTNG - Soundianager: o music found with key '$8' was
found so cannot be removed”, aMusicKey);

return;

)

[musicLibrary removeobjectForkeysamusicKey];
NSLog(@"INFO - Soundianager: Removed music with key 'se’

aMusicKey);

OEBPS/html/graphics/11list01.jpg
- (id)init {
self = [super init];
if(self t= nil) {

soundSources = [[NSMutablearray alloc] init];
soundLibrary = [[NSKutableDictionary alloc] initly
musicLibrary = [[NSMutableDictionary alloc] init];
musicPlaylists = [[NSMutablebictionary alloc) init];

OEBPS/html/graphics/11list02.jpg
audicsession = [AVAudioSession sharedInstance];
ismxternalaudionlaying = [self isExternalmudioPlaying];

if (tisExternalaudiorlaying) {
soundcategory = AVAudioSessionCategorySoloAmbient;
audiosessionkrror = nily
[audiosession setCategoryssoundcategory
errorsaudiosessionError];
if (audiosessionerror)
NSLog(8"WARNING - SoundManager: Error setting the
sound category to SoloArbientsound");

OEBPS/html/graphics/11list03.jpg
- (B0OL)isExternalAudioPlaying {
UInt32 audioPlaying = 07
UInt32 audioPlayingSize = sizeof (audioplaying);
AudiosessionGetproperty (khudiosessionProperty_OtherhudioTslaying,
saudioplayingsize, saudioPlaying);
return (BOOL)audioPlaying;

OEBPS/html/graphics/p0305-01.jpg
[[UIApplication sharedApplication] setldleTimerDisabled:YES]);

OEBPS/html/graphics/p0157-01.jpg
Faimaas Bt |
Inage *image;
float delay;

} AnimationFrame;

OEBPS/html/graphics/p0054-02.jpg
R Bl

(

[renderer render];

b

OEBPS/html/graphics/p0054-03.jpg
= IYaiR) Isyoticbrinee:

¢
[renderer resizeFromlayert(CAEAGLLayer#)self.layer];

[self drawviewnil];

OEBPS/html/graphics/p0054-01.jpg
WHString *Tegiysver =% '3.1%)
NSString scurrSysVer = [[UIDevice currentbevice] systemVersion];
if ([currSysver compareireqsysVer optionsiNSNumericsearch] t=
NSOrderedascending)
i e R e

OEBPS/html/graphics/16list11.jpg
- (void)loadRighscores {
sarray *paths =
NSSearchPathForbirectoriesInbonains (NSDocumentDirectory,

NSUserDomainkask, YES);
NSString *documentsbirectory = [paths

bjectht Index:01;

NSMutableData *highScoresbata;
nSKeyedunarchiver *decoder;

NSString *documentrath = [documentsbirectory
stringsyAppendingpathcomponent:@*highScores.dat*1;
highScoresData = [NSData datauithContentsOfrilerdocunentPath];s

if (highscorespata) {
decoder = [[NSKeyedUnarchiver alloc]
initrorReadinguithpatashighscoresnatal;
cditighscores = [[decoder
orkeyi@'highscores” |

decodeobie
retain;

[decoder release];
} else {
unsortednighscores = [[NSMatableArray alloc] initl;

)

[self sortRighscores];

OEBPS/html/graphics/16list10.jpg
- (void)savemighscores {

Nshrray *paths =
NSSearchPathForbirectoriesInDomains (NSDocumentDirectory,

NsuserDomainkask, YES);

NSString *documentsbirectory = [paths objectitinde:0

NSString scorespath = [documentsbirectory
stringsyAppendingpathcomponent:@*highscores.dat®1;

NSMutableData vscores;

NSKeyedarchiver *encoder;

scores = [NSMutableData datal;

encoder = [[NSKeyedArchiver alloc]
nitForuritingWithiutableDatasscores]

[encoder encodeObject runsortediighscores forkey:"highScores”];

[encoder finishEncoding];
[scores writerorilesscoresPath atomicallyiYES];
[encoder release];

OEBPS/html/graphics/16ligp02.jpg
BNEDO0nn i
L -

OEBPS/html/graphics/16ligp01.jpg

OEBPS/html/graphics/16ligp04.jpg
Wi

OEBPS/html/graphics/16ligp03.jpg
JLULN Design SCM Window $ Help
Run
Run - Breakpoints Off
Debug - Breakpoints On
Run with Performance Tool Instruments
Stop Track Memory Bug
| Attach to Process Leak&Memory
Full
Debugger Zombies H
| Mini Debugger Ul Recorder
Console Time Profiler
Clear Console Threads
SHOW » | Sudden Termination
| Debugger Display > Multicore
Variables View > GC Monitor
| File Activity £
Activate Breakpoints ~s\ Dispatch
Stop on Objective-C Exceptions | Core Data
Manage Breakpoints > System Usage u
| OpenGLES
i <wp | CoreAnimation [
5 Object Allocations 3|
Step Into ol
4 Leaks
Step Over 220 »
Step Out £ ol
Next Thread | Activity Monitor
Previous Thread Shark
I——
Sync with Debugger B
v Stop on Debugger(/DebugStr)
Enable Guard Malloc will use the currently bound
g e RS RNOE ol it size, S0 the contig b

OEBPS/html/graphics/16ligp06.jpg
0o:00:15 @

Run3of3

>

[mRl=]}x}

View

OEBPS/html/graphics/16ligp05.jpg
W —- : E
¢ B s =
PR Wl RN

OEBPS/html/graphics/03ligp06.jpg

OEBPS/html/graphics/16ligp08.jpg
(olalo)(e) &

OEBPS/html/graphics/p0089-01.jpg

OEBPS/html/graphics/03ligp05.jpg
-

OEBPS/html/graphics/16ligp07.jpg
T S —

OEBPS/html/graphics/03ligp08.jpg

OEBPS/html/graphics/p0387-01.jpg
1t (leakyString)
PR p—

OEBPS/html/graphics/03ligp07.jpg

OEBPS/html/graphics/16ligp09.jpg

OEBPS/html/graphics/03ligp02.jpg
New Project

. = =
= e
==y W X
Nz

e | B
= e
=

P —)

[r—.

i et prnides staring i o anaplcaon it ses 1 OperLE5-
i . roides 3wt whch Yo rrder Yot O 5 s, i
1 sowyto snmae he view

OEBPS/html/graphics/p0089-05.jpg
ettt e Mt e syt L bt et

- (void]initGane;
R

OEBPS/html/graphics/03ligp01.jpg
a0
Soutes uaunicnes smoies

suarson

ana.starson

Welcome to Xcode

Version 2.2 1646)

Createa new xcode project:

S ew safre e o ac0sxor
e o8

1 e s i xcote
5] Tatowtn o how 06t proucive
fomcbicie)

2 Apple Developer Connection
| §CoTL

v i whn Xt anchs

OEBPS/html/graphics/p0089-04.jpg
PEIpEe i SEE DRRE T
fimport "GameScene.h"
$import "Common.h"

OEBPS/html/graphics/03ligp04.jpg

OEBPS/html/graphics/p0089-03.jpg
- (vordlrenderCurrentsScens;

OEBPS/html/graphics/03ligp03.jpg

OEBPS/html/graphics/p0089-02.jpg
- (voidlupdateCurrentSceneWithbDelta: (f loat)aDelta;

OEBPS/html/graphics/11list26.jpg
(void)setListenerPosition: (CGPoint)aPosition {
listenerrosition = aPosition;
allistenerdf(aL_POSITION, abosition.x, abosition.y, 0.0f);

(void)sstorientation: (CGroint)aposition {
float orientation[] = {avosition.x, aPosition.y, 0.0f, 0.0f, 0.0f, 1.0£};
alListenerfv(AL_ORIENTATION, orientation);

OEBPS/html/graphics/11list27.jpg
- (void)beginInterruption {
[se1f sethctivatedio];

3

- (void)endinterruption {
[self setactivated:YEs];

b

OEBPS/html/graphics/11list28.jpg
- (void)setActivated: (BOOL)astate {

osstatus result;

if(astate) {
nsLog(

INFO - SoundManager: OpenAL Active');

[audioSession setcategoryssoundCategory
errorisaudiosessionError];

if (audioSessionkrror) {

NSLog (@ "ERROR - SoundManager: Unable to set the audio session
category");

return;

[audioSession setActive:YES errorisaudioSessionError];
if (audiosessiongrror) {

NSLog (@ "ERROR - Soundianager: Unable to set the audio session
state to YES with error id.", result);

return;

if (musicPlayer) {
(musicplayer playl;
3

aloMakeContextCurrent (context);
} else {

NSLog(8"TNFO - Sounduanager: OpenAL Tnactive®);

alcakeContextCurrent (NULL);

OEBPS/html/graphics/p0053-01.jpg
e L e S
displayLinkSupported = FALSE;
animationFrameInterval = 1;
displayLink = nil;

A ik b = i1y

OEBPS/html/graphics/11list20.jpg
- (void)loadSoundiithKey: (NSString*)aSoundKey soundFile: (NSString*)aMusicFile {
NSHanber *nusval = [soundLibrary objectForkey saSoundKey];

if(nanval 1= nil) {

NSLog (@ "WARNING - SoundManager: Sound key '3¢' already exists.®,
asoundkey) ;

return;

= AlL_NO_ERROR;
alcensutfers(l, sbutferm);

if((alerror

alGeterror()) 1= AL_NO_ERROR) {

NSLOg(@"ERROR - Soundianager: Error generating OpemhL buffer with
error 3x for

filename $8\n", alError, aMusicFile);

ALenun format;
ALsizei size;
ALsizei frequency;
ALvoid tdata;

NSBundle +bundle = [NSBundle mainBundlel;

NSString *fileName = [[aMusicFile lastPathComponent]
stringsypeletingpathExtension];

NsString +filetype = [aMusicPile pathixtension];

CFURLRGf fileURL = (CFURLRGf)([NSURL £ileURLWithPaths[bundle
pathForResource:fileliane

ofType:tileType]] retain];

OEBPS/html/graphics/11list21.jpg
if (fileURL) {
data = MyGetOpenaLAudioData(fileURL, &size, &format, &frequency);

Crrelease(fileURL);

albufferpata(butterId, format, data, size, freguency);

if((alError = alGetError()) 1= AL NO_ERROR) {
NSLog(8"ERROR - Soundianager: Error attaching audio to
buffer: sx\n", alerror);

fres(aata);

) else {
NSLog(@*BRROR - SoundManager: Could not find file '36.38
filoNane, fileType);
if (data);
fres(aata);
data = NULL;

}

[soundLibrary setObject:[NSNumber numberwithUnsignedintibufferIp]
forkeyasoundkey];
NSLog(e"INFO - Soundianager: Loaded sound with key '38' into
buffer '3d'v,
aSoundkey, bufferin);

OEBPS/html/graphics/11list22.jpg
- (NSUInteger)playSoundWithKey
pitoh: (float)apitch

Location: (CGPoint)aLocation shouldLoop (BOOL)aLoop {

NSstring*)asoundKey gain: (£loat)aGain

algrror = alGetmrror(); // Clear the error code

NSHumber *nusval

soundLibrary objectrorkey:asoundkey];
if(nanval == nil) return 0

NSUInteger butferId = [numval unsignedintvaluel;

// Find the next available source

NSUTnteger sourceId;

sourcerd = [self nextavailablesource];

1/ I£ 0 is returned then no sound sources were available

if (sourceId = 0) {

NSLog (@ *WARNING - Soundanager: No sound sources available to
play 86", asoundey);

return 0;

OEBPS/html/graphics/11list23.jpg
- (NSUInteger)nextAvailablesource {

NInteger sourceState;
for (NSNumber *sourcelumber in soundSources) {
&1Gatsourced ([sourceliurber unsignedIntvalue], AL_SOVRCE_STATE,
ssourcestate);
if(sourcestate 1= AL PLAYING)
return [sourceNumber unsignedIntvaluel;

OEBPS/html/graphics/p0110-01.jpg
CGAffineTransform transform = CGAffineTransformIdentity;

OEBPS/html/graphics/11list24.jpg
alSourcei (sourceID, AL _BUFFER, 0);
alsourcei(sourceTn, A BUFFER, bufferrn);

alSourcef (sourceID, Al PITCH, apitch);
alSourcef (sourceID, AL_GATN, aGain * fxvolune);

it (aLoop) {
alSourcei (sourcerd, AL _LOOPING, AL_TRUE);

) else {
alsourcei (sourcerd, AL_LOOPING, AL_FALSE);

a1Source3f (sourceId, AL_POSITION, alocation.x, alocation.y, 0.0f);
alsourcePlay(sourceld);

alkrror = alcetError();
if(alerror 1= 0) {

NSLog(#"ERROR - Sounduanager
return 0;

%a’, almrror);

return sourceld;

OEBPS/html/graphics/11list25.jpg
- (void)stopSoundWithKey

(NSString*)aSoundRey {

alkrror = alceterror();
alError = AL NO_ERROR;

NSHumber *nunval = [soundLibrary objectForKey:asoundkey]:

L6 (nunval == nil) {

NSLog(@"WARNING - SoundManager: No sound with key '3¢' vas found
s0 cannot. be

stopped”

asoundkey) ;
return;

3

NSUInteger bufferid = [numval unsignedintvalue);
NSInteger bufferForsource;
NSInteger sourceState;
for (NSNumber *sourcelD in soundSources) {
NSUInteger currentSourcelD = [sourcelD unsignedintValue);

alGetsources (currentSourceT, A BUFFER, SbufferForsource);

i£ (butferrorsource == bufferin) {
alsourcestop(currentSourcen);
alsourcei (currentSourceId, AL_BUFFER, 0);

if((alError = alGetError()) 1= AL NO_ERROR)

NSLog(@*BRROR - Soundianager: Could not stop sound with key '3€'
got error %x", asoundey, alError);

OEBPS/html/graphics/p0296-01.jpg
SRS ARATRIRGORINTONRTAY] RELUMNBCATARSIYEL e 3Taa D
AT R AT AT RIROGR TN OMEAT] SOEDRIBONES AT T

OEBPS/html/graphics/11list15.jpg
- (void)startplaylistNaned: (NSString*)aPlaylistiame {

nSMutableArray #playlisttracks = [musicPlaylists
objectrorkeyaplaylistiane];

it (1playlistrracks) {

NSLog (€ "WARNING - SoundManager: No play list exists with the
name '36'", aPlaylisthane);
return;

currentPlaylistiane = ablaylistiane;
currentPlaylistTracks = playlistTracks;
usePlaylist = VES;

playlistindex = 0;

{se1f playmusicitithXey: [playlistTracks objectAtIndex:playlistindex]
tinesTorepeati0];

OEBPS/html/graphics/11list16.jpg
- (void)audioPlayerDidfinishPlaying: (AVAudioPlayer *)player
successfully: (ROOL)flag

it (1flag) {
NSLog(8ERROR - Sounduanager: Music finished playing due to an
error.”);
return;
¥
isMusicplaying = HO;

if (usePlaylist) {
[self playNextTrack];

OEBPS/html/graphics/11list17.jpg
- (void)playNextTrack {
if (playlistindex + 1
loopLastPlaylistTrack) {
playlistindex 4= 1;

[self playdusicwithKey:[currentPlaylistTracks
objectatIndexiplaylistindex]

timesToRepeati-11;
} else if (playlistindex + 1 < [currentPlaylistTracks count]) {
playlistindex 4= 1;

[8elf playiusicwithKey:[currentPlaylistTracks
objectatIndexiplaylistindex]

tinesTorepeati0];
} else if (loopplaylist) {
playlistindex = 0

[self playhusicwithkey:[currentPlaylistTracks
objectatIndexiplaylistindex]

tinesTorepeati0];

[currentplaylisttracks count]-1 &&

OEBPS/html/graphics/11list18.jpg
- (void)removeFromplaylistNamed: (NSString*)aPlaylistiame
track: (NSString*)aTrackiiame {

nSMutableArray *playlistiracks = (musicPlaylists
objectrorkeyaplaylistiane];

if (playlistTracks) {
int indexToRenove;

for (int index=0; index < (playlistTracks count]; index++)
if ([playlistrracks objectatIndex:index]

isEqualtostringsatrackiane]) {
indexToRenove = index;
break;

[playlisttracks removeObjecthtindexsindexToRenove];

OEBPS/html/graphics/11list19.jpg
- (void)removePlaylistNaned: (NSString*)aplaylisthane {
(musicPlaylists removeObjectForkeysablaylistiane];

- (void)clearPlaylistiamed: (uSString#)aplaylistane {

NSMutablearray playlisttracks = (musicPlaylists
objectrorkey sablaylistane];

if (playlistTracks) {
[playlistTracks removenllobjects];

OEBPS/html/graphics/p0090-01.jpg
SYNTHESIZE SINGLETON FOR CLASS (GameController);

OEBPS/html/graphics/p0090-03.jpg

OEBPS/html/graphics/11list10.jpg
- (void)playMusiciithK

(NSString*)aMusicKey timesTcRepeat

(NSUInteger)aRepeatCount. {

nSError verror;
NSString *path = [musicLibrary objectForkey:amusicey];

it(1path) {
NSLog(#"ERROR - Sounduanager: The music key '8¢' could not be
found”, ausickey);
return;
}
if (nusicplayer)

[musicplayer releasel;

musicPlayer = [[AvAudioPlayer alloc] initWithContentsOFURL:[NSURL
£ileURLuithPathipath] erroriserror];

if(imusicPlayer) {
NSLog(8"ERROR ~ SoundManager: Could not play music for key
“3a', error);
return;

¥

musicPlayer.delegate = self;
[musicPlayer setNumberOfLoops:aRepeatCount];
[musicPlayer setvolunescurrentiusicvolume];
{musicPlayer playl;

ismusicelaying = YES;

OEBPS/html/graphics/p0090-02.jpg
AbstractScene *scene = |[GameScene alloc) 1init);

OEBPS/html/graphics/11list11.jpg
(void)stopMusic {
[musicplayer stopl;
isMusicplaying = 1O;
usePlaylist = 10

(void)panseMusic {
(musicPlayer pausel;
isMusicplaying = 10;

(void)resurenusic {
(musicplayer playl;
isMusicplaying = vES;

(void)setuusicvolune: (£loat)avalune {

if (avolume > 1)
avolume = 1.0f;

currentiusicvolune = avolune;
nusicvolune = avolune;

[musicPlayer setvolumescurrentMusicvolune];

OEBPS/html/graphics/11list12.jpg
- (void)fadeMusicVolumeFrom: (£1oat)aFromvolume tovolume: (float)aTovolune
duration: (f1oat)aseconds stops (B00L)astop {

if (timer) {
[timer invalidate];
timer = wULL;

)

fadeanount = (aToVolume - aFromvolure) / (aseconds / kFadeTnterval);
currentHusicvolune = aFromvolune;

fadepuration = 0;
targetradeDuration = aseconds;
isFading = YES;

stoplusicAfterFade

astop;

timer = (NSTimer scheduledTimerWithTimeIntervalikPadeInterval
targetiself selectoréselector(fadeVolumet)
userinfoinil repeatsiTRUE];

OEBPS/html/graphics/11list13.jpg
- (void)fadeVolune: (NSTimer*)aTiner {
fadeDuration += kFadeInterval;
if (fadeDuration >= targetFadeDuration) {
if (timer) {
[tiner invalidate];
timer = NULL;

)

isFading = N0}
if (stophusichfterFade) {
[musicplayer stopl;
ismusicPlaying = NO;
¥
}else {
currentiusicvolume += fadeAmount;

}

if(isMusicplaying) {
[msicPlayer setvolumetcurrentiusicvolune];

OEBPS/html/graphics/11list14.jpg
- (void)addToPlaylistianed: (NSString*)aplaylistNane
cracks (NSStringt)aTrackane {

Trackane];

NSString *path = [musicLibrary objectForkey:.

if (tpath) {
NSLog(€"WARNING - SoundManager: Track '38°
music library and cannot be added to the play list.");

does not exist in the

return;
}

nSMutableArray #playlisttracks = [musicPlaylists
objectForkeysaplaylistiane];

BOOL newplayList = NO;

if (tplaylistrracks) {
newplaylist = VES;
playlistTracks = [NSMutableArzay alloc] init];
[playlisttracks addobjectsatrackians];

