

[image: cover-image]

HTML5 Multimedia

Develop and Design

Ian Devlin

[image: image]

HTML5 Multimedia: Develop and Design
Ian Devlin

Peachpit Press

1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Ian Devlin

Editor: Rebecca Gulick
Development and Copy Editor: Anne Marie Walker
Technical Reviewer: Chris Mills
Production Coordinator: Myrna Vladic
Compositor: David Van Ness
Proofreader: Patricia Pane
Indexer: Valerie Haynes-Perry
Cover Design: Aren Howell Straiger
Cover Production: Jaime Brenner
Interior Design: Mimi Heft

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the designations appear as requested by the owner of the trademark. All other product names and services identified throughout this book are used in editorial fashion only and for the benefit of such companies with no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-79393-5
ISBN-10: 0-321-79393-5

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

Dedicated to the memory of Paul Fallon

Tá daoine a shiúlann inár saolta agus shiúlann amach astu go luath

Tá daoine a fhanann ar feadh tamaill

Agus fágann said rianta a gcos ar ár gcroíthe

Agus casann ár n-anamacha port nua go deo deo

Acknowledgments

Writing a book is a time-consuming and difficult process, and one I knew nothing about before embarking on this project. A number of people have helped me through the book-writing process, and others have helped me through the HTML5 process, whether they know it or not. All deserve my thanks.

To Rebecca Gulick for giving me the opportunity to actually write this book and for clearly explaining to me the steps involved.

To Anne Marie Walker for ensuring that my words are clear and understandable.

To Chris Mills for his editing and technical reviewing skills, and providing me with many good suggestions and alterations throughout the text.

To Rich Clark for giving me the opportunity to curate for HTML5 Gallery (www.html5gallery.com), which not only increased my interest in and knowledge of HTML5, but it also led to me writing this book.

To Remy Sharp for first drawing my attention to HTML5 in an article in .net magazine back in October 2009.

To you, the reader, for deciding to purchase this book with the intention of learning. I hope you find it enjoyable and educational.

Contents

Introduction

Chapter 1 An Introduction to HTML5

What Is HTML5?

The Progression of HTML5

When Can You Use HTML5?

Main HTML5 Structural Elements

DOCTYPE and Charset

<header> and <footer>

<hgroup>

<article> and <section>

<nav>

<aside>

<figure> and <figcaption>

<script>

Wrapping Up

Chapter 2 HTML5 Multimedia Elements

History of Web Multimedia

Media Players

HTML Elements

Welcome, Native Multimedia!

The Audio Element

The Video Element

The Source Element

The Track Element

Wrapping Up

Chapter 3 Using Audio

Audio Codecs and File Formats

Ogg Vorbis

MP3

WAV

AAC

MP4

Browser Support for Audio Formats

Encoding Your Audio File

Legacy Browser Fallback

Examples of Using the Audio Element

Playing an Audio File

Playing an Audio File with Different Sources

Playing an Audio File with Different Sources and Legacy Fallback

Wrapping Up

Chapter 4 Using Video

Video Codecs and File Formats

Theora Ogg

MP4 (H.264)

WebM

Browser Support for Video Formats

Encoding Your Video Files

Using the Video Elements

Playing a Video File

Playing a Video File with Different Sources

Playing a Video File with Different Sources and Legacy Fallback

Targeting Devices with Different Video Files Using Media Types and Queries

Android and Video

Wrapping Up

Chapter 5 JavaScript API and Custom Controls

What Is JavaScript?

Exploring the API Attributes

Harnessing the API Events

Using the API Methods

Creating a Simple Video Player with Custom Controls

Adding Play/Pause and Stop Buttons

Adding Volume and Mute Buttons

Adding a Progress Bar

Adding Fast-Forward and Rewind Buttons

Adding a Seek Bar

Non-HTML5 Browsers

Wrapping Up

Chapter 6 Styling Media Elements with CSS

Simple CSS Styling

Advanced Whizzyness with CSS3

Opacity

Gradient

Rounded Corners

Shadow

Sizing Your Content

WebKit-specific CSS3 Rules

Reflect

Mask

Wrapping Up

Chapter 7 Transitions, Transforms, and Animation

Using Transitions

Using Transitions with Audio and Video

Styling with CSS Transitions

Fading Transitions

Exploring 2D Transforms

Scaling a Video

Rotating a Video

Skewing a Video

Translating a Video

Playing with 3D Transforms

Working with Animations

@keyframes

Animated Video Cover

Animated Spin

Extending the Animated Video Cover to 3D

Wrapping Up

Chapter 8 Multimedia and Accessibility

Media and Potential Accessibility Issues

A Brief Look at SRT

Introducing WebVTT

What Can WebVTT Do?

