
[image: Image]

Praise for Understanding Windows CardSpace

“Windows CardSpace, and identity selectors like it for non-Windows platforms, will quickly bring information cards to the forefront as the authentication mechanism of choice for end-users—at last significantly reducing the pain and risks involved in username and password authentication. Vittorio, Garrett, and Caleb are three really super smart guys who know CardSpace and the underlying technologies and standards intimately. In this book, they provide the perfect amount of detail on the very real risks of today’s application security models, followed by an overview of relevant cryptography and WS* protocols, and then they dig right in to common scenarios for deploying CardSpace while also explaining important underlying parts of the CardSpace technology to help you understand what’s going on under the hood. If you aren’t sure if CardSpace is right for your applications, you should read this book and find out why. If you are planning to implement a CardSpace solution, you should absolutely read every page of this book to gain insight into otherwise not well-documented information about the technology.”

—Michele Leroux Bustamante,
Chief Architect, IDesign and Microsoft Regional Director

“Identity management is a challenging and complex subject, involving traces of cryptography and network security along with a human element. Windows CardSpace and this book both attempt—successfully—to unravel those complexities. Touching on all the major points of CardSpace and identity management in general, this book comprehensively explains the ‘what’ and the ‘how’ of this new Microsoft technology.”

—Greg Shields,
Resident Editor, Realtime Windows Server Community, Contributing Editor, Redmond Magazine and MCP Magazine

“Learn about CardSpace from the people who built and influenced it!”

—Dominick Baier,
Security Consultant, thinktecture

“Chock full of useful, actionable information covering the ‘whys,’ ‘whats,’ and ‘hows’ of employing safer, easier-to-use, privacy-preserving digital identities. Insightful perspectives on topics, from cryptography and protocols to user interfaces and online threats to businesses drivers, make this an essential resource!”

—Michael B. Jones,
Director of Identity Partnerships, Microsoft

“It’s one of the most serious problems facing anybody using the Internet. Simply put, today’s digital world expects secure and user-centric applications to protect personal information. The shift is clear in the demand to make the user the center of their digital universe. The question is, how do you build these kinds of applications? What are the key components? Unfortunately, identity is often one of the most overlooked and least understood aspects of any application design. Starting with the basics and building from there, this book helps answer these questions using comprehensive, practical explanations and examples that address these very problems. It’s a must-read for application developers building any type of Internet-based application.”

—Thom Robbins,
Director .NET Framework Platform Marketing, Microsoft, Author

Understanding Windows CardSpace

Independent Technology Guides

David Chappell, Series Editor

The Independent Technology Guides offer serious technical descriptions of important new software technologies of interest to enterprise developers and technical managers. These books focus on how that technology works and what it can be used for, taking an independent perspective rather than reflecting the position of any particular vendor. These are ideal first books for developers with a wide range of backgrounds, the perfect place to begin mastering a new area and laying a solid foundation for further study. They also go into enough depth to enable technical managers to make good decisions without delving too deeply into implementation details.

The books in this series cover a broad range of topics, from networking protocols to development platforms, and are written by experts in the field. They have a fresh design created to make learning a new technology easier. All titles in the series are guided by the principle that, in order to use a technology well, you must first understand how and why that technology works.

Titles in the Series

Brian Arkills, LDAP Directories Explained: An Introduction and Analysis, 0-201-78792-X

David Chappell, Understanding .NET, Second Edition, 0-321-19404-7

Eric Newcomer, Greg Lomow, Understanding SOA with Web Services, 0-321-18086-0

Eric Newcomer, Understanding Web Services: XML, WSDL, SOAP, and UDDI, 0-201-75081-3

Understanding
Windows CardSpace

An Introduction to the Concepts
and Challenges of Digital Identities

Vittorio Bertocci
Garrett Serack
Caleb Baker

[image: Image]
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
 international@pearsoned.com

Visit us on the web: www.informit.com/aw
 Library of Congress Cataloging-in-Publication Data
Bertocci, Vittorio.
 Understanding Windows CardSpace : an introduction to the concepts and challenges
of digital identities / Vittorio Bertocci, Garrett Serack, Caleb Baker.
 p. cm.
 Includes index.
 ISBN 0-321-49684-1 (pbk. : alk. paper) 1. Windows CardSpace. 2. Computer
security. 3. Computer networks—Access control. 4. Identity theft—Prevention. 5.
Web services. I. Serack, Garrett. II. Baker, Caleb, 1974- III. Title.

 QA76.9.A25B484 2008
 005.8—dc22
 2007044217

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax (617) 671 3447

ISBN-13: 978-0-321-49684-3

ISBN-10: 0-321-49684-1

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana

First printing December 2007

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Joan Murray

Senior Development Editor
Chris Zahn

Managing Editor
Gina Kanouse

Project Editor
Betsy Harris

Copy Editor
Keith Cline

Indexer
Erika Millen

Proofreader
Language Logistics, LLC

Technical Reviewers
Dominick Baier
Eric Ray
Greg Shields

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Sandra Schroeder

Compositor
Bronkella Publishing

To our families

Contents

Foreword

Preface

Part I SETTING THE CONTEXT

1 THE PROBLEM

The Advent of Profitable Digital Crime

The Dawn of Cracking

The Vandalism and Bravado Era: Viruses and Worms

The Rush to Web 2.0 and Asset Virtualization

Malware and Identity Theft

A Business on the Rise

Passwords: Ascent and Decline

Ascent

Decline

The Babel of Cryptography

Cryptography: A Minimal Introduction

HTTP and HTTPS: The King Is Naked

HTTPS, Authentication, and Digital Identity

The Babel

The Babel of Web User Interfaces

Summary

2 HINTS TOWARD A SOLUTION

A World Without a Center

The Seven Laws of Identity

User Control and Consent

Minimal Disclosure for a Constrained Use

Justifiable Parties

Directed Identity

Pluralism of Operators and Technologies

Human Integration

Consistent Experience Across Contexts

The Identity Metasystem

Some Definitions

Trust

Roles in the Identity Metasystem

Components of the Identity Metasystem

The Dance of Identity

WS-* Web Services Specifications: The Reification of the Identity Metasystem

The WS-* Specifications

WS-* Implementation of the Identity Metasystem

Presenting Windows CardSpace

Summary

Part II THE TECHNOLOGY

3 WINDOWS CARDSPACE

CardSpace Walkthroughs

From the User’s Perspective

From the Web Developer’s Perspective

Is CardSpace Just for Websites?

System Requirements

What CardSpace Provides

Consistent User Experience

Brokering Trusted Interactions

A Deeper Look at Information Cards

Card Types

Personal Information Cards

Managed Information Cards

Features of the CardSpace UI

Private Desktop

Disabling CardSpace

Relying Party Identification Page

Managed Card Import Page

Common CardSpace Management Tasks

Management Mode

Creating and Editing a Personal Card

Moving Cards Between Computers

User Experience Changes in .NET Framework 3.5

Simplified Use of Personal Cards

Simplify Import of Managed Cards

Better Communication to the User

Summary

4 CARDSPACE IMPLEMENTATION

Using CardSpace in the Browser

Understanding the Information Card Browser Extension

How Are the Extension Properties Used?

Scripting CardSpace

Processing the Token

Accepting Personal Cards at a Website

Accepting Managed Cards at a Website

Auditing and Nonauditing IPs

Federation with CardSpace

CardSpace and Windows Communication Foundation

Windows Communication Foundation

Adding CardSpace to WCF

Calling CardSpace from WCF

Decrypting the Token

Verifying the Token

Processing Claims

Additional Policy Options

CardSpace Without Web Services

Manage CardSpace

Import a CardSpace File

Get a Token from CardSpace

Get a Browser Token from CardSpace

Summary

5 GUIDANCE FOR A RELYING PARTY

Deciding to Be a Relying Party

Putting CardSpace to Work

Preparation

Database Changes

Examining the Authentication Experience

Developing the New Authentication Experience

Signing In

Handling the Unknown Card

Associating an Information Card with an Account

Creating a New Account

Recovering an Account

Prompting the User to Use Information Cards

Account Maintenance

Privacy and Liability

Summary

Part III PRACTICAL CONSIDERATIONS

6 IDENTITY CONSUMERS

Common Misconceptions about Becoming an Identity Provider

Criteria for Selecting an Identity Provider

Managed Cards Profiles

Identity Provider Qualifications

Relying on an IP

Benefits of Using an IP

Reaching an Agreement with the Identity Provider

Migration Issues

Summary

7 IDENTITY PROVIDERS

Uncovering the Rationale for Becoming an Identity Provider

Managing Identities for Your Organization

Managing Identities Used by Other Organizations

Providing Claims-Based Services

Internet Commerce

Providing Strong Authentication to Relying Parties

What Does an Identity Provider Have to Offer?

Understanding Your Data

Identity Provider Reputation

Walking a Mile in the User’s Shoes

Roaming with Information Cards

An Organization’s Identity

Summary

Index

Foreword

As this book explains, the Internet was built without any way of knowing who you are connecting to. This is now universally recognized as an architectural flaw. It is as nonsensical as a house without a door or plumbing. Attempts to compensate for flaws in architecture usually turn out to be messy, expensive, and unsatisfying. This has certainly been the case with the missing identity layer of the Internet.

However, while it is fairly easy to get people to recognize the flaws in the present system, getting the whole world to agree on a new Internet identity architecture is a daunting task. It means a lot of people with different backgrounds have to think hard about some pretty deep issues and breach many of the usual divides. It also means that the benefits of the new architecture should be obvious and the road to progress clear.

This book succeeds on all these fronts. It will be obvious to all who read it that it benefits from the experience of people intimately familiar with the problem space and passionate about what they are doing.

It starts with an expansive explanation of current problems, dangers, and protective technologies. We get a tangible sense of the fragility of today’s Internet when faced with increasingly professional criminal attackers and confused users.

Then the authors present the conceptual work that forms the basis of a new architecture: the laws of identity and the Identity Metasystem. The explanation includes a look at how the new architecture can be realized through web services.

Next comes a detailed analysis and explanation of the part of the Metasystem that puts users in control of their identities—the “identity selector.” This includes a detailed explanation of how Information Cards work to turn digital identities into “real” visual things. All three authors were involved in building and testing out the first identity selector—Windows CardSpace—and so have deep knowledge of the issues.

The book becomes progressively more concrete, with good examples, and will be helpful to implementers, teachers, and students. But, because of its breadth, I think that the more technical policy makers will also benefit from the work, getting a real sense for how digital identity atoms fit together into molecules.

I hope the chapter on the relying party will inspire people to build websites that take full advantage of Information Cards to deliver increased privacy and security.

Vittorio has a distinguished background in security matters and put together many of the first big Information Card pilots. Caleb was part of the CardSpace design team, responsible for ensuring that it actually did what it was designed to do. Garrett was the first to integrate Information Cards into products like IIS and worked closely with developers to develop an understanding of best practices.

All three are passionate and charming people and have contributed substantively to the emergence of Information Card technology and the Identity Metasystem.

Have fun with their book!

Kim Cameron
Chief Architect of Identity, Microsoft
October 29, 2007
http://www.identityblog.com

Preface

In the past few years, identity has finally been receiving the attention it deservers.

With rampaging phishing and widespread cybercrime as the forcing functions, the industry as a whole is reacting with a concerted effort to understand what the best practices are and is getting there fast. We had the privilege of being among the first people concretely working on one of the key efforts of the identity renaissance: Windows CardSpace.

Windows CardSpace is an expression of the new user-centered approach to identity management. The new approach is poised to solve many different problems of diverse natures: There are technological considerations, such as offering better authentication mechanisms than passwords; usability considerations, such as guaranteeing that the user has a clear understanding of what is going on; and even social-science considerations about how we can effectively leverage trust relationships and make obvious to the common user the identity of the website being visited.

That is the reason why explaining Windows CardSpace in just a few words is so challenging. Depending on your background and your role, you will be interested in a different angle of the story. We experienced this fact countless times in the past two years: with customers and partners, at conferences, with the press, with colleagues from other groups, and even with spouses, trying to explain what was that super important thing that kept us late at the office.

We believe that user-centered identity management has the potential to change for the better how everybody uses the Internet. We also believe that the best way of reaping its benefits is to develop a deep understanding of the approach, complemented by hands-on knowledge of supporting technologies such as Windows CardSpace. The book you are holding in your hands has the goal of helping you to gain such insights.

We live in exciting times. The entire industry is moving toward a common solution, with a true spirit of collaboration and a strong will to do the right thing. The discussion is open to anybody who wants to participate. We hope that you will join us!

Book Structure, Content, and Audiences

Windows CardSpace is part of a comprehensive solution, the Identity Metasystem, which tries to provide a solution to many security-related bad practices and widespread problems. CardSpace is also a very flexible technology that can be successfully leveraged to address a wide range of different scenarios and business needs. Finally, Windows CardSpace enables new scenarios and radically new ways of dealing with known problems. Given the sheer breadth of the areas it touches, it comes as no surprise that people of all positions and backgrounds are interested in knowing more about it.

To address so many different aspects and such a diverse audience, we divided the book into three parts.

Part I: Setting the Context

The first part of this book introduces you to user-centered identity management, the model on which Windows CardSpace is based. This part lays the foundation for understanding the context in which CardSpace is meant to operate and the problems it has been designed to overcome. Architects, analysts, and even strictly nontechnical folks will get the most from this part. There are practically no assumptions of prior knowledge; the text introduces the necessary concepts and technologies as needed. Note that in the first part CardSpace is barely mentioned because the focus is on the underlying models and considerations that are purely platform-agnostic.

Chapter 1, “The Problem,” explores the problems with identity management today. It explores how authentication technologies evolved into the current practices, showing the historical reasons for current widespread problems. The chapter introduces basic concepts such as Internet protocols, types of attacks, introductory cryptography, authentication technologies, and so on.

Chapter 2, “Hints Toward a Solution,” presents the current thinking about what the ideal authentication system would look like. The seven laws of identity are described in great depth. The Identity Metasystem is introduced, and its compliance with the identity laws is explained in detail. This chapter also provides a basic introduction to advanced web services and highlights how the abstract concepts in the Identity Metasystem map to concrete features in the web services set of specifications.

By the end of Part I, you will have a comprehensive view of the situation: what the problems are we are wrestling with, why they are here, and how the Identity Metasystem can solve them. You will also understand the role of Windows CardSpace in the big picture.

Part II: The Technology

Part II focuses on Windows CardSpace from a technological standpoint. It describes the technology, the elements and artifacts it entails, the operations and development practices, and the most common usage scenarios. This part is for the developer or whoever wants to have hands-on experience with Windows CardSpace.

Chapter 3, “Windows CardSpace,” introduces the technology. This includes the user experience, Information Cards and the different card types, the private desktop, and the canonical usage scenario.

Chapter 4, “CardSpace Implementation,” describes the usage of CardSpace in the most common scenarios. From the HTML integration syntax to token manipulation, going though federation, integration with web services and CardSpace invocation via native APIs, this chapter covers all the basic development tasks.

Chapter 5, “Guidance for a Relying Party,” presents a detailed example of a common scenario: enabling Personal Cards on an ASP.NET website.

Part III: Practical Considerations

The last part of this book is devoted to design and business considerations that come in handy when architecting a solution based on Windows CardSpace (or on user-centered identity management technologies in general). The chapters in this part will prove useful for architects and project managers. Business decision makers and IT managers will probably be interested in some of these considerations, too. Hints for developers are spread throughout the text.

Chapter 6, “Identity Consumers,” presents some thoughts about deciding to be or to use an identity provider. It also looks at things from the viewpoint of being a relying party: for example, the main effects on your business and operations of accepting identities in form of tokens and from third parties, and the opportunities you want to take advantage of and the caveats you want to avoid.

Chapter 7, “Identity Providers,” lists some considerations to keep in mind when becoming an identity provider.

Conventions

This book follows the conventions of the Independent Technology Guides series. Analysis sections appear in boxed sidebars and give you added perspective on the issues and technologies being discussed. Also, margin notes are included throughout the chapters summarizing or pointing out the most important points.

Code-continuation characters are occasionally used in lines of code when we’ve broken lines to fit the printed page. Lines broken by code-continuation arrows should be entered as one line when programming.

Acknowledgments

The authors would like to thank David Chappell for believing in the project from the very beginning and for hosting our book in his prestigious series. The deep discussions we had about identity and how to explain its nuances were invaluable in helping us communicate the most complex topics.

We would like to thank Kim Cameron for eliciting the dialog that led to the Laws, the Identity Metasystem, and ultimately Windows CardSpace. We could not have hoped for anybody more appropriate for writing the foreword.

Many thanks to the Addison-Wesley production staff, who steered, guided, and helped us with great professionalism and infinite patience: Joan Murray, Chris Zahn, Curt Johnson, Betsy Harris, and Emily Frey.

This book would have never been written if we hadn’t had many enlightening conversations with our colleagues: among others, Ruchi Bhargava, Rakesh Bilaney, Donovan Follette, Vijay Gajjala, HongMei Ge, Andy Harjanto, Nicolo Isola, Mike Jones, Rajeswari Malladi, Luke Melton, Arun Nanda, Mark Oluper, Govind Ramanathan, Rich Randall, Chuck Reeves, Nigel Watling, Hervey Wilson, and Steven Woodward.

We would like to thank our management for endorsing and encouraging us in this endeavor: James Conard, Samuel Devasahayam, Neil Hutson, Stuart Kwan, and Anand Sivaramakichenane.

Many thanks to the reviewers; without their tireless efforts this book would be much harder to understand: Chris Zahn, Dominick Baier, Eric Ray, Greg Shields, and many others.

This book would have been very different without the experiences we shared with the many pioneers and the visionaries among our customers and in the community that decided to work with CardSpace in its early stages: Working side by side to make the Metasystem work for their scenarios was an incredibly insightful experience. We can’t name you all here, but when you read these lines, you will know we are talking about you. Thank you!

Vittorio would like to thank his wife Iwona Bialynicka-Birula for her love, infinite patience, and infallible support and for helping to break down those super long Italian sentences; his parents and siblings (Luisa Costantini, Bartolomeo Bertocci, Mauro, Franco, Marino, Cristina, Ulderico, Maria, Laura, Guido, Mira) for doing so much for him and for their unconditional love; and some of his professors at the Università di Genova, for teaching him the pride of computer science: Egidio Astesiano, Gerardo Costa, Leila DeFloriani, and Paola Magillo.

Caleb would like to thank Paula Schachtel who provided encouragement, support, understanding, and an endless supply of baked beets as he hid out in the office on the weekends to work on the book. Also he thanks his parents, sister, and brother (Tom, Linda, Vicki, and Thomas) for all they have done throughout the years. He would also like to thank all the smart and inspiring people whom he has worked with at Microsoft.

Garrett gives thanks to his wife Brandie and their two children Téa and Indyanna, for the time, encouragement, and understanding to work on the book. He would also like to thank Vittorio, Caleb, and Joan, for their endless patience.

About the Authors

Vittorio Bertocci is an Architect Evangelist in the service of Windows Server Evangelism for Microsoft. He is based in Redmond, Washington. He works with Fortune 100 and major G100 enterprises worldwide, helping them to stay ahead of the curve and take advantage of the latest unreleased technologies. In the past two years, he helped many customers all around the world to design and develop solutions based on technologies such as Identity and Access Management, Windows CardSpace, Windows Communication Foundation, and Windows Workflow Foundation. He frequently serves as a speaker at international conferences such as IDWorld, Gartner Summit, TechEd, and the like. His blog, located at http://blogs.msdn.com/vbertocci, focuses on identity and distributed systems architecture; it is periodically translated into Chinese at www.china-ac.net.cn/zmjgsbkzxnew4.aspx.