[musicPlaylists setObjectiplaylistiracks forkeysaPlaylistNane];

if (newplaynist)
[playlistiracks release];

OEBPS/html/graphics/05list17.jpg
- (Image*)imageDuplicate {
Tnage *inageCopy = [[self subImagelnRect:sublmageRectangle] retainl;
return (imageCopy autorelease];

OEBPS/html/graphics/05list16.jpg
- (Image*)sublnagelnRect: (CGRect)aRect {
Tnage *subInage = [[Tmage alloc] initWithInageNamed: inageFileNane
EilteriminMagFilter subTexture:aRect];
sublnage.scale = scale;
sublnage.color = color;
sublnage. flipvertically = flipvertically;
subInage. f1ipHorizontally = flipHorizontally;
sublnage. rotation = rotation;
sublnage. rotationPoint = rotationroint;
return [sublmage autorelease];

OEBPS/html/graphics/05list15.jpg
- (void)initializeInageDetails {

if (1imageetails) {
imageDetails = calloc(l, sizeof(ImageDetails));

imageDetails->texturedColoredguad = calloc(l,
‘sizeof (TexturedColoredQuad));

imageDetai ls->texturedColoredQuad->vertexl.geometryvertex =
Cpointhake(0.0f, 0.0f);

imageDetails->texturedColoredguad->vertex?. geonetryvertex
CoPointiake(imageSize.width, 0.0£);

imageDotails->texturedColoredguad->vertex3.geomatryvertex =
Copointhake(0. 0F,

imageSize.height);
imageDetails->texturedColoredguad->vertexd.geonetryvertex
Copointhake(inagesize.width, imagesize.height);

imageDetails->texturedColoredQuad->vertexl. texturevertex =
CGPointiake(textureOffset.x, textureSize.height);
imageDetails->texturedColoredguad->vertex. texturevertex =
CoPointiake(textureSize.width, textureSize.height);
imageDetails->texturedColoredguad->vertex3. texturevertex =
CGPointiake(textureOffset.x, textureOffset.y);
imageDetails->texturedColoredQuad->vertexd. texturevertex =
CoPointhake(textureSize.width, textureOffset.y):

imageDetails->texturedColoredguad->vertexl.vertexcolor =
imageDetails->texturedColoredQuad->vertex?.vertexcolor =
imageDetai ls->texturedColoredguad->vertex3.vertexcolor =

imageDetails->texturedColoredguad->vertexd vertexColor = color;

imageDetails->textureNane = texturelane;

dirty = vES;

OEBPS/html/graphics/05list14.jpg
- (void)renderTnages {

glvertexpointer(2, GL_FLOAT, sizeof(TexturedColoredvertex),
&iva[0].geometryvertex);

glTexCoordpointer(2, GL_FLOAT, sizeof (TexturedColoredvertex),
&iva[0].texturevertex);

glcolorpointer (4,GL_FLOAT,sizeof (TexturedColoredvertex),
&iva[0).vertexcolor);

for(NSTnteger texturelndex=0; texturelndex<renderTextureCount;
textarelndex++) {

g1BindTesture (GL_TEXTURE_2D, texturesToRender|textursIndex]);
int vertexcounter=0;

for(NSTnteger imageTndex=0;
inagendex<inageCountForTexture
[texturesToRender [texturetndex]];
inagelndex++) {
NSUInteger index =
‘textureIndices|texturesToRender [textureIndex]] [imageIndex]

OEBPS/html/graphics/05list13.jpg
- (void)addToTextureList: (nint)aTextureNane {

B00L textureFound = 1O;
for(int index=0; index<renderTextureCount; index+t) {
if (texturesToRender [index] == aTextureNane) {
textureFound = VES;
break;

i (1textureround)
texturesToRender [renderTextureCount+t] = aTextureNane;

textureIndices|aTextureNane] [inageCountForTexture [aTextureliame]] =
ivalndex;

imageCountForTexture atextureNane] += 1;

OEBPS/html/graphics/12digp01.jpg

OEBPS/html/graphics/05list12.jpg
- (void)addInageDetailsToRenderQueue: (InageDetails*)alnageDetails {
{261f copyImageDetails:aInagenetails];
(se1f addtoTextureList:alnageDetails->textureNans];

ivaTadexts;

OEBPS/html/graphics/12digp02.jpg
Touch Down' Touch Moved Touch Ended

OEBPS/html/graphics/05list11.jpg
- (id)init {
if(self = (super init]) {

iva = malloc(kHax_Inages + sizeof (TexturedColoredQuad));
ivalndices = calloc(kiax_Inages * 6, sizeof (GLushort));
ivalndex = 0;

renderTexturaCount = 0

¥

return self;

OEBPS/html/graphics/05list10.jpg
- (Texture2D*)textureWithFileName: (NSString*)aName £ilter:(GLenum)aFilter {
Texture2D *cachedTexture;

nsstring tkey

se.t

NSString stringwithFormat.

i (cachedtexture = [cachedTextures objectForkeyikey]) {
return cachedtexture;

NSString *filenane = [aName stringBybeletingPathExtension];

NSString *filetype = [aName pathExtension];

NSString *path = [[NSBundle mainBundle] pathForResource:filenane
ofTypesfilatypel;

cachedrexture = [(Texture2d alloc] initWithImage:(UIImage
imageitithcontentsOTFilespath] filtersarilter];

[cachedTextures setObjecticachedlexture forkeyiaName];

return [cachedTexture autorelease];

OEBPS/html/graphics/12digp03.jpg
Multiple touches

Touch 1 Down l Touch 1 Moved I Touch 1 Ended

TR S N RO~

OEBPS/html/graphics/p0064-01.jpg
EERCL UDRSL SiLORE BqUECSVECtiOeel] =4
Lo, -1.0f,
10f, -1.08,
-Log, 1.0f,
Log, 101,

OEBPS/html/graphics/12digp04.jpg

OEBPS/html/graphics/p0304-01.jpg
UITouch *touch = [[event touchesForView:aView] anyObject];

OEBPS/html/graphics/p0376-01.jpg
settings = [[NSUserDefaults standardUserDefaults] retain];

OEBPS/html/graphics/01ligp02.jpg
Hish Score 000000 Score 000000

X

OEBPS/html/graphics/05list19.jpg
(void)render {

imageDetails->texturedcoloredQuad->vertexl .vertexcolor =
imageDetails->texturedColoredQuad->vertex2.vertexcolor =
imageDetails->texturedColoredQuad->vertex3.vertexColor
imageDetails->texturedcoloredQuad->vertex.vertexColor = color;
[sharedInageRenderanager addnageDetailsToRenderQueue: imageDetails];

if (airty) (
LoadIdentityMatrix(matrix);

translateMatrix(matrix, point);

if(flipvertically) {

rix(matrix, Scale2fuake(l, -1));

translateNatrix(natrix, CGPointhake(0, (-imagesize.height *
sealeay)))

scale

if(flipuorizontally) {
scaleMatrix(natrix, Scalezfake(-1, 1))
translateMatrix(natrix, COPointMake((-inageSize.width *
scale.x), 0))
if(rotation 1= 0)
rotatelatrix(matrix, rotationPoint, rotation);

if(scale.x 1= 1.0¢ || scale.y
scaleMatrix(matrix, scale);

= 1.01)

transtornMatrix(matrix, imageDetails->texturedColoredQuad,
TmageDetails
->texturedColoredQuadIVa);

airty = wo;

OEBPS/html/graphics/01ligp01.jpg

OEBPS/html/graphics/05list18.jpg
- (void)renderCenteredhtPoint: (CGPoint)aPoint scale:(Scale2f)ascale
rotation: (£1oat)aRotation {

scale = ascale;
anotation;
point.x = aboint.x - ((imageSize.width * scale.x) / 2);
point.y = aboint.y - ((imageSize.height * scale.y) / 2);
dirty = vES;
{se1f render];

rotation

OEBPS/html/graphics/05list06.jpg
colorSpace = CGColorSpaceCreateDeviceRGB();

data = malloc(height * width * 4);

context = CGitrapContextCroato(data, vidth, heisht, 8, & * uidth, colorspace,
KCGInagenlpharremultiplisdiast | KCGBitnapsyteorder32aig);

cGeolorspacereleass (colorspace);

OEBPS/html/graphics/05list05.jpg
while((width > kMaxTextureSize) || (height > kMaxTextureSize)) {
width /= 2;
2

height
transform = CoAffineTransfornscale(transform, 0.5, 0.5);
contentsize.uidth *= 0.5;
contentsize.height *= 0.5;

OEBPS/html/graphics/16ligp10.jpg

OEBPS/html/graphics/05list04.jpg
width = contentSize.width;
LE((uidth 1= 1) & (width & (wideh - 1)) {
pot = 1;
while(pot < widtn)
pot *= 2;
width = pot;

i
height = contentsize.height;
if((height 1= 1) & (height & (height - 1))) {

pot = 1;
while(pot < height)
pot *= 2;

height = pot;

OEBPS/html/graphics/05list03.jpg
typedef struct {
Texturedcoloredguad *texturedcoloredquad;
TexturedColoredQuad *texturedColoredQuadiva;
GLuint textureNane;

} Inagepetails;

OEBPS/html/graphics/05list02.jpg
typedef struct {
TexturedColoredvertex
TexturedColoredvertex
TexturedColoredvertex
TexturedColoredvertex
} Texturedcoloredguad;

vertexl;
vertexz;
vertex3;
vertexi;

OEBPS/html/graphics/05list01.jpg
typedef struct {
CGPoint geometryvertex;
Coloraf vertexcolor;
CGPoint texturevertex;
} Texturedcoloredvertex;

OEBPS/html/graphics/16list04a.jpg
SLQLOG(E"INFO - GameScene: Loading saved entity data.
if (gamerntities)

[ganeEntitics release]s

gameEntities = [[decoder decodeObjectForkey

gameBntities®] retain];

SLOLOG(E"TNFO - GameScene: Loading saved game object data.
if (ganecbiects)

[gameohjects releasel;

gameObjects = [[decoder decodeObjectForkey:@"gameobjects"] retainl;

SLQLOG(E"INFO - GameScene: Loading saved door data.”);
if (doors)

[doors releasa);
doors = [[decoder decodeObjectrorkey:@ doors"] retain];

SLQLOG(E"TNFO - GameScene: Loading saved game duration.');
timeSinceGameStarted =
[[decoder decodeobjectForKeys-timeSinceGanestarted" |
floatvalue];
SLQLOG(8"TNGO - GameScene: Loading saved game score.”);
score = [[decoder decodeobjectForkey:€*score®] floatvalue];

SLOLOG(@"INFO - GameScene: Loading game time data.
locationtiane = (decoder decodeIntForkey:e'locationName' |

SLQLOG("INFO - GameScene: Loading game time data.
[decoder release];

// nit the localvoors array
[self initiocalboors);

OEBPS/html/graphics/05list09.jpg
maxs = contentSize.width / (float)width;
naxt = contentSize.height / (float)height;
textureRatio.width = 1.0¢ / (float)width;
textureRatio.height = 1.0f / (float)height;

OEBPS/html/graphics/05list08.jpg
if (pixelFormat == kTexture2DPixelFormat _RGBS65) {
voids temppata = malloc(height * wideh * 2);
unsigned int *inPixel32 = (unsigned int+)data
unsigned short *outPixell§ = (unsigned short)tempData;
for(int i= 0; i< width * height; ++i, ++inpixeliz)
voutPixell6++ = ((((*inPixel32 >> 0) & OxFF) >> 3) << 11) |
((((*inpixel32 >> 8) & OxFF) > 2) << 5) |

((((*inpixel32 >> 16) & OxFF) >> 3) << 0);
frec(data);

data = tempbata;

OEBPS/html/graphics/05list07.jpg
CGContextClearRect(context, CGRectiake(0, 0, width, height));
CContextTranslateCTi(context, 0, height - contentSize.height);
i£(1CGAtfineTransformIsIdentity (transforn))
CocontextconcatcTi(context, transform);
cocontextDrauInage(context, CGRectNake(0, 0, CGInageGetwidth(image),
CoInageGetieight (image)), image);

OEBPS/html/graphics/p0091-05.jpg
= SVORES ADOBCSTOMSEEL : AUEADCE.USDCRNESE <1 008 BEOL AL CLORGoREaE=
ate: (UThceeleration *)acceleration (

}

OEBPS/html/graphics/p0100-01.jpg
friangle 1 =1, 2, 3
Iriangle 2 = 3, 2, 4
Triangle 3 = 4, 2, 5

OEBPS/html/graphics/p0216-01.jpg
LASVOUN BUSCED BT IR aTaa | L
[currentLayer releasel;
currentLayerIDes;

layer = (TBXML nextSiblingNamed:"layer" searchFronlement:layer];

OEBPS/html/graphics/p0091-02.jpg
currentScene = [gameScenes objectForKey:@"game"];

OEBPS/html/graphics/p0315-01.jpg
IR e e S E L M R pt e | f e]
stretchableImageWithLeftCapWidth:10 topCapWidthi0];

OEBPS/html/graphics/p0091-01.jpg
|scene release];

OEBPS/html/graphics/p0091-04.jpg
- (void) renderCurrentScene {
[currentscene renderscenel,

}

OEBPS/html/graphics/p0091-03.jpg
- (voidjupdateCurrentSceneNithDelta: (f1oat)aDelta |

[currentScene updateScenewithDeltasabeltal ;

OEBPS/html/graphics/p0063-02.jpg
- (void) render {

OEBPS/html/graphics/p0063-03.jpg
B SRR A AR e
-0.5¢, -0.33f,
0.5¢, -0.33f,
-0.58, 0.33f,
0.5¢, 0.33f,

OEBPS/html/graphics/03list02.jpg
#import "CHO3_SLQTSORAppDelegate.h”
#import "EAGLView.h"

eimplementation CHO3_SLQTSORApprelegate

ésynthesize window;
esynthesize glView;

- (void) applicationDidrinishaunching: (UTApplication *)application

¢
[glview startanimation];
b
- (void) applicationWillResignactive: (UTapplication *)application
¢
[glview stopanimation];
b
- (void) applicationDidseconsActive: (UTApplication *)application
¢
[glview startanimation];
b

- (void)applicationwillTerninate: (UTApplication *)application

[glview stopanimation];

b

- (void) dealloe

¢
[window release];
[g1view release];
[super dealloc];

y

eend

OEBPS/html/graphics/03list01.jpg
#import <UTKit/UTKit.h>

tclass EAGLView;

finterface CHO3 SLOTSORAppDelegate : NSObject <UlApplicationDelegate> {
UTHindow *window;
EAGLView *glview;

b

éproperty (nonatomic, retain) IBOutlet UIWindow *window;
eproperty (nonatomic, retain) TBOutlet EAGLView *glView;

eend

OEBPS/html/graphics/p0063-01.jpg
L (gicCheckFramebuiferStatusOES(GL_FRAMEBUFFER_OES) I=
GL_PRAMEBUFFER_COMPLETE_OES) {
NsLog(e"Failed to make complote framebuffer object ©x',
g1CheckFramebuf ferStatusOES (GL_FRAMEBUFFER_OFS));
return NO;

raturn YES)

OEBPS/html/graphics/p0080-01.jpg
sharedGameController = [GameController sharedCameController);

OEBPS/html/graphics/p0052-03.jpg
il)

¢

renderer = [(ESIRenderer alloc] init];

if (1renderer)

1

[se1f releasel;
return nil;

OEBPS/html/graphics/p0052-02.jpg
renderer = [[ESZRenderer alloc) init];

OEBPS/html/graphics/p0052-01.jpg
E s e o i blt® et iy Ll
[NSNumber numberWithBool:FALSE],
KEAGLDrawablePropertyRetainedsacking,
KEAGLCOLorFOrmatRGBAS,
KEAGLDrawablePropertyColorFormat,
P

S R R e e

OEBPS/html/graphics/13ligpa.jpg
21 pixels

Left cap

10 pixels.

Right cap

10 pixels

>| <

piel |

OEBPS/html/graphics/t0255-01.jpg
Audio Decoder/Playback Format

AAC (MPEG-4 Advanced Audio Coding)

ALAC (Apple Lossless)

AMR (Adaptive MultiRate, a format
for speech)

HEAAC (MPEG-4 High Efficiency AAC)

ILBC (Internet Low Bitrate Codec,
another format for speech)

IMA4 (IMA/ADPCM)

Linear PCM (uncompressed, linear
pulse-code modulation)

MP3 (MPEG1 audio layer 3)

(rlaw and a-law

Hardware-Assisted
Decoding

Yes

Yes

Yes

Yes

Software-Based
Decoding

Yes, starting in
iPhone 0S 3.0

Yes, starting in
iPhone 0S 3.0

Yes

Yes

Yes

Yes

Yes, starting in
iPhone 0S 3.0

Yes

OEBPS/html/graphics/p0320-01.jpg
O e e s S e e B i R
selectori@selector(show) name:@"showSettings® objectinil]

OEBPS/html/graphics/p0051-02.jpg
- (1d) initWithCoder: (NSCoder*)coder

OEBPS/html/graphics/p0051-01.jpg
to(tiass) layerclass

t

return [CAEAGLLayer classl;

OEBPS/html/graphics/p0051-04.jpg
eaglLayer.opaque

OEBPS/html/graphics/p0051-03.jpg
el e e i {
/7 Get the layer
CAEAGLLayer *eagllayer = (CAEAGLLayer *)self.layer;

OEBPS/html/graphics/p0108-01.jpg
CGlmageRef image;
image = [aImage CGImage]:

OEBPS/html/graphics/p0092-02.jpg
- (voidjupdateSceneWithDelta: {float)aDelta;

: (elal candertesng:

OEBPS/html/graphics/p0092-03.jpg
Rl oottt o

view: (UIViews)aView;

- (void) touchesMoved: (SSet #) touches withBvent: (UIEvent+)event
iew: (UTVieus) aview;

- (void) touchesEnded: (NSSet #) touches withBvent: (UIEvent+)event
view: (UIViews)aview;

- (void) touchesCancelled: (NSSet+) touches withBvent : (U1Events) event
view: (UIView*)aView:

2 LECRATES W

R ol ol

OEBPS/html/graphics/p0092-01.jpg
BpFRFOELYy OANIONH, ABEIgES DL EeaESCare)
St Fanarts (hctkibaie ‘asaltn! GILFINAE atenekiohas

OEBPS/html/graphics/p0062-04.jpg
[context renderbufferStorage:GL RENDERBUFFER OES fromDrawable:layer];

OEBPS/html/graphics/p0062-03.jpg
glBindRenderbufferOES(GL RENDERBUFFER OES, colorRenderbuffer);

OEBPS/html/graphics/p0062-02.jpg
- (BOOL) resizeFromLayer: (CAEAGLLayer *)layer {

OEBPS/html/graphics/p0062-01.jpg
recurn selr;

OEBPS/html/graphics/p0062-05.jpg
B L N S L WL G R R ot iy, A
GIL_RENDERBUFFER_WIDTH_OES, &backingWidth);

g1Getrenderbuf forparameterivoES (GL_RENDERBUFFER_OFS,
GI. RENDERBUPFER HEIGHT OBS, &backingHeight);

OEBPS/html/graphics/p0081-02.jpg
Iself drawView:nill;

OEBPS/html/graphics/p0081-01.jpg
while (updateIterations >- UPDATE_INTERVAL) {
updateTterations -= UPDATE_INTERVAL;

[sharedGanecontrol lex

UPDATE_INTERVAL;

OEBPS/html/graphics/p0049-02.jpg

OEBPS/html/graphics/p0049-03.jpg
M s st e
8001, animating;

800L, displayLinkSupported;
R ey SRR L R

OEBPS/html/graphics/p0109-03.jpg
CORTRITLELRS . COFLEANSNE |- ELES JRNSEILERL LGS)
CGImageGetHeight (image));

OEBPS/html/graphics/p0109-02.jpg

OEBPS/html/graphics/p0109-01.jpg
CGImageGetAlphalnio(image)
CGImageGetColorSpace (image)

OEBPS/html/graphics/p0093-01.jpg
- (voidlupdateWithAccelerometer: (UlAcceleration®*)aAcceleration;

OEBPS/html/graphics/p0061-03.jpg
T T L S
GL COLOR ATTACHMENTO OES, GL RENDERBUFFER OES, colorRenderbuffer);