WebVTT File Format

The Track Element

Using WebVTT and the Track Element Now

Playr Example

Media Controls and Accessibility

Wrapping Up

Chapter 9 Using Video with Canvas

The Canvas Element

The 2D API

Taking a Screen Shot of an HTML5 Video

Making a Copy of a Playing Video

Playing the Video Copy in Greyscale

Wrapping Up

Chapter 10 Using Video with SVG

A Brief Introduction to SVG

Browser Support

The svg Element

SVG Text

SVG Circle

SVG Ellipse

Using SVG with HTML5 Video

Adding a Text Mask to a Video

Adding an Ellipse Mask to a Video

Animating an SVG Video Mask

Moving an SVG Video Mask

Applying SVG Filters to HTML5 Video

Wrapping Up

Chapter 11 Future Features

Audio APIs

Audio Data API

Web Audio API

getUserMedia API

PeerConnection API

Stream API

The MediaStream Object

WebSocket API

The WebSocket Interface

Using WebSockets

Wrapping Up

Index

Introduction

As a web developer or web designer, or those of you who just maintain your own website, you know that the web is constantly changing, and the tools and methods that are used to build websites are in constant development. Like sand dunes in the Sahara, they shift constantly, but fortunately, usually in a forward direction.

The shift in web technologies has currently arrived at HTML5, the latest version of the language used to define and build web pages. With it comes an easier method of adding multimedia to your web pages.

The goal of this book is to provide you with an introduction to adding audio and video to your website, and to give you a glimpse of what else you can do with HTML5 multimedia.

Throughout the book you’ll find in-depth details of the various HTML5 multimedia elements, as well as full code examples on how you can use them to add audio and video to your website. You’ll also learn about the accompanying JavaScript API that allows you to create your own media controls.

In addition, you’ll find explanations and examples of how you can style the HTML5 media elements with CSS, including some of the new features that CSS3 has to offer. You’ll also learn about multimedia and accessibility, and how you can add subtitles to your website video.

Who This Book Is For

This book is aimed at those who are starting out with HTML5 and adding HTML5 audio and video to their websites, and those who are already familiar with HTML5 multimedia but want to learn more.

Some basic knowledge of HTML and CSS is assumed, and the later chapters require at least a rudimentary knowledge of JavaScript. That said, all the examples on the book’s accompanying website at www.html5multimedia.com are complete.

Screen Shots and Browser Versions

During the course of writing this book, some browser vendors released newer versions of their products. Firefox is now on version 7, Chrome is on version 14, and Safari has moved to 5.1. The screen shots in the book usually indicate which browser and version it was taken from at the time the chapter was written. This, of course, means that some of the screen shots are from older versions of the browser. But rest assured that they still work just as well in the latest versions, and if they don’t, it is clearly marked.

The Website for this Book

All the code used in the examples in this book is on the accompanying website at www.html5multimedia.com. You can either download the files in their entirety or navigate to the various files via the website and see them working online.

Contact

If you would like to contact me, you can do so at info@html5multimedia.com.

Before You Begin

In the later chapters of this book, some of what you’ll read is experimental due to specifications that were still in development at the time of this writing and poor or nonexistent support in browsers. This of course may have changed by the time you have this book in your hands. The book’s website will indicate improved support where applicable.

It’s time to begin! Let’s start by taking a quick look at HTML5, what it is, and where it comes from.

1. An Introduction to HTML5

HTML5 is a major overhaul of the language that nearly all the content on the Internet is effectively displayed in. Indeed, HTML5 changes the way you think about the HTML markup language. As well as introducing new markup elements to the specification, a host of JavaScript APIs are also included to give developers a deeper and consistent way to access native functionality across browsers. Designers and those who are “not too techy” will also benefit. They’ll now be able to carry out complex tasks and easily add multimedia to a web document that in the past would have required more technical knowledge.

This chapter provides you with a brief introduction to HTML5 and how it came about. You’ll also take a quick look at some of the main HTML5 structural elements.

Let’s go forth and learn!

What Is HTML5?

HTML5 is the latest and greatest version of the core language of the World Wide Web and is one of the most exciting developments to happen to the web and the web community in a long time. HTML (HyperText Markup Language) is the language that has been at the heart of all web documents since its conception in the early 1990s.

HTML5’s predecessor is HTML 4.01, and one of the major differences between HTML 4.01 and HTML5 is the addition of many JavaScript APIs (Application Programming Interfaces) to the specification. Of course, one of these specifications is directly relevant to the subject of this book—the API that allows interactions with multimedia elements within the browser. As well as these new APIs, HTML5 also alters the meaning of some existing HTML elements, removes others, and more important, adds new ones—some of which allow you to provide more semantic meaning to your content.

It’s worthwhile noting that most of these new elements don’t actually add any new functionality that you’ve not seen before.

But before you dive into the workings of HTML5, let’s first look at where HTML5 came from and how it evolved.

The Progression of HTML5

It’s fairly common knowledge that Tim Berners-Lee is the father of HTML and what everyone recognises as the web today.