Vittorio has more than 13 years of experience in the software industry. He worked in the fields of computational geometry, scientific visualization, usability, business data, and industrial applications and has published articles in international academic industry journals. Vittorio joined Microsoft Italy in 2001 in Consulting Services. Before falling hopelessly in love with identity, he worked with Web Services and Services Orientation from its very inception, becoming a reference and a trusted advisor for key industry players nationwide and at the European level. In October 2005, he answered the call of Microsoft headquarters and moved to Redmond, where he lives with his wife, Iwona.

Vittorio holds a Master’s degree in Computer Science from the Universita’ di Genova, Italy.

Garrett Serack worked as an independent software development consultant in Calgary, Canada, for 15 years, with clients in fields such as government, telecom, petroleum, and railways. Joining Microsoft in the fall of 2005 as the Community Program Manager of the Federated Identity team, Garrett has worked with the companies and the Open Source community to build digital identity frameworks, tools, and standards that are shaping the future of Internet commerce and strengthening the fight against fraud. In the summer of 2007, he transitioned to be the Community Lead in the Open Source Software Labs at Microsoft.

Garrett lives in Bothell, Washington, with his fantastic wife, Brandie, and their two amazing daughters Téa and Indyanna. Catch up on CardSpace and begin to learn more about Microsoft Open Source efforts on his blog at http://fearthecowboy.com.

Caleb Baker has been at Microsoft for the past seven years and is part of the Federated Identity team. In addition to building CardSpace, the team is working on the other pieces needed to build the Identity Metasystem. Caleb has been on the CardSpace product team since 2004 (InfoCard at the time). Since the first release of CardSpace, he has continued to work on future CardSpace products as well as various Identity Metasystem interoperability projects.

Before working on CardSpace, Caleb gained experience in the identity and security space by working on Active Directory and the Active Directory Migration Tool (ADMT).

Caleb is a Seattle-area native, having graduated from the University of Washington with a degree in Physics and Political Science and has also earned a Master’s degree in Computer Science.

Part I

Setting the Context

Chapter 1 The Problem

Chapter 2 Hints Toward a Solution

1

The Problem

Today’s digital identity crisis is the result of many independent factors, and their combined effects gave rise to the perfect storm that makes phishing and identity theft so lethally efficient. This chapter briefly revisits the evolution of online threats and reveals the complex connections by which apparently independent phenomena augment each other.

The issues surrounding digital identity management are a result of a combination of many factors

The section “The Advent of Profitable Digital Crime” explores the arms race between computer systems and security threats. From software piracy to phishing, from worms to defacing, we walk you through the early traumas that shaped the industry reactions to security problems. Vulnerabilities and attacks are described in a concrete fashion, without using technical terms. To fully appreciate the solutions presented in Chapter 2, “Hints Toward a Solution,” it is important to have a solid, intuitive understanding of the issues that the industry is facing.

The section “Passwords: Ascent and Decline” provides a historical rationale for the use of passwords. Although passwords are sometimes still an acceptable solution on single machines and local networks, we expose the most prominent reasons why that credential type is sorely inefficient on the modern Internet.

The section “The Babel of Cryptography” provides a gentle introduction to concepts and terminology of modern cryptography, framing the notions as answers to the problems mentioned so far. As the explanation goes deeper into the capabilities of those tools, it becomes evident that cryptography is an important instrument, but not a silver bullet that can alone solve the problem of identity propagation. A quick glimpse at the number of the standards and products in use today will give you an idea of the challenges that prevent prompt and resilient interoperability.

The section “The Babel of Web User Interfaces” brings human behavior into the picture, showing how the tightest cryptographic protocol can be completely ineffective if its usage is not intuitive. The current Internet protocols, by their very nature, do not promote a user-friendly credential-gathering stage. Facts supporting this statement are presented, together with the most obvious and the more subtle effects on user confidence and proficiency when dealing with digital identity.

By the end of Chapter 1, it will be clear why the current situation is crying out for a strategic, long-term solution.

The Advent of Profitable Digital Crime

Today the Internet is part of our daily existence

You are sitting at the airport gate, waiting for your delayed flight to start boarding. The unexpected delay, however, leaves you all but stranded. In the seasonless atmosphere of the hall, you suffer the familiar heat from the laptop on, well, your lap: A Wi-Fi card and an adequate amount of battery power are enough to provide you access to an enormous number of resources. You can manage your mail, send your relatives instant messages (IMs), collaborate in real time with colleagues, check weather and timetables, check your bank accounts, buy goods online, translate a word you don’t know, track packages, rent cars, trade shares, write blog posts, find out whether that duty free is really cheaper than online stores, trace routes, even access the recording of your favorite sitcom from the media center in your living room. Far from perceiving those activities as miracles, we already take them for granted. We are actually extremely disappointed when for some reason, say a lousy Wi-Fi provider, we can’t gain access to those resources.

It’s difficult to recall how life was before Web 2.0; nonetheless it is a useful exercise, and it will prove invaluable for putting into perspective the tools and motivations that animate today’s bad guys of the online world.

The Dawn of Cracking

Many practices still in use today evolved in a less-connected era

Twelve years ago or so, Internet access was the privilege of a few. It was the time of universities and institutions, of Usenet, and very few companies. The Internet Relay Chat (IRC) channel #Italy# had 35 concurrent users on the most crowded days. It was the personal productivity era: Office, games, and computer-aided design (CAD) programs were the main reasons for having a personal computer on the desk. Most software was distributed via physical media, initially floppy disks and later CD-ROMs.

It all started with piracy

Piracy was probably the most common cybercrime at the time. Still, it was a sluggish shadow of today’s phenomenon, forced to rely on expensive Bulletin Board Service (BBS), cracks passed by word of mouth, still-expensive CD burners, and full-fledged mail orders from a few hacker groups.

Although those illicit activities didn’t really have to do with identity, they are of key importance because they incubated two cornerstones of digital crime evolution: cracking and organization.

Software offers opportunities for illicit gain

The main reason for cracking a program was the simplest: gaining access to a resource without having the right to do so. Breaking the license checks of a personal-productivity application in the 1990s meant disassembling and fiddling with a local copy running on your own computer, whereas today’s nastiest attacks have to be performed without accessing the binary of the target process. In the former case, you are in the position of performing any modification. In the latter, you have to rely on known flaws of the program or discover a new one. A flaw that can be leveraged for compromising a program is known as an exploit.

A good part of the gain obtained from cracking had to do with satisfying narcissistic instincts, but the chance to pocket some change was not too far away.

Cracking bands were among the first to organize around the purpose of illicitly profiting from computers

The first forms of organized actions come from that time frame, too. Although access was still not widespread, the falling prices of the hardware and the rising interest in software gathered likeminded people in cracking bands, with true “hacking auditions” for membership admittance and a good dose of romantic rivalries. Again, this was very far from today’s spamming behemoths and systematic phishing groups. With all the youth naiveties they may have had, however, those groups introduced an important idea: Software was a green field for illicit activities, and there was definitely a good chance to make an easy profit. Sellers of cracked software at a fraction of the price found an eager audience, especially because regulations (and enforcements) in that space were in their infancy. Gathering more crackers in groups noticeably improved their chances of gaining a margin. Many contributors meant a larger catalog of cracked products and dramatically simplified the cracker’s curse of those days: distribution.

In summary, crackers learned the following during that period:

[image: Image] Software is a good that can be stolen.

[image: Image] Circumventing software protections is possible.

[image: Image] Coordinated action boosts profits.

This last item was particularly remarkable when you consider the fact that it was still a disconnected world.

The Vandalism and Bravado Era: Viruses and Worms

If piracy was the natural extension of the traditional compulsion to steal, we may think of computer virus writing as a form of vandalism.

A virus is a malicious program that can self-replicate

The idea of a computer virus is very old, but it gained real traction as potential hosts (programs) enjoyed widespread adoption and more distribution channels (BBCs, floppy disks, the first shareware). The bane of early system administrators and every dad who had fans of pirated games in the household, it elicited the creation of an entirely new software class: the antivirus applications.

Worms brought security threats to a global scale

If viruses weren’t bad enough for shaking user’s confidence in computer systems, with worms things went out of control. A worm does not need a host program. Rather, it leverages known exploits in network-enabled software for spreading from machine to machine. Email clients, instant messaging (IM) programs, file-sharing software, even low-level network protocol implementations can be leveraged as infection vectors.

ILOVEYOU demonstrated the power of leveraging the human factor

The worm phenomenon highlighted many of the techniques and the issues that can be found in modern security threats. The infamous worm ILOVEYOU, one of the worst global infections, exploited social engineering to spread. It traveled in an email attachment named LOVE-LETTER-FOR-YOU.TXT.vbs, a name that was a strong motivator for launching the file and activating the worm. More refined forms of this technique contribute to phishing effectiveness.

Security problems on the Internet do not respect national borders

The whole ILOVEYOU affair hit the world with another key lesson, again a cornerstone in our quest for understanding today’s cybercrime; whereas an event on the Internet can ripple through the economies of the entire globe, law enforcement is still bound to the principle of the sovereignty of nations. The alleged author of ILOVEYOU has been identified as a university student in the Philippines. However, shortly after the discovery, all charges related to his involvement with the worm were dropped, because at the time that kind of crime was not contemplated by any law of the Philippines justice system. (The loophole was promptly closed, but the new law was not retroactive.)

Even untrained people can do damage with the right tools

As the idea of leveraging exploits gained traction, a second tier of bad guys appeared on the scene: script kiddies. Publishing code that illustrates how to leverage an exploit of well-known programs became a habit for many gifted crackers. That code would be taken by less-gifted individuals and included in toolkits and utilities designed for “messing up.” That would have meant, among other things, defacing websites, bringing servers to their knees via denial-of-service (DoS) attacks, attacking the machines of chat users, and even clumsy attempts at worm writing.

A Trojan is malicious software hidden in a legitimate program

Another common toy was the Trojan horse, or simply Trojan, a program that would be distributed hidden inside legitimate packages or disguised as some other kind of software (like a crack utility). A Trojan would install itself on the victim machine and listen for remote commands, to the delight of the attacker who would take control of the target computer (or, using the jargon in fashion at the time, “0wn it").

Conspiracy theorists may draw all sorts of illations from the computer virus/worm phenomenon; however, the reality is that no clear business model has been identified behind virus creation. The most plausible motivation is still sheer vandalism or the attempt to improve one’s own reputation. The media contributed to feeding the aura of coolness around it, providing meticulous coverage of crackers who, after major accomplishments, get a dream job in the tech industry (fueling the dreams of armies of script kiddies).

In today’s world there’s little left of the narcissistic impulse that drove the first worm writers: nonetheless, their spreading model is still one of the most effective for gaining unauthorized access to less-protected PCs. Where yesterday the prize was the satisfaction of yet another life touched by the author’s action, today it’s acquiring yet another zombie PC, adding firepower that is at the service of greedy spammers. The move toward a business mindset becomes evident, and it became more and more manifest as we got closer to the present. The same drive favors wormlike distribution patterns for an economy of scale, but script kiddy tools can also be used for targeted attacks.

Viruses and worms influenced the way in which we think about computer security

The importance of viruses and worms in the evolution of security threads cannot be underestimated, because it was one of the central factors in shaping today’s awareness of the dangers in using computer systems. Out there, there’s somebody who can harm you and your business and won’t hesitate to do it if you give him half a chance. This awareness is key to recognizing the need for some form of protection and the acceptance of the inevitable discomfort it brings. Installing an antivirus, remembering a password for accessing the computer, maintaining a personal firewall, not being able to attach executable files (EXEs) in email messages, are all nuisances that we would not accept if we thought there was no danger. It is a bit like allowing one extra hour for security-related lines at the airport after 9/11.

The Rush to Web 2.0 and Asset Virtualization

What we’ve seen so far aimed for the destruction of value and, in minor measure, for the improper acquisition of resources. It was a rough exploration; often the motivation for doing something was simply that you could. Today’s world is far less naïve. Also thanks to those early bad experiences, security is being tightened up at every level and almost everything is more secure by default. Yet, we are registering the highest cybercrime rates in history. Many factors contribute to this situation, but one is certainly worth mentioning: The amount of value accessible from computer systems today grew to a point that gaining improper access to even a fraction of it is a highly profitable endeavor.

Gaining unauthorized access to the computer has always been one of the most attempted attacks

In the personal-productivity era, the valuable resource was the computer itself and the capabilities of the software it contained. Apart from the local networks (we cover local networks in detail in “Passwords: Ascent and Decline”) initially limited to a relatively thin slice of white-collar workers, access to the computer was just a matter of knowing the BIOS password. It was not proper authentication but rather a very coarse form of authorization (again, see “Passwords: Ascent and Decline” and the definition of blind credentials). The same can be said for later uses of this security mechanism, such as password protecting Office documents or Zip archives. Every resource was at the complete disposal of the computer owner, with the exception of licensed software; in that case, at least in the installation phase, you had to provide some form of proof of purchase (such as the still-popular serial number, entered at installation time). There was not much to be stolen, and there was no way of doing it without sitting in front of the machine.

The advent of online services introduced a new kind of good to steal

Things started to change as computers gained access to new classes of resources that were impossible to have in local form. Among the first examples were the mail services and the connectivity provider. For the record, this is one of the first moments in which the consumer started to project his identity; gaining access to a connection involved supplying the service provider with a set of credentials, basically a trick of verifying that the incoming request came from somebody actually covered by a regular contract.

The connection and the diffusion of the browser were the disruptive force that annihilated the distance between offer and demand. In the first stages of general Internet access, practically everything was free: content, IM programs, archives, forums. Notable exceptions were the still-converging email services and porn content. The latter pioneered online payment, stumbling in a few youthful goofs, such as using regular expressions for validating credit card numbers or restricting access by verification of a “serial number” as opposed to full-fledged authentication. The latter was an approach that was already failing for software packages and that was far too brittle to be effective for an increasingly connected audience.

Proficiency with computers is a step toward the digital economy

All those activities taught people the ropes of user interface (UI) interaction. Like the ATM a few years earlier, the use of the browser (and personal objects, such as mobile phones and digital music players later) increased the proficiency of the end user; the flashing time and date from VCRs became a less-frequent sight.

The early near business-less phase was a great sandbox for users and technologies.

Recognizing returning users pushed the need for identification technologies

As the episodic usage model gave room more and more often to the concept of the returning user, consumers learned to handle new kinds of resources. The right to exclusive use of a nickname in a chat system or being welcomed to a website by the settings assigned during the last visit are good examples of what trained users regarding the concept of projecting their identity online. That naturally included the possibilities entailed by the usage of the new media, including pretending to be of different gender, age, or nationality.

The spreading of email and connectivity was itself an incentive for accelerating adoption. For example, as the chance of reaching people by mail rose to a critical threshold, businesses abandoned en masse fax and traditional mail in favor of the more agile and cost-effective system. Yet another resource, business communication, migrated to the digital world. While that supplied the work force with a wealth of new possibilities, it also entrusted more and more individuals with precious company assets, such as customer and partner contacts. Over time, the increasing prevalence of access and collaboration technologies (virtual private networks [VPNs], extranets, corporate portals, mail-enabled devices) made the office more ubiquitous, and even more trust had to be placed in employees’ loyalty and proficiency in the secure usage of the new tools. The attack surface grew considerably, preparing us for the next wave of cybercrime.

More and more identity information is projected online

Technology improvement favored a growing mechanization of company processes, both in terms of internal procedures and cross-entity communications. Today in the United States, you can visit a doctor you have never seen before, yet your insurance number will be enough for him to know the last prescriptions issued and your medical history; the Social Security Number can induce even bigger miracles, and let’s not even mention the power of those 16 digits embossed on your Visa. In another Catch-22 pattern, those evolutions both enabled and were driven by the growth of online activities.

Ecommerce becomes the killer application for the Internet

We will lightheartedly ignore all details of the dotcom bubble here, fast forwarding beyond that crazy collective hallucination: Let’s just say that in the past ten years the usage of computers for online activity grew dramatically, and companies were quick (if not always effective) in jumping on the related business opportunities. The time that consumers spent online became significant, and self-sustaining breakthroughs such as the fax-to-email evolution happened many times, in many fields. Banks offered account management and easy access to wire transfer, traditional media companies found ways of providing their offerings as premium content, telephony and brick-and-mortar service providers opened their billing processes to online access, airlines devised more agile processes for ticketing and checking in, governments opened bureaucracy procedures, gaming companies created shared environments and charged for access. And above all, companies used the Internet for selling things. E-commerce truly took advantage of the new possibilities offered by the Internet, suddenly opening an endless cornucopia of products impossible to get by traditional means: Its sheer strength generated new models, such as the online auctions, fueled things such as online payment systems, and promoted the development of technologies for securing transactions.

More and more value is projected and created online

If we resume our effort of identifying resources accessible via a computer, we see that it became a daunting task: So much value is now available online! The most evident type is probably what is ours in the offline world but which can be managed from the online one: the money in our bank accounts; our privileges as citizens of our country; our list of friends and acquaintances; the utility services we bought, such as gas, long-distance call services, and insurances. Even our word, our reputation, our affiliations, our education levels, or simply our names are resources that we can leverage online. Then there are purely online resources: the mailbox itself and its content; credit with a Voice over IP (VoIP) service; the online payment system account; access to our employer’s IT system and its federnet of partners; accounts for vintage mailing lists and social network software; seller reputation on auction sites; accounts for all sorts of services, such as file replication, picture hosting—the list goes on. The most bizarre among the new resources is perhaps our eyeballs. With the advent of the online advertisement industry, the attention of users literally means money: Maintaining a website with a lot of visitors means that the real estate of the pages is worth a lot in ad contracts. Unfortunately, this is a powerful incentive for devising all sorts of schemes for luring users and enticing clicks at all costs, which brings us back to considering the world from a criminal’s perspective.

Spam leverages the scale of the Internet for adding up tiny margins into huge gains

The mind-boggling scale of Internet activities allows schemes based on the pure economy of scale to be profitable: Spammers send their unsolicited commercial messages to literally millions of recipients, and a risible percentage of clicks is enough to bring the balance into the black. However, spamming is becoming hard work; growing awareness of the phenomenon erodes the already thin number of clicks, the arms race with antispam software is getting tougher, the evolution of international laws is shrinking the number of safe havens for spam firms, and the sheer resources implied in the process are a serious fixed cost. Today’s online resources are susceptible to schemes that target a smaller scale but provide a much higher prize for every single successful scam.

When a resource is trusted to a third party, being able to recognize its owner becomes key for allowing access

Whereas a personal-productivity software package sat on your own computer, the vast majority of these new resources simply cannot be under your direct control. They may be remote, owned by others, dependent on external infrastructures, and influenced by many other factors. The natural model is then making resources available to you in term of services. You stipulate a contract, implicitly or explicitly, with the owner (or the guardian) of a resource; as a result, you gain a privilege on it. From that moment on, you can exercise your privilege just by being you. When you walk into a branch of your bank for the purpose of withdrawing some money, all you have to do is show a picture ID to the cashier and make your request. In Vittorio’s small hometown, where the director of the bank has known him since he was 6, until some years ago he may have even skipped showing the picture ID.

In theory, online services are not different. You point your browser to the pages of your home-banking application, you give proof that it’s really you behind the keyboard (see later sections for much more on this topic), and you access the privilege of administering your money.

In theory.

Recognizing users on the Internet is problematic

There’s a small implementation detail that ruins this otherwise perfect metaphor. Although “I give proof that it’s really me” is a practice that enjoyed a fair degree of success in the offline world, the digital equivalent of user identification is proving to be surprisingly brittle. There are many reasons for this situation, but for the time being we can approximate them in a single statement: We are applying to this new class of resources principles and techniques that successfully protected assets in the less-connected eras. This simple fact is at the very core of the attention that identity management is receiving, and ultimately the very raison d’être of Windows CardSpace and the book you are reading.