OEBPS/html/graphics/p0061-02.jpg
SAELOCTCONa YN ST RN LN AEENUTIES TSy UnLARMCEIEROUEENL])
g1BindRenderbufferOES(GL RENDERBUFFER OES, colorRenderbuffer);

OEBPS/html/graphics/p0061-01.jpg
giGenframebullersOES(l, kdelaunltframebuiler);
glGenRenderbuffersOES(1, &colorRenderbuffer);:

OEBPS/html/graphics/p0082-01.jpg

OEBPS/html/graphics/p0082-02.jpg
#interface ESiRenderer (Private,
// Initialize OpenGL
- (void)initopenGL;

send

OEBPS/html/graphics/p0082-03.jpg
sharedGameController = [GameController sharedGameContro ler] s

OEBPS/html/graphics/p0050-04.jpg
- (vold) startAnimation;
- (void) stophnimation;
- readt rasnt e (LAY DO

OEBPS/html/graphics/p0050-05.jpg
FLEpOIE RN SweR
#import "ES1Renderer.h’
#import "ES2Renderer.h”

OEBPS/html/graphics/p0050-01.jpg
id displayLink;
S T i P S

OEBPS/html/graphics/p0050-02.jpg

OEBPS/html/graphics/p0050-03.jpg
dproperty (nonatomic) NSInteger animationfFramelnterval;

OEBPS/html/graphics/p0198-01.jpg
int layerData(kMax Map Width] [kMax Map Height] (4]

OEBPS/html/graphics/p0213-01.jpg
N e ot A e et b i
int *bytes = mallocisize);
RSP TAtaiEs R i tas S TS

OEBPS/html/graphics/p0072-01.jpg
AT T CRILR (ST, SEEENVOUET I SR B0 OERERCSTRELRE 1)
[context presentRenderbuffer:GL RENDERBUFFER OES]:

OEBPS/html/graphics/p0225-01.jpg
ST TRERID A TR R AL,

pe = [(ParticleEmitter alloc]
initparticleEnitterNithFile: " enittorcontig.pex" 1

enitterType = 8"Particle Fountain"

pe. sourcerosition = Vector2fuake(160, 25);

// Appearing emitter configuration
/Ipe = [[ParticleEnitter alloc]
//' initparticleEmitterwithFile
//emittertype = @'Appearing Emitter’;
//pe.gourcePosition = Vector2fMake(160, 25)3

appearingemitter.pex’];

OEBPS/html/graphics/p0049-01.jpg
forer Vo e n s e AR L
fimport <QuartzCore/QuartzCore.h>
#import "ESRenderer.h’

OEBPS/html/graphics/p0094-03.jpg
glTranslatef (0.0£f, (GLfloat) (sinf(trans¥Y)/0.15f), 0.0f);

OEBPS/html/graphics/p0094-02.jpg
static const GLfloat squareVertices(] = i
50, 50,
250, 50,
50, 250,
250, 250,

OEBPS/html/graphics/p0094-01.jpg
- {voidjupdateSceneWithDelta: (float)aDelta |
trans¥ += 0.075%;

b

OEBPS/html/graphics/04list01.jpg
BOOL gameRunning = true;

while (ganerunning) {
updatesane;
rendergane;

OEBPS/html/graphics/p0060-02.jpg
if (tcontext || I[EAGLContext setCurrentContex!

1

[se1f releasel;
return nil;

OEBPS/html/graphics/p0060-01.jpg
context = [[EAGLContext alloc] 1nitWithAPI:kEAGLRenderingAPIOpenGLES]1]);

OEBPS/html/graphics/p0083-01.jpg

OEBPS/html/graphics/04list03.jpg
- (void) render {
g1C1ear (61_COLOR_BUFFER_BIT) ;
IsharedGamecontroller renderCurrentscencl;

[context presentRenderbuf fer:GL_RENDEREUFFER_OES] ;

OEBPS/html/graphics/04list02.jpg
#define MAXIMUM_FRAME RATE 45
define MININUM_FRAVE_RATE 15

def ine UBDATE_INTERVAL (1.0 / MAXIMUM_FRAME_RATE)

#define WAX_CYCLES_PER_FRAME (MAXIOM_FRAVE_RATE / MINIMUM_FRAME_RATE)

- (void)ganeLoop {

static double lastFrameTine = 0.0f;
static double cyclesleftover = 0.0f;
double currencTine;

double updatelterations;

currentTine = CACurrentMediaTime();
updatelterations = ((currenchine - lastfraneTine) + cyclesleftOver);

if (updatelcerations > (MAX_CYCLES_PER_FRAUZ * UPDATE_INTERVAL)]
updateTterations = (NRX_CYCLES_PER_FRANE * UPDATE_INTERVAL) ;

while (updateTterations >= UPDATE_INTERVAL) |
updateTterations -= UPDATE_INTERVAL;

[sharedGamecontroller updateCurrentScenewithpelta:UPDATE_INTERVAL] ;

cyclestettover = updateTterations;
lastrameTine = currentTine;

OEBPS/html/graphics/09list20.jpg
TBXMLElement * dstaElement = [TBXML childElementNamed:@"data"
parentElenent :layer]
if (dataBlement) {
if ([[TBXML valueOfAttributeNancd:@vencoding” forElenent dataBlement]
isBqualTostring:avbasesd®]) |

NSData + deflatedData = [NSData dataiithBases4EncodedString: [TBRML
textrorglenent dataglenent]];

if ([[TBXML valueOfAttributelaned:e"compression”
forElenent :dataslenent] isEqualToString:a"gzip’l)
Geflatedbata = (deflatedbata gzipinflatel;

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/09list21.jpg
Long y;
for (tile ys0, y=0iy<layerheight+layerdidth;ys=layerhidch, cile yes) {
for (File x=0;tile_xelayerWidthitile x++) {
int globalid = byteslystile_xl;
if (globallD == 0) {

(currentLayer addTileht:CGPointMake(tile x, (layerHeight - 1) -
tile_y)

tilesetm
) else {
TileSet stileSet = [self tileSetiithGloballD:globalld];
lcurrentlayer 2adTileAt:CGPointiiake (tile x, (layerHeight - 1) -
tiley)

-1 tileTb:-1 globalID:-1 valu

1)

tilesetIn: [tileSet tileserin]
©ileIDigloballd - [tileSet firstGIn]
globalin:gleballd
value:-1];

OEBPS/html/graphics/09list22.jpg
} else {

tilex = 0
tiley = 0;

TEXMLElement + tileElements = [TBXML childElenentNamed:atile"
parentElenent :dataglenent] ;

while (cileRlements) {
int globallD = [ITBXML valueOfattributeliamed:angid®
forElenent:tileBlements] intValuel;

it (globalId == 0} {
{currentLayer addTileht:CoPointhake (tile x, (layerHeight - 1) -
tile_y) tileSetIDi-1 tileTD:-1 globallDi-1 value:-1l;
) else (
TileSet ttileSet = [self tileSetiithGlobaliD:glaballdl;
(currentLayer addTileht:COPointake (tile x, (layerHeight - 1) =

tile)
Cileseriv: [eileset tilesecin]
17D iguobalid - [taleser £irstaTo]
Slobalib:glabal1n
vatuer-ils
)
tile e
iticile x > layerwiaen - 1) {
tilex = 0
tileyers
)

tileElenents = tileElements->nextSibling;

OEBPS/html/graphics/02ligp14.jpg

OEBPS/html/graphics/09list23.jpg
- (void)createlayerTileInages |

intx = 0;
inty -0

TileSet stileset - (tileSets objsctAcTndex:ol;
for(int layerindexs0; layerindex < [lavers countl; layerindexss) {

Layer *layer = [layers objectatTndex:layerIndex];
for (int mapTileY=0; mapTileY < mapWidth; mapTile¥+s) {
£or (int mapTileX=0; mapTileX « mapHeight; mapTileXe+) (
int tileID - [layer tileIDAtTile:CGPointMake (napTileX,
mapTilen));
if (tiled > -1) {
spritesheet +tilesprites = [ileset ¢
Inage *tilelmage = [tileSprites
spritelnagentCoords :CoPointMake [cileSet
getTilex:eilern],
[cileSer gecTilevicileID])];
Nayer adarilers +CGPointMake (napTilex, mapTilev)

1

inageDetails:tilenage. inageDetails];
1
% 4= tileniden;

)

¥ += tileHeight;

x=0
)
y=o

OEBPS/html/graphics/02ligp13.jpg
i
AlGastcauKsan

STavwird

sae: 32 [2) L) ad (e wa) (o) | | oo =
Renderng e
[— 1

OEBPS/html/graphics/09list24.jpg
(void) renderlayer: (int)alayerIndex mapx: (int)aMapx mapy: (int)aMapy
width: (int) aWidch

height: (int)aHeight useBlending: (B00L)alseBlending (

it (amapx < 0)
atiapx = 0;

it (aMapx > mapiidth)
aiapx - mapwidth;

if (aMapy < 0)
atiepy = 0;

i€ (amapy > mapteight)
atiapy = mapheight;

int maiidth = aapx + awiden;
int maxeight = aMapy + aHeight;

Layer +layer = [layers objectAtIndex:alayerindex];

Tileset stileset = [tileSets objectAtIndex:0l;
uint textureName = [tileSet tiles].image.textureName;

OEBPS/html/graphics/p0163-01.jpg
= (void)dealloc {

if (frames) {
for(int i=0; i<frameCount; is+) {
AnimationFrame *frame = &frames(il;
[frane->image release];
¥
froo(frames);

)

[super dealloc];

OEBPS/html/graphics/p0105-01.jpg
glVertexPointer(2, GL_FLOAT, sizeof(GLFloat) * 6, &iva[0].geometryVertex);
glColorPointer{4, GL PLOAT,sizeof(GLFloat) * 6, &iva[0].colorVertex)

OEBPS/html/graphics/02ligp12.jpg
0O, ?, Saasion) - Tase Profe,of Svaeythivg PllhesfFncae] stshack - Tiesa Frofle of Gueryshing Blkas-Whose),

e
(o))

f

— 1
pr— trioar
— e
= o
s
H Frima

P — e R

OEBPS/html/graphics/02ligp11.jpg

OEBPS/html/graphics/02ligp10.jpg

OEBPS/html/graphics/02ligp09.jpg

OEBPS/html/graphics/10ligp01.jpg

OEBPS/html/graphics/p0059-02.jpg
B il Btommed
- (BOOL) resizePromLayer:(CAEAGLLayer *)layer:

OEBPS/html/graphics/02ligp08.jpg
-’n\qmmn‘-‘t-::-:.': TR o

728 e 2 g st o0 o e s
ey —— ¢

OEBPS/html/graphics/10ligp02.jpg

OEBPS/html/graphics/p0059-01.jpg
pruEmcLaon ESIRmCEENT | EScooRos chSmhosrmr

EAGLCORtext *context;
GLint backingwidth;
GLint backingHeight;
CcLuint dafanltFrameboffar. oolorRendarbuffar:

OEBPS/html/graphics/02ligp07.jpg
L] Jtecs/dvloper; aeple comflskass/indus sction,

i o e oot o =

& Devcloper Connection G e e

I e —

Log in 1o get the most out of the iPhone Dev Center. @EEI

Deveping o Phone 0530 Phone Do g

P i — g

® T ==

OEBPS/html/graphics/10ligp03.jpg

OEBPS/html/graphics/02ligp06.jpg

OEBPS/html/graphics/10ligp04.jpg

OEBPS/html/graphics/p0059-03.jpg
- (1d) imit

t
if (self = [super init])

N

OEBPS/html/graphics/02ligp05.jpg
Triangle 2

OEBPS/html/graphics/02ligp04.jpg
Cr CreQeRt
@ Qarsen
GX X epED
ehin s Lo 63 -

OEBPS/html/graphics/02ligp03.jpg

OEBPS/html/graphics/02ligp02.jpg
& CF ey oA
G- o
GX Gk Gy T
R R ARG

OEBPS/html/graphics/p0048-03.jpg
(glView 1init];

OEBPS/html/graphics/p0048-04.jpg
glview

[[EAGLView alloc] init];

OEBPS/html/graphics/p0048-01.jpg
[glView startAnimation];

OEBPS/html/graphics/p0071-02.jpg
glDrawArrays(GL TRIANGLE STRIFP, 0, 4);

OEBPS/html/graphics/p0048-02.jpg
glView = [EAGLView alloc];

OEBPS/html/graphics/p0071-01.jpg
giiaiorin eyt Sh_ WRTONLS NITE. 0, Sqoareco.ces)]
glEnableClientState(GL COLOR ARRAY);

OEBPS/html/graphics/02ligp01.jpg

OEBPS/html/graphics/10list08a.jpg
sourcePosition = [aConfig
vector2€FronchildslenentNaned:

“sourcePosition”
parentElencnt irootXMLELenent |
sourcepositionvariance = [aConfig
vector2Fronchildslenentianed: § " sourcePosi tionvariance”
parentElenent 1rootXHLElement |1
speed = [aContig floatvalueFronchildElenentianed: @ "speed”
parentElenent rootXHLElement |;
spesdvariance = (aConfig
floatvalueFronchildelenentiianed: §* speeavariance”
parentElenent 1rootXHLElement |1
particleLifespan = [acontig
floatvaluerronchildzlenentiianed: " part icleLifespan*
parentElenent 1rootXMLElement |;

/1 calculate the emission rate

emissionRate

naxparticles / part

OEBPS/html/graphics/10ligp05.jpg

OEBPS/html/graphics/p0104-02.jpg
glVertexPointer(2, GL FLOAT, 0, vertexArray);
glColorPointer(4, GL FLOAT, 0, colorArray)s

OEBPS/html/graphics/p0047-02.jpg
st ok sk e et
esynthesize glview:

OEBPS/html/graphics/p0047-03.jpg
- (void) applicationDidFinishLaunching:(UIApplication *)application

¢

[g1View startanimation];

OEBPS/html/graphics/10list11.jpg
while(particlelndex < particleCount) {

/1 Get the particle for the current particle index

© scurrentParticle = &particles{particlerndexl;

// 1 the current particle is alive then update it
if (currentParticle->tineToLive > 0) {

// 1f maxRadius is greater than 0 then the particles are going to
/7 spin othervise they are effected by speed and gravity
if (raxRadivs > 0) {

vector2t tmp;
tap.x = sourcerosition.x - cosf(currentParticla->angle) *

currentparticle->radins;
tmp.y = sourcerosition.y - sinf(currentParticle->a

currentParticle->radins;
currentparticle->position = tap;

// vpdate the angle of the particle from the sourcePosition and
// the radius. This is only done of the particles are rotating
© += currentParticle->degrecspersecond *

currentparticle->
apelta;
currentparticle->radius -= currentarticle->radiusneiia;
if (currentParticle->radius < minmadius)
currentrarticle->timetoLive = 0;
} else ¢
// Calculate the new position of the particle based on the
/1 particles current direction and gravity
veotor2t tmp = v ultiply(gravity, aDelta);
currentrarticle->dizection =
Vector? fAdd (currentParticle->direct ion, tap);
ap 261u1tiply (currentParticle->direction, abelta);
currentparticle->position
Vector2fadd (currantParticle->position, tnp);

or2:

vect:

OEBPS/html/graphics/10list10.jpg
- (void)updateWithelta:(GLfloat)aDelta {

if(active &6 emissionRate) {
£loat rate = 1.0f/enissionRate;
erittounter += aDelta;
while(particleCount < maxparticles &k emitCounter > rata) {
[self addrarticle];
enitCounter -= rate;

}

Clapsedrine += aDelta;
if(duration te -1 & duration < elapsedrise)
[self stoprarticlemmitter];

OEBPS/html/graphics/p0047-01.jpg
Flmport "CHO3_SLOTSORAppDélegate.h”
#import "EAGLView.h"

OEBPS/html/graphics/p0322-01.jpg
[self.view removeFromSuperview];

OEBPS/html/graphics/09ligp02.jpg

OEBPS/html/graphics/10list13.jpg
particle->position.x = sourcePosition.x + sourcePositionVariance.x *
‘RANDOM_MINUS_1_T0_1();

particle->position.y = sourcePosition.y + sourcepceitionvariance.y *
‘RANDOM_MINUS_1_T0_1();

float newAngle = (GLfloat)DEGREES_TO_RADIANS(angle + anglevariance
‘RANDOM_MINUS_1_T0_1());

Vestor2f vector = Veotor2fMake(cost (newhngle), sinf(newAngle));
float vectorspeed = spesd + speediariance * RANDOM_MINUS_1_TO_1();
particle->direction = Vector2fHultiply(vector, vectorspeed);

colorit start = {0, 0, 0, 0}

start.red = startColor.red + startColorvariance.red *
RANDOM_NINUS_1_TO_1();

start.groen = startColor.green + startColorvariance.qreen *
RANDON_HINUS_1_T0_1();

start.bluc = startColor.blue + startColorvariance.blue *
RANDOM_MINUS_1_T0_1();

start.alpha = starColor.alpha + startColorvariance,alpha *

‘RANDON_MINUS_1_T0_1();

OEBPS/html/graphics/09ligp01.jpg
Carier = 11:22AM ==

OEBPS/html/graphics/10list12.jpg
// Update the particle’s color
currentrarticle->color.od 4= currentParticle->deltaColor.red;

currentparticle->color.qrecr = currentparticle->deltacolor.green;
currentparticle->color.blue += currentParticle->deltacolor.blue;
currentparticle->color.alpha 4= currentParticla->deltaColor.alpha;

// Reduce the life span of the particle

currentrarticle->t ireroLi apelta;

7/ Place the position of the current particle into the
/1 vertices array

Slparticlemndex].x = currentParticle->position.x;

Jeindex].y = currentParticle->position.y;

7/ Place the size of the current particle in the size array
currentparticla>part

currentparticle->partioles e
ticloTndex].size = MAX(0, currentparticle-partic

ze);

sip

OEBPS/html/graphics/p0175-01.jpg
‘widths
Dhgesd: a0

OEBPS/html/graphics/10list15.jpg
- (void)renderparticles {
glDrawArrays(GL_POINTS, 0, particlelndex);
g1BindBut for (GL_ARRAY_BUFFER, 0);

glbisableClientstate (GL_POINT_SIZE_ARRAY_OES);
g1Disable(GL_POINT_SPRITE_OES);

if (blendadditive) {
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

)

glEnableClientstate (GL_TEXTURE_COORD_ARRAY);

OEBPS/html/graphics/p0288-01.jpg
et*)touches withEvent:

nt*)event

OEBPS/html/graphics/10list14.jpg
- (void)renderparticles {

glpisableClientstate(GL_TEXTURE_COORD_ARRAY);

g18indBut fer (GL_ARRAY_BUFFER, verticesID);

glBufferpata(GL_ARRAY_BUFFER, sizeof (PointSprite) * maxparticles,
vertices, GL_DYNAMIC_DRAW);

glvertexpointer (2, GL_FLOAT, sizeof (PointSprite), 0);
glcolorpointer (4,GL_FLOAT, sizeof (Pointsprite) ,
(GLvoid*) (sizeof (GLf1oat)*3));

GLint currentlyBoundTexture;
GLint textureNane = (GLuint)([texturs texture] name];
glGetTntegerv(GL_TEXTURE_BINDING 2D, scurrentlyBoundTexture);
if (currentlyBoundTexture t= textureName) {

g1BindTexture (GL_TEXTURE_2D, textureName);

glEnableClientstate (GL_POINT_SIZE_ARRAY_OES);

glPointsizePointerOES (GL_FLOAT,sizeof (Pointsprite),
(GLv0ia%) (sizeof (GL_FLOAT)®2));

if (blendadditive) {

g1BlendFunc (GL_ONE_MINUS_SRC_ALPHA, GL_ONE);

glEnable (GL_POINT_SPRITE_OES);
glTexEnvi(GL_POINT_SPRITE_OES, GL_COORD_REPLACE_OES, GL_TRUE);

OEBPS/html/graphics/09ligp06.jpg
New Tileset

Tieset
Name:
2 [erowse)
Image: Browse.
(J Use transparent color: | [
Tiles
Tilewidth: 40 [Magin: o [3
Tile height: 40 [} Spacing: 0 [J)

Cancel oK)

