
[image: image]

Sams Teach Yourself WPF in 24 Hours

Rob Eisenberg and
Christopher Bennage

[image: image] 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself WPF in 24 Hours

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent liability is assumed with respect to the use of the information contained herein. Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-32985-2
ISBN-10: 0-672-32985-9

Library of Congress Cataloging-in-Publication Data

Eisenberg, Robert (Robert Harold)

 Sams teach yourself WPF in 24 hours / Robert Eisenberg and Christopher Bennage.

 p. cm.

 ISBN-13: 978-0-672-32985-2

 ISBN-10: 0-672-32985-9

 1. Windows presentation foundation. 2. Application software. 3. Windows (Computer
programs)—Standards. 4. Microsoft .NET. I. Bennage, Christopher. II. Title. III. Title: Teach
yourself WPF in 24 hours.

 QA76.76.A65E39 2009

 006.7’882—dc22

 2008020014

Printed in the United States of America

First Printing July 2008

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Copy Editor
Barbara Hacha

Indexer
Brad Herriman

Proofreader
Debbie Williams

Technical Editor
J. Boyd Nolan

Publishing Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Nonie Ratcliff

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and accurate as possible, but no warranty or fitness is implied. The information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained in this book or from the use of the programs accompanying it.

Bulk Sales

Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

Contents at a Glance

Introduction

Part I: Getting Started

Hour 1 What WPF Is and Isn’t

2 Understanding XAML

3 Introducing the Font Viewer

4 Handling Application Layout

5 Using Basic Controls

6 Introducing Data Binding

Part II: Reaching the User

Hour 7 Designing an Application

8 Building a Text Document Editor

9 Getting a Handle on Events

10 Commands

11 Output

Part III: Visualizing Data

Hour 12 Building a Contact Manager

13 Presenters and Views

14 Resources and Styles

15 Digging Deeper into Data Binding

16 Visualizing Lists

Part IV: Creating Rich Experiences

Hour 17 Building a Media Viewer

18 Drawing with Shapes

19 Colors and Brushes

20 Transforms and Effects

21 Using Control Templates

22 Triggers

23 Animation

24 Best Practices

Part V: Appendixes

A Tools and Resources

B 3D Tutorial Using ZAM 3D

C Project Source (downloadable)

Index

Tabel of Contents

Introduction

Part I: Getting Started

Hour 1: What WPF Is and Isn’t

What Is WPF?

Getting to Know the Features of WPF

Why Use WPF?

Comparing WPF to Other Options

The Pieces of .NET Framework

Tools for WPF

Constrasting WPF with Silverlight

Summary

Q&A

Workshop

Hour 2: Understanding XAML

What Is XAML?

The Syntax of XAML

Summary

Q&A

Workshop

Hour 3: Introducing the Font Viewer

Building the Font Viewer

Summary

Q&A

Workshop

Hour 4: Handling Application Layout

Understanding Layout

Using Alignment and Margin

Using Panels to Create Dynamic Layouts

Using a StackPanel

Mastering DockPanel

Using a Grid

Understanding How WrapPanel Works

Exploit Canvas for Precision Layout

Enhancing a UI with Decorators

Building Up a Layout

Summary

Q&A

Workshop

Hour 5: Using Basic Controls

Leveraging Controls

Working with Text

Displaying Rich Text with the TextBlock

Gathering Text from the User

Accessing Controls with a Label

Using Buttons

Triggering Actions with a Button

Making Choices with ToggleButtons

Displaying a List with ListBox

Summary

Q&A

Workshop

Hour 6: Introducing Data Binding

What Is Data Binding?

Binding Two Controls Together

Two-Way Data Binding

Demonstrating Automatic Change Notification

Another Data Binding Syntax

Summary

Q&A

Workshop

Part II: Reaching the User

Hour 7: Designing an Application

Deployment Models in WPF

Navigation Models in WPF

User Controls

Summary

Q&A

Workshop

Hour 8: Building a Text Document Editor

Designing a Text Editor

Creating the Application Layout

Adding Usability with ToolBars

Increasing Maintainability with User Controls

Using a Menu

Working with RichTextBox

Summary

Q&A

Workshop

Hour 9: Getting a Handle on Events

What Are Routed Events?

Using Routed Events

Handling Events in the Text Editor

Making the Text Editor Work as Expected

Preview Events

Summary

Q&A

Workshop

Hour 10: Commands

What Are Commands?

Using Commands

Binding Commands to the Menu

Customizing Commands

Adding More Commands to the Text Editor

Determining If a Command Is Available

Creating an Input Binding

Summary

Q&A

Workshop

Hour 11: Output

Making the Text Editor Print

Implementing a Custom Document Paginator

Developing a Print Manager

Adding Print Preview

Outputting Bitmaps

Summary

Q&A

Workshop

Part III: Visualizing Data

Hour 12: Building a Contact Manager

Design a Contact Manager

Choosing an Architecture

Creating the Solution and Application Shell

Defining the Model

Abstract the Data Store

Summary

Q&A

Workshop

Hour 13: Presenters and Views

Creating a Custom Base Class for Presenters

Completing the Tab UI Infrastructure

Implementing the Application Presenter

Enhancing the Shell

Building an Edit Contact Screen

Summary

Q&A

Workshop

Hour 14: Resources and Styles

Defining Resources

Combining Resources

Using Resources in the UI

Factoring Resource Files

Defining Styles

Using Keyed Styles

Factoring Styles

Summary

Q&A

Workshop

Hour 15: Digging Deeper into Data Binding

Handling Advanced Data Binding Scenarios

Binding Data in Code

Observing Change in Collections

Formatting Bound Data

Understanding Collection Views

Summary

Q&A

Workshop

Hour 16: Visualizing Lists

The Control Hierarchy

Dissecting ItemsControl

Customizing the SideBar

Studying Selector

Using Selector

Summary

Q&A

Workshop

Part IV: Creating Rich Experiences

Hour 17: Building a Media Viewer

Defining the Requirements

Setting Up the Solution

Implementing the Menu Screen

Building the Model

Creating the Picture Screen

Understanding Media

Finalizing the Media Player Functionality

Summary

Q&A

Workshop

Hour 18: Drawing with Shapes

Drawing Basic Shapes

Styling the Media Controls

Paths and Complex Drawings

Stream Geometry

Summary

Q&A

Workshop

Hour 19: Colors and Brushes

Using Colors

Choosing Colors

Introducing Brushes

Leveraging LinearGradientBrush

Working with RadialGradientBrush

Understanding DrawingBrush

Applying a VisualBrush

Summary

Q&A

Workshop

Hour 20: Transforms and Effects

Understanding Transforms

Differentiating Render and Layout Transforms

Adding Transforms to the Media Viewer

Introducing BitmapEffect

Adding a BitmapEffect to the Media Viewer

Summary

Q&A

Workshop

Hour 21: Using Control Templates

Understanding Control Templates

Telling the Template What to Do

Adding Templates to Our Application

Identifying Special Parts in Templates

Creating a Flexible Template

The Benefit of Control Templates

Summary

Q&A

Workshop

Hour 22: Triggers

Leveraging Triggers

Using a DataTrigger

Adding Animation with EventTrigger

Understanding Trigger Restrictions

Advanced Trigger Scenarios

Summary

Q&A

Workshop

Hour 23: Animation

Understanding Animation in General

Understanding Animation in WPF

Animations in the Media Viewer

Resolving the Target Property

Where to Put Your Animations

Achieving the Desired Effect

Animating with Key Frames

Animating with a Path

Controlling an Animation

Alternative Animation Techniques

Clock Animations

Applying Animations to Media Viewer

Summary

Q&A

Workshop

Hour 24: Best Practices

Application Design

UI Design and Architecture Concerns

Technical Considerations

Coding Conventions

Summary

Q&A

Workshop

Part V: Appendixes

Appendix A: Tools and Resources

Developer Tools

Designer Tools

XAML Converters

Application Frameworks

Additional Resources

Appendix B: 3D Tutorial Using ZAM 3D

Understanding the Interface

Creating a Carrot

Appendix C: Project Source (downloadable)

Index

About the Authors

Rob Eisenberg is vice president and cofounder of Blue Spire Consulting, Inc. (www.bluespire.com). He is a frequent blogger in the Devlicio.us (www.devlicio.us) blogging community and speaks at various community events on the subjects of WPF, Agile, and TDD. His career began in music composition, which very naturally led him into interactive media. He was drawn to the .NET Framework by the persistent recommendations of his present business partner and soon after discovered WPF. Rob has been working with WPF since the pre-beta days and was among the top 20 finalists in Microsoft’s Code Master Challenge in 2006. In his spare time, he enjoys playing and teaching drums, making artisan cheese, reading, and swing dancing with his lovely wife, Anna.

Christopher Bennage is the president and cofounder of Blue Spire Consulting, Inc., a Florida-based software consulting firm specializing in .NET technologies and emphasizing personal interactions with the customer. Christopher began programming on his Texas Instrument in elementary school but fell in love with computers with the advent of the Commodore Amiga. His career has brought him through various technologies beginning with Lotus Notes, VBA, and classic ASP before eventually landing him in the marvelous world of C# and the .NET Framework. His interest in Flash, rich user experiences, and usability led him to be an early adopter of both WPF and Silverlight.

Christopher embraces the values of the Agile Software Manifesto and has been heavily influenced by Extreme Programming, Domain Driven Design, and other related practices.

In his free time, Christopher is usually very distracted by a dozen different, competing creative ideas. Aside from that he can sometimes be found playing Frisbee golf, guitar, or video games. He lives in Tallahassee, Florida, with his wife, Sandra, and their three children, Adah, Ranen, and Kaniel.

Dedication

This book is dedicated to our wives, Anna Eisenberg and Sandra Bennage.
Without their patience, love, and support we would not
have been able to make this happen.

Acknowledgments

Rob and Christopher would like to thank the following: Mark Loy, Kevin Crumley, and Bryan Gertonson for help in reviewing the book, the Monday Night gang for perpetual support and friendship, and our parents for encouraging us to play with computers. Christopher would also like to thank the high school seniors at Canopy Roads (class of 2008). You guys rock!

We also benefited a great deal from many bloggers: John Gossman, Dan Crevier, Charles Petzold, Beatriz Costa, Josh Smith, Lee Brimelow, Kevin Hoffman, Karsten Januszewski, Daniel Lehenbauer, Jeremy Miller, and Paul Stovell.

We’d also like to give a shout out to our friends at CodeBetter.com and Devlicio.us. A special thanks goes to Mark James at famfamfam.com for his excellent open source icon library.

Finally, we would like to thank God for his grace and mercy, and for allowing us to combine our passion with our profession.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion, and we want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name and phone number or email address. I will carefully review your comments and share them with the authors and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe

Executive Editor

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to any updates, downloads, or errata that might be available for this book.

Introduction

Windows Presentation Foundation, or WPF, is Microsoft’s latest framework for building sophisticated and rich user interfaces for desktop applications. WPF differs significantly from its predecessor, and yet draws on many of the concepts found existing in frameworks for both desktops and the web.

WPF enables developers to easily and quickly handle tasks that were either very difficult or impossible to accomplish in previous frameworks.

Audience and Organization

This book is intended for those who have at least some experience with general .NET development. If you have worked with WinForms or ASP.NET, you should feel comfortable with this book. The code examples provided are written in C#, but we’ve been careful to keep them readable for those whose primary language is Visual Basic.

Because WPF is both a broad and a deep topic, it can easily become overwhelming. Our approach in this book is to stay broad. We cover the essential concepts of the framework. Our goal is for you to feel confident building a WPF application when you are done with the book, as well as equipping you to dig deeper into any areas of the framework that interest you.

The book is organized into five parts. In each of the first four parts, we build a sample application that demonstrates the features of WPF covered in that part. Although the applications are simplified, they are designed to reflect real-world scenarios that you are likely to encounter. Each of the parts builds on its predecessor, and we recommend reading them in order. Part V concludes with information designed to help you move forward after the book.

	Part I, “Getting Started”—We build a utility for browsing the fonts installed on your system. You’ll learn about the new markup language XAML that is an integral part of WPF. We also introduce you to most of the basic controls, including those that handle layout. You’ll also learn about basic data binding in WPF.

	Part II, “Reaching the User”—You’ll create your own rich text editor. You’ll learn about the powerful new event and command systems. We also introduce you to a few more controls and show you how you can deploy your WPF applications. You also discover how to print from WPF.

	Part III, “Visualizing Data”—This part teaches you how to style an application, as well as how to use WPF’s powerful graphics capabilities for visualizing the data in your applications. We also dig further into data binding and show you some options for architecting your WPF applications.

	Part IV, “Creating Rich Experiences”—You’ll learn how to easily embed media in your applications. You’ll see how WPF’s drawing and templating APIs make it easy to create unique and visually attractive interfaces. You’ll also get started with animation.

	Part V, “Appendices”—This includes a brief introduction to 3D and a list of tools, frameworks, and other resources that aid in WPF development.

Throughout the book, we use code-continuation characters: When a line of code is too long to fit on the printed page, we wrap it to the next line and precede it with a code-continuation character, like this:

[image: image]

Farther Up and Further In

Learning WPF is really a lot of fun. We’ve discovered a new joy in building user interfaces since we’ve begun using this technology. We believe that you’ll have the same experience working through this book. Although it may take some time to become a master of WPF, it’s actually quite easy to get up and running quickly. By the time you are done here, you’ll be ready to start using WPF on your next project.

Now, let’s get started!

Part I: Getting Started

HOUR 1 What WPF Is and Isn’t

HOUR 2 Understanding XAML

HOUR 3 Introducing the Font Viewer

HOUR 4 Handling Application Layout

HOUR 5 Using Basic Controls

HOUR 6 Introducing Data Binding

Hour 1. What WPF Is and Isn’t

What You’ll Learn in This Hour:

	What WPF is

	When you should use WPF

	What tools you will need

	How WPF compares to other frameworks

	The versions of .NET

	Silverlight

What Is WPF?

WPF is big. In fact, it can be overwhelming because it has lots of moving parts that all interconnect. The shortest answer to the question, though, is that WPF is an API for building graphical user interfaces (UI) for desktop applications with the .NET Framework.

Now for the longer answer.

To begin with, WPF is an abbreviation for Windows Presentation Foundation. Physically, it’s a set of .NET assemblies and supporting tools. It’s intended to provide a unified API for creating rich, sophisticated user interfaces on Windows XP and Windows Vista.

WPF combines the good things from web development, such as style sheets and a markup language for declarative UI, with good things from Rich Internet Applications, such as scalable vector graphics, animation, and media support. These good things are wrapped up with the good things from traditional Windows development—things like strong integration with the OS and data binding. In WPF, these concepts are strengthened and unified. Even all that does not capture the full extent of WPF. It has other facets, such as support for 3D drawing, advanced typography, and portable documents similar to PDF.

WPF is also a unified API. Many of the things you are able to do in WPF, you could do before. However, doing them all in one application was extremely difficult. Not only does WPF enable you to bring these disparate features together, but it provides you with a consistent API for doing so.

WPF is just one part of a larger picture. Three additional libraries were also released as part of .NET 3.0. All four of these libraries have the same intent of providing a consistent, unified API for their domain. Additionally, combining any of these four libraries in an application can yield some very impressive results. The three sibling libraries of WPF are shown in Table 1.1.

Table 1.1. The Sibling Libraries of WPF

[image: image]

The immediate predecessor to WPF is Windows Forms, the graphical API available to developers in .NET 2.0 and earlier. Windows Forms provides a managed wrapper for accessing the graphical functions of the traditional Windows API. WPF differs fundamentally in that it builds on top of DirectX. The DirectX API was originally focused on multimedia and game programming in particular. As such, you are able to do some nifty visual tricks in WPF that were practically impossible with Windows Forms. It also means that WPF will take advantage of hardware acceleration when it is available.

WPF still has some similarities to Windows Forms (and even ASP.NET Web Forms). Microsoft provides a library of basic controls such as text boxes and buttons. You’ll also encounter familiar concepts such as data binding and code-behind files. All these concepts have been refined and improved for WPF.

Getting to Know the Features of WPF

Let’s take a moment to review the major features of WPF. We’ll cover each of these with more depth in later hours.

Declarative UI

WPF allows you to construct your interface using a markup language called XAML (pronounced zammel, rhymes with camel). We’ll dig into XAML in Hour 2, “Understanding XAML,” but if you have ever worked with HTML, you are already familiar with the concepts. XAML is a much richer markup language than HTML, and it has less ambiguity. Visual Studio, as well as some members of the Expression family of products are able to generate XAML natively.

XAML provides a common medium for interacting with designers.

Intelligent Layout

Arranging the various components of an application onscreen can be complicated, and it’s further complicated by the myriad display possibilities that users might have. WPF provides an extensible layout system for visually arranging the elements of a user interface. It can intelligently resize and adjust, depending on how you define the layout. We’ll cover this in some detail when we discuss panels in Hour 4, “Handling Application Layout.”

Scalable Graphics

Graphics in WPF are vector based, in contrast to raster based. Vector graphics are inherently scalable and typically require less storage than a comparable raster image. WPF still has plenty of support for raster graphics, but vectors are an excellent fit for constructing user interfaces.

Vector graphics have already become popular on the web, primarily because of Adobe Flash and to a lesser extent the Scalable Vector Graphics specification (SVG).

The net result for developers with WPF is that applications scale nicely without a loss in visual quality.

By the Way: Vector Versus Raster

A raster graphic is an image that is stored as a rectangle grid of pixels, and each pixel is assigned a color. Most graphic file formats that you are familiar with are just variations to this method. This includes formats such as GIF, JPEG, BMP, and PNG.

Raster graphics are also called bitmaps. (Don’t let the the BMP file format confuse you. The term bitmap is a general term describing a particular way to store image data.)
Suppose that you have a raster image of a blue circle on a white background that is 100×100 pixels. The computer loads those 10,000 pixels into memory and displays them on the screen. That’s a lot of data for such a simple image. Imagine that we need the same image but two or three times larger. The number of pixels increases exponentially. If we could simply provide the computer with the dimensions, position, and color of the shapes, then we would have much less data to worry about. In this way, raster graphics are inefficient.

Another problem with raster images is that they do not resize well. There’s a noticeable loss of quality, especially when you are enlarging an image. Suppose that you wanted to double the size of a 100×100 image of yourself. To increase the size to 200×200, you would need 390,000 more pixels. These missing pixels would need to be interpolated from the existing ones.

Vector graphics, however, are stored as geometries. The data structure for a vector image contains just enough information for the computer to draw the image. A vector image of a blue circle on a white background would contain the x and y position of the circle, its radius, and metadata indicating the circle was blue and the background white. When a computer renders this image, it figures out the actual pixels on-the-fly. This means that there is no difference in quality between the 100×100 vector image and the 200×200 image, and that the size of the data needed to draw the image is substantially less.

A general rule of thumb is that vector graphics are good for geometrical or cartoonish images and that raster is better for photographs and realistic images.

Templates

WPF makes it very easy to create reusable elements for your user interfaces. There are two types of templates in WPF: control templates and data templates. Control templates enable you to redefine the way a control looks. (For ASP.NET developers, they are conceptually similar to control adapters.) For example, if your application needs to have all its list boxes with a blue background and a red border, you could use a control template to redefine the visual appearance of list boxes. Control templates also make it easier for designers. They are able to provide a “look” for a list box through a control template, with little to no impact on the actual development process.

Data templates are similar, except that instead of defining the way a control looks, they define the way certain types of data are rendered. Imagine that you have an application dealing with people, such as a contact manager, and that you represent people in code with instances of a Person class. You can create a data template that defines how an instance of a Person is rendered in the UI. For example, an instance of Person might be visualized as a business card with a picture, first name, last name, and telephone number. If you use such a data template, whenever a Person instance is bound to some UI element, such as a list box, WPF will use the corresponding data templates. In practice you will find that data templates are really handy when dealing with lists or other collections of data.

Binding

When we talk about binding in WPF, you probably jump immediately to the concept of data binding. Data binding has already been made popular with Windows Forms and ASP.NET Web Forms, and has demonstrated its usefulness there. Although WPF has significant data binding features—significant in that it greatly outclasses its predecessors—it also allows you to declaratively bind other things such as commands, key bindings, animation, and events. For example, you can declaratively bind a button control to a command for pasting.

Styling

WPF really shines when it comes to making an application look pretty. It allows you to do such things as make the background of a text box red or surround a button with a thick blue border. Styles in WPF are similar to cascading style sheets for HTML. Though again, WPF styles are richer and have less ambiguity. They encompass all the visual characteristics you would expect, such as padding, margin, position, color, and so on. But you can also use styles to declare nonvisual properties.

Styles are also easy to reuse, and when you combine them with templates, you are able to do some amazing things.

Triggers

Both templates and styles in WPF support the notion of triggers. A trigger enables you to tell WPF something like this: “When the mouse is over the button, make the background purple.” In other words, triggers enable you to declaratively handle changes of state. You will also find them useful for kicking off animations.

Animation

The animation framework in WPF is very impressive, and a great deal more useful than you might think. Most properties in WPF can be animated, and support exists for timelines, key frames, and interpolation. Animations are easily integrated with templates and styles. For example, you might define a style for a button that animates the button when you move the mouse over it. Flash developers and designers will be impressed with the available features.

3D

Finally, WPF allows for some basic 3D modeling and animation. I say basic because WPF is not intended for building high-performance 3D applications. You won’t be constructing a first person shooter in WPF. (If that is what you are interested in, be sure to give Microsoft’s XNA platform a look.) Nevertheless, the 3D features are powerful and easily integrated into any user interface. We won’t be covering the 3D features of WPF in this book; however, a very basic tutorial is available in the appendixes.

Why Use WPF?

WPF, as well as its sister libraries released with .NET 3.0, are well-factored and consistent APIs. They unify many programming concepts and, on the whole, make a lot of complicated development tasks easier. However, WPF is not necessarily the right choice for every project. Some desktop applications would be easier to build and maintain in Windows Forms. But, you’ll find many benefits when you work with WPF. Any Windows developer should begin learning WPF because it will eventually mature to a point where it completely replaces Windows Forms.

Many of the key benefits are apparent by reading the list of features in the “Getting to Know the Features of WPF” section. The following are some scenarios where WPF will really shine:

	Your project requires collaboration with designers. The use of XAML and its supporting tools can really help out here. After the developers and the designers become familiar with the tools, your team can experience tremendous gains in efficiency.

	Your application is media aware. If you need to integrate video and audio into your product, you’ll definitely want to consider WPF.

	The anticipated hardware for your application has support for DirectX 9 or greater. WPF is built on top of DirectX, and your applications will benefit from the hardware acceleration.

	Your application needs support for advanced typography. WPF has support for OpenType and many other features that are not available with Windows Forms.

Finally, you as a developer can get more done in less time. Even if you are not concerned with many of the bells and whistles of WPF, you will be able to produce quality software with less effort. In Part I, “Getting Started,” we’ll demonstrate this principle by building a simple but useful utility using just markup language.

Comparing WPF to Other Options

If you are solely a .NET developer, you really have only two other options to consider: Windows Forms and ASP.NET. We’ve already compared WPF to Windows Forms throughout the course of this hour. The only real advantages that Windows Forms has are its mature library of controls and significant third-party support. WPF is still the new kid on the block, and the mass of supporting tools and materials has not had time to build up yet.

Comparing WPF to ASP.NET is a little more involved. The question here really centers on deployment and distribution. WPF is currently limited to the Windows platform, and there’s obviously no such limitation with a web application. WPF requires the .NET Framework 3.0 or later, as well as a means of deploying the application. If your application is centralized, requiring one or more server components, you are likely to reduce the complexity significantly by choosing to develop a web application.

Outside of the .NET world, some of the same features are available with Adobe Flash, primarily when it comes to media and animation. Historically, Flash has really only been useful in a Web context. However, the Adobe AIR platform utilizes Flash for developing cross-platform, desktop applications. Nevertheless, Flash still has some notable drawbacks. The development environment is not as robust as .NET although, admittedly, Flash does tend to be more designer friendly. Control libraries for Flash are much more limited and cumbersome to use. It is possible that AIR will provide some healthy competition for WPF.

The Pieces of .NET Framework

Unfortunately, a lot of terms and version numbers are floating around in the .NET world right now, and sorting them out can be particularly difficult. Let’s take a moment and step through the various pieces of the .NET Framework and how they relate to all the version numbers.

It is easiest to think of the .NET Framework as a family of products including the runtime, the compilers, and the common code libraries.

The runtime is the common language runtime, or CLR. It is the virtual machine that hosts .NET applications. It provides many of the core services such as memory management, garbage collection, and security. It’s outside the scope of this book to discuss the CLR in depth, but you should know that the CLR is the .NET runtime and its version numbers differ from those of the .NET Framework in general. The current CLR is 2.0.

The two dominant languages in the .NET world are C# and Visual Basic .NET. Both of these languages have their own version numbers and those numbers differ from the .NET Framework as a whole. The current version of C# is 3.0, and Visual Basic is 9.0.

You’ll also hear about the Base Class Library (BCL) and the Framework Class Library (FCL). The BCL is a set of classes available to any language in the .NET family. These classes mostly live in the System namespace. The FCL is a term that includes both the BCL and the common libraries in the Microsoft namespace. Distinguishing between the two sometimes results in hair splitting, and many people use the terms interchangeably.

Figure 1.1 shows how these “products” have changed with each release of the .NET Framework beginning with 2.0.

Figure 1.1. The version history of the .NET Framework.

[image: image]

Some interesting points to clarify are the following:

	The CLR has not changed since the release of 2.0. Thus, the core features of the .NET Framework are the same.

	C# 3.0 and VB .NET 9.0 both compile to bytecode (or IL) that is compiled “just in time” on the CLR 2.0. The new language features with .NET 3.5 are essentially enhancements to the respective compilers.

	WPF is a class library; nothing changed the underlying CLR. This means that unlike .NET 2.0, version 3.0 of the Framework was just the addition of new libraries.

Tools for WPF

In this book we work primarily with Visual Studio 2008. Specifically, we use the Express Edition, which Microsoft provides free of charge. Visual Studio 2008 has native support for WPF applications.

By the Way

The Express Edition of Visual Studio 2008 is available at www.microsoft.com/express/, along with many other resources.

It is possible to build WPF applications with Visual Studio 2005; however, you need to install the WPF extensions for Visual Studio that never made their way to a final release. I strongly advise to move to 2008 if at all possible.

You can also use SharpDevelop (also known as #develop). It is an open-source IDE for .NET, and it has support for building WPF applications in .NET 3.0. It is a solid IDE, but it is hard to beat the level of support for WPF in Visual Studio.

The second primary tool for creating WPF applications from Microsoft is Expression Blend. Blend targets designers rather than developers. It works with the same files as Visual Studio, so a designer using Blend and a developer using Visual Studio can both work on the same projects, solution, and files. Blend is somewhat comparable to the IDE for Adobe Flash. You will find drawing tools, animation timelines, palettes, and other designer-centric features. Despite its focus, I recommend that developers become familiar with Blend. Blend is also one of the first Microsoft products to be written with WPF.

A third-party product exists for designing WPF interfaces—Aurora, by Mobiform Software. It provides a similar set of features as Expression Blend. One notable feature is that Aurora designer can be embedded in another WPF application. So if you have a need for providing a built-in XAML editor in your application, be sure to check it out.

Expression Design is another Microsoft product. It is for authoring vector-based graphical content, similar to Adobe Illustrator or Inkscape. Expression Design can be used to create logos, icons, and illustrations for use with WPF. It can natively output graphics as XAML, which can then be directly incorporated into WPF. Expression Design differs from Blend, in that Blend’s focus is purely on authoring user interfaces.

Many other applications for producing 2D and 3D art now have plug-ins available for exporting assets in XAML. (Remember, XAML is the native tongue of WPF.) Some of the applications that have plug-ins available are Adobe Fireworks, Adobe Illustrator, Inkscape, Maya, Blender, and Lightwave.

Aside from the 3D tools just mentioned, at least one WPF-specific 3D content editor is available—ZAM 3D by Electric Rain. ZAM 3D is very similar to the Swift 3D product for Flash. It’s more approachable than most 3D editors and is probably the best place to start for WPF developers interested in 3D.

One final tool worth mentioning is Kaxaml. It is a lightweight XAML editor featuring a live preview. That is, you can see how WPF will render your markup as you are typing. It is a very handy utility to have around, and at the time of this writing it is free.

By the Way

Visit www.kaxaml.com/ to download Kaxaml. Even though the tutorials in this book focus on Visual Studio, you might find it useful to test some of the markup in Kaxaml. Unlike the preview in Visual Studio, Kaxaml is truly what-you-see-is-what-you-get (WYSIWYG).

Many other tools, utilities, control libraries, and so on become available every day. Some are third-party commercial products, and others are community-driven and free. Be sure to check in the appendixes for additional resources. For the sake of simplicity, we use only Visual Studio 2008 Express Edition in this book.

Constrasting WPF with Silverlight

Silverlight is a platform for developing Rich Internet Applications (RIA), whereas WPF is primarily intended for desktop applications. Silverlight is a direct competitor to Adobe Flash and it has a strong focus on media, cross-platform compatibility, as well as a small download and install footprint. Like Flash, Silverlight applications are hosted in a browser.

Microsoft has intentionally designed Silverlight to be very similar to WPF, although the two are separate products. In fact, an early name for Silverlight was WPF/E or Windows Presentation Foundation/Everywhere. Developers familiar with one technology will have a head start with the other.

Like WPF, Silverlight uses XAML for declaring user interfaces. In version 1.0, a Silverlight application consists only of text files containing JavaScript and XAML. Silverlight 2.0, however, will support a more robust runtime and a base class library similar to the standard .NET BCL. You will be able to write Silverlight applications in your favorite .NET language and compile them to assemblies for distribution. Silverlight 2.0 will look a lot more like WPF, but you should be aware that significant differences exist. It is almost certain that Silverlight will not support all the features in WPF. Likewise, code written for Silverlight may need significant changes before it will compile for a standard .NET application. Always keep in mind that the runtime for Silverlight is different from the CLR.

Summary

Windows Presentation Foundation is the future of software development for desktop applications. The API is very large, and the features are numerous. Becoming an expert in WPF can take some time. However, a basic understanding of the core features can greatly increase a developer’s productivity. WPF is also a leap forward in promoting collaboration between designers and developers.

Q&A

Q. Are there any good reasons for not using WPF to build your application?

A. A WPF application is generally more resource intensive than a Windows Forms application. If you are building applications for low-end hardware, you might want to do some performance testing before you commit to using WPF. Additionally, .NET 3.0 and 3.5 are not yet widely installed and they are prerequisites for a WPF application. (.NET 3.0 is included with Vista and Windows Server 2008.)

Q. There seems to be a lot to understanding WPF; do I really need to master all of these concepts to use it?

A. No, you don’t. As we’ve emphasized, WPF is big. However, by the end of Part I, you can begin building useful applications and realizing the benefits of WPF.

Workshop

Quiz

1. What is the benefit of using a markup language for designing a user interface?

2. What operating systems does WPF currently support?

3. How does WPF differ from Silverlight, and in what ways are they similar?

4. Aside from Visual Studio 2008, what is another tool from Microsoft that WPF developers should become familiar with?

Answers

1. Using a markup language such as XAML, or even HTML, is beneficial because it provides a common medium for both designers and developers. Additionally, the markup language allows for a declarative approach for building applications, which is often easier to construct and maintain.

2. WPF is currently available on Windows XP and Windows Vista.

3. WPF is part of the .NET Framework, and it is intended for building graphical user interfaces for desktop applications. Silverlight targets Rich Internet Applications that are hosted in a web browser. Silverlight’s runtime is different from the standard .NET runtime. Both Silverlight and WPF use XAML for defining interfaces. Microsoft has intentionally made Silverlight as close to WPF as possible to lower the barrier for developers and designers.

4. WPF developers should be at least somewhat familiar with Microsoft’s Expression Blend. The application is primarily intended for designers, but can often be useful for developers as well. It uses the same file formats as Visual Studio, so that solutions and projects are interchangeable between the two applications.

Hour 2. Understanding XAML

What You’ll Learn in This Hour:

	What is XAML?

	The basic syntax of XAML

	How properties can be represented as elements

	Namespaces

	Markup extensions

XAML, or Extensible Application Markup Language, is an XML-based language created by Microsoft. It’s as fundamental to WPF as HTML is to web development.

What Is XAML?

XAML (pronounced zammel) is the language used for creating user interfaces in WPF. It’s an XML-based markup language similar to HTML, MXML, or XUL. XAML has applicability well beyond defining user interfaces. In fact, it’s even possible to represent data with XAML, such as an array of strings or an instance of object. XAML is also used by Windows Workflow Foundation (WF) for defining workflows. In the most general sense, XAML is a language for serializing .NET object instances into a human readable format.

Even though Visual Studio 2008 provides a WYSIWYG editor with drag-and-drop support for producing and manipulating XAML, you will often need to edit your markup directly. We’ll be writing our XAML by hand for most of the book. The default file extension is .xaml.

XAML can be either compiled or interpreted, depending on how it is used. Some features, such as embedding C# or VB code in XAML, work only when the XAML is compiled. When you create a WPF application with Visual Studio, the XAML used in the application is compiled into the resulting executable. However, you can create .xaml files that are meant to be interpreted on-the-fly (no compilation is involved). These XAML files are usually hosted in a web browser.

Let’s create a simple “hello world” XAML application. You’ll need to have the .NET Framework 3.5 installed to do this exercise. It’s installed as part of Visual Studio 2008.

	Open your favorite text editor, such as Notepad.

	Create a plain text document and enter the following:
[image: image]

	Save the text file and name it HelloWorld.xaml.

	Double-click the newly created file, and it should open in a web browser. If another application has been mapped to .xaml, you will need to launch the browser first (either Internet Explorer 7 or Firefox will do) and drag the file into the browser.

Congratulations, you’ve just created your first WPF application using XAML. HelloWorld.xaml is an example of interpreted XAML because we never compiled the application to an executable. XAML-only applications are rather limited, and in real life you’re much more likely to use XAML in concert with C# or VB.

In HelloWorld.xaml, notice that the root element is a Page tag. Some other possibilities exist, most frequently the Window tag, but we’ll get to that shortly. When authoring XAML, your root element always defines two namespaces. The default namespace is specifically mapped to WPF, whereas the prefix x: is for XAML’s more generic features. Remember, XAML can be used to represent all kinds of data; we used the default namespace to say that we are representing data about WPF. The x namespace is representing a broader context. That may sound a little backward, but you’ll quickly find that you don’t use the x namespace as much as the default one. If this doesn’t make sense, don’t worry about it for the moment. It won’t stop you from using XAML, and we’ll review it again later. Just know that these namespace aliases are the convention adopted by Microsoft, and you’ll see it in all the examples and documentation.

By the Way

Namespaces in XML are often confusing if you have not worked with them before. Namespaces in XML serve the same function as namespaces in .NET; they provide a scope for unique names.