Thanks to all the value accessible on the Internet, stealing identities makes more business sense than ever before

With all this wealth circulating on the Internet, the crime opportunities we have described in the previous sections seem like child’s play. Just compare the hassle of a supply chain, required for profitable old-school software piracy, with the easy money you get by being in the business of compromising credit cards. You can literally get rich with it; and where there are opportunities, there are entrepreneurs. The motivations that drive cybercrime today are deeply different from the exploratory narcissism of the early virus writers and script kiddies. Sure, there are still defacements, DoS for political-activism reasons, and script kiddies showing off as a rite of passage, but the fastest growing class of attacks aim at getting your money, as much and as quickly as possible. Nonetheless, the experience and the technology matured in the worm and script kiddies phases is far from being out of the scene. Refined and optimized for its new purpose, it is now in the hands of ruthless individuals and organizations driven by a clear aim: becoming you and harvesting all your resources before you know what happened. Yes, this is another difference with respect to the former era. Whereas in the past criminals had to steal resources one by one, today stealing an identity means gaining, in a single move, all the privileges granted to that identity.

Malware and Identity Theft

Identity theft takes different forms depending on the context

The term identity theft is unfortunately very popular at the time of this writing. The term refers to a crime in which the perpetrator acquires confidential information about somebody. It is usually followed by the identity crime, where somebody (not necessarily the original attacker) makes use of that information for impersonating the victim, usually for the purpose of pecuniary gain. In the context of this book, it is natural to associate identity with some software artifact, such as the credentials we use for accessing our Web banking application or our online payment account details. Nonetheless, the phenomenon is much bigger in scope, and bad things can happen even without any direct involvement of the victim with computer systems. See the “America and Identity Theft” sidebar for more details on this subject. In the remainder of this section, we show how the various considerations mentioned so far culminate in the main threats to the confidentiality of our data.

There are many moments during which identity information can be under attack

Many different kinds of sensitive information transit or get stored in our computers: financial data, addresses, identification numbers, and above all, credentials and credit card numbers. The life cycle of the information include various phases: the moment in which it is entered, the moment in which it is transported, the moment in which it is processed, and the moment in which it gets stored. Dissimilar systems will be more or less vulnerable in different phases, and for each of those systems successful attack schemes have emerged. The bestiary of software classes specifically designed for malicious purposes has grown so much that we now use a collective name, malware, for indicating the likes of worms, Trojan horses, key loggers, spyware, and so on. The sections that follow by no means constitute a complete list but have the purpose of showing the extent and the nature of what we are dealing with.

Attacks in the Information-Entering Phase

The attacks in the information-entering phase are probably the most common, and they have a very good chance of being successful. They are carried out on the basis of two alternative principles: record the moves of the user without his knowledge or trick the user into entering sensitive data in the wrong place.

Keyloggers record all key strokes

Remember our description of worms and viruses? We stated that such software can execute arbitrary code on the victim’s machine; well, it turns out that one of the most profitable things one can do is record key strokes. Think about it. If somebody is able to see a recording of all the keys someone has punched in a work session, there’s really no sanctuary. All the information that went through the keyboard will be disclosed, no matter how sophisticated the transport and processing phases are. Falling victim to a keylogger is as easy as getting a virus or a worm; however, for being truly useful, this malware needs to have some Trojan traits, too. The list of recorded key strokes is still on the victim’s PC, and an attacker needs to put his fangs in it to take advantage of the information. This can be done by listening to some external command, such as a Trojan, or by sending mail to a predetermined address. Both operations are dangerous because they may allow a good forensic analyst to trace them back to the attacker. There are other ways of tracing key strokes, including concealing mini cameras at ATMs and looking at your neighbor on the plane as he types on his keyboard.

Keyloggers attack the computer; phishing websites attack the user

Installing a keylogger is hard work. Antivirus products, hardening, and basic computer hygiene do a decent job in keeping those threats from inflationary growth. It turns out that instead of concentrating on the few feet between the keyboard and the motherboard, it pays much better to focus on what lies in the few inches between the user’s ears: his brain.

Remember the trick used by ILOVEYOU? There was no technical reason for the user to open the attachment containing the worm payload, only the irresistible curiosity elicited by a clever name. Well, the most common forms of phishing build on that heritage.

Phishing pages pretend to be legitimate websites and trick the user into entering valuable information

Some sources include in the definition of phishing all attacks aimed at the unlawful acquisition of other’s credentials, hence encompassing the keyloggers previously discussed and the man-in-the-middle attacks discussed later. In the context of this book, however, we stick with a much narrower definition: Phishing is a social engineering attack that tricks the user into entering his private data in the wrong context, application, or user experience. The base schema used is deceivingly simple, yet incredibly effective:

1. The user receives a communication (an IM, more often a mail message), which is allegedly coming from a legitimate source; a bank, a business, and a service provider are all common picks. For the sake of the example, let’s say that the mail pretends to be from a bank. The communication informs the victim of a hypothetical breach in the security of the system (or analogous excuse). Then it urges the user to follow a link (provided in the text), where he is requested to sign in and fix the situation.

2. If the user happens to be an actual customer of the alleged source of the communication, he may believe in the validity of the communication and comply with these instructions. As soon as the victim follows the link, he’ll land on a page that mimics (with different degrees of success) the sign-in user experience that the emulated bank normally features.

3. If the user believes in the truthfulness of the communication, and the imperfections in the fake user experience are not enough to prompt the user to notice that the current website is not what it pretends to be, all is lost. The user will type his or her credentials in the text fields provided, literally handing to the rogue application his username and password. The user took the bait and has been phished. Sometimes, the malicious website will perform a redirect to the legitimate page it simulates, lowering the chances that the user will realize there’s something wrong. It is also possible that the fake website will refuse access a number of times, in the hope that the user will try the other passwords he frequently uses and thus end the scam with a richer booty.

There are many different phishing schemes

There are many variants to the main theme appearing on the scene—daily. The phishing mails can ride the economy of scale, like spam. Of the millions of recipients reached, only a small percentage will actually have an account with the bank used as bait; and an even smaller percentage (although it can still be an enormous number in absolute terms) will fall into the trap. However, the prize of a successful phishing session is magnitudes above the value obtained with sheer commercial spam. It is not uncommon to find targeted spam, too; instead of broadcasting to an enormous number of random people, some phishers track customers of retail and auction sites for careless and high-volume spending behaviors. Crafting mails specifically targeted to those smaller audiences require a bigger investment, but the chances of a successful scam increase by a large factor.

Phishing is truly the poster child for how the problems of our era are inextricably entangled together. (We often come back to this topic with more details in the upcoming sections.) However, it is of value to briefly summarize here what makes phishing so special.

The strategies that work in the offline world might not apply in the online world

It’s not difficult to envision how a keylogging scheme may be applied outside of the computer world. People have overheard conversations or looked at texts over the shoulder for centuries. That said, how likely is it that phishing would happen in the offline world? The idea is almost comical. I may receive a credible fake letter from a bank, sure, but changing the road signs for leading me to a fake branch is much more challenging, as much as building a credible fake branch office. (A few years ago in Naples there was a case in which a fake ATM was overlapped on the real one, but the scam didn’t enjoy a very long life.) If I have already gone to that branch in the past, it is borderline impossible to fool me. Naturally, some isolated cases might fit the definition, if only we stretch it a little. Good examples are social-engineering attacks in which the scammer calls his victim by phone and, pretending to be a bank clerk, attempts to obtain identity data. However, such schemes never scaled up to the rank of a proper industry, given the spotty success rate and the high risks involved. Because we are considering things on a global scale, we can probably ignore those cases in our analysis. That said, why is something nearly impossible in our daily life perhaps the fastest growing crime scheme on the Internet?

We take for granted some important factors in the offline world that are barely addressed in the online one. Telling a fake bank branch from a legitimate one is a snap, but telling a website from one that is an imitation is apparently much harder for users. We address this issue in more detail in the section “The Babel of Web User Interfaces,” and we mention server authentication in the section “The Babel of Cryptography.” Stealing our credentials in the offline world can be difficult because it often (but not always; see the sidebar “America and Identity Theft” later in this chapter) requires acquiring a physical document in our possession, making it much harder (and much more noticeable) than just copying down the few characters that constitute a username and a password. Again, we explore that issue in much deeper detail in the section “Passwords: Ascent and Decline.”

Attacks in the Information-Transfer Phase

When the information leaves your computer, you have little control over it

Let’s assume that our computer is malware-free and that we are entering our private data in the intended application or website, as opposed to one of the phishing fakes described in the preceding section. Unfortunately, we can’t relax yet; the bits we just typed still have to travel for a long distance before reaching the intended destination, and there are plenty of chances for attackers to compromise unprotected information in transit (see Figure 1-1).

Figure 1-1. The journey of a packet from the user machine to its destination. At every step, somebody might be trying to intercept your data.

[image: Image]

Data packets follow a tortuous path before reaching their destination

For connecting a local computer network to the Internet, it is enough to link one node of such a network to a machine that is already part of the Net. Such a model is extremely handy because it allows growth to occur on the periphery without involving a central authority. The probability that two different computers are connected by a single direct link is negligible. In the vast majority of cases, information is routed through a number of intermediary nodes before reaching its ultimate recipient. The first segments of the trip are generally known; when we type an address in a browser on a machine at the workplace, our request will go through some networking hardware (a switch or a hub), and then it will jump from computer to computer in our intranet until it reaches our Internet service provider machines. From that moment on, our data packets zigzag through a path of intermediary machines that is very difficult to predict, eventually (in most cases) reaching the machine that corresponds to the address we originally typed in the browser. It is possible to measure this phenomenon; a simple query for traceroute on any search engine will return a list of utilities that will show (even on a world map) the path followed by packets from the origin computer to any website.

Reading data packets in transit is easier than most think

You might be tempted to think that once the information is transmitted on the network, it becomes unreadable gibberish (“signal”) until it reemerges from the other side of the cable; think again. The reality is that unless you take some special measures, what is sent on a network is as clear as a text file. The only difference is that while a file sits on the disk for as long as it is needed, if somebody wants to read network traffic he has to do it while the transmission takes place. Many employees would be much more careful if they saw how easy it is to read what they type in their IM sessions (see Figure 1-2); the traffic generated by a browser is possibly even easier to read.

Figure 1-2. A network trace of IM traffic

[image: Image]

In the man-in-the-middle attack, an aggressor intercepts communications between two other parties

The class of attacks that can be performed on the information in transit is known as man-in-the-middle. The literature on the subject often explains the scheme with the help of an example involving three characters: Alice wants to send a secret message to Bob, and Eve wants to know the content of such a message. In our context, Alice sends her message using a browser, Bob is a website (say our home-banking system), and Eve is the criminal (or criminal organization) that wants to steal Alice’s data. Literally anybody with access rights on any computer on the path between Alice and Bob can play Eve’s role. The computers of colleagues in the same room, or even on the same floor, will often be connected to the same networking devices. The same holds for the consultants and maintenance technicians who occasionally tap our networks though a laptop. The network traffic will flow through their network cards, too. Normally their machines would recognize which data packets are addressed to them and discard everything else. There is a kind of software utility, called a sniffer, that can visualize all the river of data flowing through a network card regardless of its destinations. Whoever wants to play Eve will be able to effortlessly read all nonprotected content typed by Alice.

Eve could be anybody

Using a sniffer is usually against company policies, but there is always somebody who believes he or she has very little to lose (for example, an intern, an external worker such as a temp or a contract employee, a disgruntled employee, or a stalker) As we follow the data packets in their run toward the boundaries of the company, we encounter other nodes where information could be tapped; all the network administrators have tremendous powers, but they are the ones with more to lose if they get caught. When it leaves our company network, the information is in wild territory. All the situations we described for Alice’s company are even more likely for Internet providers. Today the situation is under better control, but there are still small providers that cut costs by employing students or amateurs. There’s nothing wrong in being one or the other, but the loose relationship weakens many of the deterrents that restrain regular employees. If Alice’s message makes it successfully to Bob’s website, we again encounter the same dangers with the Web host personnel and within the business organization behind the website itself. Even if all the staff of all the companies we touched in our perilous trip were perfectly honest, it’s enough that one machine on the path is compromised by a Trojan, allowing an external Eve to, no pun intended, eavesdrop on Alice’s “secret” message.

There are means of countering this threat; we explore some of them in the section “The Babel of Cryptography.” However, the existence of countermeasures does not always imply that they are thoroughly applied. Take the example of wireless networks. In 2005, I (Vittorio) used to commute between Pistoia and Florence, about 19 miles (30 kilometers) mainly in the Tuscany countryside; in that short segment, my pocket PC would pick up more than 40 Wi-Fi access points, the vast majority of them without any protection. Although most people might see this as a nice opportunity for stealing access to the Internet, the key consequence for criminals is that all the traffic generated can be sniffed without putting a foot in the victim’s house. The address of the sites visited, the chat conversation taking place, the documents downloaded or transferred, the mail read from a Web interface, the information typed on nonprotected channels, all can be running like a river on the screen of Eve’s laptop, in her car parked not too far from the victim’s residence.

There are countermeasures against the man-in-the-middle attack

Again, there are means of countering those threats. websites can protect their traffic by using HyperText Transfer Protocol Secure (HTTPS), more on that in the next sections), and Wi-Fi networks can count on Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA) encryption methods for safeguarding the privacy of their users. The purpose of this section was to give you a feel for how easy and remunerative it is for Eve to be the man in the middle if Alice and Bob do not take adequate precautions.

Attacks in the Information-Storing and -Processing Phases

Let’s strengthen the hypothesis we assumed at the beginning of the previous section. Not only have we entered our information into the intended site from a clean machine, but we also know that the data made it through safely to its ultimate destination. Unfortunately, we are still not safe.

Once the information reaches a website, its safety is in the hands of the website itself

If we are buying something online, the website is probably leveraging a shopping cart metaphor for handling our temporary data; it may even take advantage of some form of profile so that we don’t have to type in at each visit our shipping address or our preferred credit card number. If the implementation of those functions is less than robust, an attacker may gain access to our session data. The possible maneuvers are far too many to be described here. However, just to give you a taste of the range of things that might be done, consider this: Key data may be stored in a cookie on your machine and accessed by other sites or local malware, the e-commerce website may be implemented on some engine known to have flaws and exploits, the session might not be properly secured, and just knowing a temporary URL (Universal Resource Locator, an Internet address) may give clean access to data, and of course there are all the methods of stealing memory data in the case where the website machine has been compromised.

In a supreme effort of optimism, we can again assume that, in addition to all the supposition we have imposed so far, we managed to close our transaction successfully and securely. And yet, we are still not safe.

The longer information stays in a place, the bigger the window of opportunity for attacking it

Our data are normally stored somewhere, sometimes for profile purposes, more often for allowing batch transactions later. When you buy something online, your card does not usually get charged immediately. The merchant must perform follow-up operations, and those require the credit card number.

The SQL injection attack tricks a website into treating data as code, allowing the execution of malicious logic

It could happen that another customer, visiting the merchant website after us, may try some attack for retrieving sensitive data about past transactions. One of the most commonly known attacks is called SQL injection. During a transaction, the merchant website collects customer information by prompting the user with forms. After those forms have been filled, the software behind the website connects to a database, inserts the newly acquired data, and runs comparisons with the existing records. An attacker may fill such a form with cleverly crafted SQL commands rather than the data he was prompted to enter. If the software behind the website is not well designed, the commands entered by the attacker might end up being executed. As a result, the invader may trick the website into displaying page data such as the shipping address or the credit card data of all the customers in the unprotected database.

Entire databases can be stolen at once

A less-subtle attack involves compromising the entire store at once, by breaking the website itself (for example, by DoS—flooding the software with too many requests and bypassing protections when the program collapses) or just gaining access to the machine hosting the DB with any of the methods described so far. As strange as it may seem, customer data can sometime make its way from those databases to the laptops of the website’s personnel. Such laptops can then be promptly stolen or forgotten on taxis, on subways, and in waiting rooms with the obvious consequences for the data they contain.

As with the man-in-the-middle attack class, in this case there are countermeasures that can be set up for coping with these threats. Well-engineered queries, encrypted stores, secure sessions, and minimal attack surface on servers are all efficient methods of mitigating risks. Ultimately, however, data attacks happen. The ultimate countermeasure is to not store credit card data at all. We will see later in the book that with the new identity management techniques, this is not only possible, but it is actually easier than storing sensitive information such as credit card data.

A Business on the Rise

We have seen how from its very beginning the information technology market offered great chances of illicit gains. The first phases incubated the technologies and the attack techniques that are popular still today; the advent of widespread connectivity on one side promoted exponential growth of the value accessible from a computer, while on the other it acted like steroids on the same attacks, boosting their effectiveness and profitability. Although the software piracy market is far from being dead, identity and personal resources are the valuables being preyed upon today (see Figure 1-3).

Figure 1-3. Number of new phishing sites (from antiphishing.org)

[image: Image]

The enthusiasm (and the revenues) for the newly available goods and services is tempered by the consumer’s fears and insecurity. The risk of online fraud is difficult to estimate for the end user, and this dampens the growth of a market that could otherwise be as explosive as other Internet-related sectors, such as social networks.

We have seen which threats we face and how those came to be. In the remainder of the chapter, we explore how today’s main countermeasures fall short in providing a complete, usable, future-proof, and widely accepted solution to the protection of identity online.

America and Identity Theft

Many of the examples and documentation found in security literature make use of concepts and scenarios that are very familiar to the American reader but can be somewhat harder to understand for an international audience. This perspective box gives a very quick introduction to some of the main elements that will help the non-American reader to understand the most commonly described security-related scenarios.

The Social Security Number, SSN for short, is perhaps the most common encounter in security examples and scenario descriptions. The SSN, introduced in 1937 for the purpose of tracking individual contributions to the national retirement program, is today the key for accessing services. Many national programs that needed a unique identifier in the past 70 years depended on it. In 1961, the SSN became a reference ID for federal tax returns. In 1976, it became the key for registering vehicles. Today it is used for even more purposes, including health-care insurance, immigration, financial services, and much more.

Knowing the SSN of someone means gaining access to all the information that uses the SSN as a database key. Furthermore, because the SSN is supposed to be a well guarded secret, many business activities regard the knowledge of the SSN (or even just the last four numbers of it) as a valid proof of identity. That means that the SSN can be used for serious business (opening a loan, for example). Stealing the SSN is among the most complete ways of taking over a person’s identity.

Another useful concept is credit history. In the United States, anybody who applies for a credit line, be it a credit card or a loan, is evaluated for eligibility on the basis of his or her past financial history. Three main credit-reporting agencies keep track of all the financial history of an individual, his credit history, and can supply a prompt assessment of the individual’s accountability as a buyer. One of the ways of accessing someone’s credit report is via his SSN. This mechanism partly mitigates the need for background checks that in other countries are instead the only tool available for assessing the risk of lending money to someone. As a result, many high-value transactions can be completed in a very agile fashion. For example, credit companies sweep the credit report database, assess who would be a good customer, and send via ordinary mail preapproved credit cards. Those cards arrive with an associated credit line and can be used right away. They are the favorite prey of criminals who steal from physical mailboxes or go through the household trash (dumpster divers) in the hope of finding an offer that has been carelessly tossed out without having been shredded.

If you are interested in knowing more about identity theft in the United States today, refer to The Identity Theft Protection Guide, by Amanda Welsh, a good book on the subject.

Passwords: Ascent and Decline

Passwords are taken as a given. It doesn’t have to be that way

Passwords, passwords, passwords. How many times do you have to use a password in one hour of Web surfing? They are a big pain, and an even bigger liability. However, their usage is so deeply rooted in information technology that they may seem inevitable. And to think that at the beginning it seemed like such a great idea!