OEBPS/html/graphics/09ligp05.jpg
New Map

vap
Orientation: (Orthogonal 3]
Map size Tie size

Width: 100 [Width: 32
Height: 100 [Height: 32 [3)

S cancel RGOk

OEBPS/html/graphics/10list16.jpg
- (void)stopParticleEmitter {
active
elap:
emitCounte

OEBPS/html/graphics/09ligp04.jpg

OEBPS/html/graphics/09ligp03.jpg

OEBPS/html/graphics/09ligp09.jpg

OEBPS/html/graphics/09ligp08.jpg
Layers
Opacity:

V' Collision
Objects
Map

[EXx)

OEBPS/html/graphics/p0095-02.jpg
AGL TRIANGLE STRIP, 0, 4);

OEBPS/html/graphics/p0370-02.jpg
screenTilesWide

scresnbounds.size.width / kTile_Width;
it ke B & iRtk Ta RabUE iie ‘R

OEBPS/html/graphics/09ligp07.jpg

OEBPS/html/graphics/p0095-01.jpg
§LYEEEEREQLRLaT Uky W FUORT, Uy BQURTHVNEL LoS8))
JlColorPointer (4, GL UNSIGNED BYTE, 0, squareColors)

OEBPS/html/graphics/p0370-01.jpg
bottomoffsetInTiles

screenTilesteight / 2;
leftoffsetInTiles = screenTileswide / 23

OEBPS/html/graphics/p0084-02.jpg
glOrthof (0, backingWidth, 0, backingHeight, -1, 1);

OEBPS/html/graphics/p0084-01.jpg
@implementation ES1Renderer (Private)

OEBPS/html/graphics/p0197-01.jpg

OEBPS/html/graphics/12list07.jpg
- (void)updateSceneNithDeltas (float)aDelta {

if (1sharedGameController.eaglview.uiswitch.on) {

knightLocation.x -= (adelta * (20 * joypadbistance)) *
cosf(directionofTravel);

knightlocation.y -= (abelta * (20 * joypadbistance)) *
sin(direction0fTraval);

if (sharedGamecontroller.eaglview.uiSwitch.on) {
knightlocation.x += abelta * (accelerationValues(0] * 1000);
knightTocation.y += abelta * (accelerationvalues[1] * 1000);

if (knightLocation.x < 0)
KknightLocation.x = 0;
if (knightLocation.x > 320)
knightLocation.x = 320;
if (knightLocation.y < 0)
knightLocation.y = 0;
if (knightLocation.y > 480)
knightLocation.y = 480;

OEBPS/html/graphics/12list05.jpg
- (void)touchesBegans (NSSet#)touches withBvent: (UIEvent*)event views (UIViews)aView {

for (UITouch *touch in touches) {
CGPoint originalTouchLocation = [touch locationTnViewraView];

CGPoint touchLocation = [sharedGameController
adjustouchorientat ionFor Touch toriginalouchLocation]

if (CGRectContainsPoint(joypadBounds, touchLosation) &k
tisJoypadTouchtioving) {
isJoypadTouchioving = YES;
joypadTouchtash = [touch hash];
continue;

if (touch.tapcount == 2) {
NSLog(#Double Tap at X:8f Y:iif", touchLocation.x,
‘touchLocation.y);

OEBPS/html/graphics/12list06.jpg
- (void)accelerometer: (UIAccelerometer *)accelerometer
didrccelerate: (UTAcceleration

+)acceleration {

accelerationvalues[0] = acceleration.x * 0.1f + accelerationvalues{0] *
(1.0 - 0.1£);

accelerationvalues[1] = acceleration.y * 0.1f + accelerationvalues[1] *
(1.0 - 0.15);

accelerationvalues[2] = accaleration.z * 0.1f + accelerationvalues[2] *
(1.0 - 0.15);

OEBPS/html/graphics/12list03.jpg
- (void)touchesMoved: (iSSet*)touches withEvent: (UIEvent+)event views (UIViewt)aView {
for (UITouch *touch in touches)
if ([touch hash] == joypadTouchHash && isJoypadTouchioving) {

CGroint originalfouchLocation = [touch
locationInViewiaView];

coPoint touchlecation = [sharedGameController
adjustTouchorientationForTouchsoriginal TouchLocation];

Float dx = (float)joypadCenter.s - (float)touchiocation.x;
Float dy = (float)joypadCenter.y - (float)touchiocation.ys

/1 Manhattan Distance
Joypadbistance = abs(touchLocation.x - joypadcenter.x) +

abs(touchLocation.y - joypadCenter.y);

directionofTravel = atanz(dy, dx);

OEBPS/html/graphics/09ligp10.jpg
Target "SLQTSOR" Info
{(General | suid _wules | Properies _Comments -

Name: SLaTs0R
Type: Application

DiectDependences

Unked Uorares =

¥ Foundton framenark e

B Ui framenark Yeasred §
£ OpenGus amenork e
5 Quanscoreramenork Reasred
K2 AvFoundston famevork et
¥ AudaToolbonframenark Reasred
[requres
5 Corerapnis ramework e
2 OperaL tramenork o §]
Bows nequres +

Reaures

OEBPS/html/graphics/12list04.jpg
- (void)touchesEnded: (NSSet*)touches withEvent: (UIEvent+)event
view (UIViewt)aview {

for (UITouch veouch in touches) {
if ([touch hash] == joypadTouchHash) {
isJoypadTonchloving = NO;
joypadTouchiash = 0;
directionofTravel = 0;
Joypadpistance = 0,
return;

OEBPS/html/graphics/12list01.jpg
(void)touchesBegan: (NSSet+)touches withEvent: (UIEvent#)event {

[[sharedGanecontroller currentscens] touchesBegan:touches withEventievent
viewrselfl;

(void)toucheshoved: (NSSet+)touches withEvent: (UTEvents)event {

[[sharedGanecontroller currentscens] touchestoved:touches withEventievent
viewrselfl;

(void)touchesEnded: (NSSet+)touches withEvent: (UTEvents)event {
[[sharedGaneController currentscens] touchesEnded:touches withEventievent
viewrselfl;

(void)touchesCancel led: (NSSet*)touches withEvent: (UTEvent*)event {

[[sharedGanacontroller currentscenc] touchesCancelledstouches
withEventsevent viewiselfl;

OEBPS/html/graphics/15ligp03.jpg
Example B
Example A

OEBPS/html/graphics/12list02.jpg
- (void)touchesbegan: (NSSet*)touches withEvent:(UIEvent+)event
view (UTViewt)aview {

for (urTouch *touch in touches) {
Copoint originalTouchLocation = [touch locationInViewraView];

CoPoint touchLocation = [sharedGamecontroller
riginalTouchLocation];

adjustTouchorientat ionForTou

if (CoRectContainspoint (joypadBounds, toushLocation) &
tisJoypadTouchioving) {

isJoypadTouchMoving = YES;
joypadTouchiiash = [touch hash];
break;

OEBPS/html/graphics/15ligp02.jpg

OEBPS/html/graphics/15ligp01.jpg

OEBPS/html/graphics/p0209-01.jpg
i i i sl e L sl s aat
height=3d, firstgid-td, spacing=td, id-%
tileSetName, tileSetWidth, tileSetHeight, tileSetFirstGID,
tileSetspacing, currentTileSetTn);

TEXMLElenent #inage = (TBXML childElementNaned:a"image"
parentElenent :tileset];
NSString *source = ITBXML valueOfActributeNamed:s"source"

forslenent inagel ;
NSLog(a"INFO - Tiled: —> Found source for tileset called
V3@'.", source);

OEBPS/html/graphics/p0058-01.jpg
= EreRe el
¢

[renderer release];

[super dealloc);

OEBPS/html/graphics/p0310-01.jpg
L e r L S RS e
selector:eselector (orientationchanged:)
IDeviceOrientationDidChangeNotification™ object:nill;

OEBPS/html/graphics/p0058-02.jpg
ey, A o e
#import <OpenGLES/ES1/gl.h>
#import <OpenGLES/ES1/qlext.h>

OEBPS/html/graphics/p0070-01.jpg
glVertexPointer(2, GL FLOAT, 0, squareVertices);

OEBPS/html/graphics/p0070-02.jpg
glEnableClientState(GL VERTEX ARRAY);

OEBPS/html/graphics/p0267-01.jpg
#define kFadeInterval (1.0£/60.0)

OEBPS/html/graphics/t0251-01.jpg
Category Identifiers*

AVAudioSessionCategoryAmbient

KAudioSessionCategory_Ambient
Sound

AVAudioSessionCategoryPlayback
KAudioSessionCategory_Media
Playback

AVAudioSessionCategoryRecord

KAudioSessionCategory_Record
Audio

AVAudioSessionCategoryPlayAnd
Record

KAudioSessionCategory_PlayAnd
Record

AVaudioSessionCategoryAudio
Processing
KAudioSessionCategory_Audio
Processing

Silenced by the
ring/silent switch
and by screen
locking

Yes

No

No (recording con-
tinues with the
screen locked)

No

Allows au-
dio from
other appli-
cations

Yes

No by de-
fault; Yes by
using over-
ide switch

No

No by de-
fault; Yes by
using over-
fide switch

No

Allows audio
input (record-
ing) and out-

put (playback)

Output only

Output only

Input only

Input and
output

No input and
o output

? In each row, the first identifier is for the Objective-Cbased AvAudiosession APl and the second
is for the C-based Audio Session Services API.

OEBPS/html/graphics/p0309-01.jpg
[[UIDevice currentDevice] beginGeneratingDeviceOrientationNotifications];

OEBPS/html/graphics/14list04a.jpg
case kGame objectSubType_Candys
image = [[[pss imageForkey:e~item_chocolate.png”]
imageDuplicate]
retain);
energy = 15;
break;

case kGame objectSubType Chicken:
inage = [[[pss imageForxey:e-item chicken.png"]
imageDuplicate] retainl;
energy = 25;
break;

case kGame objectSubType_Ham
inage = [[[pss imagerorxey:e-item ham.png"]
imageDuplicate] retainl;
energy = 20;
break;

case kGame objectSubType LolliPops

inage = [[[pss imageForkey:@-item lollipop.png"]
imageDuplicate] retain];
energy = 10;
break;

defaults
break;

)
)

return self;

OEBPS/html/graphics/p0069-03.jpg
JECARRTRR NS (Eeths Ra%Ty RagSy BRI
g1Clear(GL COLOR BUFFER BIT);

OEBPS/html/graphics/p0069-02.jpg

OEBPS/html/graphics/p0069-01.jpg
glTranslatef(0.0f, (GLfloat)(sinf(transY)/2.0f), 0.0f)

OEBPS/html/graphics/10list02.jpg
#import "TBXML.h"
#import "Global.h

Pinterface TBRML (TEXMLParticlerdditions)

// Returns a float value from the processes element
- (float) floatvaluePronchildElenentNaned: (NSString®)aNane
parentElement (TEXMLElement+)aParentXHLElement ;

// Returns a bool value from the processes element
- (800L) boolvaluePronchildelensntNanad: (NSString*)aNane
parentElement (TEXMLElement+)aparent XHLELement ;

// Returns a vector2f structure from the processes element
- (Vector2f) vector2FronchildElenentNaned: (NSString®) aNane
parentElenent: (TEXMLElenent+)aparentHLELenent ;

// Returns a colordf structure from the processes element
- (Colorst) colorafFronchildElenentNaned: (NSString*)aNane

parentElenent: (TEXMLElenentt) aparentXHLElement ;

send

OEBPS/html/graphics/10list01.jpg
<particleEmitterconfig>
<texture name="defaultTexture.png"></texture>
<sourcePosition x="164.00" y="0.00"></sourceposition>
164.00% y="0.00"></sourceposition>
<sourcepositionvariance x='7.00" y="7.00"></sourcerositionvariance>
<speed value="625.00"></spesd>
<speedvariance value="10.00"></speedvariance>
<particleLifespan value="1.0000"></particleLifespan>
<particleLifespanvariance value="2.0000"></particleLifespanvariance>
<angle value="90.00"></angle>
<angleVariance value="8.00"></angleVariance>
<gravity x="0.00" y="-500.00"></gravity>
<startColor red="0.00" gresn="0.00" blue="0.00"

<sourceposition

alpha="0.00"></startColor>

<startColorVariance red="1.00" greens"1.00" blues"1,00%
alpha="0.00"></startColorVariance>

<tinishColor red="0.00" green="0.00" blue="0.00"
alpha="1.00"></tinishcolor>

<finishColorvariance red="1.00" green="1.00" blue="1.00"
alpha="0.00"></finishColorvariance>

<naxarticles value="500"></naxParticles>

<startparticlesize value="30.00"></startparticlesize>

<startparticlesizevariance value="s.00"></startparticlesizevariance>

.16%></inishparticlesize>

<finishparticlesize value

<PinishparticleSizeVariance valus="0.00"></PinishParticlesizevariance>
<duration values"-1.00"></duration>

<blenddditive value="1"></blendadditive>

<maxRadius values"0.00"></maxRadius>

<maxRadiusVariance value="0,00"></maxRadiusVariance>
<minRadius value="0.00"></minRadius>
<rotatepersecond value="0.00"></rotatePersecond>

<rotaterersecondvariance value='
</particleEmittercontig

0.00"></xotateparsecondvariance>

OEBPS/html/graphics/10list04.jpg
typedef struct {
GLfloat x;
GLfloat y;
GLfloat size;
Colorét color;
} Pointsprite;

OEBPS/html/graphics/10list03.jpg
- (Colorif)colordfPronChildElenentNaned: (NSString®)aNane
‘parentElement : (TBXMLElenent+)aparentXHLELerent.
TXULELenent + xmlElement = [TBKWL childZlenentNaned:aName
parentElenent saparentXULELenent) ;

if (miElement) {
Float Ted = ([TBXML valusOfAttributeNansd:@”red”
forElement xmlglenent) floatvaluel;
float green = [[TEXML valueOfAttributeNaned:@"green”
forElement xalzlenent] floatvalue];
float blue = [[TBNL valueOfAttributeNansd:
forElement xmizlenent] floatvaluel;
£loat alpha = [[TBXML valueOfAttributeNaned:@”alpha”
forElenent sxnlzlenent] loatvalue];
return Colorifuaks (red, green, blue, alpha);

blue”

return Colordfake(0, 0, 0, 0);

OEBPS/html/graphics/10list06.jpg
- (id)initParticleEmitterNithFile: (NSString#)aFileNane {
self = (super init);
if (self 1= nil) (

THXML particleXts = [[TBKHL alloc) initWithHMLFilesaFileName];
[se1f parseParticlecontigrparticleXdi];

(s01f setuparraysi;

(particlexul, release];

i

return self;

OEBPS/html/graphics/10list05.jpg
typedef struct {
vector2t position;
Vector2f direction;
Colorét color;
Colorst deltacolor;
GLfloat radius;
GLfloat radivsbelta;
GLfloat angle;
GLfloat degreespersecond;
GLfloat particleSize;
GLfloat particlesizeDelta;
GLfloat tineToLive;

} Particle;

OEBPS/html/graphics/02list01.jpg
#define MAXIMUM FRAME RATE 120
#define MINIMUM FRAME RATE 30

#define UPDATE_INTERVAL (1.0 / MAXIMUM_FRAMS_RATE)

#define MAX_CICLES_PER_FRAME (MAXIMUM_FRAME_RATE / MINIMUM_FRAME_RATE)

- (void)gameLoop {

static dowble lastPrameTime = 0.0%;
static dowble oyclesLeftOver = 0.0f;
double curzentTine;

double updatelterations;

/1 Bpple advises to use CACurrentiediamime() as CEAbsoluteTimsGetCurrent() is
/1 synced with the mobile network time and so could change causing hiccups.
currentTine = CACurrentiediaTine();

updatelterations = ((currentTine - lastFraneTine) + cyclesLeftover);

if(updateIterations > (MAX_CYCLES PER_FRAME * UPDATE_INTERVAL))
updatelterations = (MAX_CYCLES PER FRAME * UPDATE_INTERVAL);

while (updatelterations >= UPDATE_INTERVAL) {
updateIterations -= UPDATE_INTERVAL;

/1 vpdate the game logic passing in the fixed update interval as the delta

[sharedGaneController updateCurrentscensiithbel a UPDATE_INTERVAL];

cyclestertover = updatelterations;
lastFraneTine = currentTine;

1/ Render the scene
[self drawviewinilly

OEBPS/html/graphics/10list08.jpg
- (void)parseparticleConfig: (TEKIL*)aConfig {
TBXMLElement *rootXMLElement = aConfig,rootXMLElement;
/ Make sure we have a root element or we cant process this file

if (trootuLElement) {
NSLog(8"ERROR - ParticleEmitter: Could not find root element in

particle config file.

)

/1 First thing to grab is the texture that is to be used for the point sprite
TeRMLElement selement = [TBXML childElenentNamed:@"texture”
parentElenent :rootXMLELement |;

if (element) {
NSString +fileName = [TEXML valueOfAttributeNamed:e name”

forlencnt ialenent];

if (filevame) {
/1 Create a new texture vhich is going to be used as the texture for the
point sprites
cexture =
£4ltersGL_LINEAR];

(Irage alloc] initwithInageNamed: fileNane

OEBPS/html/graphics/10list07.jpg
- (void)parseParticleConfig: (TBXML*)aConfig {

TBRHLELement rootXMLELement = aConfig.rootXMLElenent;

// Make sure we have a root element or we can't process this file
if (trootXMLElement) (

NSLog(eERROR - ParticleEmitter: Could mot find root element in

particle contig file.