There is no need to go into a long and detailed history of HTML’s growth from the initial version in 1990 to the version that most of you will have been brought up on, HTML 4.01. But it is worthwhile looking at how HTML5 came into fruition and then evolved.

In 1998, the members of the World Wide Web Consortium (W3C; www.w3.org) decided that it wouldn’t be worth their while to extend the HTML specification beyond HTML 4.01. They decided that the future of the web lay with XML (eXtensible Markup Language) due to its stricter syntax, which also made the processing of XML web documents much easier.

Laying HTML 4.01 to rest, they began working on a new specification for XHTML 1.0, which basically was a reformulation of HTML 4.01 as an XML vocabulary that contained several strict syntax rules. Personally, I was quite a fan of this, because I liked the uniformity of it all, but not everyone was convinced. So, two flavours of XHTML were created: XHTML Transitional to help convert the nonbelievers and XHTML Strict, which was for the true believers and what (the W3C hoped) the nonbelievers would eventually strive to follow.

The situation remained like this for a number of years, with the nonbelievers either reverting back to HTML 4.01 or remaining satisfied with XHTML Transitional. As the W3C’s dream of a stricter XHTML world began to dissipate, its members soldiered on and began working on the specification for XHTML 2.0.

This seemed a bit of an odd decision, because XHTML wasn’t as widely supported as the W3C hoped. Internet Explorer (IE), one of the most widespread browsers at the time (it still is, just less so), didn’t even support XHTML. In fact, declaring a web document as XHTML would only cause IE to attempt to download the page and not even render it! In addition, forging ahead with a new specification in XHTML 2.0 didn’t reflect what web developers in the real world were actually doing at the time. Also, it wasn’t backwards compatible, which, as you will learn later, is another of HTML5’s strengths.

HTML5 and Backwards Compatibility

One of the first HTML documents ever written, “Links and Anchors,” (www.w3.org/History/19921103-hypertext/hypertext/WWW/Link.html) is almost valid HTML5!

In February 2004, a separate group—which included people from Opera, Mozilla, and later, Apple—called the WHATWG (Web Hypertext Application Technology Group; www.whatwg.org) released a draft of a new specification—Web Forms 2.0—that aimed to extend HTML forms. This specification had no standing with the W3C, and in fact the specification states:

“This document currently has no official standing within the W3C at all. It is the result of loose collaboration between interested parties over dinner, in various mailing lists, on IRC, and in private e-mail.”

The state of affairs continued this way with the W3C pursuing XHTML 2.0 and the WHATWG taking its own path, which included beginning work on another specification, Web Applications 1.0. As it turns out, Web Applications 1.0 was the precursor to what is now known as HTML5.

The situation took a turn for the better in 2006 when the W3C had a change of heart with regards to XHTML and decided to no longer pursue it. In 2007, the Fifth W3C HTML Working Group was chartered, and the W3C also announced that it would allow the charter for the XHTML 2 Working Group to expire at the end of 2009. Using the WHATWG’s Web Applications specification as a base, both the W3C and the WHATWG began developing a new HTML specification, although somewhat bizarrely, it wasn’t a collaborative process.

As a result, there are actually two different versions of the specification, although the editor of both is Ian Hickson of Google. Fortunately, there aren’t many differences between the two; the main difference is how they are maintained. The WHATWG specification is a “continuously maintained living standard”; it is maintained on a section-by-section granular scale. The W3C specification on the other hand follows the more traditional style of staged releases. Content-wise they’re largely the same, although one of the main differences (at time of this writing) is that the WHATWG version includes the WebVTT file format and some text-track API features (which are discussed in Chapter 8) that the W3C version does not.

Currently, both the W3C and WHATWG versions of the HTML5 specification are in a stage called “Last Call,” which means internal and external communities to the W3C are invited to confirm the technical soundness of the specification.

HTML5 Specifications

Two different versions of the HTML5 specification are available at this time, but there are a few other versions that are also worth taking a look at:

• W3C HTML5 Specification. The latest published version is at www.w3.org/TR/html5. This version is what is closest to being final.

• WHATWG HTML5 Specification. The latest living standard is at www.whatwg.org/specs/web-apps/current-work/multipage. Generally, newer additions get added to this specification first, before finally making it to the W3C specification.

• WHATWG HTML5 Specification—Edition for Web Developers. The web developer edition is at http://developers.whatwg.org. This is a nice, easy-to-look at version of the WHATWG specification that is usually kept in sync with the living standard but can be out of date.

When Can You Use HTML5?

Actually, you can use HTML5 now. Many existing websites are written in HTML5, of which you are probably already aware. Although the current target date for the HTML5 specification to reach recommendation status is 2014, this does not mean you cannot use it.