In this short section, we show how passwords make sense at a certain scale but fail spectacularly once certain thresholds are reached. By looking at the very basis of password adoption, we realize that they are not the solution to access control but rather a solution whose shortcomings are seriously affecting our way of approaching identity online.

Ascent

Access control can be realized in many ways

There is a resource that looks available to a vast audience, but only a precise subset of that audience has the right to actually access it. How can usage be restricted to the rightful crowd? One of the most basic examples of this problem is the access to your own house. You want to let your spouse and offspring in even when you are not around, but you definitely want to prevent others from entering without your explicit consent. The lock-key combination is a very effective means of achieving that. The lock prevents anybody from entering, apart from the ones who own a copy of the key. The general idea of according access only to somebody who owns something is really good but not always readily applicable. Take the example of early computers. Hardware costs and lack of a widespread standard would have made the creation of a physical lock impractical, but above all, the availability of far cheaper and handier alternatives delayed that idea until recent times.

The cheaper and handier alternative is relying on something that the user knows rather than owns. A physical key has to be crafted for a specific lock and distributed to the users. You have to remember to bring it along; it can break; and if for some reason the lock has to be changed, one has to go through the cycle again. On the other hand, knowing one password is one of the most agile things that can be devised. If the enemy stripped you of everything and you manage to escape from their prison, you can always reenter friendly territory by shouting the passphrase of the day. If the deal would be that for entering friendly areas you have to show a certain medallion currently in the pocket of a prison guard, you’d be in trouble.

Passwords act as access gateways for computers

The first computer access control was performed by passwords, strings of characters that can be entered via the machine input peripherals. The system was applied for preventing unauthorized access to a range of resource types, from the computer itself to single files and applications. Password-gathering screens blocked every access to the computer for those who didn’t know the machine password, documents and archives were inaccessible to those ignoring the appropriate file passwords, and software packages would refuse to install without users demonstrating knowledge of the product serial numbers. Physical keys on the parallel port, often referred to as dongles, appeared later and were an early example of the “something I know” method. They never really became mainstream. We described what the IT world looked like in the section “The Dawn of Cracking.” For the time, those were adequate security measures, and to some extent we can still consider them valid. Can we consider them authentication? It is debatable. A definition of authentication that captures the intuitive idea could be something like “authentication is the process or the operation by which an assertion about the identity of somebody is verified.” The measures we previously described are rather an example of blind credentials: Demonstrating knowledge of the computer password or the product serial number states my right to access the resources, but it does not really say anything about who I am. In a book about identity, it ought to make a difference!

Passwords act as access gateways for user accounts

When computers began being organized in local networks, the music changed. The entire point of connecting computers is communicating and sharing resources. As a consequence, the control migrates from a group of individuals with complete dominance over their machines to a central governance that establishes what is shared and who can access what. The keyword in the former sentence is who. Whereas before blind credentials were required for preventing unauthorized access to the user’s own resources, now that sharing becomes the norm as the concept of authentication arises. The blind credentials system maintained some grip here and there, like for protecting archived files, but the presence of a shared network promoted finer methods of access control such as authorization. Now that all accesses were mediated by the network infrastructure, there was no need of remembering a password for every resource. The system knew the identity of users requesting the asset and could make decisions about authorizing access, denying it completely, or restricting it to a well-defined set of operations. That was an important improvement over the blind credentials method, especially considering that authentication had to be performed only once at the beginning of the session, while authorization took place silently every time a resource was requested. One password to rule them all.

On a small scale, passwords can be viable, but the shared secret idea has intrinsic flaws

The password was confirmed as the preferred authentication method, and again it proved a handy and agile system. However, it started to show some shortcomings. When your credentials grant access to shared resources, disclosing your password is no longer just personal business; it affects all the users of the network, and above all it affects the owner of the network itself.

A secret is good until it is forgotten, and unfortunately passwords are prone to a number of bad practices that can very well jeopardize their usefulness as an authentication method. People need to remember passwords, and this simple fact appears to have a range of self-defeating consequences. The most classical examples are yellow sticky notes with passwords written on them decorating the monitors in cubicles and open spaces. Then there are passwords so easy to guess that they are completely useless: password, 123, a, a password that matches the username, even blank (just the Enter key) are very common choices. It gets worse: Making less-obvious choices could still be useless in the case of networked access. If I choose any English word as a password, however uncommon or hard to spell, I may think I found an easy way to remember it and make it extremely hard to an attacker to guess it. That might be true for an attacker who enters the password with a keyboard, but for a program it is a breeze to go though a dictionary and try everything until it hits the right guess. To close this intentionally incomplete list, we cannot fail to mention the most outrageous method of acquiring passwords; explicitly asking for it will have a surprising rate of success.

Password issues can be mitigated by strong governance and a good infrastructure

Those problems have reasonable solutions. Policies that strongly discourage writing down passwords (or handing them to strangers!), imposing complex passwords patterns including numbers and special characters (assigning such passwords to users does not work; they will almost certainly write them down instead of memorizing them, although nothing guarantees they’ll not do that anyway as a reaction to the complex pattern constraint), and forcing the user to choose a new password from time to time are all good practices. The fact that the password management is buried deep in the network infrastructure, often even at the operating system level, guarantees that at least the most basic of the attacks described in the section “Malware and Identity Theft” are deflected.

In summary, we can obtain a far from perfect but fairly secure authentication and authorization system. It is then natural to ask ourselves why we don’t often hear of local network breaks, whereas phishing regularly makes it into the news.

Decline

Moving from local networks to the Internet is a complete game changer

After the local network came the Internet, and online services proliferated as described in the “The Rush to Web 2.0 and Asset Virtualization” section. At the time, the password had already gained its fame as the key (if not only) method of verifying credentials. As it was natural to extend its usage from blind credentials to local network authentication, it was natural to use it as a system for restricting access to remote resources and methods. It was at this point that the problems started; old solutions are not necessarily fit for coping with new challenges.

In a local network, a single authority reigns over everything

A local network has an underlying authority, which permeates the entire environment and is the ultimate judge on resource access. When a user accesses a file share or a printer, it’s the same authority that decides whether the request will be fulfilled; in both cases, it is the network identity of the user that will determine the outcome.

On the Internet, the resources are spread across countless owners

On the Internet things are radically different. The company that offers Web-based email has no relationship with the one that produces your instant messaging application of choice. Nonetheless they both want their users to authenticate before enjoying their services. The effect is very similar to what would have happened to local networks if they would have stuck with blind credentials instead of moving to authentication: a pile of different passwords for every resource, with no clear distribution or maintenance model.

The Internet situation is actually more complex. Every single service performs a full-fledged authentication and, in the context of the resources managed by the same authority, all the good properties of authentication and authorization still hold. But crossing one boundary is enough for requiring authentication with a new resource manager. No central authority on the Internet can make informed decisions about who can access what, and there are all the reasons to believe that there will never be one. The network is simply too vast, diverse, and rapidly changing for tolerating the tight governance that would make such an authority feasible at all.

Credential proliferation makes life difficult for users

The result is that every user now bears the burden of a formidable number of credentials, one for each and every site and service mentioned in the “The Rush to Web 2.0 and Asset Virtualization” section. We have seen how hard is for users to remember one password for accessing the network at the workplace. Multiplying this by at least 23 can start giving an idea of the strain we are all suffering today. The literature even has a term for the subject: password fatigue.

The same password is often used with many different sites: Once stolen, access to all the sites is compromised

One first consequence is the wild reuse of passwords. Besides all the malpractices described in the previous section, the sheer number of credentials you have to use makes the temptation of reusing the same passwords across unrelated sites hard to resist. Unfortunately, it is also a really bad idea. An attacker can gain access to multiple assets of yours all at once. This attack does not even need to set up a phishing scam to be successful. An attacker may simply run a low-value service and try to reuse the credentials saved in his user store to see whether they are suitable for accessing higher-value services. Another consequence is the low tolerance for the act of typing in credentials. Because we have to do it so often, we welcome whatever shortcut can save us the hassle regardless of the risks it involves. Persistent cookies and automatic form fillers are good examples. Although they are not necessarily a bad thing per se, they can blur the line between authenticated and unauthenticated sessions and promote careless behaviors.

Passwords are easy to give away, and phishing websites leverage that

The list could go on and on. Perhaps the worst thing is that being far from our cozy local network exposes our data to all the tricks in the book: that is to say, all the attacks described in “Malware and Identity Theft” and more. For a start, when you land on a website, it is really hard to know with whom you are actually dealing. It could be the site of your bank, as it claims to be, or it could be a scam hosted on a Web server from a county without strong regulations against digital crime (remember the author of the worm ILOVEYOU; see the section “The Vandalism and Bravado Era: Viruses and Worms”). In other words, the server can authenticate you, but it is extremely difficult for you to authenticate the server. We explore the issue of server authentication in depth in the sections “The Babel of Cryptography” and “The Babel of Web User Interfaces.” Anyway, what counts in this context is that this situation makes you a likely victim for attacks in the data-entering phase (that is to say, phishing).

Passwords are exactly the kind of data you don’t want to be intercepted by a man in the middle

Do you want to talk about man-in-the-middle attacks? In a local network, the authentication screens are usually well protected, and passwords (almost) never travel in readable format. On the Internet, the security level depends on the good will of who implemented the website and too often is not as safe as it could be.

Are there good, long-term solutions to those problems? This time we may be out of luck. The extension of password usage from local network to the entire Internet may simply have been a bad idea.

There are many ways of protecting information in transit, but the fact that there are many of them itself makes interoperability tricky and prevents expectations from reaching a satisfactory common level. Current solutions for server authentication do not seem to work too well, and the absence of a common authority will always favor an ever-increasing proliferation of passwords, while there’s no indication that human memory will improve any time soon. The recent trend toward software as a service, or SaaS, promises to increase even further the need for accessing online resources as part of our daily workflow.

Passwords are very much alive

You may think that the title of the section, “Decline,” is a bit preposterous given the wide usage that passwords are enjoying today. Yet, the decline is already happening. Lawmakers and regulators all over the world are already questioning the value of passwords as an authentication method, requiring additional authentication factors for high-value transactions.

If it will not be CardSpace, it will be some other solution, but the days of passwords as we know them today are numbered; however, we should expect to see them around still for a significant time.

The Babel of Cryptography

Cryptography serves as the basis of modern computer security

In theory, the problem of preventing unauthorized individuals from reading private data was solved long ago. An entire branch of mathematical sciences, known as cryptography, is devoted to similar problems. The operation referred to as encryption can scramble any data to the point of making it useless to the casual reader. The opposite maneuver, the decryption, involves reversing the scrambling operation and setting the data to their original, readable form. Encryption and decryption are made possible by the use of logical equivalents of keys. As long as those keys are shared by two parties, they can ensure that nobody else will be able to access the content they exchange. (We go into much greater detail later in this section.)

Problem solved, then? No. Drawing that conclusion would be as simplistic as saying that humankind has successfully addressed the problem of universal communication, substantiating the statement based on the fact that we discovered the concept of spoken language.

Effective use of cryptography entails agreements among parties

Cryptography is exceedingly efficient in finding mathematical algorithms that can protect the data in a fast and reliable way. Nonetheless, that entire process is wasted if Alice and Bob are not using the same algorithm. Even in the lucky case in which they both agree to use exactly the same algorithm and we solve the problem of distributing the keys, we may still not know with whom we are dealing. Alice may use a key for securing her communication with Bob, but what guarantees does she have that it is really Bob she is talking to? From whom did she get that key? If Eve can somehow smuggle her own key to Alice, pretending to be Bob, she will be able to decrypt everything that was encrypted with that key. Sure, the channel is impenetrable by everyone else, but that will not do any good for poor Alice, who will be unsuspectingly handling to Eve data such as the passwords she would have used for Bob’s website. At that point, Eve can go to Bob’s website pretending to be Alice and supporting her claim by using Alice’s password. Bob will have no reason to doubt Eve’s claim and will grant her all the privileges actually reserved for Alice. So much for having solved the problem!

Cryptography alone cannot solve all security problems

The point here is that although cryptography is a cornerstone of a secure system, there are other factors that are at least as important. One of them is identity propagation. The fact that Bob wants to authenticate Alice before granting her privileges seems obvious and familiar. Thanks to the Eve scam we just described however, it is also clear that Alice should make sure that Bob is really who he claims to be before trusting him with her data. This exemplifies the concept of server authentication. Another lesson we may draw from the scene described earlier is that the password-based authentication is very brittle; Eve should not be able to intercept it in the first place, but in the case in which it happens, it is really not acceptable that she can so easily use it for impersonating Alice. More robust systems would prevent this; we describe some of them in the following subsections. However, they exhibit the same limitation mentioned for cryptography in general: that all parties must agree on a specified system for it to work.

In the rest of this section, we develop some of the themes mentioned in this introduction: cryptography, identity propagation, and alternatives to passwords. We show how those are applied in today’s technologies and highlight how they sometimes fall short in trying to resolve key aspects of the problem of security online.

Cryptography: A Minimal Introduction

In this section, we introduce a few basic concepts that are instrumental for understanding some security considerations throughout the book. If you are already familiar with X.509 certificates and public/private keys, feel free to skip this section.

Symmetric Key Cryptography

Security by obscurity trusts the safety of the data in the hope that attackers will not discover what criteria was used for scrambling the information. Unfortunately, it does not work

In the introduction, we mentioned the term encryption, and we quickly dismissed the subject saying that it means “scrambling data to the point of making it useless for the casual reader.” This is substantially true, but also very simplistic. Messing with the sheer order of characters and/or substituting all a’s with @ is an incredibly naïve way of protecting data; current hackers and tooling would not be fooled by it for a second. Relying on the fact that the attacker does not know how you jumbled the data is known as security by obscurity, and it is one of the biggest delusions in this space. One of the basic principles of modern cryptography is that a secret should be safe even if the attacker knows in detail the algorithm that was used for performing the encryption. The mathematical functions employed in the scrambling must respond to very rigid canons of robustness and are the result of a process of sophistication that lasted hundreds of years.

Symmetric encryption combines text with a secret key, obtaining unreadable data; only the knowledge of the key will allow you to retrieve the original text

In its simplest form, an encryption algorithm can be seen as a black box with two entrances and one exit. In one entrance, you put the text you want to protect (the plaintext, or clear text); on the other, you enter a key, that is to say a string of characters of a certain length. Turning the “encrypt” knob will produce at the exit an unreadable fragment of text (the ciphertext), which is actually a nontrivial combination of the plaintext and the key. If an attacker acquires the ciphertext but not the key, he will need to be very lucky or very patient to access the content. Trying all the key combinations (known as a brute-force attack) against a modern algorithm can literally take amounts of time on the order of geological. If somebody owns the key, however, the decryption operation is straightforward. Entering the ciphertext and the key in the same black box would give back the plaintext. The encryption is said to safeguard the confidentiality of data.

The class of algorithms just described are said to perform symmetric encryption. That is to say, the same key is used for both encryption and decryption (see Figure 1-4). These algorithms usually perform well and have been used for a long time (Gerolamo Cardano, an Italian mathematician, introduced them in the sixteenth century.) Common symmetric algorithm names are DES, AES/Rijndael, and Blowfish.

Figure 1-4. Symmetric key encryption: the same key can scramble and reveal the clear text.

[image: Image]

Public Key Cryptography

Key distribution is a weakness of the symmetric encryption schemas

A symmetric key, however, can be a nightmare to distribute. If Alice wants to send to Bob a message, she has to know which key she should use. If Bob owns a key, he has to give it to Alice. This means that the exchange should be protected at all costs, because restricting the knowledge of the key is the only factor that guarantees secrecy. If by any chance the key falls into Eve’s hands, all future messages from Bob will hold no secrets for her. World War II is full of stories where the Allies retrieved daily code booklets from German submarines and Japanese troops, using them for decrypting intercepted secret communications.

In asymmetric key algorithms, you encrypt with one key but decrypt with another; hence you don’t need to distribute the decryption key

The solution to the distribution problem emerged few years ago, with the introduction of asymmetric key algorithms (or public key cryptography) in the 1970s. The new class of algorithms uses functions that cannot be reversed. In other words, the key that is used for encrypting the plaintext cannot be used for decrypting the ciphertext. As a result, a plaintext-ciphertext-plain-text full cycle needs two keys: one for encrypting and one for decrypting. The two keys are naturally related, but one cannot be derived from the other. Note that the roles of the two keys can be freely exchanged: If I will encrypt with A, I will have to decrypt with B, and vice versa. Popular technique names associated with this approach are Diffie-Helman, the popular RSA, and the more recent elliptic curves.

The encryption key can be known by everybody

This new feature is a game changer for our canonical example. Alice can now acquire the encryption key from Bob without fears of interception from Eve. That key is only good for encrypting messages that are intended for Bob but bears no decryption powers at all, so Eve cannot use it for accessing any private content. For this reason, we call such a key a public key. Bob does not need to hide it; in fact, he can publish it so that everybody can send him messages that won’t be readable by anybody else. Naturally, Bob owns the corresponding decryption key. It will be a well-guarded secret that nobody else will ever need to see. For this reason, we define the decryption key as a private key. Public key cryptography is one of the main enablers of the current level of security in the IT world. However, symmetric key encryption still plays a fundamental role. The algorithms implementing asymmetric encryption and decryption are much more resource-consuming than their symmetric counterparts, hence their usage is not appropriate in every situation. The current pattern involves using asymmetric encryption for bootstrapping the communication and securely sharing a symmetric session key. Once the session key is known by both parties, it can be used for protecting the communication using far fewer resources. In the example mentioned previously, Alice would generate a symmetric key and send it as the very first message to Bob. Such a message would be secured via asymmetric encryption, and hence it would be safe from Eve’s attempt to intercept it and would allow Bob to save the value of the session key. Once both Alice and Bob know the session key, subsequent messages between Alice to Bob will be secured by the much faster symmetric session key and still be safe from Eve attacks (see Figure 1-5).

Figure 1-5. Alice uses public key cryptography for sending a secure message to Bob. Eve can’t access the data exchanged.

[image: Image]

Digital signatures prevent illicit modifications of the signed data and can certify the source of the signature

Digital Signatures

We need to make one last effort in our attempt to understand cryptography and that is to talk about digital signatures. A digital signature is a procedure that protects a fragment of data from tampering. When something is digitally signed, it is impossible to apply any modification without invalidating the signature. If the signature is performed using asymmetric keys, and the identity of the keys’ owner is known, it can also be used as a method of guaranteeing the identity of who performed the signature operation. Now that we understand how the public/private key algorithms work, it’s easy to see the mechanism behind signatures. Let’s assume that Alice wants from Bob a statement of some sort, like a contract; let’s also assume that Alice wants the guarantee that Bob will not deny the content of the statement at a later time (a guarantee known as nonrepudiation). Bob can reuse the same asymmetric keys infrastructure we introduced before. The statement, a fragment of data, can be reduced to a smaller string by a function known as thumbprint. The thumbprint of a data fragment is a bit like a printout of your DNA. It still uniquely identifies you, but it’s much cheaper to send via mail than to actually send your entire body via courier. The thumbprint can then be encrypted with Bob’s private key. The result is the signature, and it can be attached to the statement. Now the roles are swapped. Everybody can decrypt the signature using Bob’s public key, having the proof that it was really Bob (as the sole owner for his private key) who performed the signature. Operatively, once Alice receives the data fragment, she reapplies the same thumbprint function used by Bob for signing; then she decrypts the signature, using Bob’s public key and compares the decrypted value with the thumbprint value she calculated. If the two values match, Alice has the proof that the data fragment is actually the one that Bob originally signed. Figure 1-6 summarizes the process.

Figure 1-6. How a digital signature works. In the top half of the picture, Bob applies his signature to a data fragment. In the lower half, Alice verifies Bob’s signature.