OEBPS/html/graphics/10list09.jpg
- (void)setuphrrays {
particles = malloc(sizeof (Particle) * maParticles);
vertices = malloc(sizeof (PointSprite) * maxParticles);

NsAssert (particles & vertices, §'ERROR - ParticleBmitter: Could not
allocate arrays.);

glGensutfers(l, sverticesIo);
active = vES;

particlecount.

elapsedrine

OEBPS/html/graphics/p0085-02.jpg
e e e LU
glLoadTdentity{};

OEBPS/html/graphics/p0085-01.jpg
glViewport (0, 0, backingWidth , backingHeight);

OEBPS/html/graphics/p0057-01.jpg
- (void)stopAnimation
t
if (animating)
¢
if (aisplayLinksupportad)

i
[displayLink invalidate];

displayLink = nil;
b

else

i

(animationTiner invalidatel;
aninationTiner = nil;

}

animating = FALSE;

OEBPS/html/graphics/14list14a.jpg
18 (energy <= 0) (
state = kentityState_bead;
energy = 0;
HapChiect. #grave = [[Mapobject alloc] initwithtilelocationtilelocation
type:kObjectType_General sublype:kobjectSubType_Gravel;
(aScene.aneonjects addobjectigrave];
[grave roleasel;

Lives = 15
if (Lives < 1) {
aScane.state = kscensstate Ganeover;

[sharedSoundtanager playSoundiithkey:é"screan location:pixelLocation];

3

OEBPS/html/graphics/p0289-01.jpg
[glView setMultipleTouchEnabled:YES];

OEBPS/html/graphics/pub.jpg
vy Addison-Wesley

OEBPS/html/graphics/14list03.jpg
(id)initwithTileLocation: (CGPoint)aTileLocation type:(int)aType
subType: (int)asubType;

(void)updatenithoeltas (float)abelta scene: (Abstr

(void)render;

(void)checkPorCollisionNithEnt ity s (Abstractint ty®)aBntity;

(corect jcollisionsounds;

(id) initwithCoders (NSCoder *)abecoder;

(void)encodeithCoders (NSCoder #)aCoder;

sene)ascene;

OEBPS/html/graphics/14list04.jpg
(id) initmitnTileLocation:(CGPoint)aTileLocation type: (int)aType
subtypes (int)asubType {
self = (super initl;
if (self 1= nil) {
type = atype;
subype = asubType;

tilelocation.x = aTileLocation.x + 0.5f;
tilelocation.y = aTileLocation.y + 0.5¢;
pixellocation = ©ileNaprositionTorixe

Jeition(tilelocation);

Packedspriteshest pss = [PackedSpritesheet
- geNamed:@"atlas.png"
controlrilett coordinates” inagerilter:GL_LINEAR];

ackedSpritesheetForina

switeh (subType) {

case kcame objectsubtype_Cakes
image = ([[pss imagerorkeyséiten cake.png"]
inagebuplicate] retain);
energy = 20;
break;

inage = [[[pss imageForKey:@~item drink.png”]
inageDuplicate] retain];
energy = 10;
break;

OEBPS/html/graphics/14list01.jpg
11111111111711111] Instance variables

copoint tileLocation; //
copoint pixelLocation; //

int state; "
int type; "
int subType; "

int energ) "
7"

"

J10001111111111117 Flags

Tile position of the game object in the map
Pixel position of the game object in the map
Game object state

Game object type

Game object subtype

Energy passed to the player if this game
object is an

energy object

BOOL isCollectable; // Can this object be collected by the player

OEBPS/html/graphics/14list02.jpg
// Game object types

enum {
Kobjectrype_Key,
KObjectType_Eneray,
KobjectType_General

b

// Game object subtypes

enum
KObjectSublype_RedKey = 0,
KObjectSubType_Greenkey = 1,
KobjectsubType_Bluskey = 2,
Kobjectsubtype_Yellowkey = 3,
KObjectsubType_Candy = 4,
kObjectSublype_Cake = 5,
KObjectSubType_Chicken = 6,
kobjectsubType_Drink = 7,
KobjectsubType_Lolliop = 8,
Kkobjectsubrype_Ham = 9,
KObjectSubType_Grave = 10,
KObjectSubType_BottomLamp = 11,
KobjectsubType Rightlamp = 12,
Kkobjectsubrype_TopLamp = 13,
Kobjectsubtype_Leftiamp = 14,
KObjectSublype_Parchmenttop = 15,
KOb jectSubType_ParchmentMiddle = 16,
KobjectsubType_parchmentsottom = 17,
KkobjectsubType Bxit = 18

¥

// Game object states
enum {
Kkobjectstate_Active,
Kobjectstate_rnactive,
Kkobjectstate_Inventory

OEBPS/html/graphics/14list07.jpg
- (void)checkForcollisionWithEntity: (AbstractEntity*)aEntity {
if (laBntity isKindOfClass:(Player classll) {

if (CoRectIntersectsRect([self collisionBounds],
[aEntity collisionmounds])) {
state = keame objectState_Inactive;
[sharedSounduanager playSoundwithey:8*eatfood”
locationiCGPointiiake (aBntity. pixeliocation.x,
aEntity.pixeliocation.y)ls

OEBPS/html/graphics/14list08.jpg
- (CGRect)collisionsounds {
return CGRectiake(pixelLocation.x = 10, pixelLocation.y = 10, 20, 20);

OEBPS/html/graphics/14list05.jpg
- (void)updateWithDelta (float)abelta scene: (Abst ene *)ascene {

if (state ameObjectstate ¢
Scale2s scale = image.scale;
if (scalevp) {

scale.x += 0.75 * abelta;

scale.y 4= 0.75 * abelta;
} else {
scale.x = 0.75 + avelta;
scale.y -= 0.75 * abelta;

nage.scale = scale;
if (scale.x > 1.35) {
scaleup = 1O;

}

it (scale.x < 1) {
scalevp = YES;

OEBPS/html/graphics/14list06.jpg
- (void)render {
if (state == keameobjectstate Active) {
linage rendercenteredatPointspixellocation];

¥

[super renderl;

OEBPS/html/graphics/p0125-01.jpg
glDrawElements (GL TRIANGLES, vertexCounter, GL UNSIGNED SHORT, ivaIndices);

OEBPS/html/graphics/p0068-01.jpg
glMatrixMode({GL_PROJECTION]
jlLoadIdentity();
gluatrixiode (GL_NODELVIEW);
g1LoadIdentity()s

OEBPS/html/graphics/p0045-01.jpg
¢interface CHO3_SLQTSORAppDelegate : NSObject <UIApplicationDelegate> {
UIWindow *window;
EAGLView *gluiew;

OEBPS/html/graphics/p0045-03.jpg
SEEDRELY I ScoRLO s TeREan). SROSLINE TINDGow SWito)
eproperty (nonatomic, retain) TBOutlet EAGLView *glView;

send

OEBPS/html/graphics/p0045-02.jpg
N e
EAGLView *glView;

OEBPS/html/graphics/05ligp10.jpg
=]

BT ﬁ ; |efﬂ|£ oo oooog

Torrod Coores0wd0) rod Caorss0uall) Toxtred Cores0umota)

T T T T TR T T T T T T T T TR T

OEBPS/html/graphics/14list09.jpg
/417111111111111/1/ Singleton Managers

Soundianager *sharedSoundianager;
Gamecontroller *sharedGamecontroller;

J10000001111111111 Tnages
Image *image;

Spritesheet #spritesheet;
Anination *anination

I111101111111111] Entity location
copoint tilelocation;
coroint pixellocation;

I111001111111111] Bntity state/ivars
Gaescene ¥scene;

uint state;

float energybraing

Float spead;

float angle;

Particlesmitter ¥dyingBmitter;
Particlesuittr *appearingBmitter;
float offscreentiner;

float appearingTiner;

float distanceFronplayer;

OEBPS/html/graphics/05ligp11.jpg
Tk |||ﬁ|]ﬂlﬁ|||i

[——— g —— g — —
ey e ——

OEBPS/html/graphics/09list24a.jpg
for (int yeaMapy; y < maxkeight; ye+) {
for (int xeaMapx; X < naxwideh; xee) {
TextureColoredQuad +tog = [layer tileInageAt:CGeointMake (x, v1;

if (memcmp(tcq, &nullTCQ, sizeof (TexturedColoreduad)) ls 0)

[sharedInageRendertianager
TexturedColoredguadt:

textureiane textureNane] ;

nderQueue:teq

1

1

it (aUseBlending]
Slpisable (GL_BLEND) ;

[sharedInageRendextanager renderTnagesl;

if (laUseBlending)
glEnable (O1_BLEWD) ;

OEBPS/html/graphics/p0086-02.jpg
SAEIAOL A0S MNILELALSLE, VEKIE: RERAT:)
g1EnableClientState (GL COLOR ARRAY) :

OEBPS/html/graphics/p0086-01.jpg
gRimarioTnT iy aty BoRte MRt SE0G
g1Disable(GL DEPTH TEST) ;

OEBPS/html/graphics/05ligp09.jpg

OEBPS/html/graphics/10list12a.jpg
7/ Place the color of the current particle into the color

/1 array

vertices(p

“iclemnden].color = currentParticla->color;

// Update the particle counter

particlelndext

) else {

// s the particle is not alive anymore replace it with the
/7 last active particle in the array and reduce the count of
/7 particles by one. This causes all active particles to be
/1 packed together at the start of the array so that a
/7 particle which has run out of life will only drop into
/1 this clause once

if(partic particlecount - 1)
particles(particlelndex] = particles(particleCount - 1]

particl

OEBPS/html/graphics/05ligp07.jpg
vertex Array

Color Array

OEBPS/html/graphics/9780321699527.jpg
LEARNING
GAME PROGRAMMING

A Hands-on Guide to Building Your First iPhone Game

MICHAEL DALEY

OEBPS/html/graphics/05ligp08.jpg
interisaved vertex Amay

OnonDoononG

)
S

OEBPS/html/graphics/05ligp01.jpg
Triangle 2

OEBPS/html/graphics/05ligp02.jpg
Triangle 3

OEBPS/html/graphics/05ligp05.jpg
t4 (00,10 (10, 1.0)

Triangle 2

1]

OEBPS/html/graphics/05ligp06.jpg

OEBPS/html/graphics/05ligp03.jpg
Triangle 2

OEBPS/html/graphics/p0079-02.jpg
el MEInCHEVAL tnehaee
O Py

OEBPS/html/graphics/05ligp04.jpg
(00,100 .0)

(00,00

(10,00

OEBPS/html/graphics/p0079-01.jpg

OEBPS/html/graphics/06list08.jpg
- (Image*)imageForKey: (NSString*)aKey {

Inage *spritelnage = [sprites objectForkey:akeyl;

if (spritemnage) {
return [sprites objectrorkeysaKeyl;

¥

NSLog(8"ERROR - PackedSpritesheet: Sprite could not be found for key
REr, aKey);

return nil;

OEBPS/html/graphics/06list06.jpg
- (id)initWichInageNaned: (NSString®)aInageFileNane
controlFile: (NSStx ing*)aControlFile

filters (GLenun)aFilter {

if (self = [super init]) (
NSString *fileName = [[almageFileName lastPathcomponent]
stringybeletingPathExtension];

image = [[[Image alloc] initwithimagenaned:filsame
filtersarilter] retain);

sprites = [[NSHutablenictionary alloc] init];
controlFile = [[uSDictionary alloc]
initWithContentsOfFiles([NSBundle mainBundle]

pathForResourcesacontrolFile ofType:&"plist™]];

[self parsecontrolrilescontrolrile];
[controlpile release];

)

return self;

OEBPS/html/graphics/16list03a.jpg
/1 Archive the game cbjects
[encoder encodeObect 1gancobiects forkeyt@"ganedbjects”]}

/1 Archive the ganes timer settings

NSNunber *savedGaneStartTine = [NSHuber numberwithFloat retine);
NSNunber +saved?ineSinceGamestarted =

[NSNumber numberWithFloatstinesinceGanestarted]y

NSNunber +savedScore = (NSNumber numberiithFloatiscore];

[encoder encodeObject :savedGaneStartTine forkey:d"ganestartTine"];

[encoder encodecbject :savedTineSinoaGanestarted
forkey: 0"t imeSinceGanestarted” 1;

[encoder encodeObject :savedscore forRey:score”];
[encoder encodeInttlocat lonane forkey:@-locationNane"];

/1 Pinish encoding and write the contents of gameData to file
[encoder finishEncoding];

[ganeData writeTorile:ganeStatepath atomically:¥es];

[encoder release];

// 7611 the game controller that a resuned game is available
meAvailable = YES;

eControl ler resumeds:

OEBPS/html/graphics/06list07.jpg
- (void)parseControlFilet (NSDictionary*)aControlfile {

uSDictionary *framesbictionary = [controlFile objectForkey:

for (NSString *frameDictionarykey in framesbictionary) {

NSDictionary *frameDictionary = [framesbictionary
objectrorkey: franedictionaryKey];

float x = ([framebictionary objectrorkey:e“x"] floatvalue];
float y = ((frameDictionary objectForKey:@-y"] floatvalue];

f£loat w = [[£raneDictionary objectForKey:8"width"] floatvalue];
float h = [[franeDictionary objectForKey:@'height"] floatvalue];

Inage *sublmage = [image subimagelniectiCGRectMake(x, y, W, h)l;
[sprites setObjectisublnage forkey:frameDictionarykey;

OEBPS/html/graphics/p0161-01.jpg
- (void)rotationPoint:(CGPoint)aPoint {

3

for(int

}

; ictramecount; i++) {

[franes(i].inage setiotationrointaboint];

- (void)setRotations (float)aRotation {

for(int

}

i<franecount; i+) {
[frames[i].inage sotrotationsaRotation];

OEBPS/html/graphics/p0161-02.jpg
- (Image®)currentFrameimage {
return frames[currentrrame].inage;

- (Image+)imageForPrane: (NSUInteger)alndex {
if(alndex > framecount) {
NSLog(#"WARNING - Animation: Invalid frame index");
return nil;

y

return frames(alndex].image;

OEBPS/html/graphics/06list04.jpg
- (void)cachesprites {

horizSpritecount = ((image.imageSize.width + spacing) + margin) /
((spritesize.width + spacing) + margin);

vertSpritecount = ((image.imageSize.height + spacing) + margin) /
((spritesize.height + spacing) + margin);

cachedsprites = [[uSHutablearray alloc] init];
CoPoint textureOffset;

for(uint rows0; row < vertspriteCount; rowrt) {
for(uint colum=0; colum < horizspriteCount; colums) {

CGPoint texturePoint = CGPointMake((colum *
(spritesize.uidth + spacing) + margin),
(xow * (spritesize.height + spacing) + margin));

textureOffset.x = image.textureOffset.x *
image. fullTexturesize.width + texturePoint.x;

textureoffset.y = inage.textureOffset.y *
image.fullTexturesize.height + texturePoint.y;

coRect tileInageRect = CGRectiake(texturaOffset.x,
textureOffset.y, spriteSize.width, spriteSize.height);

Tnage *tileTnage = [[image subTmageTnke
retain);

tilelnagerect]

(cachedsprites addobject stilemmage];

[tileTnage release];

OEBPS/html/graphics/06list05.jpg
- (Image*)spriteInageAtCoords: (CGPoint)aPoint {
if(apoint.x > horizspritecount-1 || apoint.y < 0 || aboint.y >
vertSpriteCount-1 ||
apoint.y < 0)
return nil;

int index = (horizSpriteCount * aboint.y) + aPoint.x;

return [cachedSprites objectatIndexsindex];

OEBPS/html/graphics/06list02.jpg
- (id)inithithInageNamed: (NSString*)alnageFileNane
spritesize: (CGsize)aspritesize spacing: (NSUTnteger)aspacing
margin: (NSUTnteger)akargin inageFilters (GLenum)aFilter {

if (self = [super init]) {

NsString +fileName = [[aInageFileName lastPathComponent]
stringBybeletingPathExtension];

self.image = [{Image alloc]
initwithinageNanedifilenane £iltertaFilter];

spritesize = aspriteSize;
spacing = aspacing;

margin = 0;

[self caches

rites];

i

return self;

OEBPS/html/graphics/06list03.jpg
- (id)initWithInage: (Image*)aImage spriteSize:(CGSize)aspritesize
spacings (NSUInteger)aSpacing margin: (NSUInteger aMargin{
if (self = [super init]) {
self.inage = aInage;

spritesize = aspritesize;
spacing = aspacing;
margin = aMargin

[self cachesprites];

¥

return self;

OEBPS/html/graphics/06list01.jpg
static NSMutableDictionary *cachedSpritesheets = nil;

+ (Spriteshests)spritesheetforinageNaned: (NSString#)alnageNane
spritesize:(CGSize)aspritesize spacings (NSUInteger)aspacing
margin: (NSUTnteger)aNargin imageFilters (GLenum)aFilter {

Spriteshest *cachedspriteshest;

if (1cachedspritesheets)
cachedspriteshects

[WSHutableDictionary alloc] init];

if (cachedSpritesheet = [cachedSpriteSheets objectrorkey:almageNane])
return cachedspritesheet;

cachedspriteshest = [[Spriteshest alloc]
initwithInageNaned:ainageNane sprite

Spritesize
spacingsaspacing marginsaargin imageriltersarilter];

[cachedspritesheets setobjectcachedspritesheet forkeyialnageName];
[cachedspriteshest release];

return cachedSpritesheat;

OEBPS/html/graphics/05list20.jpg
(void)setpoint: (CGPoint)aPoint {
point = apoint;
dirty = ves;

(void)setrotation (f1oat)aRotation {
rotation = aRotation;
airty = ves;

(void)setscale: (scalezf)ascale {
scale = ascale;
airty = ves;

(void)setFlipVertically: (BOOL)aFLip {
flipvertically = aflip;
airty = ves;

(void)setFliporizontallyt (B00L)aFLip {
flipHorizontally = aFlip;
airty = ves;

OEBPS/html/graphics/p0067-04.jpg
glViewport(0, 0, backingWidth, backingHeight);

OEBPS/html/graphics/p0124-01.jpg
Lva[0].gecmetryvertex
iva[0] . textursVertex
iva[0].vertexColor

OEBPS/html/graphics/p0067-02.jpg

OEBPS/html/graphics/p0067-03.jpg
glBindFramebufferOES(GL FRAMEBUFFER OES, defaultFramebuffer);

OEBPS/html/graphics/p0067-01.jpg
static float transY

0.0f;

OEBPS/html/graphics/07list01.jpg
- (id)init {
if(self = (super init]) {
maxFrames =

£ramecount = 0;
currentrrame = 0;

state = kaninationState_Stopped;
type = kanimationType Once;
direction = 1;

bounceFrame = -1;

frames = calloc(maxFrames, sizeof (AnimationFrame));

¥

return self;

OEBPS/html/graphics/07list02.jpg
#define FRAMES_TO_EXTEND 5
- (void)adderancnithinage: (Tnage+)aTnage delay: (float)abelay {

if (franeCount+1 > maxFrames) {
maxFrames += FRAMES_TO_EXTEND;
franes = realloc(frames, sizeof (AnimationFrame) * maxFrames);

)

frames{franeCount].inage = [almage retain];
framesfraneCount].delay = abelay;
£rameCounts+;

OEBPS/html/graphics/07list03.jpg
- (void)updateWithDelta: (float)abelta {

if(state I= kanimationstate Running)
return;

displayTime += aDelta;

if(displayTine > frames[currentFrame].delay) {
currentFrame += direction;

displayTine -= frames(currentFrane].delay;

if (type == kAnimationType_Pingrong & (currentFrame == 0 ||
currentrrame
frameCount-1 || currentrrame == bounceFrame)) {
direction = ~direction;

b

else if (currentFrame > frameCount-1 || currentFrame ==
bounceFrane) {
if (type i XanimationType Repeating) {
currentrrame -= 1;
state = kanimationState_Stopped;
) else ¢
currentFrame = 0;

OEBPS/html/graphics/07list04.jpg
(void)renderatpoint: (CGPoint)apoint {
[se1f renderatrointiaboint scale:frames(currentFrame].image.scale
rotationsframes(currentFrane].image.rotation];

(void)renderatroint: (CGPoint)aPoint scale: (Scale2f)ascale
rotation: (float)aRotation {
[franes[currentFrane].inage renderAtPointiaboint scalerascale
rotationsaRotation];

(void)renderCenteredhtPoints (CGPoint)aboint {
[self renderCenteredAtPointaboint
scalerfranes[currentFrame]. inage.scale
rotation:franes[currentFrame]. inage.rotation];

(void)renderCentersdhtPoint: (CGPoint)aboint scale: (Scale2f)ascale
rotation: (£loat)aRotation {
[£rames[currentFrane].inage renderCenteredAtPointsaboint scalesascale
rotationsarotation];

OEBPS/html/graphics/p0113-02.jpg
glBindTexture(GL TEXTURE 2D, name);

OEBPS/html/graphics/p0113-03.jpg
SITURPALARGLEEL ¥ SEETIAR T, O TELTINLNIE CLUTINy S¥atiez))
JlTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, aFilter):

OEBPS/html/graphics/p0314-01.jpg
[SDEIOVO N SRR ERAEL [HLTHSG L SIS E RO)
forstateiUIControlstateNornal];

(£xVolune setThuabInage:[UTTnage inageNaned:@ui_scrollbutton.png”]
S e DA

OEBPS/html/graphics/05list14a.jpg
* 4y

ivaIndices(vertexcounter++] = index; // Bottom left
ivaIndices(vertexcounters+] = indexs2; // Top Left
ivalndices(vertexCounter++] = indext1; // Bottom right
ivaTndices(vertexCounter+t] = indext1; // Bottom right
index+2; // Top left
ivaTndices(vertexCountert+] = indextd; // Top right

ivaTndices[vertexcounter++]

)

glDrawElenents (GL_TRIANGLES, vertexCounter, GL_UNSTGNED_SHORT,
ivalndices);

imageCountForrexture| texturesTorender | texturelndex]] = 0;

y

renderTextureCount

o

ivalndex = 0;

OEBPS/html/graphics/p0056-02.jpg
sase
animationTimer = [NSTimer scheduledTimerWithTimeInterval:
(uSTimeInterval)((1.0 / 60.0) * animationFrameInterval)
targetiself
selectori@selector (drawviews)
userTnfornil
repeatsTRUE];

animating = TRUE;

OEBPS/html/graphics/p0113-01.jpg
glGenTextures(l, &

OEBPS/html/graphics/08list08a.jpg
FARE BiFNEpFOTECRSELILLIONELOD NiGSISCRREETRAY
Point.x = aRect.origin.x + ((aRect.size.width - textiidth) /