At the time of this writing, all the latest versions of the main browsers support some, if not most, features of HTML5. Even IE9 finally supports HTML5 markup and functionality. This should help to remove any misgivings you might have with regards to browser compatibility.

You shouldn’t be worried that the HTML5 specification won’t reach recommendation status for another few years. To put this into perspective, the specification for CSS2.1 only reached recommendation status on the 7th of June, 2011. And CSS3 is all the rage at the moment.

With this in mind, let’s move on and take a look at some of the new structural elements of HTML5.

Main HTML5 Structural Elements

Any use of the HTML5 multimedia elements and APIs that this book discusses will naturally require writing HTML markup. You could of course use HTML 4.01 markup (although you do need to use the HTML5 DOCTYPE mentioned in this section), but because this book is about HTML5 multimedia, it makes sense for you to use HTML5 markup. All the examples throughout this book and on the website use HTML5 markup.

Let’s start by taking a quick look at the main structural elements that can make up an HTML5 document.

DOCTYPE and Charset

As with any HTML document, you need to begin an HTML5 document with a DOCTYPE. A DOCTYPE tells the browser what version of HTML the page in question uses, and the browser in turn uses this to determine how to render the page. The great thing about the HTML5 DOCTYPE is its simplicity.

With HTML 4.01, you might write this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

But in HTML5, you’d write this:

<!DOCTYPE html>

Yep. That’s it. Nothing more.

This new DOCTYPE is the shortest valid string that will cause the browser to render the document in standards mode, which you want, rather than quirks mode, which you definitely don’t want (see the sidebar “Standards Mode vs. Quirks Mode” for more details).

Standards Mode vs. Quirks Mode

Modern browsers can use two different modes to interpret the CSS of a web document: standards mode and quirks mode.

Standards mode causes the browser to render the CSS according to the specification, which is correct and the way you would want it.

Quirks mode on the other hand causes the browser to render the CSS according to old, nonspecification rules. This mode exists for backwards compatibility because older browsers didn’t render CSS according to the specifications.

These days standards mode is the one you want to use, because in most cases the oldest browser you will be supporting will be IE6, which doesn’t need quirks mode to work correctly (although it probably will require some IE6 specific CSS, but chances are you already know that!).

Interestingly, or annoyingly, IE versions 6 to 8 render a web document as IE5.5 would when they render a quirks mode page. And you definitely don’t want this because the resulting rendered page is unpredictable!

It’s also useful and a good idea to provide the character encoding of the document, which is usually UTF-8. Specifying this in your markup has also been highly simplified in HTML5.

In HTML 4.01, the charset would be set via this line:

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

In HTML5, you’d use:

<meta charset="utf-8">

As with the DOCTYPE, this character encoding string contains the minimum number of characters required to be interpreted by the web browser. In fact, you could make it two characters shorter by removing the quotes, but my personal choice is to include them here. Also, I’ve not closed the element, which again I don’t have to, but I could if I wanted to. HTML5 isn’t that strict.

Tip

[image: image]

Specifying a charset also prevents a cross-site scripting vulnerability issue in IE7.

Naming the New HTML5 Elements

Some of the new elements that came to be included in the HTML5 specification weren’t just randomly chosen.

In 2004, the editor of the HTML5 specification, Google’s Ian Hickson, carried out a data-mining experiment using the Google index on over 1 billion web pages to get a better idea of what the web was actually made of with regards to web document content. He published a number of analyses, one of which identifies the most popular CSS class names used for HTML elements. You can read this analysis at http://code.google.com/webstats/2005-12/classes.html. The top 10 CSS class names and their corresponding HTML5 elements are listed in Table 1.1.

Table 1.1 Top 10 Most Popular HTML Class Names and Their Corresponding HTML5 Elements

[image: image]

Although Table 1.1 doesn’t cover all of the new HTML5 elements that have been added, it does show you that there was some thought behind the naming of the new HTML5 elements and the semantic content they represent.

<header> and <footer>

Almost every HTML document has a header and footer. The HTML5 specification recognises this and includes two specific elements that you can use to semantically identify a header and footer. These elements are not restricted to one per document, however, and can be used to specify the header and footer areas of a particular section or article of a document.

The header element usually contains at least one h element:

<header>
 <h1>The header element</h1>
 A quick guide
</header>

The footer element is just as simple to use and requires no explanation:

<footer>
 <small>Copyright © 2011</small>
</footer>

The header element doesn’t have to appear at the top of the web document, just as the footer element doesn’t have to be placed at the bottom. You can actually place either wherever you want to. That said, it often makes sense to do so, just so the source of the document is easier to read.

<hgroup>

If a header contains a number of h elements grouped together, they can be contained within an hgroup element like this:

<header>
 <hgroup>
 <h1>The header element</h1>
 <h2>A quick guide</h2>
 </hgroup>
 Home
</header>

Note that the hgroup element can only contain h elements and nothing else.

hgroup Controversy!