[image: Image]

If anybody modifies the data fragment after it has been signed, the signature will break. Applying the thumbprint function to the modified statement will give a certain result that will differ from the result recorded inside the digital signature, hence exposing the modification. Thanks to this property, it is said that the digital signature guarantees the integrity of the statement.

As can be easily imagined, integrity and nonrepudiation are fundamental assurances, and digital signatures enjoy wide usage as the main tool of enforcing those guarantees.

PKI and Certificates

All the things described in this section are pure math. In real systems, however, the keys we mentioned cannot live in a vacuum. We must find ways of reliably associating a public key with its owner, we need ways of generating and distributing keys in the volumes required by enterprise grade usage, we should make those keys available for consumption regardless of the software package used, and we must satisfy many other requirements.

PKI provides a way of associating a key to someone or something

A Public Key Infrastructure, or PKI, is a collective name that indicates the various parts that constitute a solution to the aforementioned problems. In the reminder of this section, we explore some of those components. For the sake of understanding, we make some pretty dramatic simplifications.

The CA is the root source of all keys and certificates in a PKI

One of the key elements of a PKI is a certification authority, or CA. The role of a CA is certifying that a certain key really represents the public key of someone/something. The main assumption here is that everybody involved in the system trusts the CA, meaning that they will consider the opinion of CA to be final. Let’s get back to our Alice and Bob example. Alice wants to send a secure message to Bob, but she never had any previous interaction with him. She does not even know what he looks like. On the other hand she knows that a friend of hers, Trent, is also Bob’s friend. Alice then asks Trent for Bob’s key. Trent gives it to her, and she is finally able to send a secure message to Bob. How do we transfer this notion to the digital world? The most widespread solution involves the use of digital certificates.

A digital certificate associates an entity with its public key

A digital certificate is a fragment of data signed by the CA. the CA’s public key is assumed to be available to everybody, so that in all cases it is possible to verify that the digital signature is valid and the content of the certificate is truly endorsed by the CA. The certificate itself contains a number of things, but for our ends it will suffice to say that it is a container for the bits of a public key and the name of the individual or organization to which the certificate has been awarded.

Certificates leverage the trust relationships between parties

Certificates are a very good mean of propagating key material while leveraging the existing trust relationship. Back to our scenario, Alice can now acquire the certificate that Trent emitted for Bob. Such a certificate will supply Alice with Bob’s public key and will contain an explicit reference to Bob (the subject of the certificate). Alice trusts Trent, and checking his digital signature enveloping the certificate is all she needs for considering the contained key as truly belonging to Bob. Alice is able to check Trent’s signature because she owns a copy of Trent’s public key, itself encapsulated in a special kind of certificate (a root certificate) that Trent endorses himself. This is all summarized in Figure 1-7. This creates a problem for Eve. Without Trent’s private key for endorsing her forged certificates, she won’t be able to impersonate Bob anymore.

Figure 1-7. Alice, Bob, Trent and their relationships. Trent, on the top, has his root certificate signed his own private key; Bob has a certificate signed by Trent, containing Bob’s public key; Alice can see both certificates and hence acquire the associated public keys.

[image: Image]

The X.509 standard describes the most common format for certificates

The most common format for certificates is known as X.509. All the minutiae of the file layout are defined in this standard so that implementers can build certificate-based systems regardless of the platform. We come back to certificates often in the following pages.

HTTP and HTTPS: The King Is Naked

Let’s see how cryptography is applied by the most common systems in use today; again, the reader who is already familiar with HyperText Transfer Protocol (HTTP) and Secure Sockets Layer (SSL) can safely skip this section.

A browser is a program on the client machine that renders content obtained from a Web server, a program running on a remote machine

The vast majority of users today access the Internet though a browser. Internet Explorer and Firefox are two common examples. Websites run on certain types of applications, called Web servers, which sit in front of the files that constitute the content of the website itself. The job of the browser is to request a specific document of the Web server and render the document itself once its bits have been received. The language in which browser and Web server talk to each other is HTTP. It is a simple, text-based protocol that was very easy to implement on different platforms and rapidly became the fabric that keeps together the World Wide Web. Like many other things described in these pages, HTTP was designed in the early, merrier days of the Internet. As such, it does not give too much thought to security. HTTPS provided an efficient solution to that, at least from the cryptographic standpoint.

HTTP

HTTP is the main protocol through which most interactions on the Internet take place

Let’s see in more detail how the browser and the Web server use HTTP for making possible the navigation experience.

Alice wants to access Bob’s home page. She opens her browser and types Bob’s homepage address, say http://www.bob.com/bob/homepage.htm, and presses the Enter key.

The browser parses the line from left to right. The first thing it discovers is that it will have to talk HTTP; the second is that the Web server it is supposed to talk with is www.bob.com. The browser tries to open a connection with the Web server sitting at that address, and then it sends the text shown in Figure 1-8.

Figure 1-8. An HTTP GET request

[image: Image]

For the purpose of the discussion, we can safely ignore the details of the text. The only interesting point is that in the first line the browser asks the Web server for the document it needs.

If everything goes as planned, the Web server locates the document and serves it back to the browser. The text shown in Figure 1-9 is the reply that the Web server sends back to the browser.

Figure 1-9. An HTTP response

[image: Image]

Again, the details of the text are not important. What is interesting to note is that the Web server, after a few lines of HTTP mumbo jumbo, writes the Hypertext Markup Language (HTML) content of the page requested by Alice in clear text. The browser reads the received HTML and renders it as the page depicted in Figure 1-10.

Figure 1-10. The browser renders the HTML.

[image: Image]

Apparently, Bob will show his real page only to authenticated users. Alice fills her credentials in the fields provided and clicks the Submit button. The browser will diligently use HTTP for sending information back to the Web server. The network traffic generated will look like the text in Figure 1-11.

Figure 1-11. The HTTP POST of Alice’s credentials

[image: Image]

HTTP is a very insecure way of transmitting and receiving data

The remarkable point here is Alice’s credentials are perfectly readable by anyone on the path between her computer and Bob’s Web server. Eve can throw a big party.

This is scary. Regardless of the fact that HTTPS, the solution to this problem, has been available since 1996, there is still a surprising number of naïve (or malicious) websites that will treat valuable information as described here. The average user does not run sniffers to see what browser traffic really looks like, so this kind of negligence is largely unnoticed. We come back to this topic in the “Babel of Web User Interfaces” section.

HTTPS

HTTPS leverages certificates for encrypting HTTP traffic

As e-commerce gained momentum, it became painfully clear that HTTP didn’t provide acceptable levels of security for payments and transactions containing sensitive data. For this reason, in 1996, Netscape Communication Corporation proposed a more secure way of handling HTTP traffic. The new system, known as HTTPS, encrypts the exchanges between a browser and a Web server so that man-in-the-middle attacks can be deflected. This important enhancement is made possible by the usage of certificates. An X.509 certificate must be associated with a website for it to be available via HTTPS protocol. Other keywords often mentioned in this context are SSL (Secure Sockets Layer) or TSL (Transport Layer Security). Those are the protocols that actually take care of the security aspects of the communication. Instead of defining brand new security mechanisms, HTTPS uses such protocols for securing the HTTP traffic.

Let’s get back to our example. Bob wants to secure the traffic to his website. He then purchases a certificate from Trent, who owns a well-known certification authority. Such a certificate will declare to everybody who trusts Trent’s word that the public key contained in the certificate is really a key that was awarded to Bob, or better to www.bob.com. Bob configures his website for using HTTPS and his certificates, and then he gives the new address (https://www.bob.com/bob/homepage.htm) to Alice.

Alice enters the new address in the browser and presses Enter. Eve, who is using her sniffer for capturing Alice’s messages, observes the traffic on the network, as shown in Figure 1-12.

Figure 1-12. An HTTPS request

[image: Image]

The answer that Bob’s Web server sends back is even less clear (see Figure 1-13).

Figure 1-13. An HTTPS response

[image: Image]

To Eve’s dismay, all subsequent traffic will be similarly garbled. The confidentiality problem is solved.

HTTPS is very effective for preventing man-in-the-middle attacks between two endpoints

What happened? We really don’t want to go into the details here. However, in extremely simplified terms, here’s what happened. The browser and the Web server exchange information about their respective capabilities for using this or that encryption algorithm, and then the Web server sends its certificate. The browser extracts the public key from the certificate, and it uses it for encrypting a symmetric key that is then sent to the Web server. The Web server decrypts it, and then it starts using it for encryption of all the subsequent traffic in a very efficient way. This not 100 percent accurate (refer to Diffie-Helman for an exact description), but it should give you an idea of how certificates make all this possible.

If a website uses HTTPS, its identity is declared by a CA via the certificate necessary for implementing SSL

One important consequence of the usage of certificates for websites is that this constitutes a cryptographically sound method for declaring the identity of the website itself. If you apply the concepts introduced in the section “PKI and Certificates” to the current example, you will obtain a certificate signed by a certain CA and with a subject field containing the value www.bob.com. In line with what was introduced in that section, this helps anyone who already knows Bob to be sure that his public key is the one declared in the certificate. However, this is also a statement from the CA that the identity of the current website corresponds to what is declared by the certificate itself. Whoever will land his browser on Bob’s website will have the word of the CA that such a website happens to belong to Bob; if the visitor trusts the CA, this will be enough for performing the already mentioned server authentication. In the section “The Babel of Web User Interfaces” we revisit this concept, showing how this helps only to a point when the server authentication has to be performed by a human.

HTTPS has been enormously successful and is the very base of e-commerce as we know it today. It is a good answer to the problem of confidentiality of communications on the Internet. It is also a sound solution for the problem of server authentication, at least from the technological point of view. And yet, despite all those good properties, Internet scams thrive.

HTTPS, Authentication, and Digital Identity

The previous sections, “Cryptography: A Minimal Introduction” and “HTTP and HTTPS: the King is Naked,” describe common problems and solutions that are applicable to all data communication on the Internet, and specifically the ones originated from a browser. Gaining insight into those topics is important for truly understanding the issues related to security and distributed systems, but it’s just a prerequisite for dealing with the problems related to identity management.

Of all the possible browser-originated transactions, we are interested in the ones in which a user attempts to be recognized by a service; in other words, we are interested in authentication. To be consistent, given the distinction we made in the section “Passwords: Ascent and Decline” between authentication and blind credentials, we should probably relax the requirement and say that we are interested in transactions in which the user (or subject) transmits credentials to a service.

HTTPS takes care of communication confidentiality but does not provide a general means of sending identity information

This is a point of key importance. In what we have seen of the HTTP and HTTPS protocols so far, there is nothing that addresses directly the problem of gathering, packaging, and transmitting user credentials. To be fair, HTTPS actually features mutual authentication. We will see in the section “The Babel” why it is safe to ignore it for the time being.

HTTP supplies the verbs for sending data from the browser to the server; HTTPS provides an opaque pipe through which packets can be sent protected from eavesdroppers. We can certainly use those tools for sending credentials in a secure way, but we have no indications whatsoever of the nature of those credentials or how they should be packaged. The result is fairly predictable. Secure credential transmission is widely implemented, but pretty much everybody does something different.

The lack of a standard makes authentication a feature at the application level

Because authentication is not officially part of the protocol, it becomes a responsibility of the application developer. When you write a website, you have to explicitly create a page with a user interface for gathering credentials; you have to write the code for securing credential transmission; finally, it is still you who has to write logic for reading the credentials just received in some structure in memory for being able to take authentication decisions. Sure, countless libraries will ease the burden by supplying you with ready-to-use controls, page frameworks, and authentication mechanisms. The problem lies exactly in the adjective countless. Everybody gives a solution tailored to a specific platform or context, and the result is that all hope of consistency and prompt interoperability is lost. There are no reasons for rating one solution superior to another. They all make sense for their specific context, so there is no selective pressure that would lead to convergence and hence little hope that a de facto standard would spontaneously emerge. This is especially true on the Internet where the requirements, technical capabilities, infrastructure, business drivers, and so on all vary widely and unpredictably. The consequences of this fact go beyond the sheer technical considerations. The way in which user interaction is negatively influenced is explained in the section “The Babel of Web User Interfaces.”

All of what we’ve described would not be that bad if usernames and passwords were a viable option for Internet authentication.

The absence of a standard is not the main problem with relying on passwords

Those who work in the IT industry know that many of today’s accepted practices are in fact pretty baroque hacks. Despite all the talk about enterprise application integration first, and service-oriented architectures later, swivel chair is still the preferred integration technique in a surprising number of companies. Mitigating the lack of a standard place for username and password in today’s Internet protocols would not require anything uglier than previously described. Unfortunately username and password just won’t get the job done. The section “Passwords: Ascent and Decline” already provided some solid rationale for why passwords are not a good idea, but we are now ready to understand deeper, systemic reasons for why we need another solution.

Credentials are different from identity

In fact, the key reason is astonishingly simple: Username and passwords are not your identity.

For a service or a website, a username is just a moniker for something that is already there: your registration data, the details of the service contract to which you subscribed, the settings you chose, the operations you can perform, and so on. If those facts are not directly there, they are still indirectly represented by the business rules that will be applied to you once you sign in and use the application. The password is just the shared secret that was agreed upon for demonstrating that is the person requesting access to the resources entailed by that username is actually the same person that originally signed up.

Credentials can unlock access to an identity

For the website, you are not your username and password. You are a set of facts and statements that are relevant to the services and data it offers. Usernames and passwords are just a means of locating and unlocking your digital identity.

The meaning of identity is intended here in the operational sense

This is certainly not the place for indulging in philosophical discussion; however, it is worth pointing out that when we talk about identity in the business and technical context, we intend to use the term in the operational, as opposed to the essentialist sense. A business identifies you not as the unique human being that is you, but as the set of facts and privileges that are associated with you and relevant to the scope of the services offered. If you are flying in economy class and you try to check in at the business class counter, the queue attendant will ask you for credentials. If you just show your passport, strong credentials from your government for demonstrating that it is really you, the agent will gently accompany you to the huge line in front of the economy counter. On the other hand, if you extract the frequent-flier card from a partner airline and you wave its golden shine, you will happily enjoy the privileges derived from having poured a stupid amount of cash into flight fares last year. What happened? It was you all the time, but in the latter case it went much better. The reality is that in the business context, and maybe in all contexts except ethics and philosophy, identity is an operational concept. Identity is the set of true facts about a subject that are relevant to the given context.

You might think that the preceding example is spoiled by an implementation detail. If the queue attendant would have searched your name in the database, instead of just inspecting the passport, surely he would have discovered that you are a gold member! Unfortunately, this is not the case. In our example, your frequent-flyer membership is associated with a partner airline, and hence it is in the partner airline’s database. Your name does not appear in the database of the airline you are flying with, or, better stated, it appears associated with the status of simple passenger (see Figure 1-14), a detail derived from the business relationships you maintain. We explore these concepts in greater detail in Chapter 2, “Hints Toward a Solution.”

Figure 1-14. The airline customer has different identities (and different privileges) on the two airlines’ computer systems

[image: Image]

If your identity is defined in the database of a website, chances are that you will be able to use that identity only with that website

The airline example is another tool for understanding what is wrong with the current authentication methods. It provides a classic example of the phenomenon that we call “hostage identity.” Every time you sign in on a website, you acquire the capability of using your digital identity with that website. However, some of the information that makes up your identity in this context is probably the same as the identity you have with many other websites; nonetheless, you are forced to feed that info over and over again because there’s no clear way of communicating that data between websites. The absence of that communication channel is a challenge if we want to replicate in the online world what we described in the frequent flyer card example: using one identity across business partners. In the example, you used the privileges of your gold member status, achieved and memorized on the back end of one airline, with another airline as the service provider.

Sharing identities across boundaries is a common problem

Challenging does not mean impossible, of course. Business partnerships always endeavor to make internal resources accessible to partners: that is to say administering access privileges to one own network’s assets for accounts and identities managed by somebody else. In fact, many schemes and technologies beyond passwords have been developed for this purpose. In the section “The Babel,” we examine some of them. You will see how certain patterns we have seen in password adoption will repeat themselves in this case, too. Technologies that work well inside the boundaries of one company, or in the context of a well-defined business partnership, are not necessarily fit for a verbatim extension to the vast sea of the Internet. How we extend the benefits of digital identity from the business world to wide consumer availability is the key theme of Chapter 2.

The Babel

Passwords and shared secrets are not the best way of expressing and transmitting credentials. Hopefully, the discussion so far has made that point explicit.

Many different authentication schemes are in use today

Authentication is important for everybody, but for certain processes and markets it is truly business critical. Hence it should not come as a surprise that a number of robust alternative credential-passing techniques have been developed and adopted through the entire industry.

Some of those techniques mainly aim to harden the authentication process (for example, relying on asymmetric cryptography rather than shared secrets). The use of client certificates, regardless of the form factor in which they are made available, is an example of that. We discuss this in more detail in the section “Certificate-Based Client Authentication Schemes.”

Another category of authentication techniques not only goes beyond the shortcomings of passwords, but also tries to solve the hostage identity problem described in “HTTPS, Authentication, and Digital Identity” section. Although username and password usually unlock information already residing on the service, your digital identity in that context, those new techniques try to obtain a portable version of the same information so that it can be reused elsewhere. In other words, those methods devise a new kind of credential that is actually descriptive of the identity it represents. Security Assertion Markup Language (SAML) and Kerberos are good examples of those techniques. We briefly describe them in the section “Issued Token–Based Authentication Schemes.” We also take the opportunity to introduce the concept of federation.

Those practices do not really present inherent flaws like passwords do. Sure, some require more infrastructure than others, some are cryptographically stronger than others, and so on. But in the end, they all are very successful techniques, and used in the context in which they are meant to operate, they do an excellent job.

Note the qualifying phrase “in the context in which they are meant to operate.”

Non-password-based authentication schemas need a level of agreement that cannot be achieved in the fragmented reality of the Internet

As hinted at the beginning, those techniques were developed for dealing with cases where the defects of passwords were unacceptable. That very often means peculiar scenarios with strong IT infrastructure, such as enterprise resource access, governance of large-scale resource deployments, business partnership management, and so on. Because they all solve their own special flavor of the authentication problems, those schemes are quite different from each other and can’t usually interoperate without bridges or expensive, brittle integration layers. When the global network was made up of many company islands sparsely connected, that wasn’t an issue. As those islands intensified intercommunication, it became more of a problem, but nothing that cannot be resolved (at least tactically) without throwing the right amount of money at it. That probably suggested that those techniques were suitable for being safely extended to the Internet, as it happened for passwords. Finally, the ubiquitous presence of Internet access we enjoy today refined the granularity of the connected unit to the single individual. The sheer scale and complexity of this new Net makes a number of those techniques simply unfeasible, so you don’t see them in the consumer space. However, there are non-password-based authentication schemes that can operate on the individual scale. The simple fact that they can’t interoperate, however, is a deal breaker for supplying a universally valid authentication system. The simple diversity of authentication schemes, necessary for addressing the different need of the specific scenarios they are designed for, limits the user’s capability to reuse the identity itself and the proficiency gained in handling a certain technique across multiple services. As for many Internet-related phenomena, there are no good reasons for believing that a common system will spontaneously prevail over others. Even if it would happen, there are no guarantees that it will not be at a certain point supplanted by another future system, one better equipped for dealing with some unforeseen evolution of the IT landscape. In Chapter 2, we discuss a simple and straightforward solution to this apparently very hard problem.

We devote the rest of the section to describing some notable examples of nonpassword authentication schemes. In line with the style adopted so far, we substantiate the abstract considerations made previously with concrete facts that can come only from a solid understanding of the underlying mechanisms and protocols. Besides helping to make our point about the incompatibility that afflicts today’s authentication Babel, the following descriptions introduce key concepts (such as security token and federation) that will be instrumental in your comprehension of Chapter 2. If you are not familiar with those notions, we suggest you to take the time to go through the next two sections.