2

point.y = aRect.origin.y + ((aRect.size.height - textHeight) /
2) - (commonmeight - textHeight);

break;

case BitmapFontJustification_BottomCentered:
Point.x = aRect.origin.x + ((aRect.size.width - textiidth) /
2
point.y = aRect.origin.y - (commonHeight - textheight);
break;
case bitmapFontJustification_TopRight
Point.x = aRect.origin.x + (aRect.size.width - texthidth);
point.y = aRect.origin.y + (aRect.size.height - textHeight) —
(commonHeight - textheight);
break;
case BitmapFontJustification MiddleRight:
Point.x = aRect.origin.x + (aRect.size.width - texthidth);
point.y = aRect.origin.y + ((aRect.size.height - textHeight) /
2) - (commonmeight - textHeight);
break;
case BitmapFontJustification BottomRights
Point.x = aRect.origin.x + (aRect.size.width - texthidth);
point.y = aRect.origin.y - (commonHeight - textHeight);
break;

defaults
break;

3

[self rende,

ngatipoint textraText];

OEBPS/html/graphics/p0056-01.jpg
B e e e
(
if (tanimating)
[
if (displayLinkSupported)
«
aisplaytink = [NSClassPromstring(eCADisplayLink’)
displayLinkilithTargetiself selector:éselector (dramvicys];
(displayLink setFraneIntervalianinationFraneIntervall;
{displayLink addToRunToop: [NSRunLoop currentRunLoop]
forModesNSDefaul tRunLooplode];

OEBPS/html/graphics/p0115-01.jpg
PSSR AT IS, TEET IS a0y U W RINAy WIOES, SELQLEs s Sh RS,
GL_UNSIGNED BYTE, data)

OEBPS/html/graphics/08list10.jpg
- (int)getHeightForStrings (NSString*)string {
int stringheight

for(int i=0; i<[string lengthl; i++) {
unichar charId = [string characteratindex:i] - 32;

if(charIp == ')

continue;

stringheight = MAX((charsArray[charip].height * image.scale.y) +
(charsarray[chariD].yOffset * image.scale.y), stringieight);

)

return stringHeight;

OEBPS/html/graphics/08list11.jpg
- (void)dealloc {
if (charsarray) {
for(int i=0; i < kMaxCharsInFont; i++) {
if (charsarray[i].inage)
[charsarray[i].inage releasel;

¥
free(charsArray);
)
if (image)

linage release];
[super dealloc);

OEBPS/html/graphics/p0087-01.jpg
sharedGameController updateCurrentSceneWithDelta :UPDATE INTERVALJ ;

OEBPS/html/graphics/04ligp04.jpg

OEBPS/html/graphics/14ligp06.jpg

OEBPS/html/graphics/04ligp05.jpg
T e
[isplartink setFramalncersalioninstionframainterally

OEBPS/html/graphics/14ligp05.jpg
Object Properties

Name: (Lollipopl
Type: 1

Name Value
subtype 8
<new property>

OEBPS/html/graphics/04ligp06.jpg
EAGLView

S

ES1Renderer

-

GameControlier

Gamescene

MenuScene

GameScene

SatiingsScene

GameScene

GameScene

OEBPS/html/graphics/14ligp07.jpg

OEBPS/html/graphics/14ligp02.jpg

OEBPS/html/graphics/04ligp01.jpg
bl
U = Update

Fast Hargware ‘Slow Hardware

OEBPS/html/graphics/14ligp01.jpg
. g

OEBPS/html/graphics/04ligp02.jpg
Render Collision detected

OEBPS/html/graphics/14ligp04.jpg
8 Duplicate
§ Remove

[\ Properties...

OEBPS/html/graphics/04ligp03.jpg

OEBPS/html/graphics/14ligp03.jpg
L s

OEBPS/html/graphics/p0055-01.jpg
- (NSInteger) animationframelnterval
0
return animationFrameInterval;

3

- (void) setAnimationFrameIntervals(NSInteger)franelnterval
0

if (framelnterval >= 1)

i
animationFraneInterval = framelnterval;
if (animating)
i
[self stopanimation];
[self startanimation];
)]
¥

OEBPS/html/graphics/11ligp01.jpg
N

)

OEBPS/html/graphics/99527.jpg

OEBPS/html/graphics/13list01.jpg
- (void)renderscene {
[background renderAtPoint:CGrointiake(0, 0)];

for (int indexe0; index < 7; indextt) {
Inage *cloud = [clouds objecthtIndextindex];
[cloud TenderAtPoint: (CGPoint)cloudpositions(index]];

¥

(castle renderAtPointiCGrointiiake(249, 0)1;
{logo renderatPoint:Cerointiiake(25, 0)1;
[settings renderatPointiCGPointMake(450, 0)];
[nenu renderAtPoint:Corointiake(0, 0)];

if (IsharedGameController resumedGameAvailable]) {
[menuButton renderatPointiCGPointiake(71, 60)1;

¥
if (state == kSceneState_Transitionn ||

state == kSceneState_Transitionout ||

state == kSceneState_Idle) {

[fadelnage renderhtPoint:CGrointiiake (0, 0)1;
3

(sharedInageRenderiianager renderinages];

it (scB) {
dravBox(startButtonsounds);
dravBox(scoreButtonsounds)
dravBox (instructionsuttonBounds);
drawBox(resunsButtonounds) ;
drawBox(LogoButtonBounds) ;
dravBox (settingsButtonBounds) ;

OEBPS/html/graphics/13list06.jpg
void drawBox(CGRect aRect) {

GLfloat vertices(s];
vertices(0] = aRect.origin.x;

vertices(1]
vertices(2]
vertices(3]
vertices[4]
vertices(s]
vertices(6]
vertices(7]

aRect.origin.y;
aRect.origin.x + aRect.size.width;
aRect.origin.y;
aRect.origin.x + aRect.size.width
aRect.origin.y + aRect.size.height;
aRect.origin.x;
aRect.origin.y + aRect.size.height;

glDisableclientstate(GL_COLOR_ARRAY);

g1Disable(GL_TEXTURE_2D)

glvertexrointer(2, GL_FLOAT, 0, vertices);
glDravArrays (GL_LINE_LOOR, 0, 4);
glEnableClientstate (GL_COLOR_ARRAY);
glEnable (GL_TEXTURE_2D);

OEBPS/html/graphics/13list07.jpg
fifdef SCB
drawBox(startButtonBounds) ;
drauBox(scoreButtonBounds) ;
drauBox(instructionsuttonsounds);
arawBox(resumeButtonBounds);
drawBox(logoButtonBounds) ;
drawBox(settingsButtonBounds);

fendif

OEBPS/html/graphics/13list08.jpg
- (void) orientationChanged: (NSNotification *)notification {

Ubeviceorientation orientation = [[UIDevice currentbevice] orientation];
if (orientation == UIDeviceOrientationlandscapeRight) {
sharedGansControl ler. interfaceOrientation =
UTnterfaceOrientationLandscapeleft;
gloadrdentity();
girranslates(160, 240, 0);
glRotate (90, 0, 0, 1);
glranslatef (~240,-160,0);
i

if (orientation == UIDeviceOrientationLandscapeLeft) {
sharedGaneController.interfaceOrientation =
UlInterfaceorientationLandscapeRights
glroadidentity();
glTranslates(160, 240, 0);
glrotates(-90, 0, 0, 1);
glTranslates(-240,-160,0);

OEBPS/html/graphics/13list09.jpg
- (CGPoint)adjustTouchOrientationForTouchs (CGPoint)aTouch {

copoint touchLocation;

if (interfaceOrientation == UIInterfaceorientationLandscapeRight) {
touchLocation.x = aTouch.y;

touchLocation.y = aTouch.x;
3

if (interfaceOrientation == UIInterfaceorientationLandscapeLeft) {
touchLocation.x = 480 - aTouch.y;

touchLocation.y = 320 - aTouch.x;
3

return touchLocation;

OEBPS/html/graphics/08list02.jpg
- (id) initwithFontInageNamed: (NSString*)aFileName controlFile: (NSString*)aControlFile
scale: (scale2f)ascale filter: (Grenum)arilter {

self = (self init);
if (self 1= nil) {

sharedGamecontroller = [Gamecontroller s

aredGamecontroller];

image = [[Image alloc] initwithinagelanedsaFileName filtersaPilter];
image.scale = ascale;

fontcolor = Colorifiake(1.0f, 1.0£, 1.0£, 1.0£);

charshrray = calloc(kMaxCharsInFont, sizeof (BitmapFontchar));

[self parseron

controlFile];
}

return self;

OEBPS/html/graphics/13list02.jpg
enum {
kscenestate_dle,
ksceneState_Credits,
kSceneState_Loading,
kSceneState_TransitionIn,
kScenestate_Transitionout,
kscenestate_Transportingln,
KkScenestate_TransportingOut,
kSceneState_Running,
kSceneState_paused,
kScenestate_caneover,
KkScenestate_Savescore,
kSceneState_GaneCompleted

OEBPS/html/graphics/08list03.jpg
- (void)parseFont: (NSString*)controlFile {

NSString *contents = [NSString stringWithContentsofFiler
[Missundle mainBundle] pathPorResourcescontrolPile
oftype:€*£nt"| encoding:NSASCIIStringencoding errorsnill;

WsArray lines = [[NSArray alloc] initWitharray:[contents
componentsseparatedsystring:€*\n"]];

NSBnumerator *nse = (lines objectEnumerator];
uSString *line;

while(line = [nse nextobject]) {
if({Line hasPrefix:¢"common’]) {
[se1f parsecommontline];

} else if([line hasPrefixia"char id"]) {
[self parsecharacterpefinitionsline];

)
¥

(lines release];

OEBPS/html/graphics/13list03.jpg
CGRect:
CGRect
CGRect.
CGRect.
CGRect
CGRect

startButtonBounds}
resumeButtonBounds;
scoreButtonsounds;
instructionButtonBounds;
1logoButtonsounds;
settingsButtonBounds;

OEBPS/html/graphics/13list04.jpg
startbuttonbounds = CGRectMake(74, 235, 140, 50);
scoreButtonsounds = CGRectiake(71, 178, 135, 50);
instructionButtonBounds = CGRectMake (74, 120, 144, 50);
resuneButtonounds = CGRectMake(74, 61, 142, 50);
logoButtonBounds = CGRectMake(15, 0, 50, 50
settingsButtonsounds = CGRectMake(430, 0, 50, 50);

OEBPS/html/graphics/p0347-01.jpg
tileLocation.x -= (abelta * (playerSpeed * speedOfMovement)) *
Sl [annleotaovemt i

OEBPS/html/graphics/08list01.jpg
typedef struct BitmapFontChar
int charid;
int %y
int y;
int widthy
int height;
int
int
int
Inage *image;
float scale;
} BitmapFontchar;

OEBPS/html/graphics/13list05.jpg
if (CGRectContainsPoint(startButtonBounds, touchLocation)) {
[sharedsoundanager playSoundWithKey:¢" interfaceTouch”];
state = ksceneState_Transitionout;
sharedcanacontrol ler , shouldResusaGane = NO;
alpha = 0;
return;

OEBPS/html/graphics/08list06.jpg
- (void)parseCharacterbefinition: (NSString#)line {

int charIp;

sscant([line UTFEString], 'char id

, &eharmn);

charIp -= 32;

sscant ([line UTFEString], "char id
xoffset=ti yoffset=ti xadvanc
&charsArray[charid).y,
&charsArray[chariD].width, charshrray(charip].height,
&charsArray(charib).x0ffset, &charshrray(charId].yoffset,
icharsArray(charD]. xadvance) ;

i height-
. scharsarray(charID].x,

charsarray(charId].inage =
[timage subInagelnkectiCGRectMake(charshrraylcharib].,

charsArray(charID].y, charshrray(charID).width,
charsarray(charID].height)] retain];

charsarray(charID]. image.scale = image.scale;

OEBPS/html/graphics/08list07.jpg
- (void)renderStringht:(CGPoint)aPoint text:(NSString*)aText {

float xScale = image.scale.x;
float yscale = image.scale.y;

for(int i=0; i<laText lengthl; i+4) {

unichar charI = [aText characteratIndex:i] - 32;

int y = aboint.y + (commonfieight + yScale) —
(charshrray(charID].height +
charsarray(charID].yoffset) + yScale;

int x = aPoint.x + charsArray[chariD).x0ffsat;

CGroint renderpoint = CGointake(x, y);

charshrray(charID]. image.color = fontColor;

(charsarray[cherID]. inage renderatrointirenderpoint];

aPoint.x += charsArray[charID].xadvance * xScale;

OEBPS/html/graphics/08list04.jpg
info face="TransformersNormal" size=56 bol
unicode=0 stretchH=100 smoot! paddinc

consion 1ineHeight=77 base=26 scaleW=1024 scaleH=1024 pages

page id=0 file="testFont.png"
chars counte94

char id=32 x=0
yoifset

widtheo height=0
chn

italic=0 charset:
,0,0,0 spacing=1,1

packed=0

xoffseten

OEBPS/html/graphics/p0104-01.jpg
statlc const GLiloat squarevertices[)
50, 50,
250, 50,
50, 25,
250, 250

OEBPS/html/graphics/08list05.jpg
- (void)parseCommon: (NSStx

ng*)line {

int scaleW;
int scalell;
int pages;

sscant([line UTF8String], “common lineHeight=ti base=i+i scalewsti
scaleli=ii pages=3i”, &lineHeight, sscaleW, sscale, Gpages);

NShssert (scaled <= 1024, €
larger than 1024x10247);

nSAssert(scaled <= 1024, @"ERROR - BitmapFoni
larger than 1024x1024");

NShssert(pages == 1, €"ERROR - BitmapFont: Only supports fonts with a
single texture atlas.®);

RROR - BitmapFont: Texture atlas cannot be

Texture atlas cannot be

OEBPS/html/graphics/p0044-01.jpg
#Fimport <UIKit/UIKit.h>

OEBPS/html/graphics/p0044-02.jpg
dclass EAGLView;

OEBPS/html/graphics/08list08.jpg
- (void)renderStringJustifiedInFrame: (CGRect)aRect
justification: (int)ajustification
texts (NSStringt)atext {

coroint point;

int textWidth = [self getwidthrorStringsaText];
int texthieight = [self getiieightForStringralext]s

switch (azustification) {
mapFontJustification_Topref

case &
point.x = aRect.origin.x;
Point.y = aRect.origin.y + (aRect.size.neight - textheight) —
(comonReight - textheight);
break;
case Bitmaprontustification Middleref
point.x = aRect.origin.x;
Point.y = aRect.origin.y + ((aRect.size.height - texthieight) /
2) ~ (commonHeight - textheight);
break;
mapFontJustification_BottomLef:

case &
point.x = aRect.origin.x;
point.y = aRect.origin.y - (commonfieight - textHeight);
break;
case BitmapFontJustification_Topcentereds
point.x = aRect.origin.x + ((aRect.size.width - textwidth) /
2
point.y = aRect.origin.y + (aRect.size.neight - textheight) —
(commontieight — textheight);
ek,

OEBPS/html/graphics/08list09.jpg
- (int)getWidthPorstrin
int stringeidth = 0;

NSString*)string {

for(int index=0; index<(string length]; index+s) {
unichar charId = [string characterAtindexsindex] - 32;
stringiideh

}

return stringWidth;

charsArray[charID] .xAdvance * image.scale.

OEBPS/html/graphics/p0241-01.jpg
i A s e e
/Ipe = [[ParticleEmitter alloc]
initParticleEmitternithrile:d”enitterconfig.pex’];
//emittertype = @'Particle Fountain';
/Ipe.sourceposition = Vector2fiake(160, 25);

// Bppearing emitter contiguration
//pe = [[ParticleEmitter alloc]
initParticleEmitteriitheile: e appearingEnitter. pex"];

//emittorType = 8'Appearing Emitter’;
//pe.sourceposition = Vector2fiake(160, 25);

// Portal emitter contiguration

pe = [[FarticleEnitter alloc]
initparticleBnitterNithrile: ¢ "portalimitter .pex"

nitterType = 6"Portal;

ve.sourcerosition = Vector2fMake(160, 240);

OEBPS/html/graphics/13list10.jpg
IBOutlet UISlider *musicVolume;
IBOutlet UISlider *fxvolume;

IBOutlet UTSegmentedControl *joypadeosition;
TBOutlet UTButton *menuButton;

OEBPS/html/graphics/13list11.jpg
(TBAction)hides (id)aSender;

(TBACt ion)moveToNen

1d)sender;

(1BAction)musicvalueChangeds (U1S1ider)sender;

(1BAction) £xvalueChanged: (UTS1ider+)sender;
(TBACt ion) joypadsidechanged: (U1Segmentedcont rol#)sender;

OEBPS/html/graphics/06ligp01.jpg
18 o e

Il:l

OEBPS/html/graphics/13list12.jpg
(IBAction)musicValueChanged: (UIS1ider+)sender {
sharedSoundianager .musicvoluse = [sender value]y

(1BACtion)ExValueChangeds (U151ider*)sender {
sharedSounditanager . £xVolune = [sender value];

(TBACtion) joypadSidechanged: (UISegmentedControl*)sender {
sharedGaneController. joypadeosition = sender.selectedsegnent Index;

OEBPS/html/graphics/06ligp02.jpg

OEBPS/html/graphics/06ligp03.jpg
g =wvv g ﬂﬁ{ks

SRR 1T J000% F4en

OEBPS/html/graphics/16list09.jpg
- (void)sortiighScores {

NsSortbescriptor *scoreSortbescriptor = [[(NSSortbescriptor alloc]
nitiithKeyt8"score” ascendingiNo] autoreleasel;

NSSortbescriptor *dateSortDescriptor = [[[NSSortbescriptor alloc]
inituithkey:8*dateTine" ascendingiNO] autorelease];

nSArray *sortbescriptors = [NSArray
arrayiithobiectsscoreSortDescriptor,
dateSortbescriptor, nill;

[highscores release];

highscores = [[unsortedHighscores
sortedarrayUsingbescriptorsisortbescriptors]
retain];

OEBPS/html/graphics/06ligp04.jpg
Crarcuc

(6 Yer Ve le o]

i | [exaxeacsd
3 Qﬁmﬁﬁﬁ

g
=]
=

OEBPS/html/graphics/09list01.jpg
<tileset name='Tiles" firstgid="1" tilewidth="40" tileheight="40">

<image sources"NewTiles.png"/>

<tile id="0">
<propertiess

<property names"reduceplayersHealth® value="10"/>

</propertics>

</tiles

</tileset>

OEBPS/html/graphics/16list08.jpg
- (void)addToighscores: (int)ascore gameTime: (NSString*)aGameTime

playershiane: (ISString*)aPlayerName didwin: (BOOL)aDidWin {

Score vscore = [[Score alloc] imitiithscoresaScore ganeTine:aGameTime
playersyanciaPlayeriane didWin:aDidWin;

[unsortednighscores addobject:score];

[score releasel;

[self saveitighscores];

[self sortmighscores];

OEBPS/html/graphics/06ligp05.jpg
http:/|
€3 | | + [@ hup://zwoptex.zwopple.com/Zwoptex.swi

File Edt Modiy _Amange

Load Project
Save Project

Importimages.

Export Testure.
Export Coordinates

OEBPS/html/graphics/09list02.jpg
<layer name="Map* width="200" height="200">

<properties>

<property name:
</properties>
<data encoding="base64" conpression="gzip">
48 TAAAARRARAD] abiVENEAAYH1 KDe022PgIRnZNHppYR, /7 VYhaSatdne 1571 +e3wTbiCAdy0Z2dL
ADS4T6PBa0RHzTS 26NCTRZHbOXNI 3 5210 O 5 1WFEVZ42NaVnS s X2GzwaPPEN SO2CmIM) e£xang011Z
HOFL CHYGRS6EKIq7£H2 SXKSYDTEN 7 6T2X556 DKL Q13 5waqBCePLAJuw 2361 ZHeT+ 0K/ F5GH/
A3 +GOMYDO LI HOVSLI6CVOS Ky, o1 + BT UepE3 X San26ga MUBCp /¥ D+ 167 £3GK2VR /K4
Lot Q27 1B3s+ TUePXETHE + H/NHLE£G2D6n2 1928 2LOKYHHCWDXS K03 PTy03 3DV HGV1 560aN3 Ree
51452118026 UK ANUSVP10350, + TnaV/ 3g1HKAT /INKEK -/ eEDEXkAXE+ eHOOKEAYL1 02X X1 TELI L
e55/10/SHPv /MC+XanGh4s Th3ugnNKZNC PLVIdaG+ 31KHRAT/ SC4SP1 r3aZc8vy 111/ YL 9T YQruoHalG
vz 4p+ 25 3udb0KqPQ2CRTwE A1 FETb/ L0BAGYS 1 £pvotzgpev2sh
A —— RRARARARARAEA .