The hgroup element is a bit controversial at the time of this writing, because it has been removed and reinserted into the HTML5 specification in the last few months. Efforts are being made to remove it again and possibly replace it with something more semantic. So by the time you read this, it might be omitted from the specification, so it’s worth double-checking.

<article> and <section>

When you’re laying out a web page with HTML, you often use the div element to indicate specific sections of your document. This usually works well and is all that is needed. But what if you wanted to give your section a particular semantic meaning so it’s more than “just a div”?

This is where the article and section elements come in, and there’s often a bit of confusion as to which one to use and when. The confusion arises because you’re forced to think a bit more about what you’re writing and the way you present it.

If you simply want to contain information for styling purposes only, the div element is the one to use. The reason is that the content within the div doesn’t have any specific semantic meaning, for example, when using it as a “wrapper” element to help position some columns in the centre of a page:

<div class="wrapper">
 <div class="columnOne">This is column one</div>
 <div class="columnTwo">This is column two</div>
</div>

If you decide that the content actually does have a semantic meaning, you need to look closely at what that meaning is. The W3C HTML5 specification actually defines a section element as representing

“a generic section of a document or application. A section, in this context, is a thematic grouping of content, typically with a heading.”

So if the content you want to contain all fits nicely under the one heading, a section element is probably the way to go. But before you make the final decision on using a section element, let’s take a quick look at the article element, which is a specific type of section element. Once again, the W3C specification encourages you to use the article element

“when it would make sense to syndicate the contents of the element.”

But what does this mean, exactly?

Well, as an example, think about the layout of a newspaper article. A newspaper article might contain several sections, each of which has its own heading. But overall, the sections relate to each other and fit together, because they talk about the same story. If this is the case in your content, the article element is the one to use.

But bear in mind that the article element doesn’t relate to the idea of a newspaper article, just the way it is laid out. An article can also represent an article of clothing in your wardrobe, because it’s a generic term that refers to a single unit of content that stands alone and can be syndicated. But it can also relate to other articles that it sits beside.

Of course, the newspaper article analogy also shows that you can nest section elements within article elements and vice versa. But as with the div element, don’t make the content too muddled or have too much nesting!

Putting the article and section elements together, your content might look something like this:

<article>
 <header>
 <h1>HTML5 Multimedia</h1>
 The way forward!
 </header>
 <section>
 <header>
 <h2>Video</h2>
 </header>
 <p>This section talks about video...</p>
 </section>
 <section>
 <header>
 <h2>Audio</h2>
 </header>
 <p>This section talks about audio...</p>
 </section>
 <footer>
 <small>Written by Ian Devlin 2011</small>
 </footer>
</article>

Using the preceding example, you can see how the idea of using the article and section elements within your content can be put into practice. The example has two sections, one contains information about video and the other contains information about audio. They are clearly separate from each other and therefore should be contained within separate section elements.

Overall, however, they are related, coming together under the HTML5 Multimedia heading. So collectively they should go together under the same heading, either in an enclosing section or article. In this case, it does seem to make sense that the content could be syndicated (e.g., contained as an item in an RSS feed), so the article element seems most suitable.

Alternatively, as mentioned previously, you can have a number of section elements contained within an article, for example, on a news summary page that contains links to separate articles:

<section>
 <header>
 <h1>HTML5 News</h1>
 </header>
 <article>
 <header>
 <h2>HTML5 Multimedia</h2>
 </header>
 <p>In this article you will learn all about HTML5 Multimedia.</p>
 Read more...
 </article>
 <article>
 <header>
 <h2>HTML5 and Semantic Structure</h2>
 </header>
 <p>This article is all about HTML5 and structural semantics.</p>
 Read more...
 </article>
 <footer>
 View all
 </footer>
</section>

As the examples also illustrate, the article and section elements can also contain header and footer elements if they make semantic sense, as they do here.

h Elements in HTML5

A hot topic of discussion at the moment in the HTML5 world is that of h elements in the header element and whether multiple h1 elements should be used throughout a single document.

As you may have noticed in the examples in the “<article> and <section>” section, an h1 element has been used in the main header (be it in the overall article or section) and h2 elements in the sub section/article header elements. This was done for backwards compatibility purposes due to poor browser support (Firefox 5 and Chrome 12 excepted) for what is known as the HTML5 Outlining Algorithm.

The HTML5 Outlining Algorithm is defined as part of the HTML5 specification and is used to determine the structure of an HTML5 document using its headings, titles, and so on to map out the document. You can read about HTML5 Document Outlines at http://html5doctor.com/document-outlines.

At the moment it’s advisable to stick to using the different h elements to maintain compatibility with older browsers. Naturally, support for the algorithm will improve with further browser releases, but as with everything, the decision is ultimately yours.

<nav>

The nav element is used to contain the primary navigation throughout your site. So any links to separate pages, such as About, News, and your blog, can be included here.