It’s similar to the idea of having two people named John Smith. To distinguish between them, you might call one John Smith from Surrey and the other John Smith of Boston. Including the place where they are from is analogous to the namespace. When two things are named the same, and we can’t tell them apart, it is called a naming collision.

The xmlns attribute is used to map a local name (or alias), such as x, to the actual namespace, which is specified as a URI. Individual elements or tags that reside in the namespace use the local name as a prefix in their tags.

The namespace tells the XML parser how the elements in the document should be interpreted.

The Syntax of XAML

As a general rule, an element in XAML is an instance of an object and attributes are properties on that object. The markup in Listing 2.1 is for a simple button on a page.

Listing 2.1. A Simple Button in XAML

[image: image]

The root element corresponds to an instance of Page, more specifically System.Windows.Controls.Page. Page, and everything else in the System.Windows.Controls namespace, is a WPF control.

The Button element corresponds to an instance of the class System.Windows.Controls.Button. In turn, the attributes on the Button element represent properties on an object instance. Thus, we are setting the values for the properties of Width, Height, Background, and Content.

There is also the x:Name attribute, which breaks the rule here. x:Name is not a property on the Button class. Instead, it’s a special attribute that provides a unique identifier to the object for accessing it in code. It is the same as creating a variable of type Button with the name blueButton. The Button element in the preceding XAML is equivalent to the following C#:

Button blueButton = new Button();
blueButton.Width = 100;
blueButton.Height = 40;
blueButton.Content = "Click Me";
blueButton.Background = new SolidColorBrush(Colors.Blue);

The Background property is a little more complex than the others. We’ll talk about that in a second. It is important to understand that any XAML element you want to reference, in code or elsewhere in the XAML, must have a unique value for x:Name. Providing a value from x:Name is like creating a variable and then setting the variable to the instance of the object.

By the Way

The Button class has a Name property, and interestingly enough, setting a value for x:Name also sets the same value for Name. In fact, for any object that has a Name property, the two attributes can be used interchangeably. This was very confusing for us when we first started working with XAML.

It’s pretty easy to get into trouble using the Name property, though, and unless you have a specific need, we recommend sticking with x:Name. It’s the convention that is generally adopted.

Setting Properties That Aren’t Simple Types

On the Button class, Width and Height are simple value types. WPF converts the string value 100 to a double implicitly. However, many properties on controls are not simple value types. Some properties are objects that have lots of properties themselves, which could also be complex types. In our example, the Background property on Button is of type Brush. In the XAML, we are able to simply say Blue and it works.

There are many places in XAML where commonly used types, such as SolidColorBrush, can be represented by a simple string value that WPF just knows how to handle. In the case of SolidColorBrush, you can provide any named color, as found on the System.Windows.Media.Colors class, or you can provide a hexadecimal representation of the color similar to those you would use in HTML or CSS. Both of the following XAML snippets are equivalent:

<Button Background="#FF0000FF" />
<Button Background="Blue" />

In some situations, however, this shorthand is not sufficient for telling WPF what you want. In those cases we can use property element syntax. Property element syntax is an alternative syntax used for providing values for complex types. Instead of setting the Background property using an attribute, we can use a child element. The following snippet demonstrates using this alternative syntax for setting the background to blue:

[image: image]

The child element is referred to as a property element. Property elements take the form of <ClassName.PropertyName />. That is, the first part of the element’s name is the class name, followed by a dot, followed by the property’s name. The content of the child element is the value we want to set. When using a property element, we need to be more explicit and tell WPF that we want the value to be an instance of SolidColorBrush with the Color property set to blue. This syntax can become very verbose, but in many situations it is the only way to provide the exact value that you desire.

It’s preferable to use the shorthand when possible. Succinct markup is easier to read and it makes the intention of the XAML clearer.

The Content Property

Many of the WPF controls that you will encounter have a property named Content. Content is a special property. In Listing 2.1, we set the Content of a Button to a string value, Click Me. However, you can also set the Content property implicitly using a child element. For example, the following XAML elements are equivalent:

<Button Content="Click Me" />
<Button>Click Me</Button>

Both buttons will be rendered the same in WPF. What’s exciting is that Content is actually of type object. That means that we can make a button’s content much more than just a simple string. For example, perhaps we want to draw a yellow circle inside our button. You could use the following XAML:

[image: image]

You can always set the Content property explicitly, too:

[image: image]

However, doing so is more verbose and does nothing to improve the readability or maintainability of your code. Furthermore, the convention of setting the Content property implicitly is almost universally adopted.

If you go back to Listing 2.1 one more time, you will notice that our Button element is actually the value for the Page.Content property.

Markup Extensions

Sometimes we need to specify values in our markup that are either difficult to express in XAML or outside the scope of the XAML processor. XAML has a feature called markup extensions and it allows us to handle these awkward situations.

For example, suppose we have a specific color we want to use as the background for several buttons in a WPF application. We could set the Background property on each of the buttons to use the same color, but it would become tedious if we ever needed to change that color. With WPF, we can store the color with a lookup key in an application’s resources. (We’ll discuss this concept in depth in Hour 14, “Resources and Styles.”) Now we can set the background of the buttons to the color we stored in the resources. If we want to change the color, we need do so in only one place. That’s a lovely scenario, but how would we handle this in XAML? We would use a markup extension.

In the preceding scenario, the XAML with the markup extension might look like this:

 <Button Background="{StaticResource ResourceKey=myColor}"
 Content="Click Me" />

Markup extensions are indentified by the presence of curly brackets ({}). The first word in the markup extension tells WPF what kind of extension it is. The name of the extension is optionally followed by a set of named parameters. In this case, the extension is for retrieving a shared resource from a library of resources. The name of the extension is StaticResource, and we provide a value of myColor for the ResourceKey parameter. Many extensions have a default parameter. You don’t have to explicitly reference a default parameter. You are allowed to omit the parameter name and the equal sign. For example, we could restate the snippet without ResourceKey=:

 <Button Background="{StaticResource myColor}"
 Content="Click Me" />

ResourceKey is the default parameter for StaticResource.

In some cases, you will have more than one parameter. If you do, you must separate name/value pairs with commas. The general pattern is this:

{ExtensionName Param1=Value1, Param2=Value2, Param3=Value3}

The most frequent mistake in dealing with markup extensions is to include quotation marks around the values. You are not allowed to have quotation marks between the curly brackets. This confuses the parser. It also means that parameter values cannot have whitespace.

Many markup extensions are built in to WPF, and you can even write your own (however, it is not common to do so).

We’ll cover specific extensions as they become relevant throughout the book; however, Table 2.1 has a very brief summary of the most significant extensions. Don’t be too concerned about understanding these extensions right now; they will make sense in context.

Table 2.1. Common Markup Extensions in WPF

[image: image]

Summary

Understanding XAML is essential to working with WPF. Although it is possible to write a WPF application without XAML, it is awkward and clumsy. XAML is very flexible, and a lot of traditional programming tasks can now be handled with XAML. Like WPF in general, you won’t be able to master XAML overnight. Even developers who have worked with the language for some time often discover features they were unaware of.

The goal of this hour was to equip you with a foundational knowledge of XAML and how it is used. We will continue to build on that foundation in the remaining hours.

Q&A

Q. Why are attributes in these examples often placed on new lines by themselves? Is that a requirement of XAML?

A. No, it is not a requirement. For the most part, XAML is unconcerned about the whitespace. There is a growing trend of placing the secondary and following attributes on a new line, indenting to align with the first attribute. We adopted this convention for the book because it promotes the readability of the XAML.

Q. I’ve heard about object element syntax in regard to XAML; how does that fit in with what we have discussed?

A. Object element syntax is the name for declaring objects in XAML. Its name comes from the fact that an XML element in XAML corresponds to an instance of an object in .NET.

Q. If powerful WYSIWYG editors exist for XAML, why should I bother learning all the details of the language?

A. WYSIWYG editors are excellent tools for getting work done quickly; however, they don’t always produce the most efficient XAML for your specific application. Additionally, there are many tasks that the editors do not support. You’ll also find that some things are just easier to handle manually. Finally, a thorough understanding of XAML and how it relates to WPF provides a solid base for building efficient and effective WPF applications.

Workshop

Quiz

1. What is the purpose of the x:Name attribute in XAML?

2. What is a feature of XAML that is available when it is compiled rather than interpreted?

3. Can you identify the syntactical mistake in the following markup extension?
{StaticResource ResourceKey="myData"}

Answers

1. The x:Name attribute allows you to uniquely identify an instance of an object defined in XAML. The value of the x:Name attribute can be referenced in the associated C# or VB code.

2. When your XAML is compiled, you can embed procedural code such as C# or VB. For more information about this, look up the markup extension x:Code.

3. Quotation marks are not needed when specifying values in a markup extension. In fact, using quotation marks will confuse the XAML processor.

Hour 3. Introducing the Font Viewer

What You’ll Learn in This Hour:

	How to set up a new WPF project

	Some basics of Visual Studio

	The structure of a project

	XAML files

	Code-behind files

In this hour we’ll begin developing our first WPF application, a small but useful utility for browsing the fonts currently installed on your system. We’ll also learn the basics of setting up a WPF project in Visual Studio.

Building the Font Viewer

Let’s begin by talking about the application we would like to build.

It would be convenient to have a lightweight utility that would allow us to see all the fonts currently installed on our system. Additionally, we could enter some sample text and see it rendered in the selected font.

To do this, we’ll need the following:

	A list box displaying the names of the installed fonts

	A text box for entering the text that we’d like to preview

	A place for rendering the preview text in the selected font

Setting Up a New Project in Visual Studio 2008

We’ll be working with the version of Visual Studio called Microsoft Visual C# 2008 Express Edition as shown in Figure 3.1. This is a special version of Visual Studio, released in conjunction with .NET 3.5. It has built-in support for WPF applications. If you have a different version of Visual Studio 2008, that’s okay; however, the steps might differ slightly.

Figure 3.1. Microsoft Visual C# 2008 Express Edition.

[image: image]

Here are the steps to creating a new WPF project:

	Launch Visual Studio. It’s named Microsoft Visual C# 2008 Express Edition on your start menu.

	From the menu bar select File, New Project.

	Select the template WPF Application, as shown in Figure 3.2.

Figure 3.2. Creating a new WPF Application project.

[image: image]

	Name your new application FontViewer, and then click OK.

By the Way

You may have noticed the project template WPF Browser Application. This is a special type of WPF application that we’ll discuss in a later hour. It is used to build applications that behave like a web browser, using the metaphor of pages as well as forward and back buttons for navigation. If you are using a different version of Visual Studio, such as the Professional Edition, you will notice even more project templates relating to WPF.

Basic Project Files

Visual Studio will create App.xaml and Window1.xaml, along with the associated code-behind files, and Window1.xaml will be open in your IDE.

The XAML files consist solely of the markup we discussed in Hour 2, “Understanding XAML.” The code-behind files contain the code supplementing the XAML (in this case C#).

By the Way

One of the fantastic new features in Visual Studio 2008 is the split pane you can use when viewing a XAML file. By default, a live preview of your XAML is displayed in the upper (or Design) pane, and your markup is displayed in the lower (or XAML) pane. The two panes are synchronized so that typing markup in the XAML pane will be almost immediately reflected in the Design pane. Likewise, you can click elements in the Design pane and modify them in the property panel. You can even drag elements from the Toolbox and drop them on your window. We’ll mostly keep to typing in the markup directly, because it is better for the learning process.

App.xaml represents the application itself. It is not visual, and it is primarily used to store resources that will be used throughout an application. App.xaml also defines which window opens when the application launches.

Window1.xaml is the main window for the application. Its markup contains all the visual elements that represent the application on the screen, as well as declaring our application’s behavior.

What Are Code-Behind Files?

In a WPF Application project, every XAML file has an associated code-behind file. The code-behind has the same name as its parent file with the .cs (or .vb) extension added. Thus, the code-behind file for window1.xaml is window1.xaml.cs.

In the Solution Explorer, code-behind files are children of the file that they are associated with. They will be nested underneath their parent.

You can toggle between the markup and the code by right-clicking a document in the editor and selecting View Designer or View Code, respectively. Note that Visual Studio will open a tab for both the XAML and the code-behind.

Separating Your Concerns

The intention of the code-behind model is to allow a developer to separate the visual rendering of an application from the behavior of the application. WPF supports this practice much better than either Windows Forms or ASP.NET Web Forms, although it is still very easy to muddy the waters.

For example, imagine a two-person team working on a WPF application that has a designer and a developer. The developer implements a feature that allows users to choose their favorite color from a list box. The designer would like to represent the list box as a palette displaying the colors as drops of paint. In this case, the designer can edit the XAML file and create a fancy list box, without disturbing the code written by the developer and without breaking the application.

This is only the beginning of what it means to separate concerns in your applications. We’ll talk more about this concept throughout the book.

Partial Classes

The concept of partial classes was introduced with .NET 2.0. The essential idea is that a single class can be defined across multiple files. Each file contains a portion of the class. The files can even be of different file types; such as .cs and .xaml. The compiler is responsible for dynamically combining the code into a single class as it is compiled.

You can identify partial classes by the partial keyword in C#, and Partial in VB.

Partial classes are also helpful in scenarios where some of the source code is generated by a tool but needs to be extended manually by a developer. The generated code and handwritten code can be kept in separate files.

This technique is relevant when learning WPF because both the code-behind files and XAML files are partial classes.

Renaming a XAML File

Our newly created Font Viewer application is now open in Visual Studio. If we press F5, we’ll see a functioning, but useless, WPF application running.

The default filenames provided by Visual Studio are not very meaningful. It’s a good programming practice to name items such as files, classes, and methods with names that reflect their purpose. We’re going to rename Window1.xaml to indicate that it is the main window of our application.

Renaming items in Visual Studio can break the code if we’re not careful. To maintain the appropriate links between the files when renaming the window, do the following:

	Select Window1.xaml in the Solution Explorer.

	Press F2 on your keyboard. (Alternatively, you can right-click and select Rename.)

	Change the filename to MainWindow.xaml. Note that Visual Studio renames the associated code-behind as well. However, Visual Studio does not correct references to the filename, nor does it change the name of the underlying class.

	Double-click App.xaml in the Solution Explorer to open it in the editor.

	The root tag in App.xaml is the Application tag, and it has an attribute StartupUri. StartupUri specifies the name of the primary window that is displayed when the application launches. It’s still pointing to the old name; let’s change it to point to MainWindow.xaml. App.xaml should now look like this:
[image: image]

	Open the code-behind for MainWindow.xaml in the editor; that’s MainWindow.xaml.cs. Notice that the class is still named Window1. Renaming the XAML file did not change the name of the class.

	To avoid confusion, we’ll change the name of the class to match the name of the file. Right-click the name of the class, and select Refactor, Rename. Enter MainWindow for the new name, and click OK; then click Apply. You can also select Refactor, Rename from the menu bar as shown in Figure 3.3.

Figure 3.3. Choosing Rename from the Refactor menu.

[image: image]

You’ll also notice that Visual Studio didn’t change the class name in the comment just before the class. You’ll want to change that as well; it’s a best practice to always keep your comments up-to-date with the code.

	Finally, in the markup for MainWindow.xaml, we need to correct the reference to the class. The root tag is Window, and it has an attribute x:Class. We need to change this to the full name of our class, including the namespace, which is FontViewer.MainWindow. MainWindow.xaml now looks like this:

[image: image]

By the Way

Have you heard the term refactor before? Refactoring code means that you improve the maintainability of the code without changing the behavior. The intent of refactoring is to make code more understandable, more explicit in its intent, and ultimately easier to maintain. Refactoring is a large subject, and there are many books on the topic. Visual Studio has a Refactor menu with some basic options that you should become familiar with. I also encourage you to investigate the topic on your own.

Developing the Application

We said at the beginning of the hour that we wanted our application to display a list of the fonts installed on our system. We also want to be able to select a font from that list, enter some text, and see it rendered in the font we chose.

It’s also important to make an application easy to use, so we are going to add some helpful text and spacing around elements to improve usability.

Let’s begin adding these features:

	Open MainWindow.xaml in the editor. By default, Visual Studio displays the XAML file in a split window. The Design pane of the window is a near real-time preview of the XAML, and the XAML pane displays the actual markup.

	First, let’s give our application a meaningful title to display in its title bar. Change the Title attribute of the Window tag to Font Viewer.

	The default size of the main window is pretty small. We can change the size with the Height and Width attributes of Window. Set the height to 480 and the width to 600.

	Now locate the Grid tag. Grid is one of several types of controls that enable you to visually arrange the elements of the UI. These layout controls are called Panels, and we’ll cover them in more detail in Hour 4, “Handling Application Layout.” Delete the Grid tag.

	In the spot where the Grid was located, begin by typing <DockPanel.

IntelliSense will kick in, and you can simply select DockPanel from the list. (Remember, to use IntelliSense for looking up XAML elements, always start by typing the < character for the opening tag.) DockPanel is another panel like Grid used for visually arranging elements of the UI. DockPanel is useful for the layout scenario in applications such as Visual Studio or Microsoft Outlook, when you want certain UI elements to be docked on the sides of the main window. The XAML should now look like this:
[image: image]

	Inside the DockPanel, enter the following:
[image: image]

Take a look in the Design pane; the application’s main window is now filled with a light gray rectangle that has slightly rounded corners. Be sure to always keep an eye on the Design pane as you are editing the XAML. You’ll gain a good understanding of what the markup does just by seeing the live preview.

	It is always good to provide some guidance to your users. Let’s add some instructional text. Place the following inside the newly added Border.
[image: image]

	Now we will add a list box that will display all the currently installed fonts. Just outside the Border, but still inside the DockPanel, add the following:
[image: image]

The ItemsSource attribute tells the ListBox about the data that it should display. In this case, the data we want is the set of currently installed fonts. The .NET Framework provides us with a static property, SystemFontFamilies, on the class System.Windows.Media.Fonts. By default, the ListBox calls the ToString method on each of the FontFamily instances in the collection. Luckily for us, this returns the name of the font.

We’ll dig into the rest of the details of all this in later hours.

The markup for MainWindow.xaml should now look like the following:

[image: image]

	Now we need a way to enter some sample text, as well as a way to display the preview text with the selected font.

Add this markup just beneath the ListBox:
[image: image]

The TextBox accepts input from the user. We provide a default sentence to be helpful. The TextBlock is an element used for displaying text.

Note that the Text attribute of the TextBlock is binding to the Text property of our TextBox (we named it SampleText). This tells WPF to keep those two properties in sync. Whenever a user types in the TextBox, the TextBlock is automatically updated.

We also bound the FontFamily of the TextBlock to the currently selected item in our list box. The FontFamily property tells the TextBlock which font to use for rendering the text. If you review the markup, you’ll notice that we gave our ListBox the name FontList and that our TextBlock is referencing this name.

	Finally, run your application. Try changing a few things, and experiment.

By the Way

Everything that we did in XAML, we could have done in code. In fact, there may be times when it is easier to construct the UI programmatically, rather than declaratively. However, you may be surprised at what you can do declaratively. As a beginner in WPF, be sure to explore the options. In the end, you should base your decision on what is easier to maintain.

Polishing a Few Things

After playing with the Font Viewer for a few minutes, it became apparent that it would be useful to show the sample text in multiple sizes at the same time. Let’s add some markup that will display the text in 10pt, 16pt, 24pt, and 32pt sizes.

We’ll make the following changes to display the same text four times in different point sizes.

	Replace the TextBlock that is bound to SampleText with the following markup:
[image: image]

This adds a StackPanel, which is another type of layout control. The StackPanel stacks its children element on top of one another. In this case, the children are four TextBlock elements with various values for FontSize.

Notice that they are all bound to the same source—the Text property of the TextBox named SampleText.

	Add an 8px margin to the DockPanel. It makes the UI a little less crowded, and improves the usability of the application:

<DockPanel Margin="8">

The complete markup for MainWindow.xaml is shown in Listing 3.1.

Listing 3.1. MainWindow.xaml

[image: image]

[image: image]

Figure 3.4 shows off our first WPF application!

Figure 3.4. The Font Viewer application.

[image: image]

Watch Out!

WPF makes UI development an order of magnitude easier. Developers are often criticized for building poor user interfaces. Although WPF makes it easier to improve the user experience, it will not do so by itself. In fact, WPF will allow developers to produce even worse user interfaces if they are not thoughtful about what they are building.

Did you notice that we have a functioning application, one with all the features we outlined at the beginning of the hour, and yet we did not write any code?

If we are able to do this, then what’s the purpose of the code-behind files? We aren’t writing any code!

We’re intentionally starting out with a very simple application. You’ll find that as the problems get more complex, you’ll need to begin writing code. Nevertheless, this demonstrates one of the powerful features of WPF: You can do a lot without writing any code!

Summary

In this hour we covered how to set up a new WPF project, and we built our first functioning WPF application, the Font Viewer. We discussed the difference between XAML and code-behind files in your project. We demonstrated, at a very high level, some of the more impressive features of WPF, such as data binding, layout, and declarative programming.

Q&A

Q. Which files are automatically added to a new WPF Application project?

A. App.xaml and Window1.xaml, along with their associated code-behind files. The former represents the application as a whole, whereas the latter represents the primary window of the application.

Q. What is the difference between a XAML file and a code-behind file?

A. The XAML file contains the XAML markup, whereas the code-behind file is associated with a XAML file and contains code (such as C# or VB).

Q. When you rename a XAML file in Visual Studio, is the code-behind file affected?

A. Yes, the code-behind file is renamed as well; however, the class name is not altered and must be manually changed if you want to keep the filename and the class name in sync.

Workshop

Quiz

1. What type of controls are DockPanel and StackPanel?

2. What is the difference between a TextBlock and a TextBox?

Answers

1. DockPanel and StackPanel are both Panels. They are used to control the layout of UI elements.

2. A TextBlock is used for displaying read-only text. The TextBox can receive user input from the keyboard.

Hour 4. Handling Application Layout

What You’ll Learn in This Hour:

	Core layout concepts

	Panels

	Attached properties

	Decorators

	How to choose the right panel for the job

Deciding how to arrange pieces of an application on the screen can be a daunting task. Additionally, the challenge of this task can be amplified by the technical difficulties of supporting diverse screen resolutions, window size changes, and other real-world layout issues. One of the great advantages of building applications with WPF is that the framework has deep support for intelligently managing these types of situations.

In this hour, we take a look at the layout options available in WPF by digging deeper into the Font Viewer from Hour 3.

Understanding Layout

Before we discuss the Font Viewer layout, it’s important to understand some basic concepts and terminology that will affect much of what you do.

Layout Panels and Decorators

Much of building a typical user interface in WPF consists of creating various types of controls, such as Button and TextBox. Panels are a special family of classes having the distinguishing capability of being able to arrange controls on the screen. For example, you might use a Grid to arrange a collection of Label and TextBox controls into a typical input form. In a different situation, you might use a DockPanel to “dock” your application’s Menu at the top of the Window and fill the remaining area with your main UI. Sometimes, you don’t need to arrange a control, but rather to extend its functionality or appearance. Another family of classes, related to panels, derives from the Decorator base class and fulfills this common need. The most common Decorator is Border, which draws a border around its enclosed control.

When it comes to panels and decorators, you can choose from a variety of options. We explore several of them in further detail later in this hour as well as discuss using nested panels for building more complex layouts.

By the Way

The term control is used to speak generally of elements that derive from the System.Windows.Controls.Control base class. Controls have a rich set of functionality that includes features such as mouse and keyboard input, data binding, layout, styles, and animation.

By the Way

An application developer can use other means to organize controls. It is common to use elements such as TabControl, GroupBox or Expander to aid in layout. These controls typically work in conjunction with panels or decorators to organize highly complex UIs. We discuss these in Hours 12, “Building a Contact Manager,” and 13, “Presenters and Views.”

FrameworkElement

Almost all the WPF elements that you will work with as you build interfaces derive from the System.Windows.FrameworkElement base class and inherit some common layout related properties. These properties serve to fine-tune the way the element is positioned within its parent. Let’s work with the basic properties Margin, VerticalAlignment and HorizontalAlignment.

Using Alignment and Margin

In this section, we create a simple application with a Grid and one child control, a Button. As we progress, we’ll change some of the basic properties that Button inherits from FrameworkElement to discover how the overall layout is affected.

	Open Visual Studio and create a new WPF Application project called AlignmentAndMargin.

	Enter the following XAML in the Window1.xaml file:
[image: image]

	Run the application and notice that the Button is centered both horizontally and vertically within the Window.

	Exit the application and make the following change to the Button element:
[image: image]

Notice how the designer updates the location of the button so that it is aligned to the left side of the window.

	Now add a VerticalAlignment:

[image: image]

	Try different combinations of horizontal (Left, Right, Center, Stretch) and vertical (Top, Bottom, Center, Stretch) alignment to see how they affect layout differently.

	Now we will add some Margin to all the sides:

[image: image]

	Using two numbers, you can specify left and right margins with the first and top and bottom margins with the second:

[image: image]

	Use four numbers to specify left, top, right, and bottom margins, respectively:
<Button Margin="20 5 40 75" />

You can use spaces or commas to separate the parameters and double values for fine-grained control.

<Button Margin="20,5.75,40,75"/>

	Continue to experiment with various combinations of these core layout properties.

After completing this task you should feel comfortable with some of the layout properties intrinsic to all FrameworkElements. These properties will be of great use in combination with various panels as you begin to master WPF.

Making Sense of Margin and Padding

Margin and Padding, as shown in Figure 4.1, are two similar layout concepts that are often confused. Margin, present on all FrameworkElements, represents the amount of space around the outside of the element. This space ensures that the FrameworkElement has room between it and neighboring elements. Padding functions differently. It is present on elements that inherit from Control (itself derived from FrameworkElement) and allows the control to specify an amount of space inside itself. This inner space separates the control from its own content. A Button control illustrates this most clearly. Picture the space inside the Button, around its text, that prevents the Button’s border from shrinking to the size of its contents.

Figure 4.1. The relationship between Margin and Padding.

[image: image]

Using Panels to Create Dynamic Layouts

Panels, as mentioned previously, are the core means by which a WPF developer declares UI layout. Take another look at the MainWindow.xaml in the Font Viewer sample application. Two different panels are used in combination to create the general UI structure: DockPanel and StackPanel. Run the application and resize the window several times. Notice how the DockPanel keeps certain elements docked and the StackPanel keeps the TextBlock controls stacked vertically. The specified margins are also maintained.

By the Way

All layout described here is done using XAML, but the same layout can be accomplished by using code. Every Panel has a Children collection. This collection can be used to add or remove controls from the panel’s layout at runtime.

Keeping It Simple with StackPanel

StackPanel is the simplest and one of the most useful layout controls for WPF. By default, it organizes its child elements by stacking them one on top of the other, like a list. StackPanel also has an Orientation property that can be set to Horizontal, causing the panel to stack its children from left to right.

Using a StackPanel

Let’s take a look at how StackPanel functions in the context of a real application. This shows us the variety of options that WPF provides, even for simple layout scenarios. We’ll investigate how changing Orientation can drastically change layout and how other properties affect the Font Viewer in more minute ways.

	Open the Font Viewer application and run it. Observe the layout of the four differently sized sample text regions.

	Close the application and change the StackPanel’s opening tag to this:

<StackPanel Margin="8 0 8 8"
 Orientation="Horizontal">

Notice the change in the designer. Run the application and resize the window horizontally. The contents of the StackPanel are stacked from left to right and clipped by the window boundaries.

	Close the application and remove the StackPanel’s Orientation attribute. This is obviously not what we want.

	Now add a HorizontalAlignment of Right to one or more of the TextBlock elements that are inside the StackPanel. Notice how this changes layout. The elements are still stacked vertically but within the list, they align themselves to the right.

	Try adding a VerticalAlignment of Bottom to the first TextBlock. Notice that the layout does not change. Now, change the StackPanel’s Orientation back to Horizontal. The elements are now laid out from left to right, with the first element being vertically positioned near the bottom of the screen whereas the rest are at the top.

	Experiment by changing the Margin on any of the TextBlock elements.

StackPanel is a good place to start when you need to lay out a list of elements. Though it is a simple option, StackPanel provides a diverse array of combinations when using its Orientation property in conjunction with the Alignment and Margin of its children.

By the Way

Interestingly, StackPanel is often used internally as the default layout for a number of other WPF controls. One example of such a control is ListBox, which we will look at in later hours.

Organize Your UI with DockPanel

WPF provides developers with a powerful layout option embodied in the DockPanel. This control is capable of attaching its children to any of its four sides and is often used as the root layout control of an application’s UI. We have followed this pattern in developing the Font Viewer, but before we can discuss how DockPanel works in this environment, let’s look at a very important related topic.

Attached Properties

It is common in layout scenarios for controls to specify additional information about their layout that is specific to the panel they are hosted in. For example, in the Font Viewer, the list of fonts needs to tell the DockPanel that it should be placed along the left side. To provide the DockPanel with this information, we use an attached property: DockPanel.Dock. Attached properties are simply a way of connecting additional information to an element. This data can then be used by another source. In the preceding example, DockPanel declares a Dock property that can be attached to any of its children. When the DockPanel lays out its child controls, it queries each one of them for this information and uses that to organize the view appropriately. Attached properties always follow the form Source.Property; where “Source” is the class that declares (and will use) the property and “Property” is the name of the property being set.

Mastering DockPanel

Now that we understand the basics of attached properties, we can use them in the context of our sample application. In this exercise we use attached properties to learn how Dock affects the children of a DockPanel.

	Begin by examining the MainWindow.xaml in the Font Viewer. Notice that the root panel is a DockPanel with four child elements: Border, ListBox, TextBox, and StackPanel. All these elements, except the StackPanel, have a DockPanel.Dock value set. Run the application or view the designer to see how the panel has arranged the items. Notice that the StackPanel fills the leftover space in the DockPanel after all other controls are docked.

	Rearrange the DockPanel’s children so that the ListBox is declared above the Border. Notice how the docking remains the same but the layout is slightly altered, with the ListBox taking precedence over the Border for space.

	Change the Border’s Dock property to Bottom and the ListBox’s Dock property to Right. Run the application and resize the window several times (see Figure 4.2).

Figure 4.2. An alternative layout with the DockPanel.

[image: image]

	Change the Border’s Dock property to Right and set its Width to 160. Notice that both the ListBox and the Border are docked to the right. Whichever one is first in the list takes precedence, and any Margin that is applied still takes effect.

	Revert all your changes so that you are back to the original layout. Reorder the last two elements in the list so that the StackPanel is above the TextBox. Remove the DockPanel.Dock="Bottom" from the TextBox and add it to the StackPanel. Notice that the TextBox now fills all the remaining space. Whichever element is last in the list will be used to fill the remaining space.

	Change the DockPanel’s start tag to this:

<DockPanel Margin="8"
 LastChildFill="False">

Notice that the TextBox no longer fills the remaining space in the DockPanel.

By the Way

Because attached properties do not actually live on the object they are being set on, they can be a little unintuitive to set in code. WPF follows a pattern of using “Get” and “Set” static methods on the defining class to fulfill this need. For example, this is how you would set the Dock on a Button in code:
DockPanel.SetDock(theButton, Dock.Right);

The DockPanel is a powerful option for laying out a user interface. It is more complex than the StackPanel, but offers a great deal more “intelligence” in its layout mechanism. A vast assortment of arrangements can be handled with the DockPanel and/or the StackPanel. But if you cannot accomplish what you are aiming for, it’s likely the Grid will meet your needs.

Leveraging the Grid for Ultimate Layout Control

The Grid is WPF’s all-purpose layout panel. It can achieve most of the same behavior as the previous controls and much more. This power comes with a price; the requirement of additional XAML and more attached properties. Let’s see how the Grid works.

Listing 4.1. Simple Grid Layout

[image: image]

Using a Grid

	Open Visual Studio and create a new WPF Application project called UseAGrid.

	In Window1.xaml, replace the default Grid with the markup in Listing 4.1. Run the application and observe the layout behavior by resizing the window several times.

	Note that the resulting Grid has two rows and two columns. This is a result of the RowDefinitions and ColumnDefinitions elements. Also, observe how the attached properties determine what row and column the buttons will be placed in. Row and column indexes begin at zero and default to this value if not specified. This is why the Button with no declared Grid.Row or Grid.Column appears in row and column zero. It is for the same reason that only one parameter needs to be specified on all but the last Button.

	Change the RowDefinitions and ColumnDefinitions to match the following code:
[image: image]

	Run the program and resize the window several times. Notice that the top row maintains a height of 50 device-independent pixels and that the second column is always twice as wide as the first. You can place exact heights and widths on rows and columns, respectively. You can also indicate proportional sizing using the “*” notation.

	Change the first RowDefinition to this:

<RowDefinition Height="auto" />

	Run the program. Notice that the first row is automatically sizing to the default size of its content—in this case Buttons.

	Try adding additional rows and columns of buttons. Mix and match the different options for height and width. For example, you could define something like this:

<ColumnDefinition Width="34" />

<ColumnDefinition Width="1.5*" />

<ColumnDefinition Width="2*" />

<ColumnDefinition Width="auto" />

In this case, the first column would be 34 pixels wide, the last column would auto size to content and the middle columns would split the remaining space with the ratio 1.5:2.

	Experiment by changing the vertical and horizontal alignment of the buttons as well as their Margin.

Hopefully this has given you a basic understanding of how to use a Grid to handle the layout of controls. You can do quite a lot more with a Grid. Take a look at Listing 4.2 and its depiction in Figure 4.3.

Figure 4.3. A more intricate Grid.

[image: image]

Did you Know?

When using a Grid for layout, you may want to set the Grid’s ShowGridLines property to True. This will draw the imaginary lines on the Grid so that you can be sure that your controls are being laid out properly. Before finishing the design of your UI, remember to remove this setting.

Listing 4.2. Advanced Grid Layout

[image: image]

[image: image]

The AdvancedGrid code demonstrates some further features of the Grid. Notice that besides just specifying the row and column of a control, we can also make child controls span multiple rows or columns. With these additional attached properties, the layout possibilities of the Grid are virtually limitless.

GridSplitter

The GridSplitter is a special control capable of letting a user resize rows or columns of a Grid at runtime. You must place the control within a Grid, between the rows or columns you want to be resizable. Use the ResizeDirection property to indicate what the control will resize (rows or columns) and use ResizeBehavior to declare how the splitter will specifically interact with its own row/column as well as those around it. For example, will it resize its own column, or just the next one? A preferred practice is to place the GridSplitter in a row/column by itself and set the ResizeBehavior to PreviousAndNext. This makes the GridSplitter easier to manage and understand.

Did you Know?

Often, building real-world applications involves complex UI layout. Even the versatile panels discussed so far are frequently incapable of expressing an entire layout on their own. For most scenarios you will need to combine multiple different panels. In fact, WPF was designed for building highly composited user interfaces by making it easy to nest controls and panels in one another.

Understanding How WrapPanel Works

The WrapPanel is used less often than StackPanel, DockPanel, and Grid, but offers useful functionality nonetheless. Essentially, a WrapPanel is like a StackPanel, but it has the ability to “wrap” what it is stacking to the next line or column if it runs out of space.

	Open the Font Viewer application in Visual Studio.