Certificate-Based Client Authentication Schemes

In the section “PKI and Certificates,” you saw how certificates can relate one entity to its public key. In the section “HTTPS,” you saw this concept applied to websites, showing how the infrastructure can be used for supporting server authentication.

Certificates can be used as a means for authenticating users

Because certificates and asymmetric cryptography in general work so well for handling data exchange and identity of services, it is reasonable to expect that those good properties may apply to end users, too. A CA can issue a certificate for an end user, assigning a suitable value to the subject field. All the end user has to do is show off his knowledge of the corresponding private key, and everybody who trusts the CA will have all the evidence needed for believing in the identity of the user. Sounds straightforward, and in terms of the principle it is. The idea has been successfully applied in a number of technologies and contexts in which passwords are deemed sorely inefficient, and the field is in constant evolution. However, there are a number of attention points that must be addressed when using certificates assigned to end users. Although the majority of situations in which this technology is applied are suitable for addressing those issues, this is not necessarily the case on the scale of the Internet. In this section, we explore a few practical applications of certificates as a means of authentication for end users, highlighting why they are very successful in their intended context but not necessarily suitable as a universal solution.

Corporate Smartcards and Intranet Certificates

Strong governance can make certificate-based authentication viable

In the section “Ascent,” while describing the rise of local networks, we introduced the concept of authorization. When the user lives in a world of resources managed by a single authority, the one who set up the network infrastructure in the first place, it is possible to regulate accesses and privileges by using the user identity as opposed to a list of blind credentials. It is interesting to point out that, in the context of a corporate network, the user is a managed resource (or, to be precise, the user’s account is). The exact meaning of the term will vary depending on the platform on which the network infrastructure is built. However, you can think of it as the logical representation of the user identity in the network. In certain systems, it may be a string representing a username, some means for verifying the corresponding password, a set of permissions codified in some way, and the home directory; in others, it may contain something more or something less, but that is the basic idea. What does it mean, in practical terms, that the account is a managed resource? It means that the network handles its creation, provisioning, maintenance, and deletion. The network governance can exercise complete control over the account itself. In such a situation, assigning a certificate to every account on the network is reasonably easy. The network can have its own CA, which can issue a certificate contextually to the provisioning of an account; the network itself can take care of distributing the certificate in the appropriate locations; again, the network can take care of eliciting a certificate renewal when the time comes, enforce certificate revocation when appropriate, and verify proper usage at every step. It is also easy to get every service and resource in the network to trust certificates emitted by the corporate CA because everything lies under the umbrella of the same authority.

From the user perspective, the presence of a certificate may or may not impact the experience. The most visible case is certainly the one in which the certificate (and its private key) lives on a smartcard. In that case, the user is assigned a physical piece of gear. Typically, the smartcard has to be inserted into a reader for performing certain operations, such as logging in to the system or performing a remote access. The network software or the operating system try to use the private key on the smartcard for demonstrating to the service requested that the user has access to it, hence proving his identity. A further protection is guaranteed by locking the private key behind a PIN code. At every usage of the smartcard the user will be asked to type in an unlocking code, blind credentials that prevent scenarios in which a thief tries to use someone else’s card. This is a good example of a two-factor authentication technique. An employee must use something he has (the smartcard) and something he knows (the PIN) together for gaining access.

Certificates impose a trade-off between security and agility

Using a smartcard is incomparably more secure than simple username and passwords. However, it is also way less agile. We have seen how being able to count on a centralized network makes its use possible; however, it is still an expensive endeavor. Smartcards have to be bought and flashed; readers have to be deployed; policies have to be created and enforced for distribution; certificates have to be renewed. Good network software can help, but not everybody has a full Windows 2003 domain with autoprovisioning (or equivalent technology) in place. Even in that case, from time to time users will lose their smartcards; they will not log in on time for the renewal to take place; they will choose useless PINs; their readers will break; you can apply your favorite flavor of Murphy’s law here. As previously mentioned, security has a price. In the smartcard case, only those with a good investment in IT resources can afford it.

The so-called soft certificates, certificates that reside on the user’s machine rather than in an external device, do not offer the same advantages of smartcards, and they even share some of their shortcomings.

SSL Client Authentication

HTTPS supports the use of certificates as a means of user authentication

In the section “HTTPS,” we mentioned how the HTTP protocol can mitigate its security shortcomings by relying on lower-level protocols such as SSL and TSL.

Another good property of SSL is that, analogous to what happens with the server, it can leverage a certificate for performing client authentication. Without really going into the gory details of the SSL handshake, the following list summarizes how SSL client authentication works:

1. The user points the browser to a Web page that requires SSL client authentication.
The system examines the user’s local account for suitable certificates available on the client machine; depending on the results and on the settings, the user may be prompted to choose a specific certificate or give his consent for the certificate usage.

2. The certificate is sent to the server, along with a small fragment of random data signed with the private key corresponding to the chosen certificate.
The server verifies a number of things, including integrity of the signature, trust relationship with the CA, certificate expiration, CA signature on the certificate, and so on. If everything is okay, the Web server will try to map the certificate to an account on the network to which the server belongs. Alternatively, it may try to map the certificate to an application account (that is, an identity that makes sense only in the context of the website application).

3. When the Web request has been mapped to an account, the usual authorization checks will take place.

Figure 1-15 summarizes the process.

Figure 1-15. HTTPS client authentication steps

[image: Image]

It is very straightforward. Furthermore, SSL is a widely implemented standard, supported by all the major browsers, Web server software, and platforms. The chance of leveraging interoperable client authentication seems like it would be fairly high given that SSL use is ubiquitous. Yet, this is not an exceptionally common scenario.

Again, HTTPS client certificate authentication can be viable in enterprises with strong governance

SSL client authentication is great when the infrastructure is already in place. If an employee is trying to access a website that is an asset of its employer network, where he owns an account, SSL client authentication is a way of extracting further return on investment (ROI) from the certificate infrastructure investment. If somebody already went through the headache of the provisioning problems, enabling SSL client authentication has very little cost compared to that. In the consumerism era we are living in today, where we often have better computer equipment at home than in the office, remote access is an increasingly popular scenario.

HTTPS client certificate authentication does not work very well with customers because of the difficulties of distributing and maintaining certificates on unmanaged machines

There are also businesses that chose to protect their customer-facing services with SSL client authentication. The approach exhibits clear advantages over passwords, especially for activities involving high-value transactions. For example, a home-banking application protected by a client certificate is not susceptible to phishing as we know it today. All the authentication operation is based on asymmetric cryptography; there is no shared secret between the bank and its customer, and hence there is nothing to steal that a phishing attack may acquire and reuse. Those advantages, however, come at a very high price for the brave bank that decides to implement such a scheme. Customers are not employees. Trying to extend governance to their IT assets is like herding cats. Everybody will have different systems, different degrees of understanding of computer usage, different habits, different expectations. The first provisioning of the certificate can be challenging, given the number of things that can go wrong during acquisition and installation, plus renewal and maintenance is an outright nightmare and roaming access is a challenge. As we discuss in the section “The Babel of Web User Interfaces,” certificates and their management are not concepts we can hope the user is familiar with. If you want to use them in a consumer-facing application, be prepared to reinforce the headcount of your call center and train your IT staff to twist your processes for accommodating all sorts of unforeseen exceptions. These are all good reasons why, regardless of how good the system is from the cryptographic standpoint, encountering a website taking advantage of SSL client authentication remains a fairly infrequent experience. As a result, the method is largely unknown to the majority of end users.

Hard Tokens

The key difference between client certificate management in the corporate environment and in external customer-facing applications is in the degree of control that an authority can hope to exercise on the client machine. We explored in the preceding two sections how this difference can often be the key factor in the feasibility of the approach. However, there are situations in which, from the IT governance perspective, the line between employee and customer blurs.

The need for protecting high-value transactions may make the use of hard tokens feasible even with consumers

Although you can choose with which bank you want to open a credit line, when you want to visit a foreign country, you have no options. There is one and only one institution that can grant you travel documents, and that is your government. If you live in a country where the health care is managed by the government, again you need to follow the procedures established by the corresponding institutions. If you are a professional in a certain discipline, there is likely an association that gathers other professionals like you and establishes global guidelines such as those for ethical conduct or the acceptable fares you can charge. The list could go on and on, but the concept is clear. We are all part of a number of relationships where there is a single natural authority (or very few), an obvious stakeholder and service provider that are the de facto owners of a certain aspect of our activities. Those authorities often have grave responsibilities, such as handling citizen identification, and hence they experience great pressure to keep their system at a state-of-the-art security level. This simple fact, coupled with the fact that the exclusive nature of their relationship grants those authorities more freedom in the matter of user acceptance, is serving as a powerful impetus for certificate-based authentication techniques.

Many countries are investing significant resources in the creation of electronic IDs for their citizens; other institutions are following suit, devising authentication schemas and electronic counterparts of their traditional service cards. It is in the interest of everybody to make such systems easy to use, and the finest professionals and resources are being dispatched on the problem. Some might have reservations based on concerns about privacy and choice. However, if in the end your country decides that from now on you must use a certain technology for obtaining your marriage certificate, you better learn how to use the system.

To be fair, the technology behind the electronic IDs is experiencing a powerful boost also in other, less-constrained contexts; as the failures of the password-based systems become more evident, the need for exploring alternatives becomes more pressing. We will stick with the electronic ID example because it exemplifies the phenomenon well.

We are currently experiencing a Cambrian explosion of electronic IDs (eID for brevity): different form factors, different technologies, different intended usages, different requirements, and different security guarantees. There are USB thumb drives with fingerprint readers, plain smartcards, small number generators, simple external storages, and so on. What’s relevant in our context is the usage of certificates on eID. Again, there are many different flavors in this category alone. For the sake of our discussion, we consider only those functionally equivalent to smartcards (including smartcard themselves). We already described the technicalities of smartcard usage, and hence we can concentrate on the special features of applying this technology to the case in point.

Despite the different form factor, hard tokens have the same certificate lifecycle problems as smartcards

Here we have all the same problems we had with smartcards outside of a corporate environment. Those are not unsolvable problems, just very expensive ones. Actually, we also have some new challenges induced by the intended usage of eIDs. Our discussion of client certificates so far has worked on the implicit assumption that the certificate is just the active part of the user credentials, while the account (hence the identity) would live on the machine offering the requested service. In other words, the requested service would be under the control of the same authority that emitted the credentials. This does correspond to what happens in the offline world when we make a request of a certain business, such as withdrawing money from an ATM. The machine will verify our bank card and our PIN. Unfortunately, it is a less-accurate model for scenarios in which our credentials are more general purpose. You can show your ID to the police officer who is going to fine you for exceeding the speed limits, and you can show the same ID to that bartender in Minnesota who needs to know if you’re over 21. Although the former scenario may involve use of a service that would be considered a government asset, the latter scenario certainly does not. To bring the paradigm back to the online world, a website representing the officer may have just checked the signature on your ID and checked back on the government backend as to whether you are entitled to drive, whereas the bartender website would only be able to check that your credentials are actually yours and emitted by a certain state. Not having access to your identity, stored in the inaccessible government backend, the bartender website would have no way of establishing whether you are 21. This is another form of “hostage identity” we mentioned in the section “HTTPS, Authentication, and Digital Identity": Substituting passwords with certificates gave us a much safer kind of credentials, but the same distinctions between credentials and identity still apply.

Using hard tokens as electronic IDs entails interesting challenges

The usage required by some kind of eID simply cannot follow the state of things as exemplified in the previous paragraph. The eID must enable its bearer to communicate facts about him as statements endorsed by the issuing authority. That is the sheer raison d’être of documents in the offline world, and the electronic counterparts are no exception. As a result, such statements must be somehow embedded in the eID. Because there’s not always room for them directly in the certificate, a common solution consists of storing on the eID a data fragment, signed by the CA associated to the eID issuer, containing the desired information. Such a data fragment must be signed by the authority for enjoying the same trust as the certificate itself. However, it cannot be encrypted specifically for any service. At the issuance time of the eID, the target services are not known, exactly like you didn’t know which countries you would have visited the day in which you got your passport. What works for offline documents does not necessarily hold for electronic ones. In the online world it is much easier to copy data just by seeing them once, while at the same time it is much harder for the user to understand what is going on in terms of information flow. As a result, the system is prone to abuses, and the privacy of users can be at risk.

Even if a system standardizes on the use of certificates, certain aspects may still prevent interoperability

There is another problem associated with data: Just as there’s no clear way of storing assertions on a certificate, there’s not a place for the data in protocols either. The SSL specification mandates where to put the certificate in the communication streams described by the various phases of the protocol. Everybody who implements this function in his product will be reasonably sure that he will interoperate with everybody else. Things change when country A decides to issue eIDs that contain first name, last name, home address, and blood type packaged in a certain way and communicated using a custom HTTP message. The eID from country A will work only with adequate software on the client machine that is able to read the data from the eID and inject it in the right stages of the message flow. The targeted service will also need to be aware of the differences of the approach; otherwise, it will not be able to make use of the incoming data. There are no guarantees at all that country B will adopt the same system or will even be willing to create services that are A-eID aware. There is really no judgment implied about whether the eID from A is better than the one from B. They can both have exceptional technical merits and solve beautifully the problems they were designed to address. Unfortunately, the sheer fact that they are so different is a problem when considered from a global-scale perspective. This, added to the wide variations in form factors and requirements, is a sure recipe for complete incompatibility. Should the hard token idea, as described so far, be truly successful, you would witness rather bizarre scenarios. You would have to bring with you many different devices (the so-called necklace effect) for the numerous services you are a customer of, all requiring slightly or significantly different usage and all with different software (drivers and protocols) and hardware (readers, ports) dependencies. Unless a dominant model emerges or a further standardization takes place, the preceding scenario sounds a bit too taxing on users and resources to be likely.

Issued Token–Based Authentication Schemes

Passwords stand up to certificate-based authentication schemes like a bicycle stands up to a heavily armored tank. The latter is much more secure, and you can certainly imagine situations in which you would not want to go around with anything less, but it requires such an expensive infrastructure that driving everywhere with it is not really an option.

Certificates are static

Certificates are great for handling the identity of resources such as services and websites. Those are fairly static entities accessed by many users; they typically stay online for periods that can be measured in months or years; they have somebody behind them who is motivated to pour money into their maintenance. This kind of usage pattern is well suited to the static nature of certificates: The information a certificate conveys, the name of the website, and the cryptography necessary for secure communication are usually enough for a customer to decide whether he wants to do business with it. What are the shortcomings we observed when we applied the same technology to end users? Provisioning and maintenance are difficult, to begin with; then, there’s the matter of the expressive power (credentials versus identity). On the other hand, we were really happy about the use of cryptography; it would be a real pity to forsake it.

Issued tokens can have the same cryptographic strengths of certificates, yet at the same time be more expressive and much faster to obtain

The preceding considerations, and others not discussed here, led to the great success of the concept of an issued token. A token is in many ways similar to a certificate. It is a data structure that contains cryptographic material (keys), and it can be associated to known entities. It is, however, usually much more agile. It does not require a file format or complex stores on disk, it can be issued and used in a matter of milliseconds, it can have an extremely short expiration time, and, perhaps more important, it can contain statements about the entity it has been issued for. It is truly a piece of user identity, packaged in a way that can travel together with service requests; it is also a way of transmitting user credentials, or at least a means of performing authentication operations. The presence of the statements part allows nearly immediate authorization operations, too. A token is not issued by a CA, but by a functional equivalent. The details of the authority that issue tokens will vary depending on the technology used for implementing the scheme.

Tokens are very popular in network software

Many network infrastructure software products make use of token-based schemas. After users log in to the network, they are typically assigned by an authority a token that represents their identity in term of their access rights (or information useful to deduce access rights). Every time an account attempts to gain access to a resource, the information contained in the token is combined with the policy associated with the resource itself (often codified in form of an access control list, or ACL), and an authorization decision is made. This is much more efficient than maintaining a huge list of users and resources in a central location and having to go though it every time an access is made. All of this happens under the constant protection of cryptography, applied consistently at every step. In the section “Kerberos,” we discuss how a technology based on that model works.

Those are great advantages. Unfortunately they are improving a scenario, the intranet, that was already in a pretty good shape. In fact, we just explicitly explained what happens when somebody uses a local network after he successfully logged in: The access method, the way in which the user logs on, is not really changed by the fact that the network software is token-based. Understanding the mechanism behind token usage is, however, of paramount importance because it is the first evolutionary step toward cross entity authentication. Without tokens, our identity would be doomed to never leave the boundary of the network it has been created for. As you will see in the next two sections and in Chapter 2, tokens are the way of breaking free of the hostage identity problem. We first examine Kerberos, a protocol that uses tokens mainly in the context of a local network; then we take a quick look at the Liberty protocol, which builds on the idea of tokens for extending the reach of user identities beyond the boundaries of their home network. We enumerate the merits of those technologies, and we try to pinpoint the reasons why they are still not the ideal universal system for handling identities on the Internet.

Kerberos

Kerberos is a widely adopted technology

Kerberos is the name of an authentication protocol, originally developed by the Massachusetts Institute of Technology (MIT) in the 1980s and today widely adopted by many products and operating systems. Windows has used it since Windows 2000, Apache uses it, Mac OS X uses it, Cisco uses it, and so on. Its three decades of success are a proof of its efficacy.

After all the cryptography legwork we have done so far, understanding how Kerberos works will not be a problem. We need, however, to establish some terminology before proceeding.

Principal, Realms, KDC, and tickets are the basic entities and concepts behind Kerberos

In Kerberos terms, a principal is just everything that can be authenticated or that requires authentication before being used. This is a blanket definition that covers users, resources such as applications and services, practically everything that can participate at either end of an authentication transaction. Principals are grouped in realms. (Those familiar with Windows terminology can think of those as domains.) Every principal in a realm is assigned a symmetric key. Such a key is known only by the key owner itself and by a central service known as the Key Distribution Center (KDC). The KDC knows the key of every principal. In a nutshell, the KDC is the authority that is involved every time a principal needs to authenticate for using another principal; the currency used in the operation is a security token, which in Kerberos terms is called a ticket.

We can use once more the help of our friend Alice for understanding, at least in general terms, how the Kerberos protocol works. Alice owns an account in our Kerberos realm; she wants to access service B, also a principal in the same realm.

1. Before everything else, Alice needs to log into the system. She accomplishes that by sending her credentials to the authentication service (AS), a component of the KDC. “Sending her credentials” is not actually accurate, but it should be enough for the purpose of the discussion.

2. If the AS recognizes Alice as a principal in the realm, it sends back to her two pieces of data:

[image: Image] A symmetric key that will work as a session key for all future communications between Alice and the KDC. Such a key is encrypted with Alice’s own key, so man-in-the-middle attacks would be ineffective. Actually, all subsequent communications from Alice will target a component of the KDC, the ticket granting service (TGS). You can think of the TGS as the authority that can issue security tokens (that is, tickets in Kerberos terms).

[image: Image] The same symmetric session key, this time encrypted with the key of the TGS. This specific data fragment is a ticket, a token that can be used for talking with a service. Because the service for which this ticket is intended is the TGS itself, we call this special token a ticket granting ticket (TGT). Because the TGT is encrypted for the TGS, Alice (or anybody else) will not be able to see its content; she will have just to keep it somewhere and attach it in future conversations.

Understanding the role of the TGT is easy. Imagine that Alice is entering a theme park. As she enters the facility, she pays for an all-day ticket that allows her to take many rides through the day without paying more. This is her TGT. Every time she wants to go on a certain ride, she will go to the line to the local ride ticket counter. When she reaches the cashier, she will have just to wave the TGT to get the ticket for the ride she is about to embark on.