Layerpropl” valu

"Myvaluer/>

AAARARAARARRARARARARARGP/ JLRKVXAACOTA
</aata>
</layer>

OEBPS/html/graphics/16list07.jpg
- (void)alertviev: (UIAlertView*)alertView clickedButtonhtindex: (NSInteger)buttonIndex {

UITextField *nameField = (UITextField *)(alertView viewdithrag:991;

/] 1f the OK button is pressed then set the playersname
if (buttonTndex == 1) (
playarsvane = nameField.text;
if (Iplayersname length] == 0)
playersiiame = N0 Name Given';

if (playersiame) {
BOOL won = NO;
if (state == kSceneState_Gamecompleted)
won = YES;
[sharedGameController addTolighScoresiscore
gameTine1ganeTineToisplay

playershanesplayersiiane didiinven];

)

[nanePield resignFirstresponder];

state = kSceneState TransitionOut;

OEBPS/html/graphics/06ligp06.jpg
http://:

» || & || + |@ htp://zwoptex.zwopple.com/Zwoptex.swf

OEBPS/html/graphics/13list17.jpg
- (void)checkJoypadSettings {

it (sharedGaneController. joypadposition
Joypadcenter.x = 50;
settingssuttonCenter.x = 465;
settingsBounds = CGRectiake(430, 0, 50, 50);

} else if (sharedSameController. joypadposition
Joypadcenter.x = 430;
SettingsauttonCenter.x = 15;
settingsdounds = CoRectlake(0, 0, 50, 50);

0 ¢

¥

JoypadBounds = CoRectiake (JoypadCenter.x - joypadRectanglesize.wideh,
Joypadcenter.y - joypadRectanglesize.heidht,
JoypadrectangleSize.width * 2,

JoypadRestangleSize.height * 2);

OEBPS/html/graphics/06ligp07.jpg
‘http://zwoptex.zwopple.com/Zwoptex.swf_
B [+ 1@ s woprex.awospie com Zwopienswi c

ByNamaavian
ByName & oght

Byvian

Bymeon

P —
Compiexsy e rospaca)
i Spacng

OEBPS/html/graphics/13ligp08.jpg
Music Volume

[W

FX Volume

o sirsoscion

sosses

oo

.

OEBPS/html/graphics/p0066-01.jpg
NEEEAG QR SSOVES BODarecalore]]

255, 255, 0, 255,
0, 255, 255, 255,
o, 0, o o
255, 0, 255, 255,

{

OEBPS/html/graphics/06ligp08.jpg
Key Type Value
¥ Root Dictionary % (2 tems)
viextre Dictionary |2 tems)
widtn Number 256
height Number 256
vframes Dictionary |2 tems)
v ghost_spriteshect.png Dictionary (6 tems)
x Number 0
v Number 0
width Number |120
height Number 40
offsetx Number 0
offsery Number 0
¥ player_spritesheet.png Dictionary (6 items)
x Number 0
v Number 40
width Number 160
height Number 160
offsenx Number 0
offsety Number |0

OEBPS/html/graphics/13ligp07.jpg
Music Volumo.

Joypad Position

sV e - °

Lt Goac P frosensng

g Gerrck) [0
s ——

6 saroncoiesss

OEBPS/html/graphics/13ligp06.jpg
Music Volume

P

FX Volume
— G
Joypad Position

Lett Right

SettingsView.xib
Ho @ @
Ve s o
(Name Type —
F— S iesCantter
@ First Responder UResponder
v Q3 vew v
PO
Vo M voam Utz
praspshion Bt
Lo Qo rotion) aba
G o seqmara o U, Ui
prsarieniyiamdries g veciston
oscib iy v it
e o

0 5LQTSOR xcodepro]

OEBPS/html/graphics/13ligp05.jpg
0006 New File.

Choose a template for your new il

N N L N
m h m m
ObgaweC O ObjecveCien UNiewConvoler
e e o acass

Optons 0 Targetes or g
O umsbevieaconoler subdass
it for s mertce

N

UNViewController subclass

A Objectve-C class whic s 3 sbelass of U Contoler,wihan et
esder e which ncludes the <UIKK/UKILh hesier. A s e continng view.
Confuredfo ths View Conrale o nudes

OEBPS/html/graphics/13list13.jpg
- (B0OL)shouldAutorotateTolnter faceOrientat ior
(UIInterfaceorientation)interfaceorientation {
return UIInterfaceOrientationTsLandscape(interfacedrientation);

OEBPS/html/graphics/14list21.jpg
- (void)encodeWithCoder: (NSCoder *)aCoder {

(acoder.
[acoder.
(aCoder.
[acoder.
(aCoder.
[acoder.

encodecGPoint stilelocation forKey:#"position];
encoderloatispeed forkey:@*speed
encodeFloatangle forkey:@'angle"];

encodeTnt istate forkey:@'entityState’];
encodeFloat toffScreentiner forkey:@"of Screentines
encodeFloat appearingriner forkey:e"appearingTine:

OEBPS/html/graphics/13ligp04.jpg
Key |value
¥ Information Property List [items)
Localization native developmentre |English

Bundle display name
Exccutable file

con file

Bundle identifier

InfoDictionary version

Bundle name

Bundle 05 Type code.

Bundle creator OS Type code
Bundle version

Application requires IPhone enviror
Main nib file base name

Initia interface orientation

‘Status bar is initially hidden

|sipRoDUCT NAME}
|stexecuTasLe_ nawer
icon.png

|com datey-uk siarsor
s

| stPrODUCT_NAME}
|APPL

| Mainwindow
| andseape (right home button)
4

OEBPS/html/graphics/13list14.jpg
- (void)viewWillAppear: (BOOL)aninated {
self.view.alpha = 0;

[se1f updatecontrolvalues];

it

(sharedGaneController. interfaceorientation ==

UlTnterfaceorientationLandscapeRight){

[(UTApplication sharedapplication]
setStatussarorientationsulInterfaceorientationLandscaperight];

self.view,transform = CGAFfineTransformidentity;

self.view.transforn = CGAEfineTransforniakeRotation(M_PT_2);

self.viev.center = COPointiiake(160, 240);

(sharedGanecontroller. interfaceoriontation ==

UIInterfaceorientationLandscapeLeft){

[1UIApplication sharedapplication]
setsStatusBarorientationsUlInterfaceorientationLandscapeleft];

self.view.transform = CGAffineTransfornTdentity;

self.view.transforn = CGALfineTransformiakeRotation(-M_PI_2);

self.view.center = CGPointiiake(160, 240);

OEBPS/html/graphics/14list22.jpg
- (id)initWithCoder: (NSCoder *)aDecoder {
[self inituithTilerocation:[abecodsr decodeCGPointForKey:@"position”11;
speed = [aDecoder decodeFloatForKey:@”speed”];
angle = [aDacoder decodeFloatForkey:@-angle”];
state = [aDecoder decodelntForkey:e'entityState”];
if (state == kEntityState Dying)

state = kentitystate Dead;
offScreentiner = [aDecoder decoderloatrorkey:E®offScreantiner’l;

pearingTiner = [abecoder decodeFloatForKey:@"appearingTimer”];
return self;

OEBPS/html/graphics/13ligp03.jpg

OEBPS/html/graphics/13list15.jpg
- (void)show {
[sharedGanecontroller .eaglview addsubvicwiself.view];

if (1[sharedSanecontroller .currentscene. nane
isEqualTostring:@gane"]) {
menuButton. hidden = YES;

} else {
menuButton. hidden = NOj

¥

[UIView beginanimations
self.view.alpha = 1.0f;
[UIView commithninations];

1 contextNULL];

OEBPS/html/graphics/13ligp02.jpg

OEBPS/html/graphics/13list16.jpg
- (IBAction)hides (id)sender {

[INSHotificationCenter defaultCenter]
postiotificationiane:@startGane® objectsself];

[(NSHotificationCenter defaultCenter]
postiiotificationtiane:@ hidingSettings” objectiself];

[UTView beginanimationsnil contextNULL];
[UIview setanimationDelegatarself];

[UTView setAnimationnidStopselector:éselector (hideFinished)1;
self.view.alpha = 0.0f;

[UTView comnitaninations];

OEBPS/html/graphics/14list20.jpg
NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserbomainkask, YES);

wSString *docuentsDirectory = [paths objectAtInde:

NSString *gameStatePath = [documentsbirectory
stringsyappendingPathcomponent ;6 gamestate.dat" |;

NSKeyedarchiver *encoder;

ganevata = [uSkutablevata data];

encoder = [[NSKeyedArchiver alloc] initForWiritingWithMutable Datas
[encoder encodeobject :ganeScene.entities forkey:e"gameEntities’];
[encoder finishEncodingl;

[gameData writeTori lo:ganeStatspath atomically:VES];

[encoder release];

OEBPS/html/graphics/13ligp01.jpg

OEBPS/html/graphics/09list03.jpg
<objectgroup name="Portals" width="0" height="0">
<object names"Portal_1" types"PORTALY X="179"
<properties>
<property name="dest_x" value="26.5"/>
<property names"dest_y" value="289.5"/>
</propertics>
</object>
</objectaroup>

967>

OEBPS/html/graphics/16list06.jpg
- (void)loadSettings {

SLQLOG(R"INFO - EAGLVie:

Toading settings."

if (s[settings boolForkeys'userbefaultsSet"]) {
[settings setBoolil forkey:d'userbefaultsset”];
[settings setFloatt0.5¢ forKey:@ musicVolume];
[sharedSoundManager setMusicvolume:0.5£]
[settings setrloat:0.75f forkey:@"fxvolume'];
[sharedSoundNanager setFxvolume:0.75£1;
[settings setIntegersd forkey:@"joypadPosition"];
self.joypadposition = 0;
[settings setInteger:0 forKey:#"fireDirection"];
self.firepirection = 0;
} else {
[sharedSoundnanager setiusicvolumes [settings
floatForkey: 8 musicvolune"]];
[sharedSoundNanager setFxVolume: [settings
floatPorkey: 8" fxvolune"]];
self.joypadposition = [settings integerForkeysejoypadposition®];
self.firebirection = [settings integerForkeys@"firebirection"

[INSNotificationCenter defaultCenter]
postiotificationtane:@ "updateSettingssliders”

objectiself];

OEBPS/html/graphics/09list04.jpg
- (id)initWithNane: (NSString®)aName layerID: (int)alayerId
Layerhiiden: (int] alayerkidch

layerHeight: (int)alayerHeight {
if(self = [super initl) {
LayerNane = aNane;
layerTD = alayerID;
layerWidth = alayerwideh;
layerHeight = alayerhieight;

tilem

s = calloc(layeriidtn * layerse

sizeof (TexturedColoredouad)) ;

}

return self;

OEBPS/html/graphics/16list05.jpg
- (void)saveSettings {
[settings setFloatssharedSoundianager .misicVolune forkey:@'musicvolune"];
[settings setFloat:sharedSoundManager.fxvolume forkey:efxvolume"];
[settings setinteger:self.joypadPosition forKey:e”joypadPosition”];
[settings setInteger:self.fireDirection forkey:@'firebirection"]

OEBPS/html/graphics/09list05.jpg
- (void)addTileht: (CGPoint)aTileCoord tileSetID: (int)aTileSetID

tileIn: (int)aTilern
SLobalIb; (int)aGloballd value:
LayerDatal{int)aTileCoord.
layerpatal{int)aTilecoord
Layerbatal{int)aTileCoord
layerDatal{int)aTileCoord.

fint)avalue {
1 [(int)aTileCoord.y] [0) = aTileSeciD;
] [(int)aTileCoord.y] [1] = aTilern;
=] [(int)aTileCoord.y] [2) = aGloballb;
] [(int)aTileCoord.y] [3) = aValue;

OEBPS/html/graphics/16list04.jpg
- (void)loadGamestate {
[self initGamecontent];

/1 set up the file manager and documents path
NSArray *paths =
NsSearchPathForDirectoriesnbonains (NSDocunentDizectory,
NSUserpomainkask, YES);
NSString *documentsDirectory = [paths objectatIndex:0];

NSMutableData *gamebata;
NSKeyeduUnarchiver *decoder;

/1 Check to see if the ghosts.dat file exists and if so load the contents into the

/1 entities array

NSString AdocumentPath = [documentsDirectory
stringyAppendingPathConponent 16 - ganeState. dat"];

gamepata = [NSData datawithContentsOfFilesdocunentrath];

decoder = [[NSKeyedUnarchiver alloc] initForkeadinghithDatasgamebatal;

SLQLOG(8"INFO - GameScene: Loading saved player data.
player = [[decoder decodeObjectForkey
[self calculaterlayersTilemaprocation];

)
player’] retain];

SLQLOG(E"INFO - GameScene: Loading saved weapon data.”)
axe = [[decoder decodeObjectForKey:@"weapon®] retain];

OEBPS/html/graphics/09list06.jpg
- (void)addTileInageht: (CGPoint)aPoint

imageDetails: (ImageDetails*)almageDetails |

int index = (int) (layerWidth + aPoint.y) + (int)asoint.x;

mencpy (stileInages [index], aInageDetails-stexturedColoredQuad,
sizeof (TexturedColoreaguad)) ;

tileTnages [index]

tileTnages [index] .

tileInages [index]
tileTnages [index]

tileTnages [index] .
tileTnages [index] .

tileTnages [index]

tileTnages [index] .

vertex1
vertexl.
vertexz
vertexz
vertex3.
vertex3.
vertexs
vertexs.

geometryvertex
geometryvertex
geometryVertex
geometryvertex
geometryvertex
geometryVertex
geometryvertex
geometryvertex

tapoint

tapoint
tapoint

tapoint

SRk ek

taroint.

taroint.
(aPoint.

taroint.

PR

KTile wiath);
KTile Height);
KTile_wiath);
KTile Height);
KTile Wideh);
KTile Height);
KkTile width);
KTile Height);

OEBPS/html/graphics/16list03.jpg
- (void)saveGamestate {
SLOLOG(E"INFO - GameScene: Saving game state.

NSArray *paths = NSSearchPathForDirectoriesTnDorains(NSDocumentDirectory,
NSUserbomaintask, YES);

NSString *docunentaDiractory = [paths chjectatindex:0];
NSstring +ganestatepath =
[documentsDirectory stringsyhppendingPathConponent € ganestate.dat”];

NSMutableData *gameData;

NsKeyadarchiver *encoder;

gameData = [SHutablevata datal;

encoder = [[NSKeyedhrchiver alloc] initforWritingWithiutablebatasganebatal;

11 Archive the entities
[encoder encodeobiectsoa

forkey

ganezntitie:

1/ Archive the player
[encoder encodeobject g

yer forkey

layer”);

/1 Archive the players weapon
[encoder encodeObjectsaxe forkey:@"weapon'];

/1 hrchive the ganes doors
[encoder encodeobjectscc

OEBPS/html/graphics/09list07.jpg
- {int)globalTileIDAtTile: (CGPoint)aTileCoord {
return layeratal(int)aTileCoord.x] [(int)aTileCoord.y] [2];
}

OEBPS/html/graphics/16list02.jpg
[castleTileMap renderLayers0
napxiplayerTilex - leftoffsetInTiles -
mapyiplayermile¥ - bottomOffsetInTiles
widthiscreenTileswide + 2
heightiscreentilesheight + 2
useBlendingsNo];

[castleTileNap renderrayersl
napxiplayerTilex - leftoffsetInTiles -
mapyiplayerTile¥ - bottomOffsetInTiles
widthiscreenTilesWide + 2
heightiscreenTilesHeight + 2
useBlendingt¥ES];

OEBPS/html/graphics/09list08.jpg
- (void)setValuehtTile: (CGPoint)aTileCoord value: (int)aValue |
layerDatal (int)aTilecoord.x] [(int)aTileCoord.y] (3] = aValue;
}

OEBPS/html/graphics/16list01.jpg
glClear (GL_COLOR_BUFFER_BIT);

glpushiatzix();

glTranslatef(240 - player.pixellocation.x, 160 -
player.pixeliocation.y, 0);

OEBPS/html/graphics/09list09.jpg
- (TexturedColoredQuad+)tileInageAt: (CGPoint)aPoint {

int index = (int) (layerWideh + aboint.y) + {int)aboint.x;
return stileInages(index];

OEBPS/html/graphics/14list14.jpg
switch (state) {

case kentityState Appearing:
case kentitystate Alive:

if (state == KentityState Appearing) {
appearingliner += abelta;

if (appearingliner >= 4) {
state = kenityState Alive;
appearingTiner = 0;

)

blinkrirer += aDelta;

if (blinkTiner >= 0.10) {
rendersprite = (rendersprite
blinkrirer = 0;

vES) 2 %0 : vES;

i

¥
[s61f updaterocationnichbelea aneleal;

eneroyriner += abelta;

if (energyrier > 3) {
energy == 1;

ergyTiner = 0

OEBPS/html/graphics/p0193-03.jpg
<properties:>
<property nar
<property nam
R e G Ry

107/
107/

Playerstartx” valu
Playerstarty" valu

OEBPS/html/graphics/14list15.jpg
case kEntityState_Dead:
deachTirer += aDelta;
if (deathTimer >= stayDeadTime)
deathtier = 0;
state = kEntitystate Alive;
energy = 100;
¥
break;
default:

break;

OEBPS/html/graphics/15list08.jpg
- (void)checkForCollisionNithEntitys (Abstractintity®)aBntity {

if (CoRectIntersectsrect([self collisionsounds],

[aBntity collisionsounds))) {

S£(((aBntity isKindOfClassi(chost class]] ||
[aBntity isKindofClassi[Frank class]] ||
[aBntity isKindofclassi[witch class]] ||
(aBntity iskindofClasss(Punpkin class)] ||
[aEntity iskindofClass:[zat class)] ||
(aEntity iskindofClass:[vanpire classl] ||
[aBntity isKindOfClasss(Zonbic class]l) &&
state == KEntityState Alive) {
energy ~= aBntity.energybrain;

OEBPS/html/graphics/p0193-02.jpg
SeeE Termims 1P OTASULAL On= DI IoaEna. S At teng e ans
t1lewi

OEBPS/html/graphics/07ligp01.jpg

OEBPS/html/graphics/14list12.jpg
if (distanceFromPlayer <= 3) {

entityhIstate = kentityAlstate Chasing
} else {
entityhIstate = kEntityATstate Roaming;
)
if (entityAlState == kEntityAlstate Chasing) {

Spesd = 1 * MOVEMENT_SPEED;
float dx = tileLocation.x - scene.player.tileLocation.x;
float dy = tilslocation.y - scene.player.tileLocation.y;
angle = atan?(dy, dx) - DEGREES_TO_RADIANS(180);
tilstocation.x += (spesd * abelta) * cos(angle);
tileLocation.y += (spsed * aDelta) * sin(angle);

if (entityMState == KEntityAlState Roaming) {
changeDixspeed = (int)(99 * RANDON_0_T0_1())
if (changeDirSpeed == 1) {
angle = (int)(360 * RANDOM_0_T0_1()) § 360;
spsed = (£loat) (RANDOM_0_TO_1() * HOVEMENT_SPEED);
)
tilelocation.x 4= (spesd * aDelta) * Cos (DEGREES_TO_RADIANS(angls));
tileLocation.y += (speed * aDelta) * sin(DEGREES_TO_RADIANS(angle));

OEBPS/html/graphics/p0193-01.jpg
CANSL VRSN LomsTe D " MECOSERam IR BT
< | DOCTYPE map SYSTEM "http://mapeditor.org/dtd/1.0/map.dtd"

OEBPS/html/graphics/07ligp02.jpg

OEBPS/html/graphics/14list13.jpg
/417111111111111171] Animation
Anination *leftanination
Animation *rightAnimation;
Anination *downAnination
Animation *uphnimation;

Anination *ourrenthnimation;

/111101111111111] Tnstance variables

float
float
float
float
float
Float
float

playerSpeed;
energy;
angleofhovenent;
spesdofhovenent;
energyriner;
deathtiner;
blinkrirer;

int lives;

float

staypeadtine;

cGPoint beanLocation;

/100011711111111] Toventory
Abstractobject *inventoryl, *inventory?, *inventoryd;