It can also contain any links that are external to your site—that is, that take the user away from your site—for example, links to Twitter or Facebook accounts, as long as they constitute the primary navigation of your site.

The markup is easy, and the nav element usually contains an unordered list, but of course can also simply contain a number of hyperlinks to the pages in question:

<nav>

 Home

 About

 Contact

</nav>

The nav element is often contained within a header, although it doesn’t have to be. It can also be contained within a footer element, but only if it’s the primary navigation of your website. Because footers these days often contain a set of secondary site navigation links, they should not be contained within a nav element. However, it’s OK to have more than one nav element on the same page, should its use be warranted.

<aside>

The aside element is used to contain page non-main content that is relevant to the main content it sits next to, but the main content makes perfect sense on its own without it. The content of the aside element can also make sense on its own, although it doesn’t have to.

A current, real-world use of the aside element is for sidebars, which of course can contain anything from widgets and social media feeds to related links and images:

<aside>
 <header>
 <h1>Twitter feed</h1>
 </header>

 #HTML5 is awesome! - 26th June 2011 @ 14:30
 Everyone should be using #HTML5 - 26th June 2011 @
14:22

 <footer>
 follow me!
 </footer>
</aside>

Note how the aside element can also contain header and footer elements if they are appropriate.

<figure> and <figcaption>

Two new elements were introduced to allow relating a multimedia element (image, video, or audio) to a specific caption, which of course makes the content contained within these new elements more semantic (there’s that word again!): the figure element and the figcaption element.

The figcaption element can only exist within a figure element, although it doesn’t have to be there; obviously, not all content will have a caption:

<figure>

 <figcaption>
 Figure 1 - The HTML5 logo in all its glory!
 </figcaption>
</figure>

Normally, you’d style the figcaption contents to appear in small text above an image or at the bottom (Figure 1.1). But of course you don’t have to and can generally do with it whatever you want!

Figure 1.1 An image and caption displayed with the figure and figcaption elements.

[image: image]

Internet Explorer and Browser Compatibility

At the time of this writing, the latest versions of all major browsers support several of the new HTML5 elements, especially those mentioned in this chapter. IE8 and earlier, however, do not. These new elements are completely unknown to these browsers, and therefore, the browsers won’t render them at all.

All is not lost however.

You can easily add the html5shim script by Remy Sharp (http://code.google.com/p/html5shiv) to the top of your web document:

<!--[if lt IE 9]>
 <script src="//html5shim.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

This script tells IE all about the new elements that it may come across when rendering the document, so it happily does so.

For these older browsers, you also need to add some default CSS styling to certain elements so that the browser knows to render them as block-level elements:

<!--[if lt IE 9]>
 <style>
 article, aside, figure, footer, header, hgroup, menu, nav, section {
 display:block;
 }
 </style>
<![endif]-->

If you intend to set the innerHTML of an element or use jQuery with HTML5 and older versions of IE, you need to add the innerShiv script (http://jdbartlett.com/innershiv) to your web document.

You’ll need to download this JavaScript file and host it yourself, and then add it in the same way as you would add the innershim file mentioned previously:

<!--[if lt IE 9]>
 <script src="innershiv.js"></script>
<![endif]-->

The innershim and innerShiv files work together to allow you to work with HTML5 on older versions of IE.

Notice that each of these additions is contained within conditional comments that target IE versions earlier than version 8. This is to avoid unnecessary adding and processing of scripts for browsers that don’t need them.

<script>

The meaning and usage of the script element hasn’t changed at all in HTML5. However, because a good part of this book is about JavaScript APIs, it’s worth noting one new and useful difference: You no longer have to specify the type attribute if you are using it to enclose JavaScript.

Yes, the clever people at the WHATWG and the W3C have decided that by default type="text/javascript", which prevents you from having to type it and makes for much neater code:

<script>
 alert("I didn't have to specify the type attribute!");
</script>

Wrapping Up

The processes involved for the current HTML5 specifications to arrive at where they are now were of course quite a bit more complicated than has been described in this chapter. But the brief explanation should give you a foundation in the process.

In addition, the elements mentioned are only a very small portion of the new elements contained in the HTML5 specification, and there have also been changes made to elements that existed in HTML 4.01 and earlier versions. You can read a full list of these differences at www.w3.org/TR/html5-diff.

However, the elements you encountered in this chapter are sufficient for you to create your own simple HTML5 documents. This knowledge will also aid your understanding of the examples and resources provided in this book.

In the next chapter, you’ll learn a bit about the history of multimedia within browsers, and you’ll also take a close look at the HTML5 elements that are specifically relevant to HTML5 multimedia.

2. HTML5 Multimedia Elements

Now that you’re armed with the basic history of HTML5 and its structural elements, you can start learning about HTML5 multimedia, its elements, their attributes, and the combined functionality that they bring.