	Locate the opening and closing StackPanel tags. Change these tags to WrapPanel.

	There is no change observed in the designer, so run the application.

	Resize the window in the horizontal direction several times. Notice that the WrapPanel attempts to place the TextBlocks on the same line, but when there is not enough space, it wraps them to the next line.

	WrapPanel, like StackPanel, has an Orientation property. Set the Orientation to Vertical. Run the application and try resizing the window in the vertical direction.

Exploit Canvas for Precision Layout

Canvas is different from all the Panels we have discussed so far. This difference lies in the fact that Canvas does not add any special dynamic layout behavior to its child controls. A canvas must have an exact Width and Height, and all its child elements must have an exact size and position as well. Canvas arranges controls at strict Left (x) and Top (y) positions using attached properties. Try out the XAML in Listing 4.3, visualized in Figure 4.4. Resize the window and try adding alignment; you’ll notice that these things have no effect on layout. Margin, however, will offset the control from its location.

Figure 4.4. Using a Canvas.

[image: image]

By the Way

As an alternative to using Top and Left on elements displayed in a Canvas, you can use Bottom and Right. Using these attached properties causes the Canvas to position elements from its bottom and right borders, measuring the distance to the right or bottom border of the element being arranged.

Did you Know?

Occasionally, a Canvas (or any Panel) will contain elements that overlap, but that need to be drawn in a specific order. Use the special attached property, Panel.ZIndex, to specify the virtual Z coordinate of the element. Controls with higher ZIndex values are drawn on top of controls with lower values. If no ZIndex is specified, the child control will be rendered based on the order it was added to the panel’s Children collection.

Watch Out!

Although most panels will size to fit their children, if no size is declared for a Canvas it will collapse to zero.

Listing 4.3. Exact Positioning with Canvas

[image: image]

Watch Out!

Avoid using Canvas for most Control layout scenarios. Using exact positioning and sizing undercuts the power of WPF’s dynamic layout mechanisms. The Canvas was originally designed for the layout of Drawings and not Controls. It is best to stick to this practice when possible.

Enhancing a UI with Decorators

Decorators, as mentioned previously, add graphical decoration or behavior to other elements. A Decorator always has one Child that it decorates (although this child can be a Panel containing many other Controls).

Let’s look at two of the most common Decorators that you will use or encounter in WPF programming: Border and Viewbox.

	Begin by creating a new WPF Application called UsingDecorators. Enter the code from Listing 4.3 in Window1.xaml.

	Surround the Canvas with a Border, like this:
[image: image]

	BorderThickness and CornerRadius can each accept four parameters, indicating how the properties should be applied on each side or corner of the border. Additionally, BorderThickness can be declared with two parameters, signifying the left and right in the first parameter and the top and bottom in the second. Try this:
[image: image]

	There are a lot of great uses for the Border control. Let’s use it in conjunction with another Decorator, Viewbox. Change the code to this:
[image: image]

	Adding the Viewbox causes the designer to stop displaying the layout preview. (This is a current limitation of the VS designer.) Run the application and resize the window several times to see the effect the Viewbox has on its content. Notice that it scales its child to fit all available space, as shown in Figure 4.5.

Figure 4.5. Combining Border, Viewbox, and Canvas.

[image: image]

By now you should be familiar with the two most important decorators in WPF. Each of these decorators has a unique capability controlled by a specific set of properties. We have presented the most basic properties here. For another example of using a Border, take a look at the Border used for displaying instructions in the Font Viewer application. Experiment with the use of BackgroundColor and Padding. In the case of Viewbox, other properties allow further control of its behavior. Spend some time investigating properties like StretchDirection and Stretch. By altering these values, you can control exactly how the Viewbox’s content is scaled.

Building Up a Layout

Laying out a user interface can be a tricky task. WPF provides a variety of tools to help you succeed, but you can easily become overwhelmed by the sheer number of possibilities. More often than not, a typical user interface will combine multiple Panels together to create the desired effect. Even in our simple font utility, you can see how we combined a DockPanel and a StackPanel to achieve our goals. Following is a list of recommendations to help you in your interface design:

	Begin by using the simplest and most explicit Panel.

	Do not be afraid to combine multiple Panels to achieve the effect you desire.

	Pay close attention to the runtime behavior of your layout. You may need to change your strategy to accommodate window resizing.

	Try to choose layout options that allow for flexible sizing. Avoid setting hard-coded Height and Width properties when possible. Instead, if necessary, consider using MinHeight, MinWidth, MaxHeight, and MaxWidth. These properties give WPF’s layout engine some flexible parameters by which it can work, rather than force it into a brittle layout strategy.

	If using a graphical UI tool such as the VS Designer or Expression Blend, keep a close eye on the Margin properties of your elements. Sometimes these tools get confused and alter these values in strange ways, resulting in unexpected layout behavior.

	Use Canvas only as a last resort. This panel was designed primarily for rendering Drawings, not UI. Using Canvas for ordinary layout scenarios can defeat the purpose of the WPF dynamic layout capabilities. If you want a similar effect, use a Grid control in combination with Margin set on its children. This creates a sort of relative canvas effect.

Summary

In this hour we explored many of the WPF layout options. We looked at several of these elements within the context of our first application, the Font Viewer. Hopefully you have taken the time to experiment with the variety of settings available through attached properties and the common layout properties of FrameworkElement. Using these properties with a combination of Panels, Decorators, and other elements will give your Windows application a rich and dynamic layout capable of displaying almost any user interface you can imagine.

Q&A

Q. Are the Panels and Decorators listed in this hour the only options for WPF layout?

A. No. Numerous ways of managing the layout of controls on a screen exist. One common way is by grouping items in tabs with a TabControl. You can also create your own custom panels by inheriting from Panel and overriding the proper methods, but that is outside of the scope of this book.

Q. The Grid is such a powerful layout option. Why use any of the other panels when I can accomplish the same things with the Grid?

A. In many cases, using the Grid to accomplish a similar design as another panel will result in more verbose markup. Often it is difficult to ascertain the intention of this markup. If you want docking behavior, be explicit and use a DockPanel rather than a Grid. The same goes for using other Panels. Always choose the simplest and most explicit means that will accomplish your design.

Workshop

Quiz

1. What are the three layout related properties present on all descendents of FrameworkElement?

2. What is an attached property?

3. What is the difference between a Panel and a Decorator?

Answers

1. VerticalAlignment, HorizontalAlignment, and Margin are layout affecting properties on all FrameworkElements. FrameworkElements also have a number of width and height related properties that indirectly affect layout.

2. An attached property is a property that is declared by one control and attached to another. It allows the inclusion of additional information with a control for later use by an external source.

3. A Panel has a collection of Children that it arranges according to various rules, based on the type of panel. A Decorator, on the other hand, has only one Child to which it applies some additional set of behavior.

Activities

	Rebuild the Font Viewer with a different set of panels than were used in the original design.

	Rebuild the Font Viewer using a single grid to lay out the entire application. Use one GridSplitter to allow dynamic resizing of the ListBox’s width and a second GridSplitter to allow resizing of the TextBox’s height.

	Investigate the SDK to learn about BulletDecorator. This is a lesser-known decorator, but useful in some specific scenarios.

	Using the search engine of your choice, look up “WPF Radial Panel” or “WPF Custom Panel” to learn about how to create your own custom panels or to see what others have already built.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/17fig02.jpg
E-E_ull- : -ﬂ

OEBPS/html/graphics/17fig03.jpg

OEBPS/html/graphics/17fig01.jpg
[Made Vwrr

esa e

Video

Music

Pictures

OEBPS/html/graphics/f0390-01.jpg
SELLLPEE , NERGET ITENETOrme
<TransfornGroup>
<ScaleTransforn/>
<RotateTransforn />
<TranslateTransforn/>
</TransfornGroup>
</E1lipse.RenderTransform>

OEBPS/html/graphics/f0205-02.jpg
using System.Windows;
using System Windows.Controls;
using ContactManager.Presenters;
using Microsoft.Wind2;

nanespace ContactManager.Views

¢
public partial class EditContactView : UserControl

it
public EditContactView()

1
InitializeConponent ();
)
public EditContactPresenter Presenter
1
get { return DataContext as EditContactPresenter; }
i
private void Save_Click(object sender, RoutedEventArgs e)
i

Presenter.Save();
3y

OEBPS/html/graphics/f0148-02.jpg
SEIRUITOR HBRoers'_EaLt >
<Menulten Header="_Undo />

<Menulten Header="_Redo" />
<Separator />

<Menulten Header="Cu_t' />
<Menulten Header="_Copy" />
<Menulten Header="_Paste’ />

<Menulten Header:
</Menultem>

OEBPS/html/graphics/f0205-01.jpg
&1 LABTEANg = IOHUTIUN SN ANAgOra) |-
Contact. InagePath = imagePath;

)
public void Save()
i
_applicationPresenter.SaveContact (Contact) ;
i
public void Delete()
€
_applicationPresenter.CloseTab(this) ;
CapplicationPresenter.DeleteContact (Contact) ;
}
public void Close()
i
_applicationPresenter.CloseTab(this) ;
¥

public override bool Equals(object obj)
{

EditContactPresenter presenter = obj as EditContactPresenter;

return presenter

fULL 8& presenter.Contact .Equals(Contact) ;

OEBPS/html/graphics/f0148-01.jpg
Bl i
<Inage Source="Icons/page_paste.png’ />
</Button>
</ToolBar>
<ToolBar>
<ToggleButton xiNane="boldButton"
Connand="EditingConnands. ToggleBold"
ToolTip="Bold">
<Inage Source=*Icons/text_bold.png’ />
<(ToggleButton>
<ToggleButton x:Nane="italicButton”
Connand="EditingConnands . ToggleItalic"

ToolTip="Italic™>
<Inage Source=*Icons/text_italic.png® />

</ToggleButton>

<ToggleButton x:Nan

underlineutton”

*EditingComnands. ToggleUnderLine”

Underling">

<Inage Source="Icons/text_underline.png" />

<(ToggleButton>

<Separator />

<ConboBox x:Name="fonts"
winidth="100"
ItensSource=" (x:Static Fonts.SystenFontFamilies)®
ToolTip="Font"/>

<ComboBox x:Name="fontSize
inWidth="a0"
ToolTip="Font Size"/>

</Toolgar>
</ToolBarTray>
</UserControl>

OEBPS/html/graphics/f0068-03.jpg
<Label Grid.Row="1"

{Binding ElenentNane=lastNane} />
<TextBox x:Name="1lastName"

<Label Grid.Row="2"
Content="Se_x:"
Target="{Binding ElenentNane=nale}’ />
<WrapPanel Grid.Row="2"
Grid. Column="1"
VerticalAlignnent="Center">

</Wirappanel>

<Label Grid.Row="3"
Content="_Education:
Target="{Binding ElenentNane=highSchool}* />
<WrapPanel Grid.Row="3"
Grid. Coluan="1">
<CheckBox x:Name="highSchool*
High School”
b
Bachelor's"

OEBPS/html/graphics/f0068-04.jpg
S
<CheckBox Content="Naster's"
Margin="2" />
<CheckBox Content="Doctorate
Margin="2" />
</Wrappanel>

<Label Grid.Row="4"
Content="Additional Notes:"
Target="{Binding ElenentNan
<TextBox x:Nane="additionalNotes"
Grid.Row="4"
Grid.Colum="1"
Acceptsheturn="True®
AcceptsTab="True*
Textlirappings"Wrap®
VerticalAlignnent="Stretch®
SpeliCheck. IsEnabled="Tru

dditionalNotes}* />

»

<Button

HorizontalALignnent="Right"
Click="Button_Click">
<AccessText>_Save</AccessText>
</Button>
</Grid>
</Window>

OEBPS/html/graphics/f0068-01.jpg
PEAWES LS SELLON_DLIOKISRINEE SN0, FINESORyaNLe. 8)
t

y

NessageBox..Show(Contact saved.”, 'Save');

OEBPS/html/graphics/f0343-01.jpg
oetier Froperty=

<setter.value>

<OuterGlowBitmapEffect GlowColor="{StaticResource textColor}’
Opacity="0.5" />

citmapeiTect >

</Setter.value>
</Setter>

OEBPS/html/graphics/f0068-02.jpg
inpleContactForm. Window! *
“http://schenas . microsoft . con/winfx/2006/xanl /presentation
http: //schenas. microsoft.con/winfx/2006/ xanl*
“A Navigable Contact Form*
300"
“300"
Focusianager . Focusedlenent
<6rig>
<Grid.RowDef initions>
<RowDef inition Height='auto’ />

{Binding ElementNane=Firstnane) ">

<RowDef inition s
<RowDef inition >
<RowDef inition >
<RowDef inition
<RowDef inition »

</6rid.AowDef initions>

<6rid.ColunnDefinitions>
<Columnbef inition Width="auto" />

<ColunnDefinition Width="+" />
</6rid.Columnbef initions>

<Label Target="{8inding ElenentNane=firsthame}"
_First Nam

“tirsthame”

Grid.Column="1" />

<Label Grid.Row="1"
Content="_Last Name:"
Target="{Binding ElenentNane=lasthane)* />
TG K M= L e

OEBPS/html/graphics/359atab01.gif
FlowDocumentScrollviewer

Frame
GridvienColunneader

enuTten
Navigationiindow
PasswordBox
Progressar

scrollgar
scrollviewer

PART_ContentHost (ScrollViewer)
PART_FindToolBarHost (becorator)
PART_ToolBarHost (Decorator)

PART_FrameCP (ContentPresenter)

PART_FloatingHeaderCanvas (Canvas)
PART_HeaderGripper (Thunb)

PART_Popup (Popup)

PART_NawWinCP (ContentPresenter)
PART_ContentHost (FraneworkELenent)
PART_Indicator (FraneworkElenent)
PART_Track (FrameworkELement)
PART_Track (Track)
PART_HorizontalScrollBar (Scrol18ar)
PART_ScrolContentPresenter
(ScrollContentPresenter)

PART VerticalScrollBar (ScrollBar)

OEBPS/html/graphics/f0389-01.jpg
o il e | ool

<EventTrigger RoutedEvent="Image.HouseEntor®>
<BeginStoryboard>
<storyboard>

<DoubleAnimation B

P
</Storyboarg>
</Beginstoryboard>
</EventTrigger>
<EventTrigger RoutedEvent="Image.HouseLeave">
<BeginStoryboard>
<Storyboard>
<DoubleAnimation Tos*{TenplateBinding Width}*
Duration="0:0:0.25"
Storyboara. TargetProperty="

P
</Storyboard>
</Beginstoryboard>
</EventTrigger>
i fnadn Tiiaidras

OEBPS/html/graphics/f0400-01.jpg
B N

1
From = Colors.Blue,
To = Colors.Yellow,
Ouration = new Duration(TineSpan. FromSeconds(2))
i

var button = new Button();
button. BeginAnimation(Button.BackaroundProperty . animation

OEBPS/html/graphics/f0217-02.jpg
TRRLLSE - FTOPML)
Value=

el s e
Right* />

</Style>
<style TargetType:

{x:Type TextBox}">
=" FontWeight -

<Setter Property="FontSize"
Value="12" />

<setter Property="largin®
Valve='2" />

</Style>
<Style TargetType="{x:Type ConboBox}*>
<setter Property="FontWeight"
Value="Nornal® />
<Setter Property="Fontsize"
Valve="12° />
<Setter Property="argin"
Valve='2" />

</Style>
</ResourceDictionary>

OEBPS/html/graphics/f0183-01.jpg
using System;

nanespace ContactManager.Nodel
t
[serializable]
public class Address : Notifier
€
private string _city;
private string _country;
private string _linel;
private string _line2;
private string _state;
private string _zip;

public string City

{
get { return _city; }
set
{
_city = value;
OnPropertyChanged(‘City");
3
)
public string Country
¢
get { return _country; }
set
{
_country = value;
OnPropertyChanged (Country*);
3
)
public string Linet
i
get { return _Line1; }
set
{

" linet = value:

OEBPS/html/graphics/f0217-01.jpg
<ResourceDictionary
Xmlns="http: //schemas.microsoft . con/winfx/2006/xanl /presentation’
Xmns:x="http: //schemas.nicrosoft .com/winfx/2006/xanl >
<Style TargetType="{x:Type Button}">
<Setter Property="Margin"
Value="4" />

</Style>

<style TargetType="{

<Setter Property:

Value="5

<Setter Property

Value="5

<Setter Property="BorderThickness
value="2" />

ype GroupBox) >

Padding”

</style>
<Style TargetType="{x:Type Label}">
<Setter Property="Fontieight"
value="Bold* />
<setter Property="FontSize"
Nalugm®1:

OEBPS/html/graphics/f0240-01.jpg
JISLLLS DRINEE UORISTTSRCKIONIEES. VAN, 1IN, RATEtLIDe,
=object parameter, CultureInfo culture)
¢

return null;

y

OEBPS/html/graphics/123tab01.gif
Name

Desct

source

OriginalSource

Handled

RoutedEvent

The object that raised the event. This is a property you will
generally be interested n. Its useful to note that with routed
events this s likely to be different from the sender.

This retuns orginal reporting source. That is the object that
really raised the event. This property does not change as the
event travels along its route.

A bool. that lets you know if the event has already been han-
dled. You should mark this true in your own handlers.

‘This identifies the type of event that was raised. Many events
have the same signature, and a single handler might be
responsible for several events.

OEBPS/html/graphics/f0286-03.jpg
<Dockpanel>
<ucillediaPlayer DockPane1. Dock="Top"
Margine*a*
Hedias" (8inding Elementhsme=songList,
=PathSelectedlten) />
<ListBox x:Naso=-songList"
TtomsSource=" (Binding Source={StaticResource songSource})”
Displayllesborpath="hase">
<Listgox. Groupstyle>
<roupstyle>
‘<Groupstyle.Containerstyle>

<sstyie
</GraupStyle. Containerstyle>
</GroupStyle>
</Listoox.Groupstyle
<JListsox
</Dockpanel>
</usercontrol>

OEBPS/html/graphics/f0286-02.jpg
<UserControl

lass="Mediaviewer.Views.MusicView"
Xnlns="http: //schenas.nicrosoft.con/winfx/2006/ xanl /presentation"
XULnsix="http://schenas.microsoft.con/winfx/2006/xaml -
xmlns:cn="clr -nanespace: Systen. Conponentiodel;assembl.
Xulns:uc="clr -nanespace :lediaviever.UserControls™>
<UserGontrol..Resources>
<Collectionviensource x:Key="songSource”
Source="{Binding Nedia}">
<CollectionvienSource. Sortbescriptions>
<cm:SortDescription PropertyNane="Name® />
</Collectionviensource. SortDescriptions>
<CollectionVieuSource.GroupDescriptions>
<PropertyGroupDescription PropertyNane
</CollectionVienSource.GroupDescriptions>
</CollectionViewSource>
</UserControl . Resources>

Directory® />

OEBPS/html/graphics/f0286-01.jpg
public void Listeniowusic()

(

Display<husicView, lledia>(
Environment.GetFolderPath(Environment . SpecialFolder . MyMusic),
trowma, "*.mp3”

)i
}
public void WatohVideo()
¢

Display<VideoView, lledia>(
controller.RequestDirectoryFronser(),
v

OEBPS/html/graphics/f0114-01.jpg
<UserControl

lass="TextEditor. TextEditorMenu®
XnIns="http://schenas.microsof t.con/winfx/2006/xanl /presentation
Xnlns:x="http://schenas.microsoft.con/winfx/2006 /xanl">

<Menu>
<Menulten Header="_File>
<MenuIten Heade
<enulten Heade
<MenuIten Header=
<enuten Hoade:
<Separator />
<MenuIten Header="_Print’ />
<separator />
<MenuIten Header="Close" />
</Menulten>
<Menulten Header="_Edit">
<Menulten Header="_Undo" />
<MenuIten Header="_Redo" />
<Separator />
<enulten Heade:
<Menuten Heade
<MenuIten Header:
<MenuIten Heade
</enulten>
<llenulten Header="_Help*>
<MenuIten Header="_About "
Click="About_Click* />

»
IS

</Menulten>
</Menu>
</Usercontrol>

OEBPS/html/graphics/01fig01.gif

OEBPS/html/graphics/f0308-01.jpg
SECRUEENET SNl IS
{Binging ElenontNane=nodiaklonent,
Path=Isluted) >

{StaticResource yellowBrush)"
(Statickesource redsrush}’
StrokeL ineJoin="Round">
<path.pata>
<PathGeonetry>
<PathFigure StartPoint="12,5'
IsClosed="True">
<Linesegnent Point="0,6" />
<PolyLineSegnent Points="0,14 12,15 17,20°
<ArcSegnent Point="17,0"
Size='30,30" />

</PathFigure>
</PathGeonetry>
</Path.Data>
</Path>
<t-- nighlight -->
<Path Bl asmitats

1>

OEBPS/html/graphics/f0308-02.jpg
R R
<PathGeonetry>
<PathFigure StartPoint="13,6'
IsClosed="True*>

<PolyLineSegnent Point:

1,7 1,11 17.5,11°

<ArcSegnent Point="16.5,2"
Size='30,30" />
</PathFigure>
</PathGeonetry>
</Path.Data>

</path>
<1-- sound waves -->
<Polygon Points="20,5 25,0 27,3"
Fill="{StaticResource redsrush}’ />
<Polygon Points="20,10 28,9 27,6"
Fill=" {StaticResource redsrush}” />
<Polygon Points="20,13 26,17 27,13"
Fill="{StaticResource redsrush}’ />
<Polygon Points="20,17 24,21 26,18"
Fill=" {StaticResource redsrush}’ />

</Canvas>
</TogaleButton>

1>

OEBPS/html/graphics/f0332-01.jpg
<Window x:Class="TransformDemo.Window!"
Xmlns="http: //schenas.microsoft.con/winfx/2006/xanl /presentation”
XWIns:x="Nttp://SCNenas . miCrosoft.con/winfx/2006/xanl"
Title="Transforns*
TextBlock. FontSize="20'
SizeToContent="WiidtnAndHeight >
<canvas Height="600
Width="800">
<TextBlock Text="No Transform’ />
<TextBlock Text="Translate Transforn'>
<TextBlock. RenderTransform>
<TranslateTransforn X="50"
Y=125" />
<(TextBlock.RenderTransforn>
</TextBlock>
<TextBlock Canvas.Lef!
Canvas. Top:
Skew Transforn'>
<TextBlock.RenderTransform>
<SkewTransforn Anglex="45" />
<(TextBlock.RenderTransforn>
</Text8lock>

<TextBlock Canvas.Left="200"
Canvas. Top="200"

OEBPS/html/graphics/f0308-03.jpg
SRR AEELE
<PathFigure StartPoin

<Linesegnent Point
<PolyLineSegrent Points="8,14 12,15 17,20" />
<ArcSegnent Point="17,0"

Size="30,30"/>

</PathFigure>
</PathGeometry>

OEBPS/html/graphics/f0332-02.jpg
ARG ST RN
<TextBlock.RenderTransform>
<RotateTransforn Angle
</TextBlock.RenderTransforn>
</Textslock>

45t 1>

<TextBlock Canvas.LefH
Canvas. Top="300"
Text="Scale Transforn">
<TextBlock.RenderTransform>

<ScaleTransforn Scalex='2"
Scalev="11" />
</TextBlock.RenderTransforn>

</TextBlock>

<TextBlock Text="Transforn Group">
<TextBlock. RenderTransform>
<TransfornGroup>
<TranslateTransforn X=
<RotateTransform Angle:
<skewTransforn Angle
</TransfornGroup>
</TextBlock. RenderTransform>
</Text8lock>

</Canvas>
</Window>

OEBPS/html/graphics/f0275-02.jpg
FREMN NI

3
)
private void LoadInage (object state)
1

byte[] buffer = File.ReadAllBytes(_filenfo.Fullliame);
NemoryStrean mem = new HemoryStrean(buffer);

BitnapDecoder decoder = Bitnapdecoder . Create(
nen,
BitnapCreateoptions.None,
BitnapCache0ption.None

)

_thubnail = decoder. Fraes(0];

Application.Current.Dispatcher. Invoke(
Dispatchor?riority.Normal,

(Action)delegate { OnPropertyChanged(*Thunbnail®)
)

)

OEBPS/html/graphics/f0275-01.jpg
using System;
using Systen.10;

using Systen. Threading;

using Systen.Windous;

using Systen.Windous. Wedia;

using Systen.Windows.Hedia. Inaging;
using Systen.Windows. Threading;

nanespace MediaViewer.Hodel

t
public class Picture : Media

«
private TnageSource _thumbnail;

public InageSource Thumbnail

1
get

1

if(_thunbnail == null)

ThreadPool .QueueUserWorkIten(
LoadInage
)

OEBPS/html/graphics/f0241-01.jpg
B L RN EN RS T LY SRIRRETYENY
=object parameter, Cultureinfo culture)

¢

string resuls

value as string;

4 (1string. TsNul 0rERpty (result))

i

)

String filteredfesult = string.Enpty;
foreach(char ¢ in result)
i#(Ghar. IsDigit(c))

filtorodResult += ¢;
)

Long theumber = Systea.Convert. ToTnted (filteredResult)
switen (filteredhesult.Length)
«
case 11:
result
break;
case 1

broak;
case 7
result = string.Format(*{0: 4444444, theNuaber)
broak;

Foturn result;

tring. Format (*{0:+# (#4F) #44-H#HH)", thelumber);

ULt = string.Format (*{0: (#4#) ##e-#4eH)", thetusber);

OEBPS/html/graphics/f0184-02.jpg
using System;

nanespace ContactManager.Nodel
t
[serializable]
public class Contact : Notifier
€
private Address _address = new Address();
private string _cellPhone;
private string _firstNane;
private string _honePhone;
private Guid _id = Guid.Enpty;
private string _inagepath;
private string _jobTitle;
private string _lastNane;
private string _ofrioePhon

OEBPS/html/graphics/f0184-01.jpg
DnEropartyChangesnt Linet =y,

3
i
public string Line2
€
get { return _line2; }
set
{
_Line2 = value;
GnPropertyChanged(“Line2");
¥
i
public string State
€
get { return _state; }
set
«
_state = value;
GnPropertyChanged(State");
b
i
public string Zip
i
get { return _zip; }
set
{
_zip = value;
OnPropertyChanged (‘Zip');
3

OEBPS/html/graphics/f0136-01.jpg
using System.Windows;

using System.Windows.Controls;
using System.Windows .Media;
using System.Windows.Documents;
using System;

nanespace Texteditor
t
171 <sunnary>
177 Interaction logic for TextEditorToolbar.xanl
111 </sunmary>
public partial class TextEditorToolbar : UserControl
€
public TextEditorToolbar ()
{

}

InitializeComponent();

public bool IsSynchronizing { get; private set; }

private void UserControl Loaded(object sender, RoutedEventArgs e)
€
for (double i = 8; i< 48; i +=2)

{
3

fontSize. Ttens.Add(i);

OEBPS/html/graphics/f0136-02.jpg
PUDLiC vold Gynchromizewitn(TextSelsction selection)

t

b

Tssynchronizing = tru

Synchronize<double> (selection, Textslock.FontSizeProperty,

= setFontsize);

Synchronize<Fontile ight>(selection, TextBlock.FontWieightProperty,
= SetFontlieight);

Synchronize<FontStyle>(selection, Text8lock.FontstyleProperty,
= setFontstyle)

Synchronize<TextDecorationollect ion> (selection,

= TextBlock. TextDecorationsProperty, SetTextDecoration);
Synchronize<FontFanily>(selection, TextBlock.FontFanilyProperty,
= setfontFanily);

Tssynchronizing = false;

private static void Synchronize<T>(TextSelection selection,
wDependencyProperty property, Action<T> methodToCall)

t

object value = selection.GetPropertyValue (property) ;
if (value 1= DependencyProperty.Unsetvalue) methodToCall((T)value);

OEBPS/html/graphics/22fig01.jpg

OEBPS/html/graphics/f0113-01.jpg
B N R Lo RO DO Rl)

- Text Editor’,

OEBPS/html/graphics/f0297-01.jpg
“LearningShapes .Poly
http://schenas . microsoft..con/winfx/2006/xanl /presentation”
“hittp: //schenas. nicrosoft.con/winfx/ 2006/ xanl -

<Window x:Clas:
xalns.
xnlns.

Title="Poly" Height="300" Width="300"
Background="Pink >
<Viewbox>
<irapPanel>
<Polyline Points="10 10 50 10 50 60 10 60"
Stroke="Red"
StrokeThickness="4"

Fill="0range" />
<Polygon Points="10 10 50 10 50 60 10 60°

OEBPS/html/graphics/f0161-01.jpg
BESVRES YOO FYSAESOONEDNT CHEIRIR RORGEr, SEaerraOR O Ten LTI 8]
¢
if(_printUanager.Print())
status.Text = “Docunent sent to printer.”;

OEBPS/html/graphics/f0161-02.jpg
using System.10;
using System.Printing;

using System.Windows

using System.Windows .Controls;

using System.Windows.Documents;

nanespace Texteditor

¢

public class Printianager

€
public static readonly int DPI = 96;
private readonly RichText8ox _textBox;

public Printlanager (RichTextEox textBox)

«
]

_textBox = textBox;

public bool Print()

«

Printdialog dlg = new Printbialog();

if(dlg.Showdialog()
i

true)

Printaueue printQueue = dlg.Printaueue;

DocunentPaginator paginator = GetPaginator (
printQueue.UserPrintTicket . PagellediaSize.idtn. Value,
printQueve.UserPrintTicket . PagellediaSize . Height.Value
)

d1g.PrintDocument (paginator, *TextEditor Printing’);

return true;
)

return false;

OEBPS/html/graphics/f0274-01.jpg
using System;
using System.Componentiiodel;
using Systen.10;

nanespace MediaViewer.Model

public class Media : INotifyPropertyChanged

€
protected FileInfo _fileInfo;

protected Uri _uri,
public string Name

<
get { return Path.GetFileNansitithoutExtension(_filelnfo.Nane); }
)
public string Directory
<
get { return _filelnfo.Directory.Nane;)
)

public Uri Ui

«
oot ¢ retern: wrd: 3

OEBPS/html/graphics/f0161-03.jpg
PERES0 DOBUNSNLE R AIWLOr SeLregIantory
Gouble pageidth,
double pageteight)

TextRange originalRange = new TextRange(
_textBox.Docunent .ContentStart,
_textBox. Docunent . ContentEnd
K

MemoryStrean memoryStrean = new MemoryStrean();

originalRange. Save (nemoryStrean, Datafornats.Xaml);

Flowbocument copy = new Flowbocunent();

TextRange copyRange
copy.Contentstart,

copy. Contentend
)

new TextRange(

copyRange..Load (menoryStrean, DataFormats.Xanl);

DocunentPaginator paginator =
((I0ocunentPaginatorSource) copy) .DocumentPaginator;

return new PrintingPaginator (
paginator,
new Size(
pageWidth,
pageHeight) ,
new Size(
oPI,
opI

)

OEBPS/html/graphics/f0274-02.jpg
+
public void SetFile(FileInfo filelnfo)

_fileInfo = filelnfo;
Zuri = new Uri(_fileInfo.FullNane);

OnPropertyChanged(“Nane) ;
OnPropertyChanged(“Directory”)
OonPropertyChanged(“Uri®);

}
public event PropertyChangedeventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName)
i

if (PropertyChanged 1
{

null)

PropertyChanged
this,
new PropertyChangedEventArgs (propertyNane)
)

OEBPS/html/graphics/13fig01.jpg

OEBPS/html/graphics/248tab01.gif
Name

Description

Collectionview

ListCollectionView
BindingListCollectionView

The default view for collections that only imple-
ment TEnunberable

Used for collections that implement TList.
For collections implementing TBindingList

OEBPS/html/graphics/f0150-02.jpg
TEAUCON (LR
<ConmandBinding Conmand="AppLicationConmands .New
Executed="Newbocument " />
</Window. CommandBindings>

OEBPS/html/graphics/f0150-01.jpg
public void Wewlocument{()
(

_currentFile = null;
ZtoxtBox.Docunent = new Flowdocuacnt();

OEBPS/html/graphics/f0150-03.jpg
Y SEEED VO BIROIUSINE LN T NN s SESOEL eI ERS IR 9)
¢

_docunentiianager . Newbocument () ;

Status.Text = “New Document';

OEBPS/html/graphics/22fig02.jpg
02 Walking on Broken Glass

® i

(02 iaing on Broken Gias

OEBPS/html/graphics/f0195-02.jpg
PRRELI0 YOILN FEOVE | RaCI> (FTOsencarRase<l> prevsntier)

¢
for (int i = 0; i < tabs.Itens.Count; i++)

TabIten item = (TabIten)tabs.Items(il;

if (iten.DataContext.Equals(presenter))

i
tabs. Itens.Renove(item);

break;

OEBPS/html/graphics/f0204-01.jpg
</6r.
</Group
</irappanel>
</Dockpanel>
</Usercontrol>

SRR SN TR

Content="0r_ganization: "
Target="(Binding ElenentNane=organization}®
<TextBox x:Name="organization’
Gri0.Rov="2"
Grid.Column="2"
Text="{Binding Contact.Organization}’ />

<Label Grid.Row="3"

Target="{Binding Elenenthane=jobTitle}" />
<TextBox x:Name="jobTitle"
Grid.Rou="3"
6r10.Colum
{Binding Contact.JobTitle}" />
id>
ox>

»

OEBPS/html/graphics/22fig03.jpg
06 Money Can't Buy It

(06 Moy Car By 1

OEBPS/html/graphics/f0204-02.jpg
using ContactManager.Model

using ContactManager.Views;

nanespace ContactManager.Presenters

q

public class E¢itContactPresenter : PresenterBase<EditContactviews

€

private readonly ApplicationPresenter _applicationPresenter;
private readonly Contact _contact;

public EgitContactPresenter(
ApplicationPresenter applicationPresenter,
EditContactView view,
Contact contact)
+ base(view, ‘Contact.LookupNane")

€
_applicationPresenter = applicationPresenter;
contact = contact;

}

public Contact Contact

i
get { return _contact; }

¥

public void SelectInage()

€
string imagePath = View.AskUserForImagePath():

OEBPS/html/graphics/22fig04.jpg
o e | e vy | st

All Contacts (3)

Tatlme tame WorkPronsCoihone et e

o e

e

Soest A psmsssan2

OEBPS/html/graphics/f0147-01.jpg
SETNIELREIIETIN. FORe BUALN
Comnand="Edit ingConmands . ToggleBold'

OEBPS/html/graphics/f0147-02.jpg
<UserControl x:Class='TextEditor.TextEditorToolbar"
xnlns="http: //schenas.microsoft..con/winfx/2008/xanl /presentation’
xnlns:x="http://schenas.microsof t.con/winfx/2006/xaml"
Loaded="UserControl_Loaded">
<ToolBarTray>
<ToolBar>
<Button ToolTij
<Inage Source
</Button>
<Button ToolTi,
<Inage Source

open”>
Tcons/folder_page.png” />

save'>
Tcons/page_save.png’ />

</Button>
</Toolar>
<ToolBar>
<Button Command="ApplicationConnands.Cut”
ToolTip="Cut ">
<Inage Source="Icons/out.png* />
</Button>
<Button Conmand="ApplicationConnands.Copy"
ToolTip="Copy">
<Inage Source=*Icons/page_copy.png’ />
</Button>