3. Alice now has a session key for talking with the TGS and a TGT. She then uses the former for requesting a new ticket for accessing B; she includes the TGT in the request.

4. The TGS verifies the content of the TGT using its own key and then applies authorization logic on Alice’s account. If it turns out that Alice has the right to access B, it sends back the following data fragments:

[image: Image] A new symmetric session key intended for communications between Alice and B. Such a key will be encrypted with the Alice-TGS session key.

[image: Image] The same new symmetric key, this time encrypted with the secret key of B. This is the client/server ticket that Alice will attach to communications with B.

5. Finally, Alice is in the position of authenticating herself with B. She will send a communication to B using the symmetric session key acquired in the former step, and she will attach the ticket she just obtained for B.

6. B will verify the content of the ticket presented by Alice, and if it can provide the requested service, it will start its session with Alice.

The process is summarized in Figure 1-16.

Figure 1-16. Kerberos authentication schema: Alice attempts to use the Service B.

[image: Image]

The preceding sequence purposefully ignores many details, including the clever usage of timestamps for keeping the protocol safe from reply attacks and other abuses. The purpose of the preceding description was to show how the idea of ticket, or token, coupled with the availability of an authority (the KDC) can truly secure interactions and support identity-based decisions directly at the resource, by propagating information otherwise available only at a central location.

Tickets can contain arbitrary data and are encrypted on-the-fly so that only the intended recipient can consume them

Remember when we tried to use certificates for client authentication? The few data we were able to embed in the certificate was the data available at the moment of issuance. In the Kerberos model, in which a ticket is generated anew all the time, we can guarantee that information is always as fresh as it can get. Furthermore, we can embed arbitrary information or even reflect authentication and authorization decisions just by emitting or not emitting a ticket upon request. The best part of all this is that we didn’t have to give up security for obtaining such agile features. Every leg of the schema previously described is properly secured. We can even overcome some of the security weaknesses we encountered in the section “Hard Tokens.” When we discussed the eIDs and the need of supplying declarative information about the bearer of the hard token, we encountered the problem of not knowing in advance which services the eID will be used for. That lack of knowledge prevented a proper encryption strategy of the declarative data. With the ticket model, the session keys are dynamically negotiated every time; furthermore, the data about the user is handled directly by the KDC. This means not only that we have a means of circulating identity information on demand, but that we can also make sure that every time the data will be encrypted to the exclusive advantage of the intended recipient! We are really getting close to solving many of the problems we encountered so far.

Kerberos works very well in a local network but does not model well the pluralism of authorities on the Internet

Unfortunately, Kerberos is not the universal solution we are looking for. Its omniscient KDC, the key pillar of the entire architecture, is not a concept that scales to the Internet. Furthermore, Kerberos is a fairly low-level protocol. Although all implementations of it share the common ideas and architecture described previously, many small differences and added-value services make ready interoperability rather difficult. Even if the wire interoperability were easier than it is, the granularity suggested by the concept of principal is too fine to be practical across loosely coupled business partners. Despite the limited extensibility beyond corporate and business-to-business scenarios, the three-headed architecture (user, KDC, service) introduced by Kerberos is an important step in the process that will eventually bring us to truly portable identity. Fins are looking more and more similar to legs at this point.

SAML

The Security Assertion Markup Language, or SAML, made its appearance as the OASIS standard in 2002 but gained the most momentum in 2003, with the ratification of version 1.1 of the specification. The current version of the specification, SAML 2.0, represents convergence with other technologies and extends its original scope. For the sake of this section, we focus mainly on SAML 1.1.

SAML was designed for resolving the cross-domain single sign-on problem

One of the main reasons for the emergence of SAML in the first place was the pressing need of addressing cross-domain Web single sign on. Single sign on, or SSO, can be defined as the capability of accessing multiple resources that require authentication while requiring the user to go through the authentication experience only once. One common trick used to achieve SSO with browser-based applications consists of saving a special cookie upon successful authentication. All subsequent applications will just verify the presence of such a cookie and avoid prompting the user for credentials if they find it. Unfortunately, the trick doesn’t work across domains. An application belonging to a certain domain cannot read cookies written by applications running on another domain. This simple fact prevented companies from using the cookie method for achieving SSO with business partner websites. As a result, many different (and incompatible) technologies were devised for addressing the issue.

SAML introduces the concepts of asserting party and relying party

The SAML solution to the problem entails the creation of an authority, called the SAML authority or asserting party (AP), which can state security assertions regarding a principal. An example of such an assertion may be “Alice is a principal in my realm, and she just successfully logged in using username/password as credentials.” Such an assertion can be presented by Alice while she tries to gain access to a service offered by another realm. The target service, known in the SAML schema as the relying party (RP), can use the assertion for acquiring information about Alice and, depending on whether it trusts the AP and on the local authorization policies, can make an informed decision about granting or denying access to Alice.

In SAML the term assertion has a very specific meaning. It is a special Extensible Markup Language (XML)–based format, precisely described by the SAML specification, which is designed for transporting security information. It can contain authentication statements (Alice signed in using authentication method x), attribute statements (Alice belongs to the Managers group in the AP realm), and other kinds of assertions. The result is an extremely flexible and powerful tool for describing a digital identity or parts of it. The choice of using XML pays off in terms of interoperability and avoids the pitfalls we observed in Kerberos.

The SAML specification defines the format for assertions and a protocol for sending them around

The rest of the SAML specification (protocol, bindings, and profiles) deals with the details of how to request an assertion, how to embed assertions in existing protocols and transports, and how to address specific scenarios such as how to solve the browser SSO by passing an assertion by value or by reference. The details of the SAML specification, such as all the different browser redirects that may occur while issuing and propagating an assertion, can be fairly complex and are beyond this scope of this discussion. If you want to learn more about SAML, see the excellent official documentation provided by OASIS. You can find it at www.oasis-open.org.

Did we find the ultimate way of handling identity on the Internet? Unfortunately, we’re not there yet. SAML is certainly a better Internet citizen than Kerberos ever was. However, it still contains a number of characteristics that prevented its wide adoption at the end-user level.

The AP looks much more agile than the KDC, but it also performs fewer functions. The AP can state assertions about Alice that can be understood outside its realm, but there’s no direct management of the cryptography aspect. In the browser scenarios, SAML relies on transport security. That is, it assumes that every communication will be protected by HTTPS. We have seen how this does not necessarily guarantee that the user will be comfortable with it.

SAML tends to leverage business relationships that usually do not apply to single users

Furthermore, SAML came out as something intended for addressing business-to-business transactions. This is reflected by the fact that many sequences imply direct communication between the AP and the RP. Many of those communications will be possible only if the two parties are already tied by a business relationship that goes beyond just sharing the same semantic for the same attribute statements. Such a situation is unfeasible on the Internet, where dynamic aggregation centered on user decisions is a common pattern. A tightly coupled relationship is costly to initiate and maintain, and therefore it is used when it makes solid business sense. A user can’t possibly hope that all the services he will ever have to authenticate with are in tightly coupled relationships with each other or with a single AP.

Convincing everybody to standardize on a single technology is very difficult

The last point we want to make is something that applies to every authentication technology mentioned so far. Regardless of all its merits, SAML is just one technology among many. It has enjoyed very good adoption, but even in the business-to-business space it is far from being the de facto standard. It shares this space with many other SSO technologies, and it’s not certain at all that one solution will ever emerge over all the others.

The Babel of Web User Interfaces

The communication protocols on which the Internet is based do not address the problem of transporting credentials. While exploring this issue in the section “HTTPS, Authentication, and Digital Identity,” we highlighted the fact that the most notable consequence of such a shortcoming is that credentials handling is currently a responsibility of the application developer.

We have seen how this simple fact promotes strong differentiation in the feature sets of libraries and components; in this section, we discuss the impact it has on the interactions with the end user. We also consider user perception in general and how the feeling of not being in control of the situation affects people’s trust in online systems in general.

How can the user make sure that the page he is looking for is the one he intended to visit?

In the section “HTTP and HTTPS: The King Is Naked” we have seen in extreme synthesis how the Internet works: You type an address, and the browser takes care of requesting the corresponding page and rendering it. URLs are one of the few indications of “where” the user is (that is, where the page currently rendered in the browser comes from). Actually, there’s often no need to type addresses. Search engines, links, and bookmarks can point the browser in the right direction without forcing you to type extra long and largely meaningless URLs. As a result, the average user might not pay a lot of attention to addresses or get a lot of meaningful information from them. What is the most obvious visual clue users leverage to determine where they are? The rendered page itself! Unfortunately, it is very easy to replicate the look and feel of a legitimate page on a fraudulent server. There’s more: The replica does not even need to be that accurate, as we explain next.

A familiar environment offers certain “landmarks” that the user can leverage for understanding what is going on

When you enter your credentials in Windows, both for accessing the machine or for performing privileged operations such as accessing a network share, you expect the username and password dialog to have a certain look and feel. If you are prompted by a dialog that is even slightly different from what you expect, there is a very high chance that you will notice that something is not right. This knowledge will help you to assess the risk and make decisions such as not entering your credentials and seeking the attention of the system administrator/computer savvy spouse/teenager of the household. Such a good property is by no means inherent to Windows itself, but it’s quite the result of the consistency derived from the fact that authentication is managed at the common infrastructure level (in this case, the operating system) rather than left to every application. In the case of a Web browser, both the UI and the application functions are generated on the basis of the code of the Web page itself. This means that the rendered UI can be wired to literally any logic; it’s like a world where the application creates its own laws of physics. If the authentication functions are part of that world, with no influence from elements living outside the rendering area of the browser, there’s no way for the user to know what will really happen to the data he will type in.

The Internet experience is just too diverse for offering clues that are consistent across websites

As stressed at the beginning of the section, credential gathering on the Internet is something that has to be dealt with at the application level. If it has to be a feature of your application, of course you want to be free to adapt the look and feel of the credential-gathering controls to the overall style of your application! So if all your controls have a border 7 pixels wide and left-justified, your username and password fields will follow suit. Apply the same reasoning for the entire Internet, and you’ll have countless different user experiences just for typing in a username and password. There is some common pattern almost universally adopted, such as the presence of two text boxes for username and password, but that is pretty much it. The result is that if there’s no regular pattern, the user is trained not to search for one. The user loses his capability of being surprised. There are no visual clues in the credential-gathering experience warning the user that a certain page “has something wrong.” This is one of the key loopholes in today’s e-commerce practice that makes phishing so successful.

The use of hard tokens does not entail, as of today, a uniform user experience across models and vendors

We have seen how certificates and token-based technologies do a better job at handling identity than shared secret techniques such as passwords. From the interaction point of view, however, they may end up being more challenging to use for humans. There is not a common visual entry point for handling nonpassword credentials; here it actually is a solutions tower of Babel. Very often, hard tokens and smartcard have their own drivers, which must be installed explicitly. This is due to the nature of the devices themselves and is an issue that can be mitigated but probably not completely banished. Imagine a world in which such devices are widespread, and the user has to juggle tens of them for managing many different accounts (we discussed the possibility toward the end of the section “Hard Tokens”). The many different user experiences would compete for the user’s proficiency and recognition abilities, without common grounds through the different interaction patterns. Just as for the Web UI for usernames and passwords, there would be no selective pressure forcing the device vendors to converge on a common experience. It is again a problem in which it does not really matter how good individual solutions are because the issue lies in the sheer number of solutions rather than in their specific merits.

So, users cannot make trust decisions just on the basis of what a UI looks like. So what? you may say; in the offline world, you don’t make decisions about what your bank clerk looks like. The metaphor is not entirely accurate, but let’s assume for the sake of argument that it makes a good point. What is the key difference between operating a home-banking Web application and asking a clerk to deposit a check in your account? It is the reputation of the place where the action happens. You trust the bank as an institution because of its reputation, and you assume that those who work there are trustworthy, too (at least to the extent of the business you want to conduct there). Being physically in the bank allows you to assess risks in a satisfactory fashion, whereas the average user is nearly clueless about the actual location and true identity of a website. It is this conscious cluelessness that poisons the confidence of users, sometimes to the point of inducing them to cease all online transactions.

A system can be cryptographically strong, but it will not be effective if the end users don’t understand it

To be fair, there is a mechanism in place that is actually intended to assess the identity of a website. In the section “HTTP and HTTPS: The King Is Naked,” we introduced HTTPS, and you have seen how associating a certificate to a website takes care of publishing the public key of the website itself. The certificate is securely tied to the website because it contains a reference to its URL in the subject field. We can consider the certificate itself a trustworthy source for assessing the identity of the website. The subject field usually contains other info that could be useful for identification, such as the geographic location of the company it was awarded to. There is also information about the certificate-issuing authority, again useful for assessing the level of trust that a certain website deserves. Unfortunately, the last three or four sentences are all gibberish for the vast majority of users. Try to explain this to somebody who does not work in the IT industry, and be prepared to be rewarded by a blank stare. Certificates as they are used today require an understanding of the Internet, both in term of technology and in terms of reputation of the main certification authorities, an understanding users not belonging to the technorati elite simply don’t possess. This state of being is not an accident or a temporary condition. Although it is legitimate to hope for heightened sensibility toward security in the general public in the future, making the Internet difficult to use needlessly limits access to one of the most formidable resources available to mankind.

Countermeasures can be locally effective, but ultimately they have to compete for the proficiency of the user among a sea of equivalent offers that impose different procedures

There are isolated attempts to solve in alternative ways the server authentication problem. For example, one proposed solution lets the user choose at registration time a specific image; during subsequent logons, that image is shown after the user types in his username but before typing the password. In this way, the user will know that the website is actually the one with which he performed the original registration because any impostor would not know which image was selected at signup time. This is a very clever solution, but it is one among the many possible. There are no guarantees that others will adopt it, too, and in fact businesses in which trust has to be established from the very first contact would not find the scheme advantageous because it works on the assumption that the registration phase is safe. Such businesses will come out with their own clever solution, and the user proficiency will be strained beyond its limits in the attempt to master all those clever but diverse systems. For the third time in the current section, we encounter a problem that cries for a global answer instead of being solvable by the emergence of an approach over the set of all individual initiatives.

Summary

It has been a long chapter.

We started by observing how the value of the things we can do with computers steadily rose through the last decades, culminating in today’s Web economy. We have studied attacks and motivations behind the simpler, early crimes against property and resources; we analyzed in some depth how vulnerable our data is on the Internet, and came to understand the basic principles of the arms race between cybercrime and countermeasures. We have seen why protecting your identity online is important, and we gave some measure of how brittle and broken today’s practices are.

We devoted an entire section to analyzing the merits and shortcomings of passwords, understanding why they are the most used authentication method today and why they are also perhaps the worst kind of credentials we can ever use on the Internet.

We started searching for viable alternatives among the credential technologies currently available. Equipped with a solid understanding of the cornerstones of cryptography, we learned the difference between securing a communication and propagating an identity. We took a look under the hood of HTTP, the protocol that accounts for the vast majority of communications on the Internet and discovered that it does not feature any specific place for plugging in authentication technologies. We learned about certificates and issued security tokens, understanding why they are so effective for addressing the scenarios they are meant for and why they fall short as a means to address the requirements of a truly universal authentication protocol.

Finally, we focused on the needs of the end user. By observing how today’s anarchy in the credential-gathering user experiences neglected to properly take into account usability and trust establishment, you saw further proof that a truly global solution is unlikely to come from an individual initiative rising above all others.

The problem of digital identity management is a complex one. Its roots go deep in the history of information technology, and seemingly unrelated aspects reinforce each other in ways not immediately evident. The growth patterns of the Internet itself and the interests of the various parties involved prevents spontaneous solutions from appearing.

Now that we have a deep understanding of the many faces of the problem, we are also well equipped to recognize whether something is a valid solution. It the next chapter, we consider the issues here in constructive and creative ways, cleaning the slate and rebuilding from the ground up. We describe a robust, sustainable, widely accepted, user-friendly, future-proof solution to the problem of digital identity management.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/03fig01.jpg
Sign in

Donit have vour card?
hat s this?

o

Remember me next time.

OEBPS/html/graphics/03fig02.jpg
@ oyouento sendscardo s sie?

r—
[Y—

View ey et

FT——.
oDty e Crson Aty

Oyt e f the s s e T apertr o he e o s o,
ok e Sk o r ek iy chor 0 A ey
s oo proteaan To e, e Wy s mprn

» Ves, choose a card o send

3 No,retun tothe site:

[——
iy tement
Dot Windows
cuisper
e —
Hp

OEBPS/html/graphics/03fig03.jpg
@™ choose aard o send s wamcardipacedemosom

oo eor o send . lcts o, thn e P T e srew v, Ol

= Bxctup s

Rt
Precss
(,umusu rovaer [y

W cd ot

Lommon st

OEBPS/html/graphics/03fig04.jpg
@ 0o you want o sen s s vwewicarpacedamoscom

e the ot s i et To e the do, e, e o s o ik 4.

PR
[r—————

st At wengee@ioobcam

[

[——

s, -
r——

Condon sasnm1

et s

oo
Viow iy

ey
b

OEBPS/html/graphics/foreign1.jpg

OEBPS/html/graphics/foreign2.jpg

OEBPS/html/graphics/04fig07.jpg
Resource
TS

OEBPS/html/graphics/04fig06.jpg
<saml: Attribute AttributeName="webpage"
‘AttrbutaNiamespace="http://schemas xmisoap.org/vs /2005/05 /identity/cleims">
<sal; AttriouteValueshttp:/ /blogs.msdn.com/vbertoceic/sarl: AtibuteValue

</sami:Attribute>

<samlAtinbute AttributeName="emailaddress”
AttributeNamespace="http:/ /schemas.xmlsoap.org/ws/2005/05 /identity /claims'>
<sar; AttributeValue>vb®come/san: Attributevahie>

</sami:Attrbute>

<sam: Attribute AttributeName:
Attributenamespace="http://schemas.xmisoap.org/ws/2005/05 /identity /claims">
<sami; AttributeValus>vh</saml: AttributeValue>

</sam: Attribute>

OEBPS/html/graphics/04fig08.jpg

OEBPS/html/graphics/02fig03.jpg
<ml version="1.0" ?>
<Employee>
<liame>John</ame>

<Surname>Doe</Surname>
<Superpower>Extreme Lazyness</Superponer>
<Phonelurbers>
<Home>555-5555¢ /Home>
<0ffice>555-5555¢/0ffice>
</Phonetiunbers>
</employee>

OEBPS/html/graphics/02fig02.jpg

OEBPS/html/graphics/02fig01.jpg

OEBPS/html/graphics/02fig07.jpg
@—%\

s e
® 'WS-Security Policy

OEBPS/html/graphics/05fig09.jpg
You may access your existing account using
one of the following methods:

Use your username and password.

You may use the usemame and password to sign inthis time, and
assacitate your card vith your account.

User name:
Passworc:

Recover your account by answeringan e-mail.

Donit know, or forget your password? We can send an e-malltothe
‘address from your card, and you may access your account by following
the nstructions.

Send e-mail

OEBPS/html/graphics/02fig06.jpg
s A

OEBPS/html/graphics/02fig05.jpg
<Ixml versions'1.0" >

<s11:Envelope xelns:Si1e

selnzzdzar...">
<S11:Header>

TreTSecrTy
snlneivszes® "

“esse:Binarysecor TtyToken ValusTypen"
hstp://fabrikan23sCussonToken *

T T
<dz:Signedinfo> H
<ds:Canonicalizationtethod
Algorithe="ht5o://wms. 3. rg/2001/10/xnl-bxc-c1ans"/>
<azsignaturevethod s

<ds:Digestiethod

Algorithes /
it/ /o org/2060/08 ldsigtshal
axibigestualuestyLsFopLampU. \ /d/iDigestialues

G
<o Sigpesintes
i i RSB S
bl

vasesererence URIS eI

</ds:KeyTnfo>
</ds:signatures
Teersecurty>

Signature

TETTResders =
D) Security Header
g <truistocksybel Tu="http://fabrikanl23. con/payloads”>
<Jtrusstockiymbols
</stisody>
Pyt

OEBPS/html/graphics/05fig07.jpg
Thank you for presenting your card.