HTML 4.01 had no defined method of bringing audio and video to a website, which led to a huge popularity in third-party plugins, such as Flash, to deliver multimedia content. But HTML5 provides this much-needed structure to deliver audio and video across the Internet through a web browser.

This chapter offers some history of multimedia in the browser and how the playback of audio and video was achieved through the many applications, players, and plugins that various vendors released. Then you’ll learn about the new HTML5 elements, which let you to take advantage of native multimedia in the browser.

History of Web Multimedia

When browsers and the idea of the web first appeared back in the early 1990s, there wasn’t any web multimedia. Soon thereafter, images began to be incorporated but were at best a poor man’s multimedia. Although they could be animated with the advent of animated GIFs, they were of course completely noninteractive.

Even with the existence of audio and video files, the ability of internet technology to deliver this multimedia across the web was limited. Internet connections were slow, audio and video files were large, and no one wanted to wait for large files to download. Once the file did arrive, an external player had to be used to view the contents, which was separate from the web browser. This was the norm, and few complained.

The phenomenal increase in internet connection speeds brought with it the ability to send multimedia across the web even faster, and web browser technology had to move just as quickly, which of course it did with the introduction of what’s now referred to as native multimedia.

Before you dive into native multimedia, let’s quickly take a look at an overview of the external players that were (and still are as desktop players) used to play back audio and video files.

Media Players

A media player is a standard term used to describe a piece of software that has the capability of playing back multimedia files, such as audio and video, usually via a graphical user interface.

In the mid-1990s, the MIDI (Musical Instrument Digital Interface) file format was used to play background music on web documents, and the music usually played automatically. Although highly annoying, this was the beginning of multimedia becoming available through the browser. A host of other players from different vendors were then developed to infest your computer.

RealNetworks released its audio player RealAudio back in 1995, which first introduced the idea of playing audio through the web using proprietary .ra and .ram audio files. Further developments of RealAudio led to the release of RealVideo in 1997, which allowed video streaming and was based on the H.263 video format. These two players eventually were bundled together under the RealPlayer name and were included in Windows 98 as a selectable tool. RealPlayer is still around today (version 14 is the latest stable release) and is available across many platforms; it is capable of playing multiple audio and video file formats.

Macromedia released its first edition of Shockwave in 1995, which was originally developed for the Netscape web browser. At the time, the company allowed users of its popular Director multimedia software to create interactive applications and animations, and insert them into a web document. Macromedia also had another media player in development; it released the Shockwave Flash player in 2002, which supported video as well as audio. Shockwave Flash player used the SWF file format developed by FutureWave software. The main intent of the SWF file format was to create small files for displaying animations, as well as to use it to exchange audio, video, and data. Macromedia was bought by Adobe in 2005, and the Shockwave Flash player was renamed Adobe Flash. It is this particular player that became the player to use when delivering multimedia through the browser.

Microsoft improved on its previous offerings and released DirectShow in 1996, which later became Media Player 6.1 and was released as part of Windows 98 (Figure 2.1).

Figure 2.1 Microsoft Media Player 6 shipped with Windows 98.

[image: image]

With the release of Windows 2000, Microsoft also released version 7.1 of Windows Media Player. This had a much improved graphical interface and overall offered a better experience. With this release came codecs—special file protocols that allow for creating and playing back media content.

Note

[image: image]

You’ll read more about codecs in Chapters 3 and 4 on HTML5 audio and video, respectively.

With subsequent releases, Microsoft enhanced its Media Player, continuously improving the offering along the way.

Microsoft also worked on an application framework to rival Adobe Flash in that it could run browser plugins (sets of small software components that add specific abilities to other, larger software applications—in this case a web browser) and other rich internet applications. Initially released in 2007, Microsoft Silverlight supported many different types of audio and video file formats, as well as animation and interactivity. Originally, it had a slow adoption rate, but as of June 2011, it had roughly 73 percent market penetration, with Adobe Flash holding at 97 percent market share.

Apple was also in the multimedia player game from the early days. Its first version of QuickTime was released in 1991 for the System Software 6 operating system. QuickTime continued to be a Mac-only piece of software until the release of QuickTime 4.0 in 1999, which also ran on Windows and supported MP3 audio playback. QuickTime 5 and 6 delivered video and Flash playback, with version 6 also supporting MP4 playback. Release 7 came out in 2005 and had improved MP4 playback but dropped support for Flash content. The latest version of QuickTime at the time of this writing is version 10 for the Mac OS, and different flavours of Microsoft Windows have earlier versions.

Every vendor had its own way of delivering multimedia, but of course none were perfect. There was no standardised method of embedding audio and video into a web document, and it is for this reason—to standardise embedding of multimedia—that the audio and video elements became part of the HTML5 specification.