<Button Commant

ApplicationCommands.Paste®

OEBPS/html/graphics/f0034-01.jpg
<fextBlock FontSize
Textiirapping="Wrap">
Select a font to view from the list belou.
You can change the text by typing in the region at the bottom.
</TextBlock>

i

OEBPS/html/graphics/f0195-01.jpg
I S A DT e A RO

(
TabIten newTab = null;

for(int i = 0; 1 < tabs.Ttems.Count; i++)

€
TabIten existingTab = (Tabiten) tabs.Items(il;

4f (existingTab.DataContext . Equals (presenter))
i

tabs. Items.Remove (existingTab) ;

newTab = existingTab;

break;

)

if (newTab
i

nuil)
newTab = new TabIten();

Binding headerBinding = new Binding (presenter. TabHeaderPath):
BindingOperations.SetBinding(

newTab,

Tablten. HeaderProperty,

headerBinding

)

newTab.DataContext = presenter;
newTab.Content = presenter.View;
)

tabs. Itens. Insert (0, newTab);
newTab. Focus () ;

OEBPS/html/graphics/f0034-02.jpg
SEANEDOR o s TDISESRE
DockPanel.Dock="Left"
ItensSource="{x:Static Fonts.SystenFontFanilies}'
Width="160" />

OEBPS/html/graphics/f0034-03.jpg
“Window x:Glass= Fontyiewer.MalnWindow
xmlns="http://schemas.microsoft.con/winfx/2006/xanl/presentation"
xmlns:x="http: //schemas.microsoft.con/winfx/2006/xanl "

Title="Font Viewer®
Height="480"
Vidth="600">
<DockPanel>
<Border DockPanel.Doch
CornerRadius="6"
BorderThickness="1"
BorderBrush="Gray"
Background="LightGray"
Padding="8"
Margin="0 0 0 8">
<TextBlock FontSize='14*
Textirapping="Wrap*>
Select a font to view from the list below.
You can change the text by typing in the region at the bottom.
</TextBlock>
</Border>
<ListBox x:Name="FontList®
DockPanel.Dock

Top*

</DockPanel>
</Window>

OEBPS/html/graphics/f0182-01.jpg
LN RYSL;
using Systen. Componenthodel;

nanespace ContactManager

(

[Serializable]
public abstract class Notifier : INotifyPropertyChanged

{
[field: NonSerialized]
public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName)

{
if (PropertyChanged != null)

{
PropertyChanged(
this,
new PropertyChanged€ventArgs (propertyNane)
)
)

OEBPS/html/graphics/09fig02.jpg
Tasasaciien logs fas Misdsui.

pabiss pareias class ¥
v

ebtie isson ()

v

msesatisecmpenent

BEivace veid Geid WouseLateButtonbons (651est sender,
cbsees soures = v, sausees
sbiect eriginaisiros = e.OrigimaISousse)

OEBPS/html/graphics/09fig01.jpg

OEBPS/html/graphics/f0021-03.jpg
.
<utton.Content>
<E1lipse Width='24
Hoight="24"
Fill="Yellow' />
</Button.Content>
/POt EORD

OEBPS/html/graphics/f0115-01.jpg
using System.10;
using System.Windows;
using System.Windows . Controls;
using System.Windows .Documents;
using Wicrosoft.Wind2;

nanespace Texteditor

t

public class DocunentManager

i

private string _currentFile;
private RichTextBox _textBox;

public Documentianager (RichTextBox textBox)
{

xtBox = textBo

)

public bool Opendocument ()

i
OpenFileDialog dlg = new OpenFileDialog();

if (dlg.Showbialog()
i

true)
_currentFile = dlg.FileNane;

using (Strean stream = dlg.OpenFile())

{

TextRange range = new TextRange(
_text8ox.Document . Contentstart,
ZtextBox..Docuent . ContentEnd
I

range.Load(strean, DataFormats.Atf);

i

return true;

OEBPS/html/graphics/f0021-02.jpg
TOMEROR
<Ellipse Width="24
Height="24"

Fill="vellow' />

</Button>

OEBPS/html/graphics/f0021-01.jpg
“outton>
<Button.Background>
<SolidColorBrush Colof
</Button.Background>
</Button>

Blue’ />

OEBPS/html/graphics/f0138-02.jpg
A€ (DRIEGR =S RREL) THoES,

switch (source.Nane)

i
case “fonts"
_documentManager .ApplyToSelection(TextBLock.
=FontFanilyProperty, source.SelectedIten);
break;
case “fontsize":
_documentManager . ApplyToSelection(TextBlock .
=FontsizeProperty, source.SelectedIten);
break;
3

body. Focus();
)

private void body_SelectionChanged(object sender, RoutedEventArgs e)
1

)

toolbar. SynchronizeWith (body.Selection) ;

OEBPS/html/graphics/f0138-01.jpg
using System.Windows;
using System.Windows .Controls;
using System.Windows. Input;

nanespace Texteditor

t
public partial class MainWindow : Window

¢
private Documentilanager _documentManager;

public MainWindow()

1
TnitializeConponent ();

_docunentianager = new DocunentManager (body) ;
b

private void TextEditorToolbar_SelectionChanged(object sender,
=SelectionChangedeventArgs e)

if (toolbar.IsSynchronizing) return;

CoutioBon sesrDe = 9. 0rdoinslSourse. ae- DustiBon:

OEBPS/html/graphics/09fig04.gif
@ Previewkeybown

\

@ Previewkeybown

Y

(@ PreviewKeyDown

Window

Grid

TextBox

KeyDown (&)

7

KeyDown (®)

KeyDown (@)

OEBPS/html/graphics/358tab01.gif
Name

Named Parts

ComboBox

Docunentviewer

FlowbocunentPageViewer
FlowbocunentReader

PART_EditableTextBox (Text8ox)
PART_Popup (Popup)

PART_ContentHost (ScrollViewer)
PART_FindToolBarHost (ContentControl)

PART_FindToolBarHost (Decorator)

PART_ContentHost (Decorator)
PART FindToolBarHost (Decorator)

OEBPS/html/graphics/09fig03.jpg

OEBPS/html/graphics/f0115-02.jpg
Lol

)
public bool SaveDocument ()
t
if (string. IsNuLOrENpty(_currentFile)) return SaveDocunentAs();
else
i
using (Strean stream =
new FileStrean(_currentFile, Fileliode.Create))
€
TextRange range = new TextRange(
_text8ox. Document . Contentstart,
textBox.Document .ContentEnd
i
range.Save(stream, DataFormats.Atf);
i
return true;
)
)

public bool SaveDocumentAs ()
t
fayeftiedislod dig = new Saversiebielon()s

if (dlg.Showbialog()
i

true)

_currentFile = dlg.FileNane;

return SaveDocument ();
3

return false;

OEBPS/html/graphics/f0230-01.jpg
FRDESE NESES. URINMLEOSEERERRTYE =

¢

e e e e
private readonly ApplicationPresenter _applicationPrasenter;

public ContastListPresenter(
Applicationpresenter applicationPresenter,
ContactListView view)
+ base(view, “TabHeader)

€
pplicationPresenter = applicationPresenter;
)
public string TabHeader
<
et { return "ALL Contacts*; }
)
public void Glose()
i
_applicationPresenter.CloseTan(tnis);
)
public override bool Equals(object obj)
i
Poturn obj 1= null 88 GetType() == obj.GetType();
i

OEBPS/html/graphics/08fig01.jpg
T

EIPETS LR T B
Awind sprang high in the west, like a wave of unreasonable happiness, and tore
eastward across England, trailing with it the frosty scent of forests and
the cold intoxication of the sea. In a million holes and corners it refreshed a
man like a flagon, and astonished him like a blow. In the inmost chambers of
intricate and embowered houses it woke like a domestic explosion, littering the
floor with some professor's papers till they seemed as precious as fugitive, or
blowing out the candle by which a boy read "Treasure Island" and

wrapping him in roaring dark. But everywhere it bore drama into undramatic
lives, and carried the trump of crisis across the world.

OEBPS/html/graphics/08fig03.jpg

OEBPS/html/graphics/08fig02.jpg

OEBPS/html/graphics/10fig01.jpg
Edit| Help

Undo
Redo

Delete

ctrlez
ctrl=y

OEBPS/html/graphics/f0318-01.jpg
okl
<olor
<Color
<color
<Golor
<Color

kol A i I
“orangeColor” A='255"
“redColor A:

-
38" />
80" />
255 B="255" />
o />

240" B="165" />

“bgColor”
“paleColor

<SolidColorBrush x:Key="yellowBrush® Color="{StaticResource yellowColor}'/>
<SolidColorBrush x:Key="orangeBrush® Color="{StaticResource orangeColor}"/>
<SolidColorBrush x:Key="redBrush® Colors'{StaticResource redcolor}” />
<So11dColorBrush x:Key="textBrush® Color="{StaticResource textColor}'/>
<SolidColorBrush x:Key="bgBrush® Color="{StaticResource bgColor}’ />
<SolidColorBrush x:Key="paleBrush* Color="{StaticResource paleColor}’/>
<S011dColorBrush x:Key="glossOutLine’ Color="#99FFFFFF* />
<So11dColorBrush x:Key="chromeOutline’ Color="f#FF08080" />
<S01idColorBrush x:Key="controlOutline® Color='#FF333333° />

OEBPS/html/graphics/f0353-01.jpg
B sl LB b s i e’
CLick="Header_Click">
<Button. Template>’
<ControlTemplate TargetType="{x:Type Button}">
<Grid HorizontalAlignnent=-Center”
Verticalalignnent="Center">

36°
Fill=" StaticResource chroneBrush}”
Stroke=*{StaticResource chrone0utline}
StrokeThickness="0.5">
</Ellipser
<ELLipse x:Names*bg"
Width="32" Height="32"
Strokes* StaticResource red8rush)
Fill=" {StaticResource redRadial)’/>
<ContentPresenter HorizontalALignment="Center"
VerticalAliguent="Center* />
hane="gloss"
Nargine"3.5*
Width="25" Height="16"
RadiusX="20" Radiusy="10"
Fill=" {StaticResource glossBrush) "
VerticalAligunent="Top" />

<Rectangle

</Grig>
</GontrolTemplate>
</Button. Tesplate>
<Polygon Fill="{StaticResource yellowGradient}
Points="0,10 11,0 22,10 18,10 18,20 4,20 4,

»
PrTr T

OEBPS/html/graphics/f0149-01.jpg
T . R g
<Menulten Command="ApplicationCommands.undo® />
<Menulten Command="ApplicationComnands.Redo® />
<separator />
<Menulten Command="ApplicationCommands.Cut" />
<Menulten Comnand="ApplicationComnands.Copy" />
<Menulten Command="ApplicationCommands.Paste" />
<Menulten Comnand="EditingConmands.Delete® />

</Menultem>

OEBPS/html/graphics/f0067-02.jpg
<eution Grid.Ho
Grid.Column="1"
HorizontalALignmen
Content="Save"

‘Button Click® />

4"

Right

OEBPS/html/graphics/f0032-01.jpg
“RINUOW X:LLASER FONCVIOWO!.WRinWANGOW
Xmlns="http: //schemas. microsof t. com/winfx/2006/xanl/

=presentation’
Xmlns:x="http: //Schenas. nicrosoft..con/winfx/2006/xanl'
Title='Font Viewer®

Height="300"

Width="300">

<6rid>

</Grid>

</Window>

OEBPS/html/graphics/f0103-01.jpg
<Window x:Class="TeachYourselfWPF.FontViewer.Mainiindow"
xmlns="http://schenas.nicrosoft.con/winfx/2006/xanl /presentation’
Xmlns: x="http: //schenas . microsof t .con/winfx/2006/xanl"
xnlns. cLr-nanespace: TeachYourse AP . FontViewer”
Title="Teach Yourself WPF: Font Viewer®
Heigh
Width="640">
<DockPanel Margin="8">
<Border DockPanel.Doc!
CornerRadius="6"
BorderThickness="1"
BorderBrush="Gray
Background="LightGray"
Padding="8"
Margin="0 0 0 8>
<TextBlock FontSize="14"
Textiirapping="Wirap*>
Select a font to view from the list below.
You can change the text by typing in the region at the botton.
<(TextBlock>
</Border>
<ListBox x:Name='FontList"
DockPanel.Dock="Left"
TtensSource="{x:Static Fonts.SysteaFontFanilies}"
Width="160" />
‘extPreviewControl DataContext="{Binding
ontList)" />

Top®

<loca:
=Elenenthiane-!
</Dockpane1>
</Window>

OEBPS/html/graphics/f0067-01.jpg
<Grid.Rowdefinitions>
<Rowdefinition
<RowDefinition
<RowDefinition
<RowDefinition
<RowDefinition
</Grid.RowDefinitions>

OEBPS/html/graphics/380tab01.gif
Trigger Collection

Allowed Trigger Types

FranevorkELenent . Triggers
style.Triggers
ControlTenplate. Triggers
DataTenplate. Triggers

EventTrigger only.
Al trigger types allowed.
Al trigger types allowed.

Al trigger types allowed, but t is generally a
good practice to limit to DataTrigger.

OEBPS/html/graphics/f0319-02.jpg
il Nurgin= 4§ § @ >
<Polygon Fill="{StaticResource yellowGradient}"
Stroke="{staticResource chromeoutline}"
Points="0,0 18,10 0,18">
</Polygon>
<Canvas Visibilit;
<Rectangle Height:
Fill="{StaticResource yellowGradient}"
Stroke="{StaticResource chromeOutline}
Width="" />
<Rectangle Heigh
Fill="{StaticResource yellowGradient}
{StaticResource chromeOutline}
" Canvas. Left="8"/>

Hidden">
16"

</Canvas>
</Grid>

OEBPS/html/graphics/f0319-01.jpg
LinearGradientBrush x:Key="yellowGradient™
StartPoint="0.5,0"
EndPoint="0.5,1">
<GradientStop Color="{StaticResource yellowColor}'
Offset="0.4" >
<GradientStop Color="#FFFFFOAS"
Offset="1"/>
</LinearGradientBrush>

OEBPS/html/graphics/f0194-01.jpg
nanespace ContactManager.Presenters

t

public class PresenterBase<T> : Notifier

¢

private readonly string _tabHeaderpath;
private readonly T _view;

public PresenterBase(T view)
i

¥

_view = view;

public PresenterBase(T view, string tabHeaderPath)
i

_view = view;
tabHeaderPath = tabkeaderpath;

}
public T View

¢ get { return _view; }

}

public string TabHeaderpath
o oo s)

OEBPS/html/graphics/f0203-01.jpg
a5

<GroupBox>
‘<GroupBox Header>

<Bordor>
<TextBlock Toxt:
</Border>

eneral” />

</GroupBox. Header>

<6rig>

<Grid.ColusnDefinitions>
<Coluanbef inition Width="100" />
<ColusnDofinition Width="Auto" />
<ColusnDefinition Width="175" />
</6rid.Coluanbef initions>
<Grid.Ronefinitions>
<Rovbef inition Height="Auto" />
<RowDofinition Hoight="Auto’ />
<Rovbef inition Height="Auto" />
<RowDefinition Hoight="Auto" />
</6rid.Rowbef initions>

<Brid Grid.RouSpan="4°>

<Border Background="Gray"
Cornerfadius="6"

Hargin="2 2 0 0"
Opacity=".5" [>

<Border Margin="2 2 4 4°

OEBPS/html/graphics/f0089-02.jpg
<fextbiock Text="This 18 Tuni™
HorizontalAlignnent="Center*>
<TextBlock. FontSize>
<Binding Path="Value®
Elementane="mySlider® />
</TextBlock.FontSize>
</TextBlock>

OEBPS/html/graphics/f0364-02.jpg
TREELAL TRDROFEI SSOR S
Value="Red" />
<Setter Property="Foreground”

Value="Wnite" />
<Setter Property='FontSize"
Value="24" />
WinHeight*

>

<setter

<setter

</Style>
a derived style-->
<Style x:Key="NewCircleButtonStyle"
TargetType="(x:Type Button}"
Basedon="{StaticResource DefaultCircleButtonStyle}*>
<setter Property="Background"
Value="Green" />

</Style>

</StackPanel .Resources>
<Button Content="1"
Style=" {StaticResource DefaultCircleButtonstyle)’ />
<Button Content="2"
Style=" (StaticResource NewCircleButtonstyle}’ />
<Button Background="Blue"
Content="3"
Style=" {StaticResource DefaultCircleButtonstyle)’ />
</StackPanel>
</Window>

OEBPS/html/graphics/f0066-01.jpg
<Label Target="{Binding ClementName=TirstName
<Border Border8rush="8lue"
BorderThickness="2 0"

CornerRadius="3"
Padding="2">
<AccessText>_First Name</AccessText>
</Border>

</Label>

OEBPS/html/graphics/f0203-02.jpg
244

<Inago Source="(Binding Contact . Inagepath}

<Iviewor

<Border BordorThickness:
Background="Transparent”
Cornorfadiuse"6"
Hargin="0 0 2 2° />

<Button Background="White"
Click="Select nage_Click™ />

<foria>

srst Nae:
inding Elesentiancstirsthane)” />
<ToxtBox x:Mases-firsthane”

Gr1d.Coluan

Text=* (8inding Contact.Firsthane)” />

Grid.fows1-
Grid_Coluan
e R e s

-

OEBPS/html/graphics/f0033-01.jpg
ARG K= DARN
xmlns

gl b et Bl b it
“http://schemas . microsof t. con/winfx/2006/xanl /presentation
XmLns:x="http: //schemas .microsoft.con/winfx 2006/ xanl"
Title='Font Viewer® Height='480" Width="600">
<DockPanel></DockPanel>
</Window>

OEBPS/html/graphics/f0033-02.jpg
Margin="0 0 0 8°>
</Border>

OEBPS/html/graphics/f0089-01.jpg
<fextblock Text= This 18 Tunl™
FontSize="{Binding ElenentNane=nySlider,Path=Value}
HorizontalAlignment="Center® />

OEBPS/html/graphics/f0219-01.jpg
<Style x:Key= opendutton”
TargetType="{x:Type Button}">

<Setter Property="Content"
Value="+' />

<Setter Property="Background”
Value="Transparent® />

<Setter Property="Border8rush®
Value="Transparent® />

<Setter Property="VerticalAlignment"
Value="Top* />

<Setter Property="HorizontalALignnent'
Value="Right" />

<Setter Property="Margin®
Value="0 5 10 0" />

<Setter Property="Padding"
Value="0" />

<Setter Property="Fontfieight”
Value="Bold" />

</Style>
<Style x:Key="buttonPanel"
TargetType="{x:Type StackPanel}">
<setter Property="Orientation"
Value="Horizontal" />
<Setter Property="HorizontalAlignnent’
Vvalue="Right" />
<Setter Property="verticalAlignment"
Value='Botton' />

</Style>

OEBPS/html/graphics/f0364-01.jpg
<Window x:Clas:

“ControlTemplates. Window1*

Xmlns="http://schenas.microsoft.con/winfx/2006/xanl /presentation”
XmIns:x="http: //Schenas .microsof t .con/winfx/200/xanl"
Title="Window!' Heignt="300° Width="300">

<stackpanel>
<StackPanel .Resources>

<ControlTemplate xiKey='CircleButtonTemplate*

TargetType="{x:Type Button}*>
<Grid HorizontalAlignnent="Center-
VerticalALignment="Center"
MinHeight=" {TemplateBinding MinHeight}"
MinWidth=" (TemplateBinding Mintidth)*>

<ELLipse Fill=*(TemplateBinding Background)® />
<ContentPresenter TextBlock. FontSize

= *(TemplateBinding Fontsize)
TextBlock. Foreground=

= * {TemplateBinding Foreground)"
HorizontalAlignment="Center
VerticalAlignnent='Center’ />

</Grid>
</ControlTenplate>
the basic style.->
<Style x:Key="DefaultCircleButtonStyle®
TargetType="{x:Type Button}*>
<Setter Property="Tenplate"
Value="{StaticResource CircleButtonTemplate}® />

OEBPS/html/graphics/f0219-02.jpg
N e e
TargetTypes- (x:Type Border)">
<settor Property="Backgrouna"
Value=" {staticResource darkBLuBrUSh)”
<Setter Property="Cornoradius”
Valver-s />
<setter Property="Padding’
Value="10 5 10 5° />
<Setter Proporty="ToxtBlock.Foreground”
Valve“inite* />
<setter Property="ToxtBlock.Fontsize"
Value='20° />
<setter Property="TextBlock.Fonteight

s

</style>

<Style xiKey="groupBoxHeader”
TargetType=" (x:Type Bordor}">

<Setter Property="CornerRadius

<setter

<setter

>
<Setter Property="TextBlock.Fontsize"
Valves"14° 1>
“TextBlock. Fonteight”
Bola” />

<setter

Jetyler

P

OEBPS/html/graphics/f0242-02.jpg
var fliterduery = Trom 0 in resuit
where Char. IsDigit(c)
select ¢;

string filteredResult = new string(filterQuery.ToArray()):

OEBPS/html/graphics/f0242-01.jpg
string filteredResult = string.Empty;

foreach (char ¢ in result)
{
if (Char.IsDigit(c))
filteredResult += c;

OEBPS/html/graphics/f0160-01.jpg
TIxaabage
_pagesize,
AdjustForliargins (originalPage .Bleedsox) ,
AdjustForilargins (originalPage. ContentBox)
)

}

private Rect AdjustForMargins(Rect rect)
1
if(rect.IsEnpty) return rect;
else
{
return new Rect(
rect.Left + _pageMargin.Width,
rect.Top + _pagellargin.Height,
rect.widgth,
rect.Height
)

OEBPS/html/graphics/f0055-03.jpg
et A it s
Bordersrush="Red"
CornerRadius="20 30 0 0°>

<Viewbox Margin="10">
<canvas ...>
</Viewbox>

</Border>

Lh ol

OEBPS/html/graphics/f0055-02.jpg
Lot o

CornerRadius="
<canvas ...>
</Border>

2030 0 0>

OEBPS/html/graphics/f0055-01.jpg
<Sorder BorderiThicknest
BorderBrush="Red"
CornerRadius="20">
<Canvas ...>
</Border>

OEBPS/html/graphics/pub.gif

OEBPS/html/graphics/395tab01.gif
Name Description

Discrete The property snaps to the value at the KeyTime. In a sense, there is
really no interpolation.

Linear The value changes at a constant rate. This is the same behavior as
using an XAnination timeline.
Splined This allows you to specify a set of points that represents a curve. It is

not unlike using PathGeometry in an XAnimationUsingPath timeline.

OEBPS/html/graphics/f0137-01.jpg
JULVALO AR -ONLFONEEITOICUHILS S2E0):

{
fontSize.Selecteavalue = size;
¥
private void SetFontWeight (Fontiieight weight)
€
boldButton. IsChecked = weight == Fontiieignts.Bold;
}
private void SetFontStyle(Fontstyle style)
¢
italicButton.IsChecked = style == FontStyles.Italic;
)

private void SetTextDecoration(TextDecorationCollection decoration)
i

)

underlineButton. IsChecked = decoration == TextDecorations.Underline;

private void SetFontFanily(FontFanily family)
i

)

fonts.SelectedIten = family;

OEBPS/html/graphics/f0137-02.jpg
B O N O IO E e
=SelectionChangedeventArgs o)

t

if (toolbar.IsSynchronizing) return;

ConboBox source = e.OriginalSource as ConboBox;
if (source == null) return;

switch (source.Nane)
i
case *fonts’:

_docunentitanager . ApplyToSelection(TextBlock.
= FontFamilyProperty, source.SelectedIten);
break;

fontsize

_documentitanager . ApplyToSelection (TextBlock.

= FontsizeProperty, source.Selectediten);

break;

)

body.Focus();

OEBPS/html/graphics/f0231-03.jpg
e i
¢
Viow.AddTab(
few ContactListresenter
this,
new ContactListvien()
)
)

OEBPS/html/graphics/f0231-01.jpg
<UockPanel Margin="5">
<stackPanel DockPanel.Dock="Botton"
Style="{StaticResource buttonPanel}">
<Button Content="Close"
Click="Close_Click" />
</Stackpanel>
</DockPanel>

OEBPS/html/graphics/f0231-02.jpg
el oo B s e Bl
¢

3

get { return DataContext as ContactListPresenter; }

private void Close_Click(object sender, RoutedEventArgs)
¢

y

Presenter.Close() ;

OEBPS/html/graphics/f0298-01.jpg
strokeThickness="6"
StrokeLineJoin="Round" />

<Polygon Points="10 10, 30 20, 50 10, 50 60, 30 50, 10 60
stroke="Green"
StrokeThickness
strokeLineJoin=
strokeMiterLinit
Fill="Yellow' />

<Polygon Points="10 10, 30 60, 50 10, 50 60, 30 10, 10 60"

Yellow />

<Polygon 10 10 0 0
25 0, 33 17, 50 19, 38 32, 40 50,
25 42, 10 50, 12 32, 0 19, 17 17°
Fill="Yellow' />
</urappanel>
</Viewbox>

</Window>

OEBPS/html/graphics/f0401-01.jpg
o il ookl B ot s

¢

Fron = Colors.Blue,

To = Colors.Yellow,

Ouration = new Duration(TimeSpan. FronSeconds(2))
i

var clock = animation.CreateGlock();
var button = new Button();
putton. ApplyAnimationClock (Button.BackgroundProperty. clock):

OEBPS/html/graphics/f0134-02.jpg
PEAVALY. YO0 SENChEORLIgSirL IOXERsoLLi00. D080 s L)
=0ependencyProperty property, Action<T> methodToCall)
t

object value = selection.GetPropertyValue(property);

if (value I= DependencyProperty.Unsetvalue) methodToCall((T)value):

OEBPS/html/graphics/f0157-01.jpg
PRAVELS Yoiu FTLNLDOUNNNTL L0090 SENGEr, SXIOULRENITIREVaNLATSY €]
¢

Printdialog dlg = new Printdialog();

if (dlg.Showbialog() == true)
i

d1g.Printdocunent (

(((10ocumentPaginatorSource)body .Document) .DocumentPaginator),
“Text Editor Printing”

)

OEBPS/html/graphics/f0300-01.jpg
Saavae>
<Ellipse Fil redBrushy

<Ellipse Fill="{StaticResource orangeBrush)
“20" Heigh
Canvas. Top="5" Canvas.Left="6"/>
vellowsrush)
Left=12' />

</Canvas>

OEBPS/html/graphics/f0134-01.jpg
T R N TR |
if (veight 1= DependencyProperty.UnsetValue)
¢
boldButton. IsChecked = ((Fontileignt)weight == Fontiieights.Bold);
v

OEBPS/html/graphics/f0398-01.jpg
Canvas. Top="50" Canvas. Lef!
<Ellipse.RenderTransforn>
<TranslateTransfora X=
</ElLipse.RenderTransforn>
</Ellipse>

10" v="e10° 1>

OEBPS/html/graphics/f0300-03.jpg
<StackPanel DockPanel.Dock="Top"
Orientation="Horizontal®
Margin="0 0 0 8">

<Button Content="Return to Main Menu"
Click="Header_Click"/>

<TextBlock Text="Media Viewer"
VerticalAlignment="Center" />

</stackpanel>

OEBPS/html/graphics/f0214-01.jpg
<UserControl x:Class="ContactManager.UserControls.SearchBar*
xnlns="http: //schenas.microsoft..con/winfx/200/xanl /presentation’
Xnlns:x="http://Schenas.microsoft.con/winfx/2006 /xaml >
<Border Background="{StaticResource 1ight8lueBrush}"
CornerRadius="6"
Margin="4"
4

False'>
<TextBlock DockPanel.Dock="Left"
“Gontact Manager”

VerticalAlignmen
FontSize="22"
FontFanily="Trebuchet® />

<TextBox x:Nane="searchText"

DockPanel.Dock="Right"
Width="150"
Background="White"
TextChanged="SearcnText_Changed® />
<Label DockPanel.Dock="Right"
Content="Search:

center

</DockPanel>
</Border>
</usercontrol>

OEBPS/html/graphics/f0300-02.jpg
SERCEON SRS MG AT OB v ooy
Click="Header CLick'>
<Polygon Fill="{StaticResource yellowBrush}"
Points="0,10 11,0 22,10 18,10 18,20 4,20 4,10" />

</Button>

OEBPS/html/graphics/f0077-01.jpg
<StackPanel>
<TextBlock Text="This is fun!®
FontSize="{Binding ElenentNane=nySlider,Path=value}*
HorizontalALignment="Center® />
<slider x:Nane="nySlider"
Mininun="8

</StackPanel>

OEBPS/html/graphics/f0214-02.jpg
using System.Windows.Controls;
using Contactianager.Presenters;

nanespace Contactianager.UserControls

‘ public partial class SearchBar : UserControl

£ public SearchBar()
¢ InitializeComponent();
¥
public Applicationpresenter Prasenter
: get { return DataContext as ApplicationPresenter; }
¥
private void SearchToxt_Changed(object sonder, TextChangedeventargs o)
¢ Presenter.Search(searchText.Text);

N b

OEBPS/html/graphics/f0323-01.jpg
Mttt adhe o sl Bl s

“Repeat ">
<Gragientstop Color+"#FFT27272"

517 />
“HEFFFFFFE"
1

<sragientstop
<Grasientstop
<Grasientstop
<Gradientstop
<sragientstop
<sragientstop
<Gragientstop

<Gradientstop

</LinearGradientsrush>

<DrawingBrush x:Key="1led1aControlPanelBackground
Stretch="UniformToFill">
<Drawing8rush.Draving>
e ertioy

OEBPS/html/graphics/18fig09.gif
Pen moves to point A

without drawing Theline from D to A
anything. is drawn

N automatically, if we

N say that the path is

X \A - D closed.

The pen begins
drawing at point A.

OEBPS/html/graphics/f0323-02.jpg
T VAT S T AL R
<GeometryDrawing.Pen>
<Pen Brush="{StaticResource chromeoutline}"
Thickness="0.5" />
</Geometrybrawing.Pen>
<GeometryDrawing. Geonetry>
<RectangleGeonetry Radiusk="25"
Radiusy="25"
Rect="0 0 400 50° />
</GeometryDrawing . Geometry>
</Geometrybrawing>
<GeometryDrawing Brush="{StaticResource yellowGradient}>
<GeometryDrawing.Geonetry>
<RectangleGeometry RadiusX="23"
Radiusy="23"
Rect="2 2 396 46" />
</GeometryDrawing.Geonetry>
</Geometrybrawing>
<GeometryDrawing Brush="{StaticResource glossBrush}'>
<GeometryDrawing. Geonetry>
<RectangleGeonetry Radiusx:

Rect:
</GeometryDrawing . Geometry>
</GeometryDrawing>
</DrawingGroup>

</Drawing8rush.Drawing>
</DrawingBrush>

OEBPS/html/graphics/bfig05.jpg
e
&
W T
A
*
a8
+*
m
@

OEBPS/html/graphics/bfig04.jpg

OEBPS/html/graphics/bfig07.jpg
O

Fanel Tme0® W ARD)

OEBPS/html/graphics/bfig06.jpg

OEBPS/html/graphics/bfig01.jpg
e
1

OEBPS/html/graphics/bfig03.jpg
HBYRL ODrona an

OEBPS/html/graphics/f0375-01.jpg
</outairigger>
</Style.Triggers>
</style>

</Canvas.Style>
<Ellipse Widtn=

Height
Stroke="{DynanicResource bgsrush}*
Canvas. Left=
Canvas . Top="0"
StrokeThickness="3" />

<Path Width="13.498"

Height="16.446"

Fill="{x:Null}"

Streteh="Fil1"

Stroke="{DynanicResource bgBrush}*
StrokeThickness="3"

Canvas. Left="3.442"

Canvas.Top="1.319"

Data="M4.9424596,16.265143 L15.440304,2.8191997"

</Canvas>

</Grid>

>

OEBPS/html/graphics/bfig02.jpg

OEBPS/html/graphics/18fig10.jpg

OEBPS/html/graphics/bfig09.jpg
Fanel Timed20 Ve M0xHD0

OEBPS/html/graphics/bfig08.jpg
B

3 ke

OEBPS/html/graphics/21fig04.gif
RepeatButton ——»-

Track——>

\ I / Selection Range

TickBar

OEBPS/html/graphics/f0272-01.jpg
‘lass="Mediaviewer.Views.Menuview"
XnIns="http: //Schenas.microsoft..con/winfx/2006/xanl /presentation”
xnlns:x="http://schenas.microsof t.con/winfx/2006 /xanl >

<6rid TextBlock.FontSize='72">

<Grid.Colunnbefinitions>
<Columnbefinition />
<ColumnDef inition />
</6rid.Columnbefinitions>
<Grid. RowDefinitions>
<RowDef inition />
<RowDef inition />
</Grid.Rowbefinitions>

<UserControl

<Button Content="Video"
Grid. ColumnSpan="2"
Click="Video_Click" />

<Button Content="Nusic"
Grid.Row="1"
Click="Music_Click" />

<Button Content='Pictures’
Grid.Row="1"
Grid.Coluan="1*
Click="Pictures Click" />

</Grid>
</usercontrol>

OEBPS/html/graphics/21fig03.jpg
e (bromeldge

o

OEBPS/html/graphics/21fig02.jpg
5 Windowl

OEBPS/html/graphics/21fig01.jpg

OEBPS/html/graphics/f0031-01.jpg
SODPPLLERELON

+Class="FontViewer.App"
xmlns="http://schemas.microsoft.con/winfx/2006/xanl /
=presentation"
xmlns:x="http: //schenas.nicrosoft .com/winfx/2006/ xanl"
StartupUri="MainWindow. xanl">
<Application.Resources>
</Application.Resources>
</Application>

OEBPS/html/graphics/f0295-01.jpg
THEEACE S0 ReSR D

<Line />
<Line StrokeDashArray
<Line StrokeDashArray:
“Line StrokeDashArray

1 a dotted Line-->
<Line StrokeDashArray
strokeDashCay

<Line StrokeDashArray:
StrokeDashCay

1.5
Triangle’ />

</Stackpanel>
</Windon>

OEBPS/html/graphics/21fig06.jpg

OEBPS/html/graphics/21fig05.jpg
€t Vew Pt Buld Oabug Daa Took MWndew Hlp

T P A YEP-PVPY is =

b
i

OEBPS/html/graphics/f0272-02.jpg
using MediaViewer.Views;

nanespace MediaViewer.Presenters

t
public class MenuPresenter
¢
private readonly ApplicationController _controller;
public MenuPresenter(ApplicationController controller)
{
_controller = controller;
controller.DisplayInshell(new Menuvien(this));
i
public void DisplayPictures()
{
}
public void ListenToMusic()
€
}
public void WatchVideo()
{
)
)

OEBPS/html/graphics/61tab01.gif
Name

Desc

span
8010

Ialic

Under1ine
Hyperlink

Aun

LineBreak
InlineuIContainer
Figure

Floater

Groups Inline elements together.
Bolds the text.