Garrett, we haven't seen this card presented before. Would you like to:

Associate your card with your existing account
You can sign in o recover your account, and then you willbe able to use:
the card to signnin the future.

Create a new account
You can quickly create an account, and wil be able o sign-inin the future
with that card.

Return to the main page without signing in

OEBPS/html/graphics/02fig04.jpg
<%xml version="1.8" ?>
<enviEnvelope xulnssenv
7 env:Readérs”

<nimysampleheader xmlns :n="http://understandingcardspace. con/samples”,
envimustUnderstand="true">

<Jeny:He:

xmlns:p="http: ebserver. con/add"> Header
>
s

</p:a> |—Body

OEBPS/html/graphics/05fig08.jpg
Groose:

J——

Senemss

OEBPS/html/graphics/01fig02.jpg
1. petc. 2
L5 Conent-Typ: ve

K4 \.n.Cp.K((4D, 5. .. M5C 30 N 163. MDG-Version:
/Plbin; ShareeinUTE-. X iis-DH-Formas: FIHEN0RA1INI0D1g8202:

SI0T AR 4.G.0KixEp.) B by HS3 bebahetmail.com 508 165, NDME-
it Lone/aiains ShALhieITELS. HsE A foreun. Protien
Oferies Tru; Coue0000; Comd: PTAEZ... Eve does thac, A1l he ime

OEBPS/html/graphics/04fig03.jpg
Encrypted Token

Private Key For
<Encypioodate> || o | pirTes
Cortiicate,

Dacrypted Token

<SamiAssertion>

<SamiAssertion>

OEBPS/html/graphics/01fig01.jpg

OEBPS/html/graphics/04fig02.jpg
<enc:EncryptedData Type="http://vww.w3.0rg/2001/04/xmlenc# Element"
mins: anc="http:/ /viviw w3.0rg/2001/04/xmience">
<enc:EncryptionMethod
Algorithm="http://viwive.w3.0rg/2001/04/xmience aes256-che’ />
<KeyInfo smins="http:/ /www.w3.0rg/2000/09 /xmidsig#">
<e:Encryptediey wmins:e="http://wvrw.w3.0rg/2001/04/xmience">
<e:EncryptionMethod
Algorithn="http:/ /wuviws.#3.0rg/2001/04/xmlenc# rsa-oaep-maf1p'>
<Digestvithod
Algorithm="http://vwwi.w3.0rg/2000/09/xmldsig# shal’ />
</e:EncryptionMethod>
<Keyinfo>
<01 Security TokenReference xmins:o="http://docs.oasis-
open.org/wss/2004/01/00sis-200401-wss-wssecurity-
Loxsd™>
<aikeyldentifier ValusType="http:/ /docs.oasis-
‘open.org/wss/oasls-wss-soop-message-security-
1.1#ThumbprintSHAL" EncodingTypa="http://docs.oasis-
‘open.org/viss/2004/01/0asis-200401-wss-soap-messag

security-
1.0#Base64Binary>ujGF/ICGHBUCXbW 1EDIFOPPW/U=</0: Keyldentifier>

</o:SecurityTokenReferance>
</Keyinfo>
<eCipherbata>
<e:Ciphervalue>Mvz
</e:CipherData>
</eiEncryptedkey>
</eyinfo>
<enc: Cipherdata>
<enciCiphervalue>D/Xd+ Sc...R4U/SigfPDXaf
</enciCipherbata>
</enciEncryptedoata>

/enc:Ciphervalue>.

OEBPS/html/graphics/04fig05.jpg
<saml: AudienceRestrictionCondition>
<sanl: audience>https:/ /relyingpartysite1/site/SubmitCard.htm</sar; Audience>
ik Acalimwalintictioncontiions:

OEBPS/html/graphics/9780132701709.jpg
Understanding
Windows CardSpace

An Introduction to the Concepts and
Challenges of Digital Identities

Vittorio Bertocci
Garrett Serack
Caleb Baker

Foreword by Kim Cameron,
Architect of Identity, Microsoft

OEBPS/html/graphics/04fig04.jpg
snasbtmante ot Mot e ko S oo amd ke e
e b L o B
F oy
T
2
ERT
e ORI
P
B O
e e AN
o e e
T
SRS T sy
e
R,
AR S i
e
i
P A,
T
T st
o e e
D

LGN gty o o 2000/09 it shor
b -

e

s, comtiy i

OEBPS/html/graphics/04fig01.jpg
ST ot 2040
it
preteec iy
it

Erxn

=

E——

OEBPS/html/graphics/05fig12.jpg
Don't have your card?

You have several options for accessing your account:

Show an Information Card you have.
You can present a new Information Card, and we will send you e-mail
with instructions to recover your account. You will be asked to show the
same card when you respond to the e-mai.

Present your
Information Card.

What s this?

Enter your e-mail address.
You can enter your e-mail address, and we will send you a e-mail with
instructions to recover your account. You willneed to presenta new
card when you responsd to the e-mail

e-mail Address: Send E-mail

Use your username and password.
You can use the username and password associated with your account.
User name:

Password:

OEBPS/html/graphics/05fig13.jpg
Would you like to associate an Information Card with your account?

You can associate your account and quickly ign in using an Information Card.
Tofind out more about using Information Cards cick here.

Toassaciate your account now with an Information Card dick the icon:

il

OEBPS/html/graphics/05fig10.jpg
mpkeit Sign Up

Explictt Sign Up

oncose:

Assoctewith an existng accourt
oo ot

Registration:

‘Choose dferen cara

et

Optonal
Valdston St

Welcome bask
o e websie

OEBPS/html/graphics/05fig11.jpg
New user registration

‘You may use an Information Card to instantly create a new account.

Sign up with your
Information Card.

What s this?

OR

Sign Up for Your Membership to the club.

User Name:
Emait

Security Question:
‘Security Answer:
Password:

Confirm Password:

OEBPS/html/graphics/05fig16.jpg

OEBPS/html/graphics/05fig17.jpg
My Information Cards

Your Information Cards:

PHE-8TXD-N6D Remove this card from my account
VNW-3FQM-4GQ Remove this card from my account

You can associate an Information Card with your account:

1 e
| Information Card.

What is this?

OEBPS/html/graphics/05fig14.jpg
You signed in with your password instead of your Information Card.

Ifyou are simply away from your computer, you may safely ignore this.
Ifyou have lost your card, or have lost access to the computer that you store your

cards on, you may wish to remove your old card from your account, and associate:
anew one. You can do that at the my accounts page

OEBPS/html/graphics/05fig15.jpg
Fabrikam Friends

OEBPS/html/graphics/03fig20.jpg
O cstanewrd -

e e of s geont e wha ol b s e e, You i chnge e Wittt hodl
e o . B e onmy it
e

pr—
e |
e
oy ot i
e Tt
nte ot
O
i
- i
e i
et et
Comgn ot

HomePhone: Nt pechad

OEBPS/html/graphics/03fig21.jpg
@ seecta carampreview

oo o efr o snd . st s h ik Prem To e e o,
Gk nds e,

=

Ouple s
[y

Bxctup e
R s
Preces

OEBPS/html/graphics/03fig22.jpg

OEBPS/html/graphics/03fig23.jpg
[

Tasks

Duplicate card
Delete card

Adda card

[Back up cards

Restare cards
Preferences

Delete allcards

Help

OEBPS/html/graphics/03fig24.jpg
13 Windows CardSpece.

@ eakepards e
Yo ey i 1 sk s s i ot e I
s

OEBPS/html/graphics/03fig25.jpg
Name the backup file

To et th e s o of your ncyptd i i,k B, Aeryo el e
dlcaion f o ncyped ko i, it Corrar,

ERN—. (CEm)

OEBPS/html/graphics/03fig26.jpg
&l Windows CardSpace

@ Tieeapessuond

g oot o b . st e s e
v st e, o

s

twsed ooty
D
=

(@ - o s kst 8 s

e ot

1

Eston psvors:

OEBPS/html/graphics/03fig16.jpg
rm——.
T —————— [—

Curtobeimpores: rr—

ot

T ——r—
Dumasan

i o i oo ot s ok e i
oy s o bty Bt oyt ek, o e,
s

OEBPS/html/graphics/03fig17.jpg
(ol mide

4][seor gl

@)/ » Corolo » ot »

ContoPaatHme

usr A
| g | @

Seasity ®

Rl [o Crospce

Userheconts

OEBPS/html/graphics/03fig18.jpg
@ seectacrdwpraion

oo o efr o snd . st s h ik Prem To e e o,
ciehasond

=

ok

Ouplte s

g
R s
Preeces

OEBPS/html/graphics/03fig19.jpg
e — ——
R i

Hob

» Create aPersonal card
Pason s ey youo s i seices sty oo n e g
Gy To s o o ekl encped o e o s computr 61
i iendone o many e

Install a Managed card
Marsges s e e b b gt Ty et for
e e emaon ot vy e e To o e s
e ek Wiyt oo o481

OEBPS/html/graphics/03fig10.jpg

OEBPS/html/graphics/03fig11.jpg
Enter your password

ISL107.153.200 requies ser name and passwrdtovalidae his request nter the nformatin below.

Uemame: Teatser

Password:

OEBPS/html/graphics/03fig12.jpg

OEBPS/html/graphics/03fig13.jpg
You chose to exit without returning to the site

Wil uing Windows Cardspece, you chose o ext withock etming o he se. This ptn s
providd n case Windows Cardspece s cpening repestady intead of retaming youto e
s,

Windows Carcpace has been disble. To ensble it again, coss and thenrestart your web
browser o applcation.

13 © itene Ptecdiode On o

OEBPS/html/graphics/03fig14.jpg
@ oyouwnttosend s cardto i ste?

prrpm—
B catpuedenascon

[re—
P——
Dty S Crson sty

Ol e f the s s e e T spetr o he e o s oo
o e Sk o r e i chovn 0 e ey
s oo prtecton To e, Wy s gt

 Yes,choose a card o send

» No,retun tothe site:

——"

Db Windows
Cuspe

[rop—

OEBPS/html/graphics/03fig15.jpg
Do youwant to send a card o thi site? ok

—

YT T——

LT —

tadSever
Remond Warhigton,US

Vioa ey stment

o

€ONtoso

Famcs

e nfomn vt

» Ves,choose a card 0 send

» No,retun to the site:

rm——.
e iy stement
Db Windour
ey
[rop—

OEBPS/html/graphics/195tab01.jpg
Range Character Range Character
0 Q 1 G
' . 7 "
] 2 1]
3 3 1 K
. O 0 M
s s) N
3 o 2 3
7 7 B ®
] O B s
) o B T
0 A 2 U
" 0 7 v
B < » w
0 D B X
0 3 50 v
s G 3 7

OEBPS/html/graphics/03fig05.jpg
Digital Signature of
the Identity Provider

Name=Scott

OldEnoughTobrink=true

OEBPS/html/graphics/03fig06.jpg
Identity
Provider

Relying
Party

3. Requestis 1. RP makes request.
forwarded to IP.

4.1P returns 6.Token is
security token. 2. User picks a returned.
card
CardSpace

& User reviews token.

OEBPS/html/graphics/03fig07.jpg
“The Information Card
contains the wieb service Itis used to request a
URL of the identity security token from the

provider's STS; identity provider STS.
for example, URL = http/mySafelD.

The identity
provider STS keeps
tho actual data,
such as credit card
numbers,

OEBPS/html/graphics/03fig08.jpg
reymgFarys
o m

o vastorkey [pustcprvate oy Pai

OEBPS/html/graphics/03fig09.jpg
@ 0o you want o sen s s vwewicarpacedamoscom

e the ot s i et To e the do, e, e o s o ik 4.

PR
Fks ket an st Oy s
* Stespcc ity SETTQEK
[——
P s loginiecom
[p—
Goedon oo

et s

oo
Viow iy

ey
b

OEBPS/html/graphics/1709_tn.gif
[rm——

g Coispce

OEBPS/html/graphics/188tab01.jpg
Claim URI Claim Purpose
hitp3/schemas.xmlsoap.org/wvs/2005/05/identity/claims/ Given (first
givenname name

hitp/schemas.xmlsoap.org/ivs/2005/05/identity/claims/

Surname (last
name)

http/schemas xmisoap.org/ws/2005/05/identity/claims/
emailaddress

Email address

hitp/schemas xmisoap.org/ws/2005/05/identity/claims/ Sreet address
streetaddress

http/schemas xmisoap.org/ws/2003/05/identiy/claims/ Name of city
locality or town
http/schemas xmisoap.org/ws/2005/05/identiy/claims/ State or
sateorprovince province
hitp/schemas xmisoap.org/ws/2005/05/identity/claims/ Postal code.
postalcode @IP code)
hitp/schemas xmisoap.orgAws/2005/05/identit/claims/ Country
country

hitp/schemas xmisoap.orgws/2005/05/identity/claims/ Home phone
homephone number
hitp/schemas xmisoap.org/ws/2005/05/identitclaims/ Mobile phone.
mobilephone number
hitp:/schemas xmlsoap orgws/2005/05/identity/claims/ Alternative

otherphone

phone number

hitp:/schemas xmlsoap.org/ws/2005/05/identity/claims/ Date of birth
dateofbirth

hitp:/schemas xmlsoap.org/ws/2005/05/identity/claims/ Gender
gender

hitp:/schemas xmlsoap.org/ws/2005/05 identity/claims/ ~ URL of a
website website
hitp:/schemas.xmlsoap.org/ws/2005/05/dentity/claims/ A site-specific
privatepersonalidentifier identity

OEBPS/html/graphics/square.jpg

OEBPS/html/graphics/07fig01.jpg
@ 00 youwanto end tis ad t: FABRIKAM -

e the s tht s e s To e the . e, s pchre o s o ek, £
Vewco iy
[P — W i et
R ——— e
“Fttane Garst
T

“Fronscor B
“StoSpciciD ABCOEFGHY
——
06207 e

I ——
Cosmion 1076207

OEBPS/html/graphics/07fig02.jpg
@ voyouanoital s o fomthis provider?

—
[——
= o

prem—
AR

Ao Washngion. U5
Vewprcy et

ok e et
ADsm Fsond Corsetos

T

[reTe—
e

OEBPS/html/graphics/01fig09.jpg
Contanc-Type: exe/hial
Accap-aanges: brees

Tag: 74scsETacTETL:Sd5" B
Contan-angth: 77

<rrTiEsieg tn v beb.come/TITLES

ord: <INFUT TYPErpassuord" WSEn pasmordes <o
<INEUT TYTEeaubeter valsestiogiats

Jemwrzas

OEBPS/html/graphics/01fig08.jpg
rptiession/meord: o/ - .

Accept-iacoding: grip, deflate
rax-Agene: Wotilia/a.0 (corpurible; WSIE 7.0 Windovs NT 6.07 SICCL; LNET CER 2.0.50727;
Nadia Cancer 5 5.0, WET CIA 3.0.04506; Infobach2)

OEBPS/html/graphics/01fig07.jpg

OEBPS/html/graphics/01fig06.jpg
Epy ==}
Is—l

Howa > E

OEBPS/html/graphics/01fig05.jpg

OEBPS/html/graphics/01fig04.jpg
CLEAR

TEXT

Symmatric Encrypion
Algorthm

AEBFFA

cBoBAE

—— ENCRYPTION

- DECRYETION

OEBPS/html/graphics/01fig03.jpg
B EEREN

OEBPS/html/graphics/01fig13.jpg
HTT?/1.0 200 Connection Estabiished

+.CE0c00C. 5 .0, BEA" A" € BRI UEID.GEIO. .. 3. T F. SuthiMeeoasizap, dtd
£ lmnis sviaeboja Clag.o.0s . Sao.i.Sonde ip¥i 14 (1AAGS K.

(6T k000G, . 4.0 SO Ak £ MSeE HID.GRE. oo VAsONATED, . Keoteehy. et
EaGR0Ls (v 35, 2401 RPYSGD, i=viaddY 0, 5. Ti-G£:01268 0. 5 (sha. 1¥.g0u6iR?
R T

OEBPS/html/graphics/01fig12.jpg
vaz-Agenc: Mosilla/d.0 (compatible; NSIE 7.0; Windows NT 6.0; SLCCL; NET CLR 2.0.80727;
Madia Concer 3 5.0; MET CL% 3.0.04606; Incopach 2)
o angens 0

bcgor. 2 cE £ R/d0. DI A" ad3 »toTeesTs. CRY. . __mg Xes-HebLds -s5e0
AThe33] ob\E ot Eba KB iR i msCT K08) S0 (ghise®. _{atéeomTil EzOA
00101 Ay 16 Ginaa e 70--LA2kS 0L /AGNILG 83 YIS ELITALENDS Thicyn v 3 xek
B35 higks, b a1 PO (£ 8L Krsonin. e e\ (ot 56500
haeg i L) oi S2atad T qga1 3.0 33 T ok ésn
sttt el L U Sear. e Sk AR a8l AautedSoit Sua
£ L0} vt 46 +0NEDA 0. BN6300,PYJ ¥ 6x0p91 005
iz (k.55 - 7AO0RD T TA 14 fpibomaest 18

OEBPS/html/graphics/01fig11.jpg
Referas: heep://es.bob.con/bob/homepage hem.

Accept-tacoding: gaip, daflate
rex-Agune: Motilia/a.0 icorpusible; NSIE 7.0; Windovs NT .07 SICCLi WET CLR 2.0.50727

Madia Gonces 5 5.0, NET CI 3.0.04508; Infopach2)

OEBPS/html/graphics/01fig10.jpg
6 Log in to bob.com - Windows Intemet Explorer e

OO - [6 wsimmmses comsosraressgtvm]3] x| e 7]
Ssmgr B
S [Lgintobobeom B B v @ v Page v GTook v 7|

Pleas tpe in your wsermame and password:

Username:
Password:

one. & ocatinronet Protcted Mo OF R

OEBPS/html/graphics/05fig01.jpg
InformationCards. Users

PK | Uniquein PK | userin

K1 | UserD. > FirstNamo
PPID LastName
IssuerlD EmailAddress.

OEBPS/html/graphics/05fig02.jpg
Login

User name:

Password:

Remember me next time.

Don't have your password?

Create an Account

OEBPS/html/graphics/05fig05.jpg
Why can't I use this?

OR

User name:

Password:

[|Remember me next time.

Don't have your password?

Create an Account

OEBPS/html/graphics/05fig06.jpg
Please Sign In

f—

—

Te s cars
assocad
Vo it an accoun?
v
Tha sers Croose:
Sgnedin.
‘Associato with an aising sccount
ot 8 e accouny.
Choose a dfront card
Welome back
oo websi

OEBPS/html/graphics/05fig03.jpg
Pororm Clont-
Side Detection

Doss the

biowser support
nformation Cards?

Web Page Witout
Card Support

OEBPS/html/graphics/05fig04.jpg
Information Card.

Don't have your card?

What is this?

Remember me next time.

OR

User name:

Password:

Remember me next time.

Don't have your password?

Create an Account

OEBPS/html/graphics/01fig16.jpg
e
NE0 A

E }
-
!

E:{l}

OEBPS/html/graphics/01fig15.jpg
Seloct
Certiicate

2

Certicate
Store

One
Certificate.

S[f] {

2..S,

7

7

A HTTPS

PAGE

Random
Data

OEBPS/html/graphics/01fig14.jpg

OEBPS/html/graphics/pub.jpg
vvAddison-Wesley