I1001111111110111 Flags
BOOL, renderSprite;
BOOL. hasParchnentTop, hasParchmentMiddle, hasParchuentBotton;

OEBPS/html/graphics/09list10.jpg
- (id)initWithInageNaned: (NSString®)alnageFileName
nane: (NSString*)aTileSetNane tilesetID: (int]teId

£4786GID: (int) aFirstGlobalid
tilesize: (CGSize)aTileSize spacing: (int)aspacing
margin: {int)aMargin {
if (self = [super init]) {
sharedTextureManager = [TextureManager sharedTextureanager];

tiles = ([Spriteshest spriteShestForTnageNaned:alnageFileNane
pritesize:aTilesize epacing:aSpacing margin:aMargin
imageilter:GL_LINEAR] retain];

tileSetID = teId;
name = aTilesetName;
£irstGID = aFirscGloballd;
tilewideh = aTilesize.width
tileHeight = aTileSize.heicht;
spacing = aspacing;

margin = avargin;

horizontalTiles = tiles.horizSpritecount;
verticalTiles = tiles.vertSpriteCount;

1astGID = horizontalTiles * verticalTiles + £irstGID - 1;

i

return self;

OEBPS/html/graphics/14list18.jpg
- (void)placelnInventoryObject: (Abstractobject*)aobject {

tate Active) {

if (abject.state == K
1f (1self.inventoryl)
self.inventoryl = a0bject;
a0bject.state = kobjectstate_Inventory;
a0bject. iscollectable = 10;
a0bject.plxeliocation = CGrolntake(180, 303);
[self checkForparchnentiadbject pickupiYES]:
} else if (tself.inventory2) {
a0bject.state = kobjectState_Inventory;
a0bject. iscollectable = 10;
a0bject.pixellocation = CGPointHake(240, 303);
self.inventory2 = aobject;
[self checkForparchmentadbject pick
} else if (1self.imventory3) {
aobject.state = kobjectState_Inventory:
a0bject. iscollectable = HO;
a0bject..pixellocation = CGPointhake(300, 303);
self.inventoryd = aobect;
[self checkrorparchnent:adbject pickuptYES]:

vEs);

OEBPS/html/graphics/09list11.jpg
- (id)initRithFileNane; (NSString*)aTiledFile
filesxtension: (NSStrings)arileBxtension {

aelf < fauper initl;
if (et 1= nin) {
sharedGanecontroller - [GameController sharedSanecontrolles];

sharedInageRenderManager = (InageRenderManager
sharedTmageRenderManager] ;

tileSets = [[NsMutablerray alloc] initl;
layers = [(NSWutableArray alloc] initl;
mapproperties = ([NSMutablebictionary alloe] initl;
objectGroups = [[NSMutableDictionary alloc] initl;

NSLog(@"INFO - TiledMap: Loading tilemap XML file');
TBXML tmxXML = [[TBXML alloc] initivithiiLeile:aTiledPile
£i1eExtension:aFileExtension]

OEBPS/html/graphics/14list19.jpg
- (void)dropInventoryFromslot: (int)aInventorySlot {

abstractobject *invobject = nil;

if (araventoryslot == 0) {
invobject = self.inventoryl;

} else if (amventorySlet == 1) {
invobject = self.inventory2;

} else if (amwventorySlet == 2) {
invobject = self.inventory3;

)
if (invobject)
invobject .pixeliocation
invobject. tileLocation = tileLocation;
invobject .state = ke

if (alnventoryslot == 0) {
self.inventoryl = nil;

} else if (arnventoryslot
self.inventory? = nil;

} else if (arnventoryslot
self.inventory3 = nil;

¢

)

[se1f checkrorzarchnent:invobject

ixelLocation;

ectstate_Active;

OEBPS/html/graphics/t0354-01.jpg
Directory

<Application_Home>/
Appliame . app

<Application_Home>/
Docunents/

<Application_Home>/
Library/Preferences

<Application_Home>/
Library/Caches/

<Application_Home>/
emp/

Description

This bundie directory contains the application itself. The
contents of this directory should not be changed because this
could cause the application to stop launching later.

“This directory should be used to store any application-specific
data files. This directory is backed up by iTunes and should,
therefore, store any information that you want to have backed
up with your application.

This directory stores the application-specific preferences files.
You should not write directly to this directory but instead use.
the NSUserbefaults class to get and set preferences. You
will see how this is done in Sir Lamorak's Quest in Chapter 16.

This directory should be used to store any application-specific
support files that you want to persist between launches. You
are generally responsible for adding and removing these files,
although iTunes will remove files from here during a full
restore.

“This directory can be used to store temporary data that does.
ot need to be persisted between launches of the application.
Your application should remove files from this directory when
they are no longer needed. The system may also purge this
directory when your appliation is not running.

OEBPS/html/graphics/09list12.jpg
NSLog(@"INFO - Tiledap: Started parsing tilemap XML');
[se1¢ parseliapFileTBXNL: LrxkML] ;
tostmont] ;

[self parseliapob:
NSLog (@' INFO - TiledMap: Finishing parsing tilemap XML'};

[omoes releasel ;

memset (snul17CQ, 0, sizeof (TexturedColoredQuad);

Ise1t TileTmage:

colorFilter = Color4fOnes;

return self;

OEBPS/html/graphics/14list16.jpg
- (void)updateLocationWithbelta: (float)aDelta {
Boundingsoxtileguad bbtq;

cozoint oldposition = tileLocation;
if (spesdofiovenent 1= 0) {

tilelocation.x -= (abslta * (playerspead * speedofovement)) *
cost (angleofMovenent) ;

CGRect bRect = (self movementBoundsl:

Bbeq = getTilecoordsForBound ingRect (bRect, CGSizeake (KTile Wideh,
Krile_teight)):

i£ ([seene is5lockedsbbtg.xl
(scene ic2 Il
(scene 153 e kedsbbeq.xd vibbea.y3] ||
[scens is5lockedsbbtq.xd vibbta.yal) {

tileLocation. = oldposition.;

sty ||
Caibtq.x2 vibbte.g7)

)

tiletocation. - (sbelta * (playerSpead * spsedomiovement)) *
S0t (angleotovesent);
bhact = [selt movenentsounds1;
bbtq = getilecoordsForoundingRect (SRest, CGSizeNiake (KTl idth,
Krile_seiont)):
i ([sceme LaBlocked:bbra.xl ysbbta.yil ||
(scene <onlockedsbbta. 2 ¥ibbta.y2] ||
{scene isBlocked:bbtqx3 yibbeq.y3] ||
(scene <oulockedsbbta,xd vibbta.yil) {
tiletocation.y - oldposition.yi

OEBPS/html/graphics/09list13.jpg
- (void)parseMapPileTBXML: (TEXML*) hXML {

currentrayerTp = 0;
currentTilegetIn =
tile_x = 0;
tiley = 0;

TBXMLElement + rootRMLElement = tHAML.rootXMLElement

if (rootaMIElement) {

mapidth = [[TERM valueofattributeNan
ForElenent srootXMLELement] intValuel;

mapiei ({7504 valueOFAttributeNaned: @ height™
forElenent :rootXMLELevent] intvaluel;

tilewidth = [[TBAML valucOfAttribuceNaned:a*ctilewidch®
forBlenent sTootRMLELewent] intValuel;

tileHeignt = [[TBMML valust

amwidthn

teributeNar
forlenent irootXMLELement] intValuel;

NSLog
mapWidth, mapHeight);

s@"eilehaightt

INFO - TiledMap: Tilemap map dimensions are ¥dxid,

NSLog(8"INFO - TiledMap: Tilemap tile dimensions are tdxsd’,

tilewidth, tilemeight);

OEBPS/html/graphics/14list17.jpg
if (angleOfiovement > 0.785 && angleOffovement < 2.355) {
currentanination = downAnination;

} olse if (angleOfdovement < -0.785 && angleOfMovement > -2.355) {
currentanination = upAnination;

} else if (angleOfdovement < -2.355 || angleOfHovement > 2.355) {
currentanination = rightanimation;

} else {
currentanination = leftanination;

)

[currentanination setStateskAninations

ate_Runningl;
[currentanination updatewithbeltatabeltal;

[sharedSoundManager setListenerrosition:CGPointiake (pixellocation.x,
pixellocation.y)
) else {
[currentanination setStateskAninations

ate_stopped];
[currentanination sotCurrentrirancid];

OEBPS/html/graphics/15list04a.jpg
int doorType = [[castleTileMap
tilePropertyForGlobalTileTn:globaltilern
Keyte-type®
faultvalues@"-1
it (doortype 1= -1) {
door = [(poor alloc]
lerocation:CoPointHake (xx, yy)
typerdoorType arrayIndexsldoors count]l;

[doors addobject idoor];
[deor release];

intvaluel;

)

SLOLOG (8"INFO - Gamescene: Finished constructing collision array
and doors.”

OEBPS/html/graphics/14list10.jpg
// Entity states

enum entitystate {
KEntityState_Idle,
KentityState_pead,
KEntityState Dying,
KEntityState_Alive,
KEntityState_Appearing

OEBPS/html/graphics/p0088-03.jpg

OEBPS/html/graphics/p0103-01.jpg
horbont
vertex
Vertex
Vertex

(0.0,
(L0,
(0.0,
(1.0,

HEg
0.0)
1.0)
1.0)

OEBPS/html/graphics/14list11.jpg
(1d)initwiehTileLocation: (CGPoint)alocation;

(void)updatenithbelta: (f1oat)abelta scene: (Abstractscens)ascene;

(votd)render;

(BOOL)isEntityInTi leAtCoords: (CGPoint)aCoords;

(corect ymovenentsounds ;

(CGRect)collisionBounds;

(BoundingEoxrile0uad)getTi leCoordsForBoundingRect (CGRact. aRect, CGSLze
aTilesize);

(votid)checkrorCollisionuithntity: (AbstractEnt Ley*)aBneity;

(void)checkForCollisionWithobject (AbstractObject*)aobject;

OEBPS/html/graphics/p0088-04.jpg
AbstractScene *currentScene;

OEBPS/html/graphics/p0103-02.jpg
b Thesaced
vertex
Vertex
Vertex

= (0.0,
(.5,
= (0.5

0.0,

0.0)
0.0)
0.5)
0.5)

OEBPS/html/graphics/p0088-01.jpg

OEBPS/html/graphics/p0103-03.jpg
gllexParameteri(GL_TEXIURE_ZD, GL_TEXTURE MIN FILIER, GL_WEAREST);
glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST):

OEBPS/html/graphics/p0088-02.jpg
@interface GameController : NSObject <UIAccelerometerDelegatex

OEBPS/html/graphics/09list14.jpg
TBXMLElement *+ properties = [TBXML childEl
parentElement : rootAMLELenent] ;
it (properties) {
TBXMLELement + property = [TBIML child:
parentElenent ;properties] ;

entNaned:@"properties®

entNaned:a"property"

wnite property) (

NSString *name - [TBXML valueOfAttributeNamed:a*name"

formlenent ;propertyl ;
NSString *value = [TBRML valusOfActributeNaned:a'value®
forBlement :propertyl;

[mapProperties setObjectivalue forkey:mamel;

NSLog(s"INFO - TiledMap: Tilemap property '%0' found with value
"sa'", nane, value);

property = property->nextSibling;

OEBPS/html/graphics/15list01.jpg
int minScreenTile x = CLAMP(player.tileLo
Ktax_Map_wideh-1);

int maxScreenTile x = CLAMP(player.tileTocation.x + 8, 0,
Ketax_Map_width-1);

int minScroenTile y = CLAHP(play
Kitax_Map_Height-1);

int maxScreenTile_y = CLAMP(player.tilelocation.y + 6, 0,
Kitax_Map_Reight-1);

isPlayeroverobject = NO3

for(Abstractobject *gameObject in gameobjects) (

ation.x - 8, 0,

tiletocation.y - 6, 0,

if (gamedbject.tiletocation.x >= minScreenTile_x &k
gameObject .t i lerocation.x <= maxScreentile ¥ &
gamebject .tilerocat ion.y >= minscreentile y &
gamebect . i 1oro0ation.y <= maxScreenTile y) {

/1 vpdate the ohiect
[ganeObect updatewithpeltarabelta scenciself]s

if (gameobject.state == kobjectstate Active) {
[player checkForcollisionwithobject:gameobject];
[gameObject checkForCollisionwithentitysplayer];
if (gameObject.iscollectable)
s

OEBPS/html/graphics/09list15.jpg
tileSetProperties = [[NSHutableDictionary alloc] init!

TEXMLElement * tileset = [TBXMI childElementianed:@"tileset®
parentElenent oot MLELenent] ;
ahile (tileset) {
tileSetNane = [TENHL valusOfAttributeNamed:@name” forelement:tileset];
tileSetiidth = [[TBXML valueOfAttributeNaned:@"tilewidth"
forElenent itileset] intvaluel;
tileSetHeight = [[TBXUL valueOfAttributeNaned:@"tileheight
forBlenent tileset] intvaluel;
ti1eSetFirstGID = [[TBXML valueOfAttributeNaned:@"£irstgid"
forBlenentitileset] intvaluel;
tileSetSpacing = [[TBXML valueOfAttributeNaned:
forBlenent:vileset] intvaluel;

tileSetMargin = [[TBXNL valusOfAttributeNaned:@"margin®
forElenent itileset] intvaluel;

spacing”

OEBPS/html/graphics/09list16.jpg
while (eile) {
int cileID « [[TBXML valusOfAttributeNaned:e®ids
forElenent:tile] intValue] + tilesetriretorn;

NSutableDictionary *cileProperties
(INSMutablepictionary alloc] initl;

TBXMLElement * tetp = [TBXVL childElementNaned:@"properties”
parentElenent:tile];

TBXMLBlenent + tstp_property =
[TBXML chi1dE]ementNaned:@"property” parentElement:tstpl;

while (rstp_property) {

[tileproperties setobject
[TBAML valueOfActributeNaned:a®value®

forBlenenttstp_propertyl
forKey: [TBXNL valueOfattributeNaned:anane”
formlenent tstp_propertyll;

tstp property = [TEXNL nextSiblinglaned:@"property”
SearchFronzlenent ststp_propertyl;

1

[tilesetpropertios setobject:tileproperties

forKey: [NSString stringWithPormat:e"sa”, tileld)];

[tileproperties releasel;
tileProperties = nil;

tile = [TENML nextSiblingNamed:@ntilen
searchFronElenent :tilel;

OEBPS/html/graphics/15list03.jpg
static inline BOOL CircleIntersectsCircle(Circle aCirclel, Circle aCirele2) {
float dx = acirele2.x - acirclel.x;
float dy = acirelez.y - acirolel.
float radii = aCirclel.radius + aCircle2.radius;

return ((dx * dx) + (dy ¥ dy)) < Tadii * radii;

OEBPS/html/graphics/09list17.jpg
<tile id="0">
<propertiess
<property name=*CollisionTile" value="true" />
</properties>
</tile>
ccile id="3">
<propertiess
<property names*ReduceHealth® value="25"/>
</properties>
</tile>

OEBPS/html/graphics/15list02.jpg
static inline BOOL RectIntersectsCircle(CGRect aRect, Circle aCircle) {

Float testx = acircle.x;
Float testy = aCircle.y;

§f (testX < aRect.origin.x)
testx = amect.origin.x;

if (testX > (aRect.origin.x + aRect.size.width))
testk = (aRect.origin.x + aRect.size.width);

if (testy < aRect.origin.y)
testY = aRect.origin.y

if (testy > (aRect.origin.y + aRect.size.heigt))
testy = (aRect.origin.y + aRect.size.height);

return ((aCircle.x - testX) * (aCircle.x - testx) +
(aCircle.y - testy) + (aCircle.y - testy)) < aCircle.radius *
acircle.radius;

OEBPS/html/graphics/09list18.jpg
currentTileSet = [[TileSet alloc] initWithImageNamed:source
nane:tileSetNane
tileSeriDicurrentTilesetID
FirstGID:tileSetPirstGID
tilesize:CGSizeNake (tilewidth,
tileseight)
spacing:tilesetspacing
margin:tileSetiargin] ;

[tilesets addobjectcurrentTileset];
lcurrentTileset releasel;
currentTileSetIDss;

tileset = [TBXML nextSiblingNamed:@"tileset® searchFromBlenent:tileset];

OEBPS/html/graphics/15list05.jpg
- (B0OL)isBlocked: (Float)x yi(£loat)y {
if (x< 0 || y< 0 || x> kiax Map_width || y > kiax_Map_Height) {
return YES;

3

return blockedl (int)x][(int)yl;

OEBPS/html/graphics/09list19.jpg
TBXMLElement * layer = (TBXML childElementNamed:@"layer"
parentElenent: rootXHLELenent] ;

while (layer) {
layerName = [TBXNL valueOfAttributeNaned:a'name” forElement:layer];
layerWidth = [[TBXML valueOfAttributeNaned:@"width® forelenent:layer]

intvalue];

layerseight - [[TBXML valueOfattributeNaned:aheight? forElensnt:layer]
intvaluel;

currentiayer = [[Layer alloc] initiitiNane:layerName

layerIDscurrentlayerID layerifidth:layeriidth
layerHeight 1ayerHieight]

NeLog(@*INFO - Tiled: —» LAYER found called: %6, width-3d, height-%d",
layerName, layerWideh, layerHeight);

TBXMLElement + layerProperties = ITBXML childElementNamed:@"properties®
parentElenent :layer]
i (layerproperties)
TBXMLElement + layerpropercy = [TBXML childBlenentNamed:s*property”
parentElenent: layerpropercies] ;
NSMutableDictionary *layerprops = [[NSMutableDictionary alloc] initl;

while (layerProperty} {
NSString tname = [TBXML valusOfAttributeNaned:@name®
forBlenent :layerpropertyl ;
NSString +value = [TBXML valueOfAttributeNaned:@value®
forslenent :layerpropertyl ;
[ayerprops setObject:value forkey:namel;
layerproperty = layerproperty->nextSibling;

i

[eurrentLayer setlayerPropertics:layerPropsl:

[layerprops releasel;

OEBPS/html/graphics/15list04.jpg
- (void)initCollisionMapAndDoors {

SIQLOG(8°TNFO - GameScene: Creating tilemap collision array and door:

int collisionlayerIndex = [castleTileliaplayer Indexii thiames¢"Col lision”];

Door vdoor = nilj

Layer *collisionlayer = [{castleTilelap layers]
objectAtIndextcollisiontayerIndex];
For(int yy=0; yy < castlelilelap.napieight; yy++) {
for(int xx=0; xx < castleTileMap.mapiidthy xxh)
int globalTiletd = [collisioniayer
globalTileIDALTi lerCGPointHake (xx, yY)1i

if (globalTileTd == kBlockedTileGloablID) {
blocked[xx](yy] = YES;
}else {
if (1sharedGameController.shouldResuneGame)
if (globalTileID >= kFirstDoorTileGloballD &6
globalTileID <= KLastDoorTileGlobalID) {

OEBPS/html/graphics/15list07.jpg
- (void)checkForCollisionNithEntity: (Abstractintity *)aEntity {

Af(([aBntity isKindofClass:[Player class]] ||
[aEntity iskindofClass:(axe class]])) &&
aEntity.state == kEntityState Alive) {

if (CGRectIntersectsRect([self collisicniounds], [aBntity
collisionsounds])) {

[sharedSounduanager playSoundwithKey:8"pop”
locationicGpointiiake(tileLocation. x*kTile_Width,

Silstocation. yTile Height
state < i cysate bymer o 1

ayingEmitter.sourcePosition = Vector2fMake (pixellocation.x,
pixelLocation.y)s
[dyingEmitter setburationt kDyingEmitterburation];

ayingEmitter setactivervEs];
(R 1 i

OEBPS/html/graphics/15list06.jpg
CGRect bRect = [self movementBounds];

BoundingBoxTileQuad bbtq = getTileCoordsForBoundingRect (BRect,
cesizeiake (kTile_Width, kTile Height));

if([scene
[scene
[scene
[scene

§aBlockedsbbtaurl vibbta.yl] ||
Sanlockedibbtq. 2 v ibbta.y2] ||
Lazlockedibbtq. 3 ysbbta.y3] ||
Saslockedibbtq.t v ibbt.yal) {

1/ collision detected