Halicizes the text.

Underlines the text.

Creates a web-style hyperlink in the text.

A sequence of text.

Forces a new line in the text.

Allows UIELements to exist in the text flow.
Allows text placement to vary from the main flow.
Displays content parallel to the main flow.

OEBPS/html/graphics/f0043-01.jpg
s, saestonpor’s pmshredninb
\ttp: //schenas . nicrosof t..con/winfx/2006/xanl /presentation
“http: //schemas. microsof t..con/winfx/2008/xanl®

Title="ALignnent and Margin®
Height="300"
Width="300">
<6rid>
<Button Height="35"
Width="100" />
</Grid>

</Window>

OEBPS/html/graphics/f0043-02.jpg
HorizontalAlignment="Left" />

OEBPS/html/graphics/f0095-02.jpg
Toxtiirapping="Wrap®>
<TextBox.ToolTip>
<ToxiBlock>
<Italic Foreground="Red">Instructions: </Italic:
= Type here to change the preview text.
</TextBlock>
</TextBox. ToolTip>
The quick brown fox jusps over the lazy dog.

</Textox>
<stackpanel argir
<TextBlock Text:

088>
{Binding Elementane=sampleText,
Path-Toxt)"
FontFanilys" (Binding ElesenthiamesFontList,
Path=Selecteart

Fontsize=10"

Textra
Hargin=
<TextBlock Toxt="{Binding Elenonthame=SasploToxt,
PatheText)"
{Binding Elenenthase=FontList,
Patheselectedlten}

OEBPS/html/graphics/f0357-02.jpg
i A Lo e o
<Patn.pata>
<PathGeonetry>
<PathFigure StartPoint="13,6"
IsClosed="True*>
<PolyLineSegnent Points=*1,7 1,11 17.5,11° />

</PatnFigure>
</Pathoeonetry>
</path.Data>
</path>
<t sound vaves -->
<Polygon Points="20,5 25,

27,3
Fill="{StaticResource textBrush}® />

<Polygon Points="20,10 28,9 27,6"
Fille"(StaticResource textBrush}® />

<Polygon Points="20,13 26,17 27,13*
Fill="{StaticResource textBrush}® />

<Polygon Points="20,17 24,21 26,18"
Fill="(taticResource textBrush}’ />

</Canvas>
</Gria>
ey

OEBPS/html/graphics/f0043-03.jpg
<Button heigh
width
HorizontalAlignment="Left"
VerticalAlignment="'Bottom" />

OEBPS/html/graphics/f0095-01.jpg
<Page xnlns=
xulns

http://schemas.nicrosoft.con/winfx/2006/xanl/presentation”
“http://schenas.microsoft.con/winfx/ 2006/ xanl"
Teach Yourself WPF: Font Viewer

<DockPanel Margin="8">
<Border DockPanel.0ocH
CornerRadius

Top

o
BorderThickness="1"
BorderBrush="Gray
Background="LigntGray"

Paddin
Wargin="0 0 0 8*>
<TextBlock FontSize="14"
TextWirapping="iirap*>

Select a font to view from the list below.

You can change the text by typing in the region at the botton.
</TextBlock>
</Border>
<ListBox x:Name="FontList"

DockPanel.Dock="Left"
ItemsSource="{x:Static Fonts.SystenFontFanilies)’
Width="160" />

<TextBox x:Name="SampleText"

"o

OEBPS/html/graphics/f0043-04.jpg
HorizontalAlignment="Left
VerticalAlignment="Botton’
Margin="20° />

OEBPS/html/graphics/f0043-05.jpg
SRR RN S
Width;

100°
HorizontalALignnent
VerticalALignment="Botton’

Wargin="20 10° />

OEBPS/html/graphics/f0357-01.jpg
ST ARIRLNEE SR WA
Style="{StaticResource mediaButtonstyle}”
IsChecked=* Binding Path=Ishuted,
=€ lenenthane=nediaElenent}” >

<6rid>
<Canvas Width="20" Heigh
<i-- the speaker -->
<Patn Fill="(StaticResource redRadial}”
Stroke=" {Statichesource controloutling)”

StrokeL ineJoin="Round">
<Path.Data>
<PathGeonetry>
<PathFigure StartPoint="12,5"
TsClosed="True*>

<LineSegaent Point="0,6" />
<PolyLineSegent Points="0,14 12,15 17,20°
<ArcSeguent Point="17,0

</PathFigure>
</PatnGeonetry>
</Path.Data>
</patn>
<1-- highlight

1

OEBPS/html/graphics/f0248-01.jpg
<bsertontrol.Resources>
<CollectionviewSource x:Key="contactSource"
Source="{Binding AllContacts}'>
<CollectionviewSource.SortDescript ions>
<Componentiodel :SortDescription PropertyNant
</CollectionviewSource.SortDescriptions>
</CollectionviewSource>
< IUSSr OOt raL . ReSOLE0o s>

LookupName® />

OEBPS/html/graphics/f0248-02.jpg
xmlns:Componenthodel=

- 'clr-namespace: System.ComponentModel: assembly=WindowsBase"

OEBPS/html/graphics/f0088-01.jpg
B N T TR AL ALRAES T
private void OnFirstNameChanged()

¢
if (FirstNaneChanged 1= null)
FirstNaneChanged (this, EventArgs.Empty);

OEBPS/html/graphics/18fig08.jpg

OEBPS/html/graphics/f0019-01.jpg
http://schemas.microsoft.con/winfx/2006/xanl/presentation”
“http://Schenas.microsof t.con/winfx/2006/xanl">
<Button x:Name="blueButton”
Width="100"
Height="4(
Background='Blue*
Content="Click Ne" />

</Page>

OEBPS/html/graphics/18fig07.jpg

OEBPS/html/graphics/f0403-02.jpg
i alricsryes Jibor® rpeteal ety £ Speys
<DiscretestringkeyFrane KeyTis

e i

<iscrotestringKeyFrase KeyTine
Value=Controls the volune.® />
</StringAnisationUsingkeyFrames>
<ParallelTiseline Storyboard.TargetProporty="0pacity™>
<DoubleAnination BeginTin .

Tor 1/
<DoubleAnination BeginTine
Tor0s>

</parallelTineline>
<ParallelTineline Storyboard.Targetnase="progressSlide
Storyboara. Targetproperty=-Opacity->

“Caubleninstion geg

<Ooubleanisstion Begintive
Tos"1°/>
</parallelTineline>
</storyboard>
R fanenat B

OEBPS/html/graphics/18fig06.jpg
Video

Music

Pictures

OEBPS/html/graphics/f0403-01.jpg
e
<Storyboard x:Key="tipStoryboard”
Storyboard. TargetNane=" tipgox >
<DoubleAniationUsingkeyFranes Storyboard. TargetProperty=
= (Canvas Loft) >
<DiscreteDoubleKeyFrase KeyTise:

Value="1
<DiscreteDoubleKeyFrase KeyTise=

value:

o2

150°/>

<DiscroteDoubleKeyFrase KoyTise: o8
Values- 185
<DiscreteDoubleKeyFrane KeyTise: 3

Values-200° />
</DoubleAninat ionUsingKeyF ranes>
<StringAnisationUsingKeyFranes Storyboard.
<DiscretestringKeyFrane KeyTise="0
Value="Stops neaia when playing.” />
<DiscretestringKeyFrase KeyTise: 02"
e

OEBPS/html/graphics/18fig05.jpg
Fie Gt Vo Pried Buld Oy Data foma ook Wodow Help

TV e —T

OEBPS/html/graphics/18fig04.jpg

OEBPS/html/graphics/18fig03.jpg
R XY

OEBPS/html/graphics/18fig02.jpg
[fe Gt Vew Prjec Buld Dubug Dra Teoh Wndew Hop

T R N e —

[1a0mon TG |

Cise xiwrsov Tieti0T
Simrzoon vimmione
pratieetytty
Stesketuicmesseesoe/>
ooy
Yinrzoe gaarisae
Streeeeerucreias
Frrevemmasemesseeior
Srerestar oo o
Sercketatinacupensaincer

OEBPS/html/graphics/18fig01.jpg
Fie Gt Vew Projet Bud Dcbug Duts fomu Tock Widow el

BRI T Rt ARy T 2 | Ja
el o o

Viodow

OEBPS/html/graphics/f0237-01.jpg
SErigviewcoiumn>
<GrigviewColunn.CellTenplate>
<DataTemplate>
<Button Style="{StaticResource openButton}" />
</bataTenplate>
</GridvievColum.CellTenplate>
</GridViewColumn>

OEBPS/html/graphics/f0283-01.jpg
using
using
using
using
using
using
using

Systen;

systen.Windows;
Systen.Windows. Controls;
Systen.Windows . Input
Systen.Windows. ledia;
Systen.Windows. lledia Anination;
WediaViewer.Hodel;

nanespace MediaViewer .UserControls

¢

public partial class WediaPlayer : UserControl

€

public static readonly DependencyProperty MediaProperty
DependencyProperty.Register(
“Media’,
typeof (ledia),
typeof (MediaPlayer));

private bool _usertlovingSlider

public MediaPlayer()
{

}

InitializeComponent();

public Media Media

OEBPS/html/graphics/f0226-02.jpg
B Sl P e s iR
TargetType=" (x:Type Control} >
<sotter Property="FontFanily"
Valuo=-Arial® />
<sotter Proporty="Fontsize
Value="i2" />

<Istyle>
<Style TargetTypes {xiType Buttan}”
Based0n=" {StaticResource baseControlstyle)>
<setter Property="Hargin®

<Istyle
<Style TargetType= (xiType Lavel}"
Based0n-" (StaticResource baseControlstyle) >
<setter Property"HorizontalALigneent”
Valuo="Right" />
= Fontiosght”
Bola" />

etyles

OEBPS/html/graphics/f0226-01.jpg
Binding ElenentNane=secondaryEnail}® />
*secondaryEnail”
e

Grid.Row

Grid.Colum
Text="{Binding Contact.SecondaryEnail)® />
</Grid>
</GroupBox>
</iirappanel>

</DockPanel>
</UserControl>

OEBPS/html/graphics/f0283-02.jpg
't { return Getvalue(Nediaproperty) as Hedia; }
set { Setvalue(WediaProperty, value); }

)
private void media€lenent Media0pened(object sender, RoutedEventArgs o

i
progressslider.Maxinun =
nediaElenent . NaturalDuration. TineSpan. Totalii1liseconds;

}

private void Play_Click(object sender, RoutedEventArgs e)

NediaClock clock = mediaElenent.Clock;

if(clock 1= null)
17 (clock. Ispaused)

clock.Controller. Resune () ;
Datacontext = Playing';

}
e1se

clock. Controller.Pause()
DataContext = "Paused”

OEBPS/html/graphics/f0169-01.jpg
Sk i o e b b et B il R
¢
throw new Exception();

y

OEBPS/html/graphics/f0169-02.jpg
using System;
using System.10;

using System.Windows;

using Systen.Windows. ledia

using System.Windows.Media. Inaging;

nanespace Texteditor

t
public partial class App : Application
€
public App()
1
AppDonain. CurrentDonain. UnhandledException
UnhandledExceptiondccurred;
)

private static void UnhandledExceptionoccurred(
object sender,
UnhandledExcept ionEventargs e)

Window win = Current.MainWindow;

RenderTarget8itnap bmp = new RenderTargetBitnap(
(int) win.Width,
(int) win.Height,
%,
96

OEBPS/html/graphics/f0169-03.jpg
e bt Rt sl
)

bup. Render (win) ;

string errorpath = Path.Combine(
AppDorain.CurrentDonain. BaseDirectory,
“ErrorReports®
)

if(tDirectory.Exists(errorpath))
Directory.CreateDirectory (errorPath)

BitmapEncoder encoder = new Png8itmapEncoder();
encoder. Franes . Add (81 tnapFranc.Create (bmp)) ;

string filePath = Path.Combine(
errorpath,
string. Format (*(0:Hddyyyynhnss} .png* , DateTine.Now)
)

using(strs
{

3

m stream = Fil

Greate(filePath))

encoder.Save (strean) ;

OEBPS/html/graphics/f0402-01.jpg
SOMWES VerTIONIALLONEGN
Margin="0 6 0
<stackPanel

<Border

CornerRadius="4"
SnapsToDevicePixels="True"
Width="100"

4

Padding
Background="{StaticResource paleBrush}*
BorderBrush="{StaticResource orangeBrush}
BorderThickness="1">

<TextBlock Textiirapping="Wrap"

TextaLignnent="Center"

Text="{Binding ElementNane=tipBox,
Path=Tag}" />
</Border>
<Path Margin="0 -1 0 0
SnapsToDevicePixels="True"

{StaticResource orangeBrush}"

Fill="(StaticResource paleBrush}"
Data="140,0 L50,10 60,0° />
</Stackpanel>

e Barkonin

OEBPS/html/graphics/f0100-01.jpg
<DockPanel>
<TextBlock DockPanel.Dock="Top">The Main Frame</TextBlock>
<Frame Source='Paget.xaml® />

</DockPanel>

OEBPS/html/graphics/f0133-01.jpg
PERLTRS e S SRR WAL e PR SRlentaon)
¢
object size

wselection.GetPropertyValue (TextBlock.FontSizeProperty)
if (size 1= DependencyProperty.Unsetvalue)

fontsiz

Selectedvalue = (double)size;

OEBPS/html/graphics/f0158-02.jpg
B T A O N LA .2
)

public override int PageCount
(

3

public override Size PageSize
(

get { return _originalPaginator.PageCount; }

get { return _originalPaginator.Pa
set { _originalPaginator.PageSize = value; }

3

public override IDocusentPaginatorSource Source

(
)

get { return _originalPaginator.Source; }

public override DocunentPage GetPage(int pageNumber)
(
Docunentpage originalPage =
_originalpaginator .GetPage (pageNuaber)

Containervisual fixedpage = new Containervisual();
fixedpage..Children.Add(originalPage . Visual);
fixedpage. Transforn = new TranslateTransforn(

ageltargin. Width,
ageltargin. Height

S i AR AL

OEBPS/html/graphics/f0158-01.jpg
using System.Windows;
using System.Windows.Documents;
using System.Windows. Media;

nanespace Texteditor

¢
public class PrintingPaginator : DocumentPaginator

¢
private readonly DocunentPaginator _originalPaginator;
private readonly Size _pageSize;
private readonly Size _pageMargin;

public PrintingPaginator(
DocunentPaginator paginator,
size pagesize,
size margin)

¢
_originalPaginator = paginator;
_pagesize - pagesize
pageNargin = margin;
_originalPaginator . PageSize = new Size(
_pageSize.Width - _pagellargin.Width+2,
“pageSize.Height -~ _pagellargin.Height+2
_originalPaginator. ConputePageCount () ;
3

public override bool IsPageCountvalid
(

OEBPS/html/graphics/f0076-01.jpg
<fextBlook Text="{Sinuing Elementhame=Sumpieiext, rativ
FontFanily="{Binding ElenentNane=FontList,
Path=SelectedIten}"

Text}

FontSize="1
Textlirapping="Wrap"
Margin="0 0 @ 4" />

OEBPS/html/graphics/f0376-01.jpg
Oatnienpiute. iriggers>
<DataTrigger Binding="{Binding Address.State}
Value="Florida’>
<Setter TargetName="border"
Property="BorderBrush”
Value="0range* />
</DataTrigger>
</DataTemplate.Triggers>

OEBPS/html/graphics/f0294-01.jpg
<Window x:Clas:

“LearningShapes .Window! "
/schenas.microsof t..con/winfx/2006/xanl /presentation®
/schenas . microsoft .con/winfx/2006/xanl®

300" Width="300">

“nttp:
“Window1" Height
<stackPanel>

<StackPanel.Resources>
<Style TargetType:
<Setter Propert
<setter Propert,
<Setter Propert
<setter Propert

</Style>

Type Line)*>
Stroke® Value:

“Black® />
100 />

OEBPS/html/graphics/f0122-01.jpg
<Border>
<StackPanel>
<TextBlock>Click Me!</TextBlock>
<Image Source="Icons/folder_page.png® />
</StackPanel>
</Border>

OEBPS/html/graphics/f0096-01.jpg
<TextBlock

<TextBlock

</Stackpanel>
</DockPanel>
</page>

Path=Text}"
{Binding ElementName=FontList,

FontSize='24"
TextWrappin
Margin="0 0 0 4" />
Text="{8inding Elenenthame-SampleText,

FontFanily="{Binding ElementNane=FontList,
Path=SelectedIten) -

Fontsize="32"

TextWrapping="lirap" />

OEBPS/html/graphics/f0356-03.jpg
i i

sy o

Click="Stop_Click">

<Border Wit

8" Heignt="20"
{StaticResource redRadial}”

"
Bordersrushe {StaticResource controloutling}
BorderThickness="1"
SnapsToDovicoPixels="False">

<Rectangle HorizontalAlignaent="Genter™

VerticalAlignnent="Top"
Hargin="0,1,0,0"

Width="15" Height="10"
Fill="{StaticResource glossBrush}®
RadiusX="1" RadiusY="1"/>

</Borger>

Ryl

OEBPS/html/graphics/f0356-01.jpg
SEEYLR SRSy RORSESNE LOMSLELE. TAraes e
<Setter Property="Tenplate'>
<Sotter.value>
<GontrolTenplate TargetType="{x:Type ButtonBase) >
<Grid Width="32" Height="32"
Background="Transparent® >
<ContentProsenter VerticalAlignnent="Center"
HorizontalAlignnent="Center" />
<Border x:Name="highlight"
CornerRadius="3"
Background= {StaticResource mediaButtonHover)
BorderBrush=" (Stat iclesource glossoutline}
BorderThickness="1">
</Border>
</6rid>
</ControlTenplate>
</setter.Value>
</setter>
</Style>

ARELYPR SULTIaaeL. e

OEBPS/html/graphics/f0356-02.jpg
sLingararaclentbrusn x:Key= meaiacuttonnover™
StartPoint="0.5,0"

EndPoint="0.

<GradientStop Color="#COFFFFFF

<GradientStop Color="#0OFFFFFF
<GradientStop Color="#00FFFFFF
<GradientStop Color="#COFFFFFF

</LinearGradientBrush>

OEBPS/html/graphics/f0087-02.jpg
private vold Button Click(object sencer, HoutedEventArgs o)

{
((Person)DataContext) .FirstName = "Iy New Name';

}

OEBPS/html/graphics/f0087-01.jpg
ST ASGHE ST
Height.
Margin="4"

Click="Button_Click"
Content="{Binding Path=FirstNameMods

wolay}® />

OEBPS/html/graphics/f0310-01.jpg
T e A NRREUE NINEUD SR e
Stroke="{StaticResource redsrush}"
StrokeLineJoin="Round">

<path.Data>
<PathGeonetry>
<PathFigure StartPoint="12,5"
TsClosed="True*>
<Linesegnent Point="0,6" />
<PolyLineSegnent Points="0,14 12,15 17,20° />

<ArcSegnent Point="17,
Si267'30,30° />
<[PathFigure>
</PathGeonetry>

</Path.pata>
</Path>

OEBPS/html/graphics/f0064-01.jpg
<Window

lass="SimpleContactForn. Window!"
xmlns="http://schenas.microsoft.con/winfx/2006/xaml /presentation®
XmIns:x="http: //schenas . microsoft .con/winfx/2006/xanl "
Title="A Navigable Contact Form"

300"
width="300"
FocusManager . FocusedE Lemen

{Binding ElementNane=firstNane}*>

<6rid>
<Grid. RowDefinitions>
<RowDef inition Heigh

<RowDef inition Height
<RowDef inition Heigh
</Grid.Rowbefinitions>
<Grid.Colunnbefinitions>
<ColumnDef inition Width="auto" />
<Columnbefinition Width="+" />
</Grid.ColumnDef initions>

<Label Conten

_First Nane:
{Binding ElementNane=firsthane}’ />
<TextBox x:Name="firstNane"

Grid.Column="1* />

<Label Grid.Row="1"

OEBPS/html/graphics/f0064-02.jpg
asthiane)” />

sex}’ />

Additional _Note
{Binding ElementNant

coitionalNotes}" />

<TextBox x:Name="additionalNotes"
Grid.Row="3"
Grid. Column="1

Textiirapping="Wra
VerticalAlignnent="Stretch"
SpellCheck . IsEnabled="True

ToolTip="Type additional notes here.’ />

</6rid>
</Window>

OEBPS/html/graphics/f0404-01.jpg
TCIon SLyiem (FIALIINOUres Npriatvttongtyaer”
Content="Help">
<Button. Triggers>
<EventTrigger Routed€vent="Button.CLick">
<BeginStoryboard Storyboard="{StaticResource tipStoryboard)"/>
</EventTrigger>
</Button. Triggers>
SRy

OEBPS/html/graphics/f0238-02.jpg
i e o’ e B it i ol
¢
Button button = e.OriginalSource as Button;

i (button 1= nul)
Presenter.OpenContact (button.DataContext as Contact);

OEBPS/html/graphics/f0238-01.jpg
it hctvico by et oL Bt i
¢

Y

_applicationPresenter.OpenContact (contact).

OEBPS/html/graphics/f0135-03.jpg
i b e L Bt bl ol
8

Issynchronizing = true;

Synchronize<double> (selection, TextBlock.FontSizeProperty,
= SotFontsize);

Synchronize<Fontileight> (selection, TextBlock.
=FontiieightProperty, SetFontileight) ;

Issynchronizing = false;

OEBPS/html/graphics/f0135-02.jpg
LG PORG SYNDNCIICLESYEL LY 1 SNSRI BSUSL)

(
synchronize<double» (selection, TextBlock.FontSizeProperty,

= SetFontsize);
Synchronize<Fontileight> (selection, TextBlock.

=FontieightProperty, SetFontileight

OEBPS/html/graphics/f0135-01.jpg
private vold SetrontSize(double size)
{

}

fontSize.Selectedvalue = size;

private void SetFontWeight(Fonteight weight)
{

}

boldButton. IsChecked = weight == Font¥ieights.Bold:

OEBPS/html/graphics/f0399-01.jpg
<Window

lass="LearningAnination. Window!*
xmlns="http://schenas.microsoft.con/winfx/2006/xanl /presentation”
XmIns:x="Nttp: /[Schenas . microsof t.con/winfx/2006/xanl"
Title="Window
Height="300" Width="300">
<Window. Triggers>
<EventTrigger RoutedEvent="Window.Loaded">
<BeginStoryboard x:Nane='BallStoryboard >
<Storyboard Storyboard. Targetane="8all"

Storyboard. TargetProperty=" (Ganvas.Left) >
<DoubleAnination By="300"

duration: 7.5° 1>
</Storyboard>
</BeginStoryboard>
</EventTrigger>
<EventTrigger RoutedEvent="Button.CLick"
SourceNane="Pause">
<PauseStoryboard BeginStoryboardName="Bal1Storyboard® />
</EventTrigger>
<EventTrigger RoutedEvent='Button.Click"
SourceNane="Resune">
<ResuneStoryboard BeginStoryboardNane="8allStoryboard’ />
</EventTrigger>
</Window. Triggers>
<stackpanel>

<StackPanel Orientation="Horizontal'>
<Button x:Nane="Pause">Pause</Button>
<Button x:Nane="Resune '>Resune</Button>

</Stackpanel>
<Canvas>
<Ellipse Ball”
Wigt Height="2(

50" Canvas.Left="0">
</ElLipse>
</Canvas>
</Stackpanel>
</Window>

OEBPS/html/graphics/f0053-01.jpg
“ExactPositionCanvas.Window!"
Xnlns="http://schenas.microsoft. con/winfx/2006/xanl /presentation®
/schenas. microsoft . con/winfx/2006/xanl®

Height="300"
Width="300">
<canvas Width="200"

Height="200"

Height="35"
<Button Canvas.Right

<Button

</Canvas>
</Window>

OEBPS/html/graphics/f0206-01.jpg
JESHEEE WA LIS SACETTINEE SRACH s A Teer s 0
1

¥

Presenter.Delete();

private void Close_Click(object sender, RoutedEventargs e)
i

b

Presenter.Close();

private void SelectInage_Click(object sender, RoutedEventArgs e)
¢

}

Presenter.SelectInage();

public string AskUserForInagePath()

i
OpenFileDialog dlg = new OpenFileDialog();
dlg.Showialog();
return dlg.FileNane;

OEBPS/html/graphics/23fig02.gif

OEBPS/html/graphics/23fig01.jpg
4204 E et —pecte B Window
S0

OEBPS/html/graphics/f0124-01.jpg
private void Gria_MouselLeftButtonDown(object sender,
=MouseButtonEventArgs e)

{

}

OEBPS/html/graphics/f0388-01.jpg
R L SIS SO ARSI e

<Beginstoryboard>
<Storyboard Storyboard. Targetian
‘Storyboard. TargetProperty:

chroneEdgo
tenderTransforn. Angle®>

<DoubleAnination To= 90" Duration="0:0:0.10" />
</Storyboard>
</Beginstoryboard>
</EvontTrigger>
<EventTrigger RoutedEvent="UIELenent . louseLeave®>
<Beginstoryboard>
<Storyboard Storyboard. Targethane="chrons€dge’
Storyboard. TargetProperty="RenderTransforn.Angle">
<DoubleAnination To="0" Duratio 100 />
</Storyboard>
</BeginStoryboard>

</EventTrigger>

OEBPS/html/graphics/f0216-01.jpg
ST W (O
<ResourceDictionary MergedDictionaries>
<ResourceDictionary Source="Resources\ColorsAndBrushes.xanl® />
</ResourceDictionary.Mergeddictionaries>
P T s

OEBPS/html/graphics/f0180-01.jpg
<Window x:Class="ContactManager .Shell"
xmlns="http://schenas.microsoft.con/winfx/2006/xanl /presentation”
Xmlns: x="http: //Schenas . microsof t .con/winfx/2008/xanl"

‘c1r-nanespace : ContactManager . UserControls®

=“Contact Manager®

600"
“800">
<DockPanel>

<uc:SearchBar DockPanel.Dock="Top* />

<StatusBar DockPanel.Dock="Botton">
<StatusBarTten DockPanel.Doc!

Nininun=.5°

Naxinun="2" />
</StatussarTten>

<StatusBarIten DockPanel.Dock="Right"
<TextBlock>Zoon: </ TextBlock>
</StatusBarTten>

<Statusariten>
<TextBlock Text="{Binding StatusText} />
</Statussariten>
</StatusBar>

<Expander DockPanel.Doch
ExpandDirectior

Left
Right*

OEBPS/html/graphics/23fig03.jpg

OEBPS/html/graphics/f0321-02.jpg
<oorder wiuth="10
Height="20"
Background="{StaticResource redRadial}’
Corneradius="1

BorderBrush="{StaticResource controloutline}
BorderThickness="1">
<Rectangle HorizontalAlignment="Cente
VerticalAlignnent="Top"

</Border>

OEBPS/html/graphics/f0321-01.jpg
<LinearGradientBrush x:Key="glossBrush"
StartPoint="0.5,0"
EndPoint="0.5,1">
<GradientStop Color="#0OFFFFFF"
offset="0" />
<GradientStop Color="#B6FFFFFF"
offset="1" />
</LinearGradientBrush>

<RadialGradientBrush x:Key="redRadial®
GradientOrigin="0.45,0.30">
<GradientStop Color="{StaticResource orangeColor}’
offset="0" />
<GradientStop Color="{StaticResource redColor}"
offset="1" />
</RadialGradientBrush>

OEBPS/html/graphics/f0321-04.jpg
B oot
<PathFigure Startposn

<PolyLineSegeent Points="1,7 1,11 17.5,11° />

</pathFigure>
</PathGeonetry>
</Path.Data>
</path>
<1-- sound waves -->
<Polygon Points="20,5 25,0 27,3"
Fill=" (Statichosource textBrush)® />
<Polygon Points="20,10 28,9 27,6"
Fill=" {staticResource textBrusn}® />
<Polygon Points="20,13 26,17 27,13"
(StaticResource textBrush)® />
20,17 24,21 26, 18"
(StaticResource texterusn)® />

</Canvas>

OEBPS/html/graphics/23tab01.gif
Name

Description

Binding

staticResource

DynamicResource

x:NuL

The extension used for binding data. This is discussed in Hour
6, “Introducing Data Binding.”

This is used for retrieving data from an application's
resources. Static resources are not expected to change while
the application is running. We cover this in Hour 14.

Similar to StaticResource, except that the data in the
resource might change during runtime. This is also in Hour 14.
Used for specifying a null value in XAML. We'll show one way
to use this in Hour 23, *Animation,” although it has many
uses.

This extension is used for supplying a Systen. Type object.
This is also in Hour 14.

This allows you to define an array of objects in XAML. We'll
demonstrate the use of this in Hour 15, “Digging Deeper into
Data Binding.”

OEBPS/html/graphics/f0321-03.jpg
SERIES T
Height="20">
<i-- the speaker -->
<Path Fill="(StaticResource redRadial}"
Stroke="{StaticResource controlOutline}"
StrokeLineJoin="Round >
<Path.Data>
<PathGeonetry>
<pathFigure StartPoint:
TsClose
<LineSegnent Point="0,6" />
<PolyLineSegnent Points
<ArcSegnent Point="17,0"
size="30,30" />

12,15 17,20°

</PathFigure>
</PathGeonetry>
</Path.Data>
</Path>
<i-- highlight -->
<Path Fill="{StaticResource glossBrush}*>
<Path Date>

s>

OEBPS/html/graphics/f0377-02.jpg
e o oy s S
VerticalALignent="Center® />
<Rectangle

Widthe-25"
16"

{StaticResource bgsrush)*

StrokeThickness=

Radiusx="20"

Radiusy="10"

Fill=" StaticResource glossBrush)”

VerticalAligment="Top* />

</Gria>

<ControlTemplate. Triggers>
<EventTrigger RoutedEven

<Beginstoryboard>
<Storyboard Storyboard. TargetNase="chroncEdge’

Storyboard. TargetPropert;
= RandorTransfora. Angle">
<Doubleanination To="9

ouratio

UIELenent ouseEnter >

100 />
<Istoryboara>

</Boginstoryboard>
e/Eventirianses

OEBPS/html/graphics/f0377-03.jpg
NEVERS IE IR S
<BeginStoryboard>
<Storyboard Storyboard. TargetNane="chroneEdge"
Storyboard. TargetProperty=
= ‘RenderTransforn. Angle >
<DoubleAnination To="0"

i bt L

</Storyboard>
</BeginStoryboard>
</EventTrigger>
<Trigger Property="IsPressed"
Value="True">
<setter Propert
TargetNane:
<Setter. Value>
<TransfornGroup>
<RotateTransforn Angle:
</TransfornGroup>
</Setter.Value>
</Setter>
</Trigger>
</ControlTenplate. Triggers>
</ControlTenplate>
</setter.Value>
</Setter>
</Style>

RenderTransforn®
chrone€dg:

”»

OEBPS/html/graphics/f0377-01.jpg
<tyle x:Key="fancyButtonStyle"
TargetType="{x:Type Button}">
<setter Property="llargin"
Value="a® />
<setter Property="Template™>
<Setter.Value>
<ControlTenplate TargetType="{x:Type ButtonBase}">
<Grid HorizontalAlignment="Center”
VerticalAlignment="Center*>

<Ellipse x:Name="chromeEdge"
Margin=" -2*
Width="

Height="36"
Fill="{StaticResource chroneBrush}"
Stroke=" {StaticResource chromeutline}*
StrokeThickness="0.5"
RenderTransforn0rigin="0.5,0.5">
<ElLipse.RenderTransforn>
<RotateTransforn />
</ELLipse.RenderTransforn>
</ELLipse>
<Ellipse x:Name='bg"
Wigth="32"
Height="32"
Stroke=" {StaticResource redBrush}’
Fill="{StaticResource redRadiall}® />

OEBPS/html/graphics/05fig01.jpg
‘Select 2 font to View (o the fist below, Yo s s e oy yoing s g sme s

(Adobe Casion Pro -

ssobe Ganmanc s (3]
gy 2 g
svaro

geran

i

ngsans New

ngranalBC

b Tpeseting

st

it Rounded MT
il Unicode M
amopro

ama pro Captien
mo Pro Disply
ma pro St
amo Pro Suthesd
Saskerite O Face
Bstang

SatangCre.
Bauhaus 23
el Gathic 519

boeivy =

i ik broun o e e 3y 005

The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy
dog.

The quick brown fox jumps
over the lazy dog.

Tne quick bron foxjumps overthe lazy dog.

OEBPS/html/graphics/05fig02.jpg
Additional Notes: Syntimes it's diffficult to spell

Sum times

Sometimes

Semites

Smites

Ignore All

cut
Copy

Paste

OEBPS/html/graphics/f0018-01.jpg
WAQS XRLIG™ NINLP: / /7 S0NGNNS - RIOIOSOT § . DOR/WANTX/ E0U0/ KERL/ Prosentan 1on
Xnlns:x="http: //schenas. nicrosoft.con/winf x/2006/xanl">
<TextBlock Text="Hello World:' />
</Page>

OEBPS/html/graphics/f0180-02.jpg
.
BorderThickness=
BorderBrush="Gray"
Margin="0 2 0 0"
Padding="2">
<Expander. Header>
<TextBlock Text="Contacts"
Fontsize="14"
FontWeight="Bold">
<TextBlock.LayoutTransforn>
<RotateTransform Angle=
</TextBlock. LayoutTransforn>
</TextBlock>
</Expander . Header>

IR

>

<uc:sidesar />
</Expander>

<TabGontrol x:Name="tabs"
Grid.Colunn:
Margin="5 0*>
<TabControl.LayoutTransforn>
<scaleTransforn Scale)

{Binding ElementNane=zoonSlider,
= Path=Value}"

{Binding ElementNane=zoonSlider,
= Path=Value}* />

scale

<(TabControl..Layout Transforn>
</TanControl>

</DockPanel>
</Window>

OEBPS/html/graphics/05fig03.jpg
Additional Notes:

OEBPS/html/graphics/f0123-01.jpg
ITSENEO SR
Background="Burlylood">
<ListBoxIten>
<Border Nargin="4"
Paddin
Background="Khaki "
CornerRadius="6">
<TextBlock>Cats</Textlock>
</Border>
</ListBoxTten>
<ListBoxTten>
<Border Margin=

<TextBlocksDogs</TextBlock>
</Border>
</ListBoxTten>
</ListBox>

OEBPS/html/graphics/05fig04.jpg
Additional Notes:

OEBPS/html/graphics/398tab01.gif
Name

Description

PauseStoryboard
RemoveStoryboard

ResuneStoryboard
Setstoryboardspeedhatio
SkipStoryboardToFill
StopStoryboard

Pauses the animation.

Removes the storyboard. (See the documentation
regarding this.)

Resumes play for a paused storyboard.
Allows you to change the speed of playback.
Jumps to the fil portion of the storyboard.
Stops playback.

OEBPS/html/graphics/f0284-01.jpg
else

if(Media == null) return;

MediaTineline tineling = new HediaTineline(Media.Uri);
clock = timeline.CreateClock();
Clock.CurrentTineInvalidated +- Clock CurrentTinelnvalidated;
mediaElenent..Clock = clock;

)

private void Stop_Click(object sender, RoutedEventargs e)
(

3

private void medialement_HediaEnded(object sender, RoutedEventargs e)
8

)

nediaElenent.Clack

Wity

nediaklenent.Clock

Wil

srivate void Clock CurrentTinelnvalidated(object sender, EventArgs e)

(
if (nediaElenent .Clock

null |} _useriiovingSlider) return;

progressslider .Value =
mediaElenent .Clock. CurrentTine.Value. Totaluilliseconds;

OEBPS/html/graphics/f0355-01.jpg
TR NPT O R
<Setter Property="iargin® Value="4" />
<Setter Property="Template">

<Setter. Value>
<i-- We'll cut and paste the template here! -->
</Setter.Value>
</setters
</Style>

x:Type Button}™>

OEBPS/html/graphics/f0284-02.jpg
private void progressslider_louseDown(
object sender,
NouseButtonEventArgs e)

[t
}

_userMovingSlider = true;

private void progressslider MouseUp(object sender,
liouseButtonEventArgs e)

i
WediaClock clock = mediaElement.Clock;

if (clock
[

nul1)

TineSpan offest = TineSpan.Fromilliseconds(
progressslider.value
it

clock. Controller. Seck(
offest,
TineSeekorigin.BeginTine
it

3

_userMovingSlider = false;

OEBPS/html/graphics/f0355-03.jpg
THRINLEN SRR
Click="Play_Click®
Style="{staticResource fancyButtonStyle)™>

<6rid Margin="4 0 0 0°>
<Polygon Fill="{StaticResource yellowGradient}"
Stroke="{staticResource chromeOutline}*
Points="0,0 18,10 0,18">
</Polygon>
<Canvas Visibility="Hidden'>
<Rectangle Hoight="
Fill="(staticResource yellowGradient}’
Stroke="{StaticResource chromeOutline}
Width=6"/>
<Rectangle Height:
Fill
Stroke
wiatt

{StaticResource yellowradient)
{StaticResource chromeOutline}
6" Canvas.Loft="8" />

</Canvas>
</Grig
</Button>

OEBPS/html/graphics/f0355-02.jpg
<Polygon Fill="{StaticResource yellovGradient}"
Points="0,10 11,0 22,10 18,10 18,20 4,20 4,10" />

</Button>

OEBPS/html/graphics/f0112-01.jpg
“TextEditor. TextEditorToolbar
Tachenas.nicrosaft con winf/2006 xanL/presentation”

<UserControl x:Clas:

xnlns="http:
Xalng:xo=ht1p:{achemss.microtof . com/winfx/ 2406/ xan1”
Loaded="UserControl_Loaded">
<ToolBarTray:
<Tool8ar
<Button ToolTip="0pen">
Tnage Tcons/folder_page.png” />
</Button>
<But Save'>
T Tcons/page_save.png />
</Button>
</Toolgar>
<Too18ar

<Button ToolTip=
e S0

OEBPS/html/graphics/f0112-02.jpg
</ToolBar>
<Too18ar>
<ToggleButton x:Nane="boldButton®
ToolTip="Bold">
<Inage Source=*Icons/text_bold.png’ />
</ToggleButton>
<ToggleButton x:Name="italicButton”
ToolTip="Ttalic">
<Inage Source="Icons/text_italic.png® />
<(ToggleButton>
<ToggleButton x:Name="underlineButton”
ToolTip="UnderLine">
<Inage Source="Icons/text_underline.png" />
<(ToggleButton>
<Separator />
<ComboBox x:Name="fonts"
inlidth="100"
ItensSource="(x:Static Fonts.SystenFontFamilies}®
ToolTip="Font" />
<ComboBox x:Name="fontSize
winwidth="a0"
ToolTip="Font Size* />

</Toolsar>
</ToolBarTray>
</UserControl>

OEBPS/html/graphics/f0086-02.jpg
e
<Grid.AouDef initions>
<Rowdefinition Height="auto® />
<Rowdefinition Height="auto® />
</Grid.RowDef initions>
</Grid>

OEBPS/html/graphics/f0086-01.jpg
private string _virstName;
public string Firsthiane
(
got { return _firsthane;)
Sot { _firsthane = value;)

OEBPS/html/graphics/359btab01.gif
Slider

StickyNoteControl

Tabcontrol
TextBoxBase
ToolBar

TreeviewItem

PART_SelectionRange (FrameworkElement)
PART_Track (Track)

PART_CloseButton (Button)
PART_ContentControl (ContentControl)
PART_CopyMenultem (Henutem)
PART_EraseMenultem (MenuItem)
PART_IconButton (Button)
PART_InkMenultem (MenuIten)
PART_PasteMenultem (HenuIten)
PART_ResizeBottomRightThumb (Thunb)
PART_SelectMenultem (Menul ten)
PART_TitleThumb (Thumb)
PART_SelectedContentHost (ContentPresenter)
PART_ContentHost (FraneworkElenent)
PART_ToolBarOverflowPanel
(Tool8aroverflowpanel)
PART_ToolBarPanel (ToolBarPanel)
PART_Header (FraneworkE lenent)

OEBPS/html/graphics/f0086-04.jpg
sttt S ot
(
InitializeConponent ();
DataContext = new Person();

OEBPS/html/graphics/f0086-03.jpg
(9inding Fath=rirstName,tode=Twollay}"
41>
<Button Orid.Aows"1"

OEBPS/html/graphics/f0101-02.jpg
<Textslock

<Toxtalock

<TextBlock

</stackpanel>
</DockPane1>
</UssrContral>

sttt e il 8
Hargin="0 0 0 4* />
Text="(Binding ElenentNane=sampleText,
path=Text)"
FontFanily="{Binding Elementhiase=FontList,
Path=selectedIten}"

Fontsize="16"

{Binding Elenonthane=SampleText,

Path=Text)"
FontFanily=* {Binding Elementhame=FontList,
Path-selectedIten}"

Fontsize="24"
Textiirapping="rap"
Hargin="0 0 0 4* />
Text=" (Binding Elonentnane=SampleText,
Path=Text}"
FontFanily=" {Binding Elementhame=FontList,
Path=selectedIten)"

Fontsize="a2"
Textirapping="Wrap" />

OEBPS/html/graphics/f0101-01.jpg
sUservontrol x:GClass="Teacnyoursalinkr.Fontviewsr. lextrreviewiontrol™
xnlns="http: //schenas.nicrosoft . con/winfx /2006 xanl/presentatior
Xnlns:x="Nttp: //schenas.microsoft.con/winfx/2008/xanl ‘>

<DockPanel>
<TextBox x:Name="SampleText"
DockPanel.Dock="Botton"
MinLines="4"
Hargin="g 0*
Texthirapping="Wirap*>
<TextBox.ToolTip>
<TextBlock>
<Italic Foreground="Red">Instructions: </Italic>
= Type here to change the preview text.
</TextBlock>
</TextBox. ToolTip>
The quick brown fox jumps over the lazy dog.
</TextBox>

<StackPanel largin="8 0 8 8'>

<TextBlock Text="{Binding ElementNane=SampleText,

Path-Text

FontFanily="{Binding ElementName=FontList,
Path=SelectedIten} "

OEBPS/html/graphics/f0273-01.jpg
using System.Windows;
using System.Windows.Controls;
using WediaViewer.Presenters;

nanespace MediaViewer.Views

t
public partial class MenuView : UserControl

i
public MenuView(NenuPresenter presenter)
1
InitializeConponent ();
Datacontext = presenter;
¥
public MenuPresenter Presenter
{
get { return (MenuPresenter) DataComtext; }
¥
private void Video Click(object sender, RoutedEventArgs e)
€
Presenter.WiatchVideo();
}
private void Music_Click(object sender, RoutedEventArgs)
¢
Presenter. ListenToMusic();
)
private void Pictures Click(object sender, RoutedEventargs e)
i
Presenter.DisplayPictures();
)

OEBPS/html/graphics/20fig06.jpg
Music Pictures

OEBPS/html/graphics/20fig04.jpg

OEBPS/html/graphics/20fig05.jpg
! Drop Shadow \. Blur

N

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/03fig01.jpg
Seian wiciarse e
e
mbesinemNerp1//achenas. miczossts comrvintxy)|
Tisirerkinasuit Messneeritor Mistaee300mr

OEBPS/html/graphics/20fig02.jpg

OEBPS/html/graphics/03fig02.jpg
Vil Studio matled empltes
2 Windows Forms Appiication 3 ctss by
[Z\WPF Application 155 WPF Browser Application
T Consol Applcation T gty rojct

My Templtes
51Sesrch Onine Templates..

Viindows Presentation Foundation cient application (NET Framework 35]

Name: FontViewe]

[orpy]

OEBPS/html/graphics/20fig03.jpg

OEBPS/html/graphics/03fig03.jpg

OEBPS/html/graphics/03fig04.jpg
terevereer v o Voo E——

Select a font to view from the lst below. You can changa the text by typing in the region at the
| | bottom.

SRS F S —
Cambria Math The quick brown fox jumps over the lazy dog.
Concra % P

Casteliar The quick brown fox jumps over the lazy

Centaur dog.

oy
cmosoesss | The quick brown fox jumps

Centuy Gothic
(Chaparmai Pro

Charemagne Std

Gaces over the lazy dog.
Cooma

Come o5
oo
poeet
o
Cooperstd
ComparpteGotic
peen

Tne quick bron foxjumps overthe lazy dog.

Cordia New
Cordiape
(Courer New

OEBPS/html/graphics/20fig01.jpg
e Trewlon
o Transform

Translate Transform

LSS

OEBPS/html/graphics/f0337-01.jpg
<hectangle.fiil>
<VisualBrush Visual="{Binding ElenentNan
<VisualBrush. Transform>

ediaElement} ">

<TransfornGroup>
<ScaleTransforn ScaleY="-1" />
<TranslateTransforn Y="{Binding Path=ActualHeight.

=ElementName=reflection}” />
</TransfornGroup>
</VisualBrush. Transform>
</VisualBrush>
</Rectangle.Fill>

OEBPS/html/graphics/f0326-01.jpg
N MR N
<6rid.RowDef initions>
<RowDefinition Height:
<RowbDefinition Heigh
</Grid. RowDef initions>
<ledialement x:Nane="mediaElenent”
VerticalAlignment="Bot ton*
LoadedBehavior="Uanual -
mediaElenent_Wedia0pened”
llediaEnded="ned1aE Lenent_WediaEnded® />
reflection”
Grid.Row="1"
Width="{Binding Path=Actualiiidth, ElementNane=nediatlenent}
MinHeight="24">
<Rectangle.Fill>
<visualBrush Visual="(Binding Elementhane-mediaElement}" />
</Rectangle.Fill>
<Rectangle.Opacitylask>
<LinearGradientBrush EndPoint
Startpoint
<Gradientstop Coloi
offset="0" />
<GradientStop Color="#00FFFFFF"
offset="1" />
</LinearGragientBrush>
</Rectangle.Opacityliask>
</Rectangle>
</Grid>

<Rectangle

OEBPS/html/graphics/f0223-01.jpg
<TextBox x:Name="lastName"
Grid.Row="1"
Grid.Column="2"
Text="{Binding Contact.LastName}" />

<Label Grid.Row="2"
Grid.Column="1"
Content="0r_ganization:"
Target="{Binding ElementName=organization}" />
<TextBox x:Name="organization"
Grid.Row="2"
Grid.Column="2"
Text="{Binding Contact.Organization}" />

<Label Grid.Row="3"
Grid. Colum
Content="_Job Title:"
Target="{Binding ElementName=jobTitle}" />
<TextBox x:Name="jobTitle"
Grid.Row="3"
Grid.Column="2"
Text="{Binding Contact.JobTitle}" />

</Grid>
</GroupBox>

<GroupBox BorderBrush="{StaticResource greenBrush}">
<GroupBox.Header>

OEBPS/html/graphics/f0223-02.jpg
<Border Background="{StaticResource greenBrush}"
Style="{StaticResource groupBoxHeader}">
<TextBlock Text="Address" />
</Border>
</GroupBox.Header>

<Grid>

<Grid.ColumnDefinitions>
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="150" />
<ColumnDefinition Width="Auto" />
<ColumnDefinition Width="150" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Heigh
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

</Grid.RowDefinitions>

Auto" />

<Label Content="Line _1:"
Target="{Binding ElementName=linei}" />
<TextBox x:Name="linel"
Grid.Column=
Grid.ColumnSpan="3"
Text="{Binding Contact.Address.Line1}" />

<Label Grid.Row="1"
Content="Line 2:"

OEBPS/html/graphics/f0269-01.jpg
using System;
using Systen.10;
using Microsoft.Wind2;

nanespace MediaViewer .Presenters

t
public class ApplicationController

¢
private readonly MainWindow _shell;

public ApplicationController (Hainindou shell)

1
_shell = shell;
}
public void Showlenu ()
{
)

public void DisplayInshell(object view)
i
60.Collect();
GC.WaitForPendinaFinalizers():

OEBPS/html/graphics/f0269-02.jpg
P et e ool b ol 6
}

public string RequestDirectoryFronUser()

i
OpenFilebialog dialog = new OpenFileDialog();

dialog. InitialDirectory = Environment.GetFolderPath(
Environnent .SpecialFolder.MyDocunents.
)

dialog.Title = "Please choose a folder. ;
dialog.CheckFileExists = false:
dialog.FileNane = *[Get Folder]®;
dialog.Filter = *Foldersino.files’;

if ((bool)dialog.Showbialog())

{
string path = Patn.GetDirectoryNane(dialog.FileNane);
if (Istring.IsNullOrEmpty (path)) return path;

¥

return string.Enpty;

OEBPS/html/graphics/f0063-02.jpg
CTONTHX X:Name="AdGitionaivotes

AcceptsTa
Textiirapping
VerticalALignnent
SpeLiCneck. Isnableg="True®
TookTip="Typs additional mctes hers.

OEBPS/html/graphics/15fig01.jpg
Contact Manager

e G
o ot
i i All Contacts (5)

plagiing

Lt Name. Tt Name Wik Prce Col oane s S
Cresunse Gien 33522 Fri—
I

P]
Wises Cowles

Y —

OEBPS/html/graphics/15fig02.jpg
Contact Manager

< O Gl
£ siries Onen
g

§ o=

plagiing

OEBPS/html/graphics/f0166-01.jpg
using System.Windows;

nanespace Texteditor
t
public partial class PrintPreviewDialog : Window
¢
public static readonly DependencyProperty CurrentPageProperty =
DependencyProperty.Register(
GurrentPage ,
typeof (int),
typeof (PrintPrevievdialog)
)

private readonly PrintManager _manager;
private int _pageIndex;

public PrintPreviewdialog(Printilanager printilanager)

i
InitializeConponent ();
_manager = printhanager;
DataContext = this;
ChangePage (0) ;

}

public int CurrentPage

1
get { return (int) Getvalue(CurrentPageProperty); }
set { Setvalue(CurrentPageProperty, value); }

OEBPS/html/graphics/f0063-01.jpg
M e s
Grid.Row="3"
Grid. Column:
HinLines="5"
Acceptsotur
AcceptsTa
TextWrapoing

True
True
Wrap® />

OEBPS/html/graphics/f0166-02.jpg
private void PreviousClick(object sender, RoutedEventArgs e)
{

ChangePage (_pageIndex - 1);
)

private void NextClick(object sender, RoutedEventArgs e)
i

ChangePage (_pageIndex + 1);
i

private void ChangePage (int requestedpage)
i
pageviewer.DocunentPaginator = _manager.GetPaginator(
8.5%Printiianager 0PI,
11+Printianager.OPT
)

if (requestedpage < 0)

_pageTndex
else i (requestedPage > pageViever .DocunentPaginator. PageCount)
_pageIndex = pageViewer.DocunentPaginator.PageCount - 1;

else _pagelndex = requestedPage;

pageviewer .PageNunber = _pageIndex;
CurrentPage = _pageIndex + 1;

OEBPS/html/graphics/f0348-01.jpg
e
Verticalliganent="Center >
<Ganvas Width="48" Height="48">
<ElLipse Width="48" Hoight="48"
Fill="Yollow />
<Ellipso Width="8" Hoight="8"
Ganvas.Top="12" Canvas. Lef!
Fill="lack />
<ElLipse Width="8" Hoight:
Canvas . Top="12" Canvas Rights="12°
Fill="Black” />
<Path Data="110,30 18,38 30,38 38,30°
Stroke="Black" />
</canvas>
A Gty

gt

OEBPS/html/graphics/f0348-02.jpg
SIS < T
<Canvas x:Key="Sailey’ Width="4s' Height='4g">
<Ellipse Width="48" Hoight="da"
Fill="Yollow />

gnt="s"
Canvas. Tops"12° Ganvas. Lefts"12"
Fille"lack />
Height="8"
Canves. Top="12" Canvas. Right="12
Fill="Black’ />
<Path Data="M10,30 18,38 30,38 38,30"
Stroke="Black" />

<ELlipse Width:

</canvas>
I i o B

OEBPS/html/graphics/f0190-01.jpg
BinaryFornatter formatter = new BinaryFornatter();
formatter.Serialize(strean, _contactStore);

)
»
private void Deserialize()
¢
i (File.Exists(_stateFile))
1
using (FileStrean strean =
File.0pen(_stateFile, Fileliode.Open))
«
BinaryFornatter formatter = new BinaryFornatter();
_contaststore =
(List<Contact>) formatter. Deserialize(strean) ;
}
3

else _contactStore = new List<Contact>();

OEBPS/html/graphics/f0268-01.jpg
Bt btk st
\ttp: //Schemas . nicrosof t..con/winfx/2006/xanl /presentation
“http: //schemas. microsof t..con/winfx/2008/xanl®

Media Viewer®

MainWindow_Loaded">
<Dockpane1>
<Button DockPanel.Dock="Top"
Content="Nedia Player”
Click="Header_Click" />
<ContentControl x:Name='currentView® />
</DockPanel>
</Window>

OEBPS/html/graphics/f0268-02.jpg
it n il e Lol il oo b e il
¢

y

currentview.Content = view;

OEBPS/html/graphics/f0062-01.jpg
<Window x:Class="SimpleContactForm.Window1*

xmIns="http: //schenas.microsoft.con/winfx/2006/xanl presentation

XWIns: x="http://Schenas . microsof t .con/winfx/2008/xanl"

Title="Sinple Contact Form"

Height="300"

Width="300"

FocusManager . Focused€ Lement="{Binding ElementNane=firstNane}*>

<6ridg>

<Grid.Rowbefinitions>
<RowDef inition Height=
<RowDef inition Heigh
<RowDef inition Heighi
<RowDef inition Height=

</Grid.Rowbefinitions>

<Grid. ColunnDef initions>

auto” />
auto* />
auto* />
auto” />

<Columnbef inition Wigth="auto" />
<Columnbefinition Width="+" />

</Grid.ColumnDef initions>

<TextBlock Text="First Name:’ />

<TextBox x:Name="firsthane’
Grid.Column="1" />

<TextBlock Grid.R
Text="Last Name:® />
<TextBox x:Name="lastNane"

<TextBlock Grid. R
Toxt="Sex:* />
<TextBox x:Name="sex"

<TextBlock Grid.R
Text="Additional Note:
<TextBox x:Name="additionalNotes
Grid.Row="3"
Grid.Column="1"
MinLines="5" />

=i

</6rid>
</Window>

OEBPS/html/graphics/f0142-01.jpg
o4
<6rid.ColumnDef initions>
<ColumnDefinition />
<ColumnDef inition />
<ColumnDefinition />
</Grid.Columnef initions>
<TextBox Grid.Column="0" />
<TextBox Grid.Column="1" />
<TextBox Grid.Column="2" />
</Grid>

OEBPS/html/graphics/19fig06.jpg

OEBPS/html/graphics/19fig07.jpg

OEBPS/html/graphics/f0108-01.jpg
NN IR
http://schenas.microsoft. con/winfx/2006/xanl presentation
“http: //schemas. microsof t..con/winfx/2008/xanl®

Text Editor”

Top* />

<ToolBarTray x:Nane="toolbar"
DockPanel.Doch

Top" />

<StatusBar DockPanel.Dock="Botton'>
<TextBlock x:Name='status* />

</statussar>

<RichTextBox x:Name="body"
Spelicheck. IsEnable
AcceptsReturn="True
AcceptsTab="True"
BorderThickness="0 2 0 0" />

</Dockpanel>
</Window>

OEBPS/html/graphics/19fig02.jpg

OEBPS/html/graphics/f0303-01.jpg
SHEDS EANIE By . TN sl
<ElLipse Fill="{StaticResource redBrusn}®
Vidth="20" Height="20"

Canvas. Top="5"/>
<ELLipse Fill="{StaticResource orangeBrush}®
Width="20" Height="20"
Canvas.Top="5" Canvas.Left="6"/>
<ELLipse Fill="{StaticResource yellowsrush}"
Width="20" Height="
Canvas.Top="5" Canvas.Left="12"/>

</Canvas>
<TextBlock Style="(StaticResource title}"
Text="Mod1a Viewer®

VerticalAlignnent="Center" />
</Stackpanel>
<ContentControl x:Name="currentview' />
</Dockpanel>

</Window>

OEBPS/html/graphics/19fig03.jpg

OEBPS/html/graphics/19fig04.jpg

OEBPS/html/graphics/19fig05.jpg

OEBPS/html/graphics/19fig01.jpg

OEBPS/html/graphics/f0280-01.jpg
using System.Collections.ObjectModel;
using System.10;
using WediaViewer.Model;

nanespace MediaViewer .Presenters
t
public class MediaPresenter<T>
where T ¢ Media, new()
¢
private readonly stringl] _fileExtensions;
private readonly string _mediaPath;
private ObservableCollection<edia> _media;

public MediaPresenter(string mediaPath, params string(] extensions)

{
_megsapath = mediapath;
fileExtensions = extensions;
)
public ObservableCollection<iiedia> Media
1
get
{
if(_media == null) LoadMedia();
return _media;
3

OEBPS/html/graphics/f0280-02.jpg
private void LoadWedia()
1
if (string. IsNullOrEnpty (_mediaPath)) return;

_media = new ObservableCollection<edias();
BirectoryInfo directoryInfo = new Directorylnfo(_mediaPath);

foreach(string extension in _fileExtensions)

1
Filelnfo[] pictureFiles = directoryInfo.GetFiles(
extension,
Searchopt ion.ALIDirectories
)
foreach(FileInfo fileInfo in picturcFiles)
«
4f(_media.Count == 50) break;
T media = new T();
modia.SetFile(fileInfo);
edia. Add (nedia) ;
}
3

OEBPS/html/graphics/f0235-01.jpg
public Observabliebollection<Contact> Alllontacts
¢

v

get { return _applicationPresenter.CurrentContacts; }

OEBPS/html/graphics/f0050-01.jpg
*AdvancedGrid.Window1"
“http://schenas.microsoft.con/winfx/2006/xanl /presentation®
£x="http://Schenas . microsof t .con/winfx/2008/xanl"

“Window1

480"

<6rid TextBlock.FontSize='48">
<6rid.AouDef initions>
<Rowdefinition />
<RowDefinition Heigh
</Grid.RouDef initions>
<6rid.ColumDefinitions>
<ColumnDef inition Widtl
<ColumnDef inition Widt!
<ColumnDef inition Width=
<ColumnDef inition Widt!
</6rid.Columbefinitions>

250" />

IS
L
v b

<Button Grid.RowSpan="2"
Content="2 Rows® />

OEBPS/html/graphics/f0109-01.jpg
AT L
<ToolBar>
<Button ToolTip="0pen*>
<Inage Source="Icons/folder_page.png’ />
</Button>
<Button ToolTip="Save">
<Inage Source="Icons /page_save.png’ />
</Button>
</ToolBar>
< /ToolBarTray>

OEBPS/html/graphics/f0050-02.jpg
SN ASELEELON. SRS, S
Grid.RowSpan:

Black”
ResizeBehavior="PreviousAndiext”
ResizeDirection="Colunns* />

<Button Grid.Colum="2"
Grid. ColumnSpan="2"
Content="2 Columns® />

content="1,2" />
H

<Button Grid. Row:
6rid. Colum
content="1,3" />

</Grid>
</Window>

OEBPS/html/graphics/f0247-01.jpg
PUDLio 0DJE0L Oonvert(onject value, Type targetiype,
wobject parameter, CultureInfo culture)
t
string formattedText = parameter as string;
if (string.IsNullOrEmpty (fornattedText)) return value:
return string.Fornat (formattedText, value);

OEBPS/html/graphics/f0153-02.jpg
PEEVERS VO SHFSNOMEEAIL VEOMELNLIIINL Seniey
~CanExccuteRoutedEventArds e)
¢

y

e.Canxecute - _docunentilanager . CanSaveDoounent ();

OEBPS/html/graphics/11fig01.jpg
Ty e e S e e
FIURISIREN IR

1)

with three doors, two
d for a moment. without

b globular flower, than
bm? She laid her ear first
she laid her ear against
be from something in that
stronger than her fear,
ink she saw? A very old

was an old lady. when |
[and white. 1 wil tell you
Toose far down and
white almost as snow.
ou could not have helped

OEBPS/html/graphics/f0153-01.jpg
public bool CGanSaveDocument()
{

}

return Istring. IsNuLLOrEmpty (_currentFile):

OEBPS/html/graphics/f0224-01.jpg
<TextBox x
Grid.Row="1
Grid.Colun="1*

Grid.Coluanspan="3"
Text=" (Binding Contact.Address.Line2}" />

<Label Grid.Rows"2"
Contont="0i_ty:*
Targot=" (Binding Elonenthiase=city}® />
<ToxtBox x:Nase="city"
Grid.Row="2"
Grid_Caluan="1"
{Binding Contact .Address.City}* />

(Binding Elenentasesstate}” />
<ConboBox x:Name="state"
Grid. Row="2"
Grid. Colunn=:
SelectedIten=" (8inding Contact .Address. State)* />

<Label Grid. Aow="3"
Content="_Zip:
Targot="(Binding Elenenthiaseszip)* />
Toxthox x:femae"gis

OEBPS/html/graphics/f0224-02.jpg
bopigenteilin
Grid.Coluan="1
Text=* (Binding Contact .Address.Zip)® />

Grid. Coluans-2°
Countr.y
Target=" (Binding Elenenthane=country)® />

Texta*{Binding Contact.Addrass.Gountry)® />
</oria>

</GroupBox>

<Groupsox Borderrush" (StaticResource redBrush} >
<GroupBox.Header>
<Border Background=" {StaticResource redsrush)”
Stylo="(StaticResource groupdoxHeader} >
<TextBlock Text="Phone" />
</Border>
</Groupsox. Header>

<orie>
<Grid.ColumnDefinitions>
<GoluanDef inition Width="Auto" />
<GolumDef inition widt
e e

OEBPS/html/graphics/79tab01.gif
Name

Description

oneviay
Twoliay

oneTine

OneWayToSource

Changes to the source will update the target.

Changes to the source will update the target, and changes on
the target will update the source.

The target is set only when the application starts or when the
data context is changed.

Changes 1o the target will update the source.

OEBPS/html/graphics/f0247-02.jpg
et bbbl Lot e bl Mtk iS00, bt e el bt et 2
‘wConverterParaneters"TEL: {8} '}

OEBPS/html/graphics/f0385-01.jpg
<Window

“LearningAnination. Window! *
“http://schenas.microsof t..con/winfx/2006/xanl presentation
x="http: / /schenas . microsoft .con/winfx/2006/xanl®
“Window1
Height="300" Width="300">
<Window. Triggers>
<EventTrigger Routedvent
<BeginStoryboard>
<Storyboard Storyboard. TargetNane="8all"
Storyboard. TargetProperty=" (Canvas.Left) >
<DoubleAnination By="300"
Duration="0:

Window. Loaded">

7.5° 1>
</Storyboard>
</BeginStoryboard>
</EventTrigger>
</Window. Triggers>
<canvas>
<Ellipse x:Nane="Ball®
Wigth="20" Height="20
Fill="Red"
Canvas. To
</ELlipse>
</Canvas>
</Window>

Canvas. Left:

OEBPS/html/graphics/f0099-02.jpg
e i
<TextBlock FontSize="24'>The Second Page</TextBlock>

<Textslock>
<HyperLink Foreground="Green
NavigateUri="http://wnv. sans.con">
G0 Online</HyperLink>
</Textslock>

</StackPanel>

OEBPS/html/graphics/f0374-02.jpg
. S ey,
Size="30,30° />

</pattFigures
</patheonetry>
</path.Data>
<spath>
Sound waves - >
<Polygon Points="20,5 25,0 27,3"
Fill=*(statichesource
<Polygon Points="20,10 28,9 27,6
Fill="(StaticRosource textrusn}® />
<Polygon Points="20,13 26,17 27,13
Fill="{StaticRosource textBrusn}® />
<Polygon Points="20,17 24,21 26,18
Fill="(StaticRosource toxtBrusn}® />

”»

</Ganvas>
<1--0ff sysbol-
<Canvas>
<Canvas. style>
<Style TargetType=" {x:Type Canvas}">
<Setter Property="Visibility"
Value=Higden® />
<Style. Triggers>
<DataTrigger Binding:

{8inding Path=Iskuted,
= Elonenthane=nediaElenent)
Value="True">
<Setter Property="visibility"

Nalmaamrieilaas I

OEBPS/html/graphics/f0099-01.jpg
“otackrangl>
<TextBlock FontSize='24'>Page 1</TextBlock>
<TextBlock>
<HyperLink NavigateUri='Page2.xaml >Click Me</Hyperlink>
</TextBlock>
</StackPanel>

OEBPS/html/graphics/f0110-01.jpg
e i o e
(

for (double 1 = 8; 1 < 48; & += 2)

¢

)

fontsize. Ttens.Add(1);

OEBPS/html/graphics/f0301-01.jpg
SRR By e,
<Setter Propert,

hirhanmase’ Sl
20" />

Bold* />
Foreground" Value="{StaticResource textBrush}® />

<Setter Property=
</Style>

OEBPS/html/graphics/f0374-01.jpg
leit]

<Canvas Wigtn:
Height="20'
<1-- the speakor -->
<Path Fill="{StaticResource redRadial}’
Stroke="{StaticResource controlOutline}"
StrokeL ineJoin="Round"
<path.Data>
<PathGeonetry>
<PathFigure Startpoint="12,5"
IsClose
<Linesegnent Point="0,6" />
<PolyLineSegment Points="0,14 12,15 17,20° />
<ArcSegnent Point

</PathFigure>
</PathGeonetry>
</Path.pata>
</Path>
<1-- highlight -->
<Path Fill=-{staticResource glossBrush}>
<path.Data>
<PathGeonetry>
<PathFigure StartPoint="13,6"
IsCloseds"True*>
<PolyLineSegment Points:

1.7 1.11 17.5.11° />

OEBPS/html/graphics/f0187-01.jpg
_secondaryEnail = value;
OnPropertyChanged (*SecondaryEnail’);

)
»
public Address Address
«
get { roturn _address; }
set
{
_address = value;
OnPropertyChanged (‘Address*);
)
)
public string Lookuplians
€
get { roturn string.Format(*(0}, {1)*, _lasthane,
)
public override string ToString()
«
return Lookuphane;
)

public override bool Equals(object obj)

{
Contact other

return other !

obj as Contact
null 8 other. I

1d;

_firstiane); }

OEBPS/html/graphics/f0282-02.jpg
{Binding ElementNane=nediaElenent,
situted)* />

{Binding ElenentNane=mediaElenent, Path=Volune}"/>

ock="Botton"

1000°
PrevieutlouseLeftButtonDown="progressSlider_louseDoun"
PreviewlouseLef tBut tonUp="progressSlider_MouseUp" />
<MediaElenent x:Name='nediaElenent”
DockPanel.Dock="Top"
LoadedBehavior="Hanual"
Mediadpened="mediaElenent_Wediapened"
MediaEnded="nediaELenent_WediaEnded”/>

</DockPanel>
</Usercontrol>

OEBPS/html/graphics/f0282-01.jpg
<UserControl x:Class
xnlns:
xnlns.
<DockPanel>
<Grid DockPanel.Dock="Bottom">
<Grid.ColunnDefinitions>
<ColumnDefinition Width="+" />
<ColumnDef inition Widths*s" />
<ColumnDefinition Width="+* />
<ColumnDef inition Width:
<ColumnDefinition Width="s" />
<ColumnDefinition Width="+" />
<ColumnDef inition Width="+" />
</Grid. Colunndef initions>
<Button Grid.Colum="2"
Content="Stop"
Click="Stop_Click" />
<Button Grid.Colum="3"
Content="Play’
Click="Play_Click" />
<ToggleButton Grid.Column="4"*

“MediaViewer.UserControls. WediaPlayer*
http://schenas.microsof t. con/winfx/2006/xanl /presentation
“http://schenas.nicrosoft.con/winfx/2006/ xanl ‘>

OEBPS/html/graphics/07fig01.jpg

OEBPS/html/graphics/12fig01.jpg

OEBPS/html/graphics/07fig02.jpg

OEBPS/html/graphics/f0258-01.jpg
Private volid OpanContact_CLiCK(oD]ect senaer, RHOUTACVeNTArgs 6)
{
Button button = e.OriginalSource as Button;

if (button 1= null)
Presenter.OpenContact (button.DataContext as Contact);

OEBPS/html/graphics/f0302-02.jpg
<Window x:Class="MediaViewer .Maintiindow"
XmIns="http://schenas.microsof t.con/winfx/2006/xanl /presentation
XmLns:x="Nttp: //Schenas. nicrosoft .con/winfx/2006/xanl -

“Media Viewer"

<DockPanel>
<StackPanel DockPanel.Dock="Top'
orientation="Horizontal®
Kargin="0 0 0 8>
<Button Background=" {StaticResource redSrush)*
Click="Header_Click">
<Polygon Fill="{StaticResource yellowsrush)"
POINts="0,10 11,0 22,10 18,10 18,20 4,20 4,10" />

</Button>

OEBPS/html/graphics/93tab01.gif
Standard Executable

XAML Browser Application

This is the format we've used o far. It is by far the most
common. Your WPF application is compiled into a standard
executable file

As you might expect, this uses an .exe extension.
Sometime this is referred to as XBAP (pronounced *XBap").
This is a special WPF application that is intended to be
hosted in a browser (Intenet Explorer 6 and later and
Firefox 2 have native support). Because an XBAP is hosted
in the browser, there are lots of security restrictions, but this
format can simplify deployment.

This has an . xbap extension.

XAML file This is a text file with XAML markup. Running a .xanl. file launches
the application in a browser. The primary limitation is that you can
not have any code in the application. It's XAML only.

This uses a .xanl extension.

OEBPS/html/graphics/f0188-03.jpg
Lo it D

3
public void Delete(Contact contact)
¢
_contactstore. Remove (contact) ;
Serialize();
b

public List<Contact> FinddyLookup(string lookupame)

¢
IEnumerable<contact> found =

from ¢ in _contactStore

uhere c.Lookuphane. Startsith(
LookupNane,
StringComparison.OrdinalignoreCase
)

select ¢

return found.ToList ();

b
public List<Contact> FANdALL()

U return new List<contact> _contactstore);
3

private void Serialize()

¢

using (FileStrean strean =
File.Open(stateFile, FileMode.OpenOrCreate))

OEBPS/html/graphics/f0302-01.jpg
<fextBlock Style="{(otaticHesource titie}’
Text="Media Viewei
VerticalAlionmen

Center® />

OEBPS/html/graphics/f0188-02.jpg
using System;
using Systen.Collections.Generic;
using System.10;

using System.Ling;

using System.Runtime.Serialization.Fornatters.Binary;
nanospace Contactilanager.Model

(
public class ContactRepository

i
private List<Contact> _contactStore;
private readonly string _stateFile;

public ContactRepository ()

4
_stateFile = Path.Conbine(
‘AppDonain. CurrentDonain. BaseDirectory,
“ContactManager. state”
)
Deserialize();
i

public void Save(Contact contact)
¢

if (contact.Id

contact. Id

Guid.Enpty)
Guid.Newbuid ()

if (1_contactStore. Contains (contact))
' contactEtors.Add (contact) :

OEBPS/html/graphics/f0188-01.jpg
using System.Collections.Generic;

nanespace ContactManager.Nodel

€
public static class States
€
private static readonly List<string> _names;
static States()
i
_names = new List<string>(50);
_nanes. Add(*Alabana’);
Cnanes.Add(*Alaska®) ;
Cnanes.Add(“Arizona®);
Tnanes Add(Arkansas");
Cnanes.Add(California’);
T Continue with state nanes
i
public static IList<string> GetNames()
€
return _names;
i
i

OEBPS/html/graphics/f0132-03.jpg
*TextEditor . MainWindow"
http://schenas . microsoft.con/winfx/2006/xanl /presentation”
/schenas . microsoft .con/winfx/2006/xanl®
clr-nanespace: TextEditor"
“Text Editor®
600"
*800°>
<Dockpanel>

<loca:

‘extEditorNeny x:Name="neny"
DockPanel..Dock="Top" />

extEditorToolbar x:Name="toolbar"
DockPanel .Dock="Top"
ConboBox. SelectionChanged=
= TextEditorToolbar_SelectionChanged" />

<loca:

<StatusBar DockPanel.Dock="Botton">
<TextBlock x:Name="status’ />
</Statussar>

<RichTextBox x:Nan
SelectionChanged="body_SelectionChanged®
SpeLiCheck. IsEnabled="True"
AcceptsReturn="True"
AcceptsTab="True"
BorderThickness="0 2 0 0" />

</DockPanel>
</Windon>

OEBPS/html/graphics/f0132-01.jpg
SHRECRIEMRNETIN. JCE M=y
SelectionChanged="body_SelectionChanged'

SpellCheck. IsEnabled="True"
AcceptsReturn="True"
AcceptsTab="True"
RecderThicknes:

020 0"/>

OEBPS/html/graphics/f0132-02.jpg
BEEVERE YOI SORY_ SIS ORNEQeEONINNE BINISIT, NIELInSTNIEN 8]
¢

//update the tool bar
v

OEBPS/html/graphics/f0335-01.jpg
<Window

‘lass="LayoutTransformDeno. Window! "
xmlns="http://schenas.microsoft.con/winfx/2006/xanl /presentation’
XUIns:x="Ntp: //schenas .microsof t.con/winfx/2008/xanl"
Title="Layout Transforn®

<Grid ShowGridLines="True*>
<6rid.RowDef initions>
<RowDef inition />
<RowDef inition />
</Grid.Rowpefinitions>

<6rid.Columnbefinitions>
<Columnbef inition />
<Columnbefinition />

</6rid.Columnbefinitions>

<gutton>
<Button. LayoutTransform>
<SkewTransforn Anglex:
</Button. LayoutTransform>
</Button>
<Button Grid.Row="1"
Grid.Coluan="1">
<Button.LayoutTransforn>
<RotateTransforn Angl
</Button. LayoutTransform>
</Button>
</Grid>
</Window>

457 />

ast 1>

OEBPS/html/graphics/f0259-01.jpg
<UserlLontrol.Resources>
<CollectionViewSource x:Key="contactSource"
Source="{Binding CurrentContacts} ">
<CollectionViewSource. SortDescriptions>
<cm:SortDescription PropertyName='LookupName />
</CollectionViewsource.SortDescriptions>
</CollectionViewSource>
</Usercontrol .. Resources>

OEBPS/html/graphics/f0236-02.jpg
Bty NOEPNE N
ItemsSourcs
<Listview. View
<Gridview
<GridvienColumn Header="Last Name®
DisplaylenberBinding=" (Binding Lasthanc}® />
<GridvienColumn Header="First Name'
DisplaylenberBinding="(Binding FirstNane}® />
<GridvienColumn Header="Work Phone"
DisplaylenberBinding="(Binding OfficePhone)* />
<GridvienColumn Header="Cell Phone"
DisplayNenberBinding="{Binding CellPhone}” />
<GridvienColumn Header="Enail Address’
DisplayNenberBinding="{Binding Prinaryenail)’ />

{8inding AllContacts)>

</Gridview
<IListview.View>
</ListViews

OEBPS/html/graphics/f0165-01.jpg
<Window x:Class="TextEditor .PrintPreviewDialog®
Xmlns="http: //schenas.microsoft.con/winfx/200/xanl /presentation”

XmIns:x="Nttp: //Schenas . microsof t .con/winfx/2008/xanl"
Title="Print Preview’
600"
="a50">

<DockPanel>
<StackPanel DockPanel.Dock="Botton"
orientation="Horizontal"
HorizontalAlignment="Center">
<Button Content="alt;"
Click="PreviousClick" />
<TextBlock Text="{Binding CurrentPage}

{Binding Elenenthane=pageViewer,
= Path=DocumentPaginator . PageCount}

</stackpanel>
<Viewbox Margin="10">
<Grid>
<Border Background="Gray"
Opacity=".5"
Nargin=".5 .5 0 0°
Width="85’
Height="110"
CornerRadius=".25" />
<Border BorderBrush="Black"

BorderThickness=".1"
Background="White"
width="85
Height="110"
Nargin="-.5 -.5 0 0>
<DocunentPageVien x:Nane="pageviewer® />
</Border>
</Grid>
</Viewbox>
</Dockpane1>

</Window>

OEBPS/html/graphics/f0293-01.jpg

OEBPS/html/graphics/f0293-02.jpg
Stroke="Fuchsia"
StrokeThickness="20"
sStrokeStartLineCap="Round"
StrokeEndLineCap="Square"
StrokeDashCap="Triangle"
StrokeDashArray="1.6 1.3'

OEBPS/html/graphics/f0236-01.jpg
sdorder UockFanel.Uock= Top
Style="{StaticResource header}'>
<StackPanel Orientation="Horizontal'>
<TextBlock Text='ALL Contacts (* />
<TextBlock Text="{Binding AlLContacts.Count}* />
<TextBlock Text=")" />
</Stackpanel>
</Border>

OEBPS/html/graphics/f0270-01.jpg
using System.Windows;
using Wediaviewer.Presenters;

nanespace MediaViewer

q
public partial class WainWindow : Window
{
public Maintiindow()
i
InitializeConponent ();
DataContext = new ApplicationController(this);
i
public ApplicationController Controller
i
get { return (ApplicationController)bataContext; }
}
public void TransitionTo(object view)
{
currentView.Content = view;
}
private void UainWindow_Loaded(object sender, RoutedEventArgs e)
i
Controller.Showlenu();
}
private void Header_Click(object sender, RoutedEventargs e)
i
Controller. Showenu();
}
)

OEBPS/html/graphics/234tab01.gif
Name

Description

Dependency properties.

INotifyPropertyChanged

Event naming convention

WPF controls all make use of the dependency property
system. You can use dependency properties in your
own classes, but often it will be overkill to do so.
Classes that implement this interface raise an event
‘when one of their properties changes. This is fairly
lightweight compared to implementing dependency
properties. It is also the notification mechanism we are
using for the model classes with the Contact Manager.
If neither of the preceding methods are used, WPF
automatically looks for events that follow a naming
convention. The convention is the name of the property
with the suffix Changed.

OEBPS/html/graphics/f0397-01.jpg
<Window x:Class="LearningAnination.Window!*
XmIns="http: //schonas.microsoft.con/winfx/2006/xanl /presentation”
XmLns:x="http: /[Schenas . microsof t .con/winfx/2008/xanl"
Title="Window!
Height="300" Width="300">
<Window. Resources>
<PathGeonetry x:Ke
</Window.Resources>
<Hindow. Triggers>
<EventTrigger Routedevent
<BeginStoryboard>
<Storyboard Storyboard.TargetNane="Ball">
<DoubleAninationUsingPath Duratio 0
Storyboard. TargetProperty=
= *(Canvas.Left)"

Figures="H0,0 L100,0 100,100 200,100" />

pat!

“Window. Loaded">

PathGeonetry:
= *{StaticResource path}’ />

<DoubleAninationUsingPath Duration="0:0:10"
Storyboard. TargetProperty=
= *(Canvas.Top)*

PathGeometry=
= *(StaticResource path}" />
</Storyboarg>
</BeginStoryboard>
</EventTrigger>
</Window. Triggers>

<canvas>
<Ellipse x:Name='Ball*
Wigth="20" Height="20

FilL
Canvas. Top="50" Canvas.Left:
</Ellipse>
<Path Stroke='Red" StrokeThickness="2" Data="{StaticResource path}>
</path>
</Canvas>

</Window>

OEBPS/html/graphics/f0049-01.jpg
<Grid.Rowbevinitions>
<RowDefinition Height:
<RowDefinition />
</Grid.Rowbef initions>
<Grid.ColunnDef initions>
<ColunnDefinition Widt
<ColunnDefinition Widt
</Grid.ColumnDefinitions>

50" />

o s
20 >

OEBPS/html/graphics/f0072-01.jpg
-Nane="gampletext "
DockPanel.Dock="Bottom"
MinLines="4"

Margin='8 0"
TextWrappin
<TextBox. ToolTip>
<TextBlock>
<Italic Foreground="Red">Instructions: </Italic>
Type here to change the preview text.
</TextBlock>
</TextBox.ToolTip>
The quick brown fox jumps over the lazy dog.
</TextBox>

<TextBox

Wrap*>

OEBPS/html/graphics/f0154-03.jpg
it iz S
Modifiers="ShiftsALt"
Oommand="ApplicetionConnands.Savels® />

OEBPS/html/graphics/f0154-02.jpg
RO« SRS
<KeyBinding Koy
Hodifiers="shift
Connand=*ApplicationCommands .SaveAs® />

</Window. InputBindings>

OEBPS/html/graphics/f0225-02.jpg
e

{Binding Contact.HomeThone}™ />

</6rio
</6roupox>

<GroupBox BorderBrush="{Statichesource brownBrush}'>
“<Groupox. Hoader>
‘<Border Background="(StaticResource bromBrush)"
Style-"(Statichesource groupBoxteader) >
<TextBlock Text="Enail® />
</Border>
</Groupbox.Heador>

<arie>
<Grid.ColuanDef initions>
<Columbefinition WidtheAuto® />
<Colummbafinition Width="200" />
</6r10. Coluandefinitions>
<Grid. Rowbefinitions>
<RowDef inition Height="Auto’ />
<RouDofinition Height="Auto" />
</6r1d. Rowdef initions>

<Labe1 Content="_prinary
Targot="(Binding Elenontiano=prisaryEaail)”
<TextBox x:Nanes-prinarycrail”
Grid.Column="1"
ot O O A L]

OEBPS/html/graphics/f0154-01.jpg
SPAINI ¢ ENHECRSE g
<MouseBinding Gesture="ControlsWneelClick"
Command="ApplicationConmands. SaveAs />
</Wwindow. InputBindings>

OEBPS/html/graphics/f0225-01.jpg
<aris.Nowlef initions>
<Rowdefinition Height="Auto" />
<Rowdefinition Height="Auto’ />
<Rowdofinition Hoight="Auto" />
</Grid. Rowbef initions>

<Label Content="_0ffic
Target=" (Binding ElenentNane=office)” />
<TextBox x:Nane="0ffic
Grid. Coluns

1
Text=" (Binding Contact.0fficePhone}” />

<Label Grid.Row="1"
Content="_Call:*
Target=" (Binding ElenentNane=cell}” />
<TextBox x:MName="cell"
Grid.Row="1"
Grid. Column="1"
Text=" (Binding Contact.CellPhone}" />

<Label Grid.Aow="2"
_Home: *

OEBPS/html/graphics/11fig03.gif
Dapendency Properties
Introduced

DependencyObject

Renderable Elements

Visual

Intoractive Elements.

e —

UlElement

High-Level Framework.
Features Introduced
(Databinding, Animation,
Stying, elc)

- 7

FrameworkElsment

High-Lavel Interaction and
Layout

Control

OEBPS/html/graphics/11fig02.jpg
) 0128208054555 pog - Windows Photo Galkery

T T
When she came to the top, she found herselfin a itle square place. with e doars, two.
opposite each other, and one opposite the top of the star. She s100d for a moment. without
anidea in her itte head what to do next. But as she stood. she began to hear a curious

| humming sound. Could it bo the rain? No. 1 weas much more gentle. arcl even monotanous

| than the sound of the rain. which now she scarcely heard. The low swoet humming sound
went on. sometimes stopping for a lttle while and then beginning again. It was more fike the
hm of 4 vety happy bee that ad found rich wellof honey in some globular flowes, than
anything el fcan think of at fhis mament. Whare could It come fram? She laid her ont frst

10 0ne of the doors o hearken I it was there - then to another. When she aid her ear against
the third door, there could be no doubl where it came from: t must be from something in that
1o0m. What could it be? St was rather afrad, but her curiosity was stronger than her fou,

and she opened the door very gently and peeped in. What do you think she saw? Avery old
lady who sat spinning.

Perhaps you wil wonder how the princess could tell that the old lady was an old Iady, when
nform you that not only was she beautiful but her skin was smooth and white. [willtell you
more. Her hair was combed back from het forshead and face, and hung loose fa down and
allover he back. Thatis not much like an old dy - s t? Ah! but it was white almost s snow.
And although her face was so smooth.her eyes looked so wise that you could not have helped
| sooing she must be old. The princess. though she could not have told you why. did thik her
ndesd - it ity <he oxic ¢ horealt Mt ch vene rthar ldor than that 3 vt

OEBPS/html/graphics/f0143-01.jpg
<rid TextBoxtase. TextChanged="Gric_textChanged™>

<6rid.ColunnDefinitions>
<ColunnDefinition />
<ColunnDefinition />
<ColunnDefinition />

</Grid.ColumnDef initions>

<Text8ox Grid.Column="0" />

<TextBox Grid.Colunn="1" />

<Text8ox Grid.Colum="2" />

</Grid>

OEBPS/html/graphics/146tab01.gif
ApplicationCommands.

ComponentConmands.

ditingConmands

ediaConmands

NavigationCommands.

“This library contains commonly used commands such
as Cut, Copy, Paste, New, Open, Save, Undo, Close and
many others.

These are commands for moving around inside an applr
cation. These can easily be confused with some of the
editing commands as well as navigation commands,
The commands in this library are for more general use
than the other two. Here you will find commands such
as MoveDown, ExtendSelectionLeft, ScrollsyLine
SelectTond, and many others.

This library is helpful for dealing with text. It includes
commands for alignment, formatting, and the navigation
of text. Some examples of command names are
ToggleBold, AlignLeft, and DecreaseFontSize.
These are commands for controlling audio and video in
your applications. Some typical commands are Play,
Pause, and Increasevolune.

These commands are most useful for navigating in an
application built around a web browser metaphor.
Commands include BrowseForward, NextPage,
PreviousPage, Refresh, and Search.

OEBPS/html/graphics/f0369-01.jpg
WRYLS RNy BELISIVIORILYAS
TargetType="{x:Type Buttongase) >
<etter Property=-Template™>
<Setter.value>

<ControlTenplate TargetTyp

<Grid Wigth="32"

Heignt="3;
Background="Transparent >

{x:Type Buttonsase} >

<Gontentpresentar Yert icalnligment=-Conter:
Horizontalalignnent="Center* />
<Border x:Nane="highlight"

Visibility="hidsen"

CornerRadiu

Background=" {Stat icResource mediaButtonKover)”

BorderBrush=" {StaticResource glossoutline}"
BordorThickness="1">
</Borger>
</orie>

<ControlTenplate. Triggers>
<Trigger Property="IsNouseOver”
Value="True">
<Settor Targetnane="highlignt"
Property="visibility"
Value="visible® />
<rTrigger>

True'>

</Trigger>
</ControlTenplate. Triggers>
</ControlTenplate>
</Sotter.value>
</setter>
</Style>

OEBPS/html/graphics/f0002-01.jpg
PUDLIC. OD3E0L LOMErIDACK (0DJECL Value, TYPe Largetiype, OUject parsmeter,
wCultureInfo culture)

OEBPS/html/graphics/f0186-02.jpg
]

pubLic string HosePhone
(
get { return _hosePhone;)
sot

_pomephone = value;
OnPropertyChanged (“HonePhone*) ;

)

pubLic string Primaryéaail

(
get { return _primaryEmail;)
set
¢
_prinaryEsail = valuo;
OnPropertyChanged (“prinaryEnail
)
»

pubLic string SecondaryEsail

(

get { roturn _secondaryEnail; }
o

OEBPS/html/graphics/f0352-01.jpg
SR
<Cistox. Itenspanel>
<ItespanelTerplate>
Surapranel 1>
</TeonspaneiTenplate>
</ListBor, Ttenspanel>
Listeox. itens>
<ListBoxiton Content="Red />
<UistBoxiten Content="Grean />
<Cistaoxiton Content="Blue" />
</LsstBor. Ttens>
<Listox. Tenplate>
<ControlTesplate TargetTypes"(
<Border Background="Pink
Pagaing-
<tesspresantor />
</sordor
</ControlTemplate>
</ListBor. Tenplates
I Locwi

vpe Listson) >

OEBPS/html/graphics/f0352-02.jpg
AT
<ListBox. Itens>
<ListBoxIten
<ListBoxIten
<ListBoxIten
</ListBox, Itens>
<ListBox.Tenplate>
<ControlTenplate TargetType="{x:Type List8ox}">
<Bordsr Backgrounds"Pink"
Padding="8">
“irapPanel IsItensHost="True" />
</Border>
</ControlTenplate>
</ListBox. Template>
</ListBox>

OEBPS/html/graphics/f0048-01.jpg
<6rid ShowGridLines='True®
TextBlock. Fontsize=
<Grid.RowDef initions>
<Rowdefinition />
<RowDefinition />
</Grid.Rowbef initions>
<6rid.Columnbefinitions>

<Columnbefinition />
<ColumnDef inition />
</6rid.Colunnbefinitions>

<Button Content="

.

<Button Grid.Column="1"

Content="0,1" />
<Button Grid.Row="1"
Content="1,0" />

<Button Grid.Row="1
Grid. Column="1"
Content="1,1" />

</Grid>

OEBPS/html/graphics/f0186-01.jpg
PUvSaT Taig SR
(
get { return _jobTitle; }
set

_jobTitle = value;
GnPropertyChanged(“JobTitle");

)

pubLic string OfficePhone
(
get { return _officePhone; }
set

_officephone = valu:
nPropertyChanged(“0f ficePhone”)

)

pubLic string CellPhone
(

get { return _ce11phone; }

set

i
_cel1Phone = valu:
OnPropertyChanged(- CellPhone")

OEBPS/html/graphics/f0243-01.jpg
<Application

:Class="ContactManager.App"

Xnlns="http: //schenas.microsoft.con/winfx/2006/xaml /presentation”
xnlns:x="http://schenas.microsof t .con/winfx/2006/xaml"
xnlns:Presenters="clr -namespace: Contactlianager . Presenters "
StartupUri="Shell.xanl >

<Application.Resources>

<ResourceDictionary>
<Resourcebictionary. Hergeddictionaries>
<ResourceDictionary Source='Resources\Colorsandgrushes.xanl® />
<ResourceDictionary Source="Resources\DefaultStyles.xanl® />
<(ResourceDictionary.ergedDictionaries>

<Presenters:PhoneConverter x:Key="phoneConverter® />
</ResourceDictionary>

</Application.Resources>
</Application>

OEBPS/html/graphics/f0060-02.jpg
CTSATTLO0R FOoNLoaze= 14"
Texthirapping="Wirap*>
<Bold><Italic>Instructions:
<LineBreak />
Select a <Underline>font</Undorline> to view fron the list
<Italic>below</Italics.

You can change the text by typing in the region at the botton.

</TextBlock>

/Ttalic></Bold>

OEBPS/html/graphics/f0060-01.jpg
SESNINEETE SUNERATAT 1D
TextWrapping="Wrap*>
Select a font to view from the list below.
You can change the text by typing in the region at the botton.
</TextBlock>

OEBPS/html/graphics/f0083-01.jpg
<tiindow x:Class="TeachYourselfWPF.FontViewer.MainWindow"
xnlns="http: //schenas.nicrosoft.con/winfx/2006/xanl /presentation”
X0Lns:x="http: //schenas.microsoft.con/winfx/ 2006/ xanl
Title='Teach Yourself WPF: Font Viever"

Height="480"
Width="640">
<DockPanel Margin="8

<Border DockPanel.Dock="Top"
CornerRadius="6"
BorderThicknesss"1
BorderBrush="Gray"
Background="LightGray"
Padding="8"
Margin="0 0 0 8>
<TextBlock FontSize="14"
Textirapping="Wirap*>
Select a font to view fron the list below.
You can change the text by typing in the region at the botton.

</TextBlock>
</Border>
<ListBox x:Name="FontList"
DataContext="(x:Static Fonts.SystenFontFamilies)
DockPanel .Dock="Left"
TtensSource=" {Binding} *
Width="160">

<TextBox x:Name="SampleText"
DockPanel.Dock="Bot tom

Textlirapping="Wrap"
ToolTip="Type here to change the preview text.'>
‘She aliok book Tk - Tsas st the lavy dio.

OEBPS/html/graphics/f0083-02.jpg
RN R

<StackPanel Wargin=' 0 8 8°>

<TextBlock

<TextBlock

<TextBlock

</Stackpanel>
</Dockpanel>
</Window>

{Binding Path=Count}’ />

{Binding ElenentNane=SampleText,
Path=Text} "

FontFanily="(Binding ElementName=FontList,

Fontsize="10"
TextWrapping="lirap®

-~
{Binding Elenenthane-SampleText,
Path=Text}"
FontFanily="(Binding ElementNane=FontList,

Path=SelectedIten} "

FontSize="16"

TextWrapping="lirap"

Margin="0 0 0 4" />

Text="{Binding ElementNane-SampleText,
Path=Text} "

{Binding ElementNane=FontList,

FontFanil

Margin
Text="{Binding ElementNane=SampleText,
Path=Text}"
{Binding ElementNane=FontList,
Path=SelectedIten) -

FontFanil

FontSize="32"
TextWrappin

wrap® />

OEBPS/html/graphics/f0140-01.jpg
<Window

“PreviewEvents.Window
“http://schenas.microsoft.con/winfx/2006/xanl /presentation”
£x="Nttp: /[Schienas . miCrosof t .con/winfx/2008 /xanl"
KeyDown="Handler*
PreviewKeyDoun="Handler"
Title="Window!" Heigh
<DockPanel KeyDown="Handler*
PrevieuKeyDown="Handler">
<ListBox x:Name="Output"
DockPanel.Dock="Left"
Margin="0 0 10 0"
KeyDoun="HandLe
PrevieuKeyDown="Handler" />
<Grid KeyDown="Handler"
PrevieukeyDown="Handler*>
<StackPanel KeyDown="Handler®
PreviewKeyDown="Handler*>
<Button KeyDown="Handler*
PreviewKeyDown="Handler*
Content="lly Button®/>
<TextBox KeyDown="Handler*
PreviewKeyDoun="Handler"
Text="My TextBox"/>
</StackPanel>
</6rid>
</Dockpanel>
</Window>

300" Width="300">

OEBPS/html/graphics/f0381-01.jpg
Roaanth

Groen'>
ihite”
Text="{Binding Lookuphane}® >

</Borger>
<DataTemplate. Triggers>
wltibatatrigger>
<unltiDataTrigger.Conditions>
<Condition Binding="(Binding Organization)®
Value='Blue Spire Consulting, Inc." />
<Condition Binding="{8inding Address.City)"
Value='Tallahassee" />
</Mu1tiDataTrigger. Conditions>
<UultiDataTrigger. Sotters>
<Setter TargetNase="border"
Property="Background”
Value="Blue* />
</MultiDataTrigger. Setters>
</Mu1tiDataTrigger>
</pataTenplate. Triggers>
</DataTemplate>

OEBPS/html/graphics/387equ01.jpg
=50+ (200

OEBPS/html/graphics/387equ02.jpg
= 1
V=AtoE A

OEBPS/html/graphics/f0305-01.jpg
ooy
<Rectangle

ikt

okttt

Vadth"18" Height="20"
Filla- (StaticResource redBrush)®
Radiusx="1" Radiusy="1"

Stroke=" (StaticResource orangeBrush)
StrokeThickness="1"/>

OEBPS/html/graphics/f0139-01.jpg
IR R R GONTE
ittp: //schenas . nicrosof t..con/winfx/2006/xanl /presentation
“http: //schemas. microsof t..con/winfx/2006/xanl®

Exanple of Preview Events’

300"

300>

<6ridg>
<TextBox />
</Grid>
</Window>

OEBPS/html/graphics/f0152-01.jpg
55 P 1S
<ConnangBinding Comnand="ApplicationConands .New"
Executed="Newbocunent” >
<ConnandBinding Connand="ApplicationComnands.Open
Exccuted="0pendocument” />
<ConnandBinding Connand="Applicat ionConnands. Save
Executed="SaveDocument~ />
<ConnandBinding Connand="Applicat ionConnands . SaveAs’
Executed="SaveDocusentAs® />
<ConnandBinding Coanand="ApplicationCoamands.Close"
Executed="ApplicationClose" />
Mo e fodus:

OEBPS/html/graphics/f0152-02.jpg
<fooisar>

<Button Command=*ApplicationCommands.Open*

ToolTip="0Open*>
<Image Source="Icons/folder_page.png” />
</Button>
<Button Comnand="ApplicationConmands.Save"
ToolTip="Save">
<Image Source="Icons/page_save.png’ />
</Button>

</ToolBar>

OEBPS/html/graphics/f0152-03.jpg
P el

<lenulten Comnand="ApplicationConnands
<llenulten Comnand="ApplicationComnands
<enulten Command="ApplicationConnands
<Menulten Command="Appl icationConnands
<Separator />

<lenuTten Gomnand="ApplicationConnands

e Piaartea

New' />
Lopen® />
_save’ />
_savens" />

.Close® />

OEBPS/html/graphics/04fig03.jpg
i vgon C Sedeiin b W =

2 Columns

2 Rows

o) il

OEBPS/html/graphics/04fig02.jpg
T T——

The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy
dog.

The quick brown fox jumps
over the lazy dog.

“The quick brownfox jumps over the lzy dog.

Select 3 font to view from the list below. You can change the text by.
typing in the region at the bottom.

Aral Rounded MT
il nicode MS
amo pro

(Ao Pro Caption
(Ao Pro Display
o Pro SmText
Ao Pro Subhesd
Saskervile O Face

Saung
BstangChe
Bouhaus 83
Beil Gothic Std
seiMT

Berin Sans 16

OEBPS/html/graphics/04fig05.jpg
8| Windowl

Vg

OEBPS/html/graphics/f0363-01.jpg
L T
<6rid HorizontalALignnent
VerticalAlignuent="Center"
MinHeight="36" WinWidth="36">
<ELLipse Fill="(TemplateBinding Background)' />
<ContentPresenter />
</Grid>
S T0oRt Fo i Tl

NI LY el i

OEBPS/html/graphics/9780132715584.jpg

OEBPS/html/graphics/04fig04.jpg

OEBPS/html/graphics/f0363-02.jpg
<Window x:Clas:
xnlns:

“ControlTemplates..Window1*
“http: //schenas.microsoft.con/winfx/2006/xaml/pre
XWIns:x="http://Schenas . microsof t..con/winfx/2006/xanl"
Title="Window!® Height="300" Width="300">
<stackpanel>
<StackPanel.Resources>
<ControlTenplate

ntation®

ey="CircleButton”
TargetType="{x:Type Button}*>
<6rid HorizontalAlignnent="Center"
VerticalAlignnent="Center"
MinHeight="36" MinWidth="36">
<ELLipse Fill="(TemplateBinding Background)® />
<ContentPresenter TextBlock.FontSize="24"
TextBlock. Foreground="White
HorizontalALignment="Center-
VerticalAlignnent="Center” />

</Grid>
</ControlTenplate>
</StackPanel.Resources>
<Button Background="Red"
Content="1"
Template="(StaticResource CircleButton}® />
<Button Background="Green"
Content="2"
Template="(StaticResource CircleButton}" />
<Button Background="Blue"
Content="3"
Tenplate="{StaticResource CircleButton} />
</Stackpanel>
</Windor>

OEBPS/html/graphics/f0197-01.jpg
using System;
using System.Collections.Objecthodel;
using ContactManager.Model;

nanespace ContactManager.Presenters

t
public class ApplicationPresenter : PresenterBase<shell>

€
private readonly ContactRepository _contactRepository;
private ObservableCollection<Gontact> _currentContacts;
private string _statusText;

public ApplicationPresenter(
Shell view,
ContactRepository contactRepository)
+ base(view)

_contactRepository = contactRepository;

_currentContacts = new ObservableCollection<Contacts(
contactRepository. FindALL()

i

public ObservableCollection<Contact> CurrentContacts
1

get { return _currentContacts; }

set

i

OEBPS/html/graphics/f0202-02.jpg
<UserControl

xalns:

:Class="ContactManager . Views . EditContactView"

“http://schenas.microsof t..con/winfx/2006/xanl /presentation’
ttp://schenas . microsoft . con/winfx /2006 xanl ">

<DockPanel Margin="5">
<Border DockPanel.Dock="Top">
<DockPanel LastChildFill="False’>

<TextBlock DockPanel.Doc)

<TextBlock DockPanel.Doc)

Lert®
Text="{Binding Contact.LastNane}* />
Left”

Text=", © />

<TextBlock DockPanel.Dock="Left"

<TextBlock DockPanel.Doch

Text="{Binding Contact.FirstNane}* />
ight”
Text="{Binding Contact.Organization) />

</DockPanel>

</Border>

<StackPanel
<Button

<Button

<Button

DockPanel. Dock="Botton">
Content="Save"
Click="Save_Click" />
Delete”
Delete_Click® />

</StackPanel>

OEBPS/html/graphics/f0202-01.jpg
PUDLIC VOIS UPRLORTACT{ONtacT coatast)

(

if (contact == null) return;

View.AddTab(
new EditContactPresenter(
tnis,
new EditContactvien(),
contact
)

OEBPS/html/graphics/04fig01.gif
1Maw
1mm

Content

Border-

OEBPS/html/graphics/f0036-01.jpg
TRV PR R R B
<TextBlock Text="(Binding ElenentNane=SanpleText, Path=Text}"
FontFanily="{Binding ElenentNane=FontList,Pat
Fontsize="10"
Textirapping="Virap*
Margin="0 0 0 4° />
<TextBlock Text="(Binding EleventName=SampleText, Path=Text}"
FontFanily="{Binding ElenentNane=FontList,Pat
Fontsizo="16"
Textirapping="Virap"
Wargin="0 0 0 4° />
<TextBlock Text="(Binding EleventNane=SanpleText, Path=Text}"
FontFanily=" {Binding ElenentNane=FontList,Pat
FontSize="24"
Textirapping="Virap"
004 1>
*{Binding ElementNane=SanpleText, Pat!
FontFanily="{Binding ElenentNare-FontList,Pat
FontSize="32"
TextWrapping="Wirap® />

<TextBlock

</StackPanel>

OEBPS/html/graphics/f0197-02.jpg
oK CTETNAR S TR
OnPropertyChanged(*CurrentContacts*);

)

public string StatusText
(
get { return _statusText; }
set
i
_statusText = valu
OnPropertyChanged *StatusText

)

public void Search(string criteria)

(
if (istring. IsNullorEmpty(criteria) & criteria.Length > 2)

i

CurrentContacts = new ObservableCollection<Contact>(
contactRepository. FindByLookup (criteria)

StatusText = string. Format(
*{0} contacts found.",
CurrentContacts. Count

)

OEBPS/html/graphics/f0128-01.jpg
private vold StackPanel _Clickiobject sender, RoutedcventArgs
¢
Button button = (Button) e.Source;
Output.Text = string.Fornat(
"You chose the color {0}!,
button.Content);
Output.Background = button.Foreground;

€)

OEBPS/html/graphics/06fig03.jpg
rivace sering _tisstteme:

punlic string Firsciane

i

OEBPS/html/graphics/06fig02.jpg
botiom.

Stencistd
ytien o400 b s ety 4

Symbol The quick brown fox jumps over the lazy dog.

s The quick brown fox jumps over the lazy

Tempus SarsTC dog.
TinesNew Soman

il The quick brown fox jumps over
the lazy dog.

Select a font to view from the fist below. You can change the text by typing in the region at the ‘

Trebuchet MS

L

Verdana
Viner Hand.

Tt
252 forts s mstaled,
Vi s PR |

Viinda
Webdings
Wide Latin
ingdings.
Wingaings 2
Wingdings 3

Tre quick brown foxjumps over the lazy dog.

OEBPS/html/graphics/06fig01.jpg
botiom.

Select a font to view from the lst below. You can changa the text by typing in the region at the

dabe Garamend Pro
Ageney B

aharoni

gersn

andalus
. B
angsantoc [
rabic Tpesting

f |2

il Rounded MT
il Unicode M
amo o

ma pro Capten
mo Pro Disply
ama pro St
amo Pro Suthesd
Ssskeriie O Face
Bstang

SaungCre
eaunaus 33

el Cothe std

o =

[Rdobe Casom e T2 ™ kb o st o oy 5.
The quick brown fox jumps over the lazy dog.

| The quick brown fox jumps over the lazy
dog.

The quick brown fox jumps
over the lazy dog.

Tne quick bron foxjumps overthe lazy dog.

OEBPS/html/graphics/f0339-02.jpg
Rl ool NS
<Button.BitmapEffect>
<BLurBitmapEffect Radius
</Button. BitmapEffect>
</Button>

<Button Content='Emboss™>
<Button. BitmapEffect>
<EnbossBitnapEffect LightAngle="90"
Relief="2" />

</Button.BitnapEffect>
</Button>

<Button Content='Bevel®>
<Button.BitmapEffect>
<BevelBitnapEffect LightAngle="90"
Relief=".75" />
</Button. BitmapEffect>
</Button>

<Button Content="Group*>
<Button.BitmapEffect>
<BLtmapEf foctGroup>
<DropShadowsitnapEffect />
<BLurBitnapEffect Radius='4" />
<OuterGlowsitmapEffect GlowColor="Red"
Glowsize="2" />

</BitnapEffectaroup>
</Button.BitnapEffect>
</Button>
</UnifornGrid>
</Window>

OEBPS/html/graphics/f0198-02.jpg
if (CurrentContacts.Contains (contact))
CurrentContacts. Renove (contact) ;

_contactRepository.Delete(contact) ;

StatusText = string.Format(
“Contact "{0}' was deleted.",
contact..LookupNane
iH

)

pUbLic void CloseTabeT>(PresenterSase<T> presenter)
{

}

View.RemoveTab (presenter) ;

public void OpenContact (Contact contact)
{

)

throw new NotImplenentedException();

public void DisplayAllContacts()
{

}

throw new NotImplenentedException();

OEBPS/html/graphics/f0198-01.jpg
——
[
CurrentContacts = new ObservableCollection<Contact>
_contactepository . FindALL()
i

StatusText = “Displaying all contacts.

¥
3
public void NewContact()
¢
OpenContact (new Contact());
3
public void SaveContact(Contact contact)
¢
if (1CurrentContacts.Contains(contact))
CurrentContacts. Add(contact) ;
_contactRepository.Save contact) ;
StatusText = string.Format(
“Contact '{0}' was saved.",
contact. Lookuphane
N
3

rublic void DeleteContact(Contact contact)

OEBPS/html/graphics/f0037-02.jpg
SIS TTIR (TRET L0 GUNNIGE LTH PrRVARE SEEL. TF
The quick brown fox junps over the lazy dog

</Textsox>

<StackPanel Margin=' 0 8 8'>

<TextBlock

<TextBlock

<TextBlock

<TextBlock

</Stackpanel>

</DockPane1>
</Window>

Text="{Binding ElementName=SampleText, Path=Text}"
FontFanily=" (Binding
wElementName=FontList,Path=SelectedItem)”
FontSize="10

Textirapping=Wrap*

argin="0 0 0 4* />

Text="{Binding Elenonthane=SampleText, Path=Text}"
FontFamily="{Binding
w=ElementName=FontList,Path-SelectedItem}”
FontSize="16

TextWrapping="Wrap*
largin="0 0 0 4* />
*{Binding Elenentian
{8inding

anpleText, Patn=Text}

=Elenenthane-FontList,Path-SelectedItem}"
FontSize="24"

{Binding ElementNane=SampleText, Path=Text}®
FontFanily="(Binding

=Elenenthane=FontList,Pat
Fontsize='32"

Toxtirapping

wrap® />

OEBPS/html/graphics/f0037-01.jpg
“FontViewer .MainWindow
XmIns="http://schenas.microsoft.con/winfx/2006/xanl /presentation’
XmLns:x="Nttp: //schenas . microsof t.con/winfx/2006/xanl"
Title="Font Viewer"

180"

Width="640">
<DockPanel Margin="8">
<Border DockPanel.Dock="Top"
CornerRadius="6"
BorderThickness=

Background="LightGray"
Padding="8"
Margin="0 0 0 &>
<TextBlock FontSize="14"
Textirapping="lirap*>
Select a font to view from the list below.
You can change the text by typing in the region at the botton.
</Text8lock>
</Border>
<ListBox x:Name="FontList"
DockPanel.Dock="Left"
*{xiStatic Fonts.SystenFontFanilies}"
160" />
“sanpleText”
DockPanel.Dock="Botton"
MinLines="a"
Margin="8 0"
TextWrapping="Wrap*

OEBPS/html/graphics/f0213-01.jpg
et b Bl B it L el
Color=" {staticResource
<SolidColor8rush x:Key="darkBlueBrush"
Color="{StaticResource
<SolidColorBrush x:Key="redBrush”

{StaticResource

greengrush
{StaticResource

=*brown8rush*

(StaticResource

1ightBlueColor}” />

darkBlueColor}”
redColor}* />
greencolor}* />

brownColor}® />

>

OEBPS/html/graphics/387equ03.jpg
E 3
+ 5 (To - From)

OEBPS/html/graphics/f0232-01.jpg
public void Addlab<i={Fresenterbase<i> presenter)

(
Teblton newTab = null;

for (int 1= 0; 1 < tabs.Items.Count; 1++)

Tablten existingTab = (Tablten)tabs. Ttens(il;
if (existingTab.DataContext.Equals (presenter))

tabs. Ttens. Ronove (existingTab)
newTab = sxistingTa

broak;
)
)
£ (nowTab == nu11)
[
newTab = new TabIten();
Binding headerginding = new Binding(presenter. TablieaderPath)
Bindingoperations. Set8inding(
nenTab,
Tablten.Headerproperty,
headerBinding
I
newTab. DataContext = presenter;
newTab. Content = presenter.View;
)

tabs. Ttens. Insert (0, newTab);
newTab.Focus ()

OEBPS/html/graphics/f0255-01.jpg
ettt o s st i
¢

et e it i

public override DataTesplate SelectTemplate(object item, DependencyObect
=container)

i
DataTemplate dataTenplate;
Ilcuston logic for deternining the tewplate

return dataTemplate;

OEBPS/html/graphics/16fig03.jpg
% Contact Manager
Contact Manager

(i Owen -
e 551354
et oxennogery

Lewis, Jack

mauoy -

(Crstron Giber =
O 535200
e —

ey v

e
et

lewie Warie =
e
ey

(Wikams.Coies v
‘o

ey

Ot St

[re—
[T]

Cortat restrion Gt st

o

L}

i

OEBPS/html/graphics/f0288-01.jpg
<UserControl x:Class="MediaViewer.Views.VideoView'
xnlns="http: //schenas.microsoft..con/winfx/2008/xanl /presentation’
xnlns:x="http://schenas.microsof t..con/winfx/2006/xaml"
cLr-nanespace: llediaViewer . UserControls®

indowsBase >

ysten. Conponentiiode1; assembl,
<UserControl.Resources>
<CollectionViewSource x:Key="movieSource
Source="{Binding Wedia)">
<Collectionviensource.SortDescriptions>
<cn:SortDescription PropertyNane="Name" />
</CollectionViewSource. SortDescriptions>
</Collect onViewSource>
</Usercontrol.Resources>

<DockPanel>
<Expander DockPanel.Dock="Left
Expanddirection="Right "
IsExpanded="True®
BorderThickness="0 1 1 1*

BorderBrush="Gray*

OEBPS/html/graphics/f0351-01.jpg
g3
<ListBox. ItensPanel>
<ItensPanelTenplate>
<tirappanel />
</ItenspanelTenplate>
</List8ox. ItensPanel>
<ListBox. Ttens>
<ListBoxIton Content="Red" />
<ListBoxIten Content="Green' />
<UistBoxTten Content="Blue® />
</ListBox. Ttens>
</LiatBox>

OEBPS/html/graphics/f0288-02.jpg
ol it
Padding="2">
<Expander. Header>
<TextBlock Text="lovies"
FontSize="14"
FontWeight="8old">
<TextBlock. LayoutTransforn>
<RotateTransforn Angle="90" />
</TextBlock. LayoutTransforn>
</TextBlock>
</Expander .Header>
<ListBox x:Name="movielist’
Width="175"
BorderThickness="0"
ItemsSource=" (Binding Source=(StaticResource movieSource}}*
DisplayMenberpath="Nane" />

</Expander>
<uc:NediaPlayer Nedia="{Binding ElenentNane
=Path=Selectedlten)”

</Dockpanel>
</Usercontrol>

OEBPS/html/graphics/16fig02.gif
m——

[= H e || oy] v

HestenctonetCanol

|

ENESES S

OEBPS/html/graphics/16fig01.gif
L T I I 1
e E=EE B
I
) [T () [T [o) (i))

st

OEBPS/html/graphics/f0221-01.jpg
<UserControl

<DockPanel Margin

:Class="ContactManager .Views .EditContactView"
xnlns="http
xnlns:x="http://schenas.microsof t..con/winfx/2006 /xaml >
5>
<Border DockPanel.Dock="Top"
Style=" {StaticResource header}">
<DockPanel LastChildFill="False’>
<TextBlock DockPanel.Dock="Left"
Text="{Binding Contact.LastNane}* />
<TextBlock DockPanel.Dock="Left"
Text=", * />
<TextBlock DockPanel.Dock="Left"
Text="{Binding Contact.Firsthane}’ />
<TextBlock DockPanel.Dock="Right"
Text="{Binding Contact.Organization} />

</DockPanel>
</Border>

<stackPanel DockPanel.Dock="Botton"
{StaticResource buttonPanel}*>

‘Save"
Click="Save_Click" />
<Button Content="Delete"

Delete_Click® />

</StackPanel>

/schenas . microsof t. con/winfx/2006/xanl presentation

OEBPS/html/graphics/f0393-01.jpg
TEROE SRR ST
Storyboard. TargotNano="Ball"
Storyboard.TargetProperty=" (Canvas. Left) ">

<DoubleAnination By="300" Duration="0:0:10" FillBehavior="Stop®/>
</Storyboard>

OEBPS/html/graphics/06tab01.gif
WCF

WF

CardSpace

Windows Communication Foundation is focused on messaging. This
API greatly simplifies all sorts of networking and communication
tasks. It covers everything from web Services to remoting to P2P
and more.

A powerful library for building workflow enabled applications. It uti-
lizes a markup language for declaring workflows in an application,
and thus prevents workflow from becoming hard-coded. It also
makes it very easy for developers to create custom workflow tasks.
The least famous of the four libraries, CardSpace provides a com-
mon identification system that can be used by desktop applications,
web sites, and more.

OEBPS/html/graphics/f0082-01.jpg
e el Gtk R e L T
DataContext="(x:Static Fonts.SystenFontFamilies)
DockPanel.Dock="Left
ItensSource=" {Binding} "

Width="160">
<ListBox.ToolTip>
<ToolTip>
<stackPanel Orientation="Horizontal >
<TextBlock Text="{Binding Path=Count,

Wode=0neTine}" />
<TextBlock Text=" fonts are installed.'/>
</Stackpanel>
</ToolTip>

</ListBox.ToolTip>
</ListBox>

OEBPS/html/graphics/f0306-01.jpg
Click="Play_Click'>

<Gric>
<Polygon Fil
stroke:

{StaticResource yellowsrush)
Gray*

018,10 0,18" />
<Canvas Visibility="Hidden'>

<Rectangle Height="18
Fill={StaticResource yellowBrush}®
Stroke=" (StaticResource orangeBrush}’

width="6"/>
<Rectangle 18"
StaticResource yellowdrush}®
{staticResource orangeBrush)
</Canvas>
</Grio>

</Button>

OEBPS/html/graphics/f0304-01.jpg
R P (= L
HorizontalALignnent="Center’
Wigth= Height="50'
Background=" {StaticResource yellowBrush)'>
<6rid.ColumnDef initions>
<ColumnDefinition Width="+" />
<ColumnDef inition Width="+" />
<ColumnDefinition Width="+" />
</Grid.ColumnDef initions>
<6rid Grid.Column="1"
HorizontalALignnent="Center">
<6rid.ColunnDef initions>
<ColumnDefinition Width=Auto" />
<ColumnDefinition Widths*Auto" />
<ColunDefinition Widt! >
</Grid. ColumnDef initions>
<Button Content

Play"
Click="Play Click" />
<ToggleButton Grid. Golum
Content="lute"
IsChecked="(Binding ElementNan
Path=Istuted)

</Grid>
<sLider Grid.Colum
Mininun=
Maxinum=" 1
Value=" {Binding ElementNane=nediaElenent, Path=Volune}' />

</Brid>

OEBPS/html/graphics/f0130-02.jpg
B o O s I
=SelectionChangedEventArgs o)

Conbogox source
if (source

OriginalSource as Conboox;
null) return;

switen (source.Nane)
i
case *fonts*:
_docunentitanager . ApplyToSelection TextBlock.
=FontFanilyProperty, source.SelectedIten)
break;
fontsize
_documentitanager . ApplyToSelection TextBlock.
SFontSizeProperty, source.Selectediten);
break;

)

body.Focus ();

OEBPS/html/graphics/f0130-01.jpg
public volid ApplyloSelection{DependencyFroperty property,
mobject value)
¢
if (value 1= null)
_textBox.Selection. ApplyPropertyValue (property, value);

OEBPS/html/graphics/f0394-01.jpg
O N Ly

<DoubleAninat ionUsingKeyFranes

wStoryboard. TargetProperty=" (Canvas.Left) ">
<LinearDoubleKeyFrane Value="50" KeyTine-
<LinearDoubleKeyFrane Value="50" KeyTime:
<LinearDoubleKeyFrane Values'

</DoubleAnimationUsingKeyFranes>

<DoubleAninationUsingKeyFranes Storyboard.TargetPropert

BeginTine="0:0:

(Canvas. Top)"

<LinearDoubleKeyFrane Value:
<LinearDoubleKeyFrane Value:
<LinearDoubleKeyFrane Value="50" KeyTine=
</DoubleAninationUsingkeyFranes>
Yo

OEBPS/html/graphics/f0035-01.jpg
Smmpletext
DockPanel .Dock="Botton"

Textiirapping="Wrap"
ToolTip="Type here to change the preview text.
The quick brown fox jutps over the lazy dog.

</TextBox>

<TextBlock Text="{Binding ElenentNane=SanpleText, Path=Text)"
FontFamily=" (Binding ElenentNane-Fontlist,Path-SelectedIten)
Textiirapping="Hrap*
Margin="e & 4° />

OEBPS/html/graphics/f0196-01.jpg
P GalLt

¢
InitializeConponent ();
DataContext = new ApplicationPresenter(this, new ContactRepository());

OEBPS/html/graphics/f0129-02.jpg
private void Texttditorfoolbar_selectionChanged(object sender.
-SelectionChangedEventArgs e)

{
ComboBox source = e.OriginalSource as ComboBox;
if (source == null) return

switch (source.Name)
{
case "fonts":
//change the font face
break;
case “fontSize
//change the font size
break;

}

body. Focus () ;

OEBPS/html/graphics/f0129-01.jpg
<local:TextEditorToolbar x:Name="toolbar*
DockPanel.Dock="Top"
ComboBox . SelectionChanged=
=" TextEditorToolbar SelectionChanged

1>

OEBPS/html/graphics/15584_tn.gif
WPF

OEBPS/html/graphics/f0244-01.jpg
Lo - ks b
‘ if (string.IsNullOrEmpty(stringToFilter)) return string.Empty;
tring filtoredesuts = sring.optys
foreach (nar ¢ in stringTaFtter)

if (Char. TsDigit(c))
filteredResult

i

Foturn filteredResult;

OEBPS/html/graphics/f0339-01.jpg
<Window x:Class="BitmapEffectDemo.Window!
Xmlns="http: / /schenas.nicrosoft.con/winfx/2006/xanl /presentation*
XmIns:x="http://schenas . microsoft .con/winfx/2006/xanl "

Title="Bitnap Effects’

*800">
<Window. Resources>
<style TargetTyp ype Button)*>
<Setter Property="FontSize’
Value="32" />
<Setter Property="Margin"
Value="10* />

<Setter Property="Fontiieight"
Value="Bola" />
</Style>
</Window.Resources>
<UnifornGrid Columns="3">

<Button Content="Drop Shadow'>
<Button.BitnapEffect>
<DropShadowsitnapEffect />
</Button.BitnapEffects
</Button>

<Button Content="Outer Glow">

<Button.BitnapEffect>
<OuterGlowsitnapEffect GlowColor="Red"
Glowsize="10" />

</Button.BitnapEffect>
</Button>

OEBPS/html/graphics/f0244-02.jpg
public object Convert(object value, Type targetType,
=object parameter, CultureInfo culture)

1{

string result = value as string;

if (1string.IsNULLOrEmpty(result))

{
string filteredfesult = FilterNonNumeric(result);
long theNumber = System.Convert.ToInt64(filteredResult);
switch (filteredResult.Length)
{
case 11:
result = string.Format(*{0:+# (##f) A#H-####}", theNumber):
break;
case 10:
result = string.Format(*{0: (#4#) 4444444}, theNumber);
broak;
iy
osult = string.Format("(0:AHM-#¥MA)", theNusber);
broak;
)
)

Foturn result;

OEBPS/html/graphics/f0279-01.jpg
<UserControl x:Class="MediaViewer.Views.PictureView"
Xnlns="http://schenas.microsof t. con/winfx/2006/xanl /presentation®
xnlns:x="http://schenas.microsof t.con/winfx/2006/xaml"
xmlns:cn="clr
nanespace:Systen. Conponentliode];assembly=WindowsBase ">
<UserControl.Resources>
<CollectionViewSource x:Key='picturesource
Source="{Binding Wedia)">
<CollectionViewSource.SortDescriptions>
<cn:SortDescription PropertyNane="Name" />
</CollectionViewSource. SortDescriptions>
<CollectionvienSource.GroupDescriptions>
<PropertyGroupDescription PropertyName
</Collect ionViewSource. GroupDescriptions>
</CollectionVieuSource>
</UserControl.Resources>

Directory’ />

<ScrollViewer HorizontalScrollBarVisibility="Disabled"
VerticalScrollBarVisibility="Auto">
<ItensControl ItemsSource='{Binding
=Source={(StaticResource pictureSource}}">
<ItensControl. ItensPanel>
<ItemsPanelTenplate>
<tirappanel />
</TtensPanelTemplate>
</TtensControl . ItensPanel>
<ItensControl, ItenTenplate>
<DataTemplate>

OEBPS/html/graphics/f0279-02.jpg
<Inage.ToolTip>

<stackpancl>
<Inage Source="{Binding Thumbnail}"
Width="400"
Height="400" />
<TextBlock Text="{Binding Nane}* />
</StackPanel>
</Inage.ToolTip>
</Inage>
</DataTenplate>

</TtensControl . ItenTenplate>
<ItensControl.GroupStyle>
<GroupStyle>
<GroupStyle.Containerstyle>
<Style TargetType="{x:Type GroupIten}'>
<Setter Property="largin"
value="5* />

</Style>
</GroupStyle.Containerstyle>
</GroupStyle>
</TtensControl.GroupStyle>
</ItensControl>
</ScrollViewer>
</UserControl>

OEBPS/html/graphics/f0212-01.jpg
<Application x:Class='ContactManager.App"
xnlns="http: //schenas.microsoft. con/winfx/2008/xanl /presentation’
Xnlns:x="http://Schenas.microsof t..con/winfx/2006/xaml"
StartupUri="Shell.xanl">
<Application. Resources>
<Color x:Key="1ightBlucColor ' >#FF145E9D</Color>
<Color x:Key="darkBlueColor">#FF022051</Color>
<Color x:Key="redColor*>#FFAA2C27</Color>
<Color x:Key="greenColor">4FF856A03</Color>
<Color x:Key="brownColor*>#FF513100</Color>
</Application.Resources>
</Application>

OEBPS/html/graphics/f0141-01.jpg
using System.Windows.Input;

nanespace PreviewEvents

t
public partial class Window!
¢
public Window1 ()
{
InitializeComponent ();
}
private void Handler(object sender, KeyEventArgs e)
i
bool isPreview = ¢.RoutedEvent .Name.StartsWith(*Preview’);
string direction = isPreview 7 *v' i
Output. Ttems.Add(string.Format (" (0} (1}",
girection,
sender.GetType () .Name)) ;
if (sender == ¢.OriginalSource & isPreview)
Output. Items.Add (" - {bounce}-");
if (sender == this 8 lisPreview)
Output. Ttems.Add(* -end- *);
)
)

OEBPS/html/graphics/f0350-01.jpg
“wontro 'eaplate Tangetiypes
orid>
Sorder Background="Green”
Padsinge"a-
Corneradive=s*
Ghila= StaticResource Sailey)” />
<Contentpresentor Horizontalalignaent-"Center />
<orie>
P oo LN

Ax:Type Buttony™>

OEBPS/html/graphics/f0245-04.jpg
{Binding Path=Contact.OffticePhone,
wConverter={StaticResource phoneConverter}}

OEBPS/html/graphics/f0151-01.jpg
B R I i SR eIy ran o)
t
41 (_docusentuanager .Openbocument ())
Status.Text = “Docunent 1oaded.";
b

private void SaveDocument (abject sender, ExecutedRoutedEventargs e)
t
if (_documentllanager .SaveDocurent ()
Status.Text = “Docunent saved.”;

b

private void SaveDocumentas(object sender,
wxecutedRoutedEventargs o)
t
if (_documentuanager . SaveDocurentas())
Status.Text = “Docunent saved.";

)
private void ApplicationClose(abject sender,
~xecutedRoutedEventrgs o)

¢
N

close();

OEBPS/html/graphics/f0222-02.jpg
e onisgny. et ha il
<Viewbox Margin='2 2 4 4%>
<Image Source="{Binding Contact.ImagePath}" />

</Viewbox>
<Border Borderarush=" (StaticResource 1ightBlusarush)

BorderThickness="2"

Background="Transparent*

CornerRadius="6"

0022 />

{StaticResource openButton}"
Background="White"
Foreground="{StaticResource light8lueBrush}"
BorderBrush=" (StaticResource LightBlueBrush)
ToolTip="Ghange Picture®
Glick="Seloct Inage_Click" />

<Button

</Grid>

<Label Grid.Column="1"
Content="_First Name:"
Target="{Binding Elementane
<TextBox x:Name="firstNane"
Grid.Column="2"
Text="(Binding Contact.Firsthame}* />

irsthane;

<Label Grid.Row="1"
Grid.Column="1"
Content="_Last Name:
Target="{Binding Elementiam:

astName}® />

OEBPS/html/graphics/f0222-01.jpg
<WrapPanel>
<GroupBox BorderBrus

<GroupBox . Header>
<Border Background="{StaticResource lightBlueBrush}’

Style="{StaticResource groupBoxHeader}">
<TextBlock Text='General® />
</Border>
</GroupBox..Header>

{StaticResource lightBlueBrush}">

<Grid>

<Grid.ColunnDefinitions>
<ColumnDefinition Width="100" />
<ColumnDefinition Width="Auto® />
<ColumnDefinition Width="175" />

</6rid.ColumnDefinitions>

<Grid.RowDefinitions>
<RowDefinition Heigh
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />
<RowDefinition Height="Auto" />

</Grid.Rowbefinitions>

Auto” />

<Grid Grid.Rowspan="4">

<Border Background="Gray"
CornerRadius="6"

Margin="2 2 0 0"
Opacity=".5" />

<Border Margin="2 2 4 4"

OEBPS/html/graphics/f0245-02.jpg
using System;
using Systen.Globalization;
using System.Windows.Data;

nanespace ContactManager.Presenters

q

public class PhoneConverter : IvalueConverter

€

public object Convert(object value, Type targetType,
=object parameter, CultureInfo culture)

i
string result = value as string;

if (Istring.IsNullOrEmpty (result))
{
string filteredResult = FilterNonNumeric(result

long theNumber = Systen.Convert.ToInt64(filteredResult);

switeh (filteredResult.Length)
{
case 11:
result = string.Format("{0:+# (KhH) #HH-#HHA}",
~theliunber) ;
break;
case 1
result = string.Format(*{0: (###) #44-####), theNumber);
break:

OEBPS/html/graphics/14fig03.jpg
Contact Manager
< Coesrn G
o ot
£ s Goen
Weam Crats
Lewa o

OEBPS/html/graphics/f0117-01.jpg
USing System.Nindows;
using System.Windows.Controls;
using System.Windows.Input;

nanespace Texteditor

¢
public partial class MainWindow : Window

{
private Documentiianager _documentianager;

public MainWindow()

«
InitializeConponent();
_docunentManager = new Documentianager (body) ;
1f (_documentHanager .OpenDocunent ()
Status.Text = "Document loaded.";
}

OEBPS/html/graphics/f0245-03.jpg
)

result = string.Fornat("{0:##4-#kkH}", theNumber);
break;

¥

return result;

private static string FilterNonNumeric(string stringToFilter)

(

3

public object ConvertBack(object valu

if (string.IsNullOrEnpty (stringToFilter)) return string.Enpty;
string filteredResult = string.Enpty;

foreach (char ¢ in stringToFilter)
{
if (Char.IsDigit(c))
filteredResult += c;

¥

return filteredResult;

Type targetType

= object paraneter, CultureInfo culture)

1
)

return FilterNonNuneric(value as string);

OEBPS/html/graphics/14fig02.jpg

OEBPS/html/graphics/14fig01.jpg

OEBPS/html/graphics/f0245-01.jpg
JISLLLS DRINEE UORISTTSRCKIONIEES. VAN, 1IN, RATEtLIDe,
=object parameter, CultureInfo culture)
¢

return FilterNonNuneric(value as string);

y

OEBPS/html/graphics/f0278-02.jpg
i ot el e’ Ko &g 8
¢
string nyPicturesPath = Environment.GetFolderPath
Environnent..Specialfolder . MyPictures

Display<pictureview, Pictures(
myPicturespath,

T ipge, reigits, *4.png*, *+.bmpt

OEBPS/html/graphics/f0278-01.jpg
Sk oot Batvon iy bt ttcdioeal | i 8
string mediapath,
parans string[] extensions
)
where View : UserControl, new()
where WediaType : Nedia, new()

NediaPresenter<lediaType> presenter =
new MediaPresenter<MediaType> (nediaPath, extensions);

View view = new View();
view.DataContext = presenter;

_controller.DisplayInshell (view);

OEBPS/html/graphics/f0081-01.jpg
<Listhox x-Wame="rontList"
DataContext="{x:Static Fonts.SystenFontFamilies}’
DockPanel.Dock="Left"
TtensSource="{Binding}"
ToolTip="{Binding Path=Count, Mode=OneTime}"*
Width="160" />

OEBPS/html/graphics/f0349-01.jpg
TR OSSR N VR
VerticalALignnent="Center">
<Button. Template>
<ControlTemplate>

</ControlTenplate>
</Button. Tenplate>
</Batton>

OEBPS/html/graphics/f0372-01.jpg
FRERE e Ean
<Polygon Fil

str

Poi

<Polygon

<ty

</t
</Polygor

<[Polygon>

<Canvas>
<Rectang

<Aectang

<canvas.
sty

</t
</canvas.
</Canvas>
</arid>

i i

{staticResource yellowGradient}*

‘oke=" {StaticResource chroneOutline)*

nts="0,0 18,10 0,18">

style

I TargetType="(

<style.Triggers>
<Trigger Property:

<setter Property=

</Trigger>

</Style. Triggers>

ylo>

n.Style>

pe Polygon)*>

ataContext” Value="Playing">
Visibility" Value="Hidden' />

1o Height="18"
Fill="(statichesource yelloGradient}"
Stroke=" (StaticResource chroneOutline}®

Lo Hoight="18"
Fill="{StaticResource yelloGradient}"
Stroke="{StaticResource chromeOutling}”
Width="6" Canvas.Left="8"/>

Stylex

Lo TargetType

<Setter Property:

<Style. Triggers>

<Trigger Property="DataContext® Val

<Setter Property="Visibility" Valu
</Trigger>

</Style.Triggers>

yie>

style>

ype Canvas) ">
“Visibility" Values"idden' />

“Playing®>
Visible® />

OEBPS/html/graphics/168tab01.gif
Name Usage

DocunentPageview Displays a single page using a
DocunentPaginator.

Documentviever Displays a Fixeddocunent with a rich set of con-
trols for document navigation, printing, zooming,
search, and 50 on.

Flowbocunenteader Displays a Flowbocunent with the capabilty to
view the document in different modes such as one
page, two-page book style, or scrolling view:

FlowbocunentPageViever Displays only a paginated view of a

FlowDocumentScrollviever

Flowbocunent.
Displays only a scrolling view of a Flowbocunent.

OEBPS/html/graphics/f0185-01.jpg
e g it progieb
private string primaryEnail}
private string _secondaryEnail;

public Guid 1
(
get { return _id; }
set
[
_id = value,
OnPropertyChanged(*1d");

)

public string Inagepath
(
get { return _inagePath; }
set
«

_inagepath = value:
GnPropertyChanged * InagePath’) ;

)

public string Firstiane
(
get { roturn _firsthane;)
set
n

OEBPS/html/graphics/f0185-02.jpg
_rirsthame = va u
GnPropertyChanged (“Firsthare”);
OnPropertyChanged (“Lookuptiane) ;

)

pubLic string Lasthase

(
get { return _lastnane; }
set
_Lasthame = value;
OnPropertyChanged “Lastiane”);
OnPropertyChanged (“Lookupane ") ;
)
»

public string Organization
(
get { return _organization; }
sot
0
_organization = value;
GnPropertyChanged (“organization");

OEBPS/html/graphics/379tab01.gif
Name

Description

Beginstoryboard
SoundPlayerAction
Pausestoryboard
Removestoryboard
Resunestoryboard
Seekstoryboard
Setstoryboardspeedatio
SkipStoryboardToFill
StopStoryboard

Begins an animation
Plays a sound file

Pauses an animation

Removes an animation

Resumes a paused animation

Skips the animation ahead to a specified time
Changes the speed of an animation

Skips the animation ahead to the end of ts fill
Stops an animation

OEBPS/html/graphics/f0361-01.jpg
SRR R R A N R
<Setter Property= Tenplate™>
<setter.Value>
<ControlTemplate TargetTyp:
<6rid x:Name="root">

{x:Type Slider)'>

<Border Height="4"
CornerRadius="2"
Background="{StaticResource slidersg)">

</Border>
<Track x:Name="PART_Track >
<Track. Thumb>
<Thunb />
</Track. Thunb>
</Track>
</Grig>
</ControlTenplate>
</Setter.Value>
</Setter>
</Style>

OEBPS/html/graphics/f0361-02.jpg
0.5,1">
<Gragientstop Color="{StaticResource redcolor}” Offse
<Gragientstop Color="{StaticResource orangeColor}® Offs
<6ragientstop Color="{StaticResource redoolor)” Offse
</LinearGradientBrush>

OEBPS/html/graphics/f0338-01.jpg
<RadialGradientBrush x:Key="redRadial"
GradientOrigin="0.45,0.3¢
<RadialGradientBrush.RelativeTransforn>
<TranslateTransform X="-0.2"
Y="-0.2" />
</RadialGradientBrush.RelativeTransforn>
<GradientStop Color="{StaticResource orangeColor}’

offset="0" />
<GradientStop Color="{StaticResource redColor}"
Offset="1" />

</RadialGradientBrush>

OEBPS/html/graphics/392tab01.gif
Name

Description

AccelerationRatio

AutoReverse

BeginTine

DecelerationRatio

FillBehavior
RepeatBehavior

SpeedRatio

Percentage of Durat ion that the animation will speed up
at the beginning. Values are between 0.0 and 1.0. We'll
‘explain this in more detail in the following section.

If true, the animation will play in reverse after ts first
forward playback

This allows you to set an offset for when the animation
will begin—for example, if you want the playback to start
2 seconds after the animation is triggered.

Like AccelerationRatio, except it governs how the
animation will slow down at the end.

Determines what the animation will do after its done.
Allows you to control if and how an animation will epeat.
For example, it might repeat just once or forever.
Changes the rate of playback relative to the parent timeline
(which is most commonly the Storyboard). For example,
even if the Duration is the same for both the parent and
child, a SpeedRatio of 5 will result in the child playing.
5x faster than the parent.

OEBPS/html/graphics/f0200-01.jpg
Dot L

I) S T (AT
xnlns="http: /schenas.nicrosoft .con/winfx/2006/xanl/
=presentation”
xnlns.
<Dockpanel>
<stackPanel DockPanel.Dock="Botton"

/schenas.microsoft.con/winfx/2006/ xanl">

<Button Content="New Contact"
CLick="New_Click" />
<Button Content="View ALL"
Click="ViewAll_Click" />
</stackpanel>
<scrollViewer VerticalScrollBarVisibilit
<ItemsControl Width="250"
VerticalALignnent="Stretch”

*Auto”>

BorderThickness="0"
ItemsSource=" {8inding CurrentContacts) >
</TtensControl>
</Scrollviewer>
<(DockPane1>

</UserControl>

OEBPS/html/graphics/f0361-03.jpg
<otyle Targetlype=
<setter Propert,
<setter.Value>
<ControlTenplate TargetType='{x:Type Thumb}">
<Grid Width="16" Height="16">
“{StaticResource redRadial)®
{StaticResource controlOutline} />
<Ellipse Fill="{StaticResource glossBrush}®

= ype Thumbp™ >
‘Template*>

Vargin='2,2,2,4" />
</Grid>
</ControlTenplate>
</Setter.Value>

</setter>
</Style>

OEBPS/html/graphics/f0200-02.jpg
using System.Windows;
using Systea Windows. Controls;
using Contactiianager Presenters;

ranespace Contactilanager.UserControls
(
public partial class Sidesar : Usercontrol

i
public SideBar()
i
Initializeconponent();
)
public ApplicationPresenter Presonter
i
et { return DataContext as ApplicationPresenter;)
)
private void New_CLick(object sender, RoutedEventargs e)
i
Presenter.Newcontact();
)
private void ViewAll_Click(object sender, RoutedEventirgs e)
1
Prosenter.DisplayAl LContacts ()
)
)

OEBPS/html/graphics/f0256-01.jpg
<ItemsControl Width="250"
VerticalAlignnent="Stretch"
BorderThickness="0"
ItemsSource=" (Binding CurrentContacts)">
<ItemsControl . ItenTenplate>
<DataTenplate>
<6rid Wargin="2">
<Border Margin=2 2 0 0*
CornerRadius="4"
Background="Gray"
Opacity=".5" />
<Border BorderBrush="{StaticResource red8rush}®
BorderThickness="2"
CornerRadius="4"
Background="White"
Nargin="0 0 2 2*
Padding=
<6rig>
<Grid.Colunndefinitions>
<ColumnDef inition Width="Auto® />
<ColumnDef inition />
</Grid.ColunnDefinitions>
<Grid. Rowef initions>
<Rowbef inition />
<RowDefinition />

OEBPS/html/graphics/f0256-02.jpg
RN AR RO
</Grid.RowDef initions>

<TextBlock Grid.Columnspan='2"
Fontiieight="Bold"
Text="(Binding LookupNane}* />

<TextBlock Grid.Row="1
Toxt office: * />
<TextBlock Grid.Row="1
Grid.Column="1*
Text="{Binding Path=0fficePhone,
= Converter={StaticResource
= phoneConverter)}*/>

<TextBlock Grid.Row="2"

Enail: * />

<TextBlock Grid.Row="2"
Grid.Column="1"

Text="{Binding PrinaryEnail}* />
</6rig>
</Border>
<Button Style="(StaticResource openButton)’ />
</Grid>
</bataTenplate>

</TtemsControl. ItenTenplate>
</TtensControl>