Issues with media players

All of the media players had one major problem in common: End users needed to have the appropriate plugin installed to be able to play the required audio or video.

Initially, all these plugins did was launch the respective media player to play the audio or video. The ability to display multimedia within the browser came later, although pop-ups (where the appropriate media player was started outside of the browser) were still common. If the required plugin did not exist on your system, you had to download it, which was a hassle because you needed to constantly update it.

In addition, different plugins from different vendors could conflict with each other, causing browser instability. For example, the VLC Media Player conflicts with the Windows Media Player in Firefox, sometimes causing Firefox to crash when attempting to view a WMV file.

Security was also an issue, because plugins were and still are one of the main target areas for malware. An example of this was identified in March 2011 when it was determined that a critical vulnerability in Flash Player 10.2 could allow remote attackers to execute arbitrary code or cause a denial of service attack on the infected machine (see www.adobe.com/support/security/advisories/apsa11-01.html).

Of course as soon as these vulnerabilities are detected, the vendors move quickly to patch them and push out a release. But again this means that the user must constantly upgrade to the latest versions when they become available.

One major issue with the most popular plugin of them all, Flash, is Apple’s April 2010 decision not to support Flash on iPhones and iPads. This of course makes content served in Flash completely unavailable on these devices.

Let’s now look at how these media players could be harnessed through their plugins to play the required audio or video in HTML.

HTML Elements

In the past, to embed plugins within your web document to launch a media player, you could use various HTML elements to do so. Although using these elements is the way it was done in the past, you still need to be aware of these elements and how they are used, because unfortunately, not all browsers support HTML5 multimedia. You’ll read more about this lack of browser support for HTML5 multimedia in Chapters 3 and 4.

In fact, three different HTML elements could be used:

• applet

• embed

• object

The applet element, as its name suggests, was only ever used for embedding Java applets and was actually deprecated in HTML 4.01. It allowed a Java applet to be embedded anywhere within the web document where the element was placed. Most likely, you’ll never need to use this element because it’s now obsolete, so let’s move on.

The embed element was introduced by the Netscape 2.0 browser to allow developers to embed an arbitrary data object within a web document. If the required plugin was not installed on your system, a warning was usually displayed along with an empty box. An example of embed code being used to play a MIDI file looks like this:

<embed src="myMidiFile.mid" height="60" width="144">

Here the browser is being told to embed the myMidiFile.mid into the browser at the specified position with the specified dimensions.

Note

[image: image]

The embed element was officially introduced in HTML5, finally making it a valid part of an HTML specification. Although most browsers supported it prior to HTML5, it was never actually a valid element.

The object element replaced the applet and embed elements (neither were ever actually in any specification) in HTML 4.01 and was intended to be more generic with regards to the media that it contains. Therefore, it can be used to embed Java applets, audio, and video. The object element is quite powerful in that it can accept a large number of arguments and data object types, but this in turn renders it rather unwieldy. The following example shows how the object element can be used to embed an Adobe Flash video file:

<object type="application/x-shockwave-flash" width="512" height="300" wmode="transparent" data="flvplayer.swf? file=myFlashVideo.flv&autoStart=true">
 <param name="movie" value="flvplayer.swf?file=myFlashVideo.flv&autoStart=true" />
 <param name="wmode" value="transparent" />
 <param name="allowscriptaccess" value="always" />
 <param name="allowfullscreen" value="always" />
</object>

The code here indicates to the browser that the content within the object element is Flash via the MIME (Multipurpose Internet Mail Extension) type in the type attribute. It also sets the width and height of the object container, and uses the wmode attribute to inform the browser that the background of the HTML page should show through on transparent sections of the Flash content. The data attribute is used to point to a valid URL, which will contain the actual content of the container.

The param element is used to add different parameters to the embedded content. As you can see, one of the param elements here is used to set a parameter called movie whose value is the same as the data attribute set in the overall object element! This leads to duplication, which is, sadly, necessary. This is a fallback: If the browser doesn’t know how to play objects with a MIME type of application/x-shockwave-flash, it will check the next child element and see if it can play that (in this case, the param setting for movie).

The wmode parameter is also set again for browsers that don’t understand the first setting in the object declaration. Two other parameters are set: allowscriptaccess, which allows the HTML page to interact with the object should the object have anything to interact with; and allowfullscreen, which allows the object to fill the full screen should the user request it.

You might agree that the preceding code is a bit painful and confusing to look at initially. Fortunately, HTML5 makes embedding of multimedia objects much easier because multimedia is now native to the browser.

Welcome, Native Multimedia!

With native multimedia, the object is no longer embedded into the web document but is treated as a native object by the browser and therefore built in. This provides immediate benefits, such as:

• Plugins are no longer required.

• Speed—anything native to a browser will be faster than any third-party add-on.

• Native controls are provided by the browser.

• Keyboard accessibility is built in automatically.

HTML5 provides four new markup elements that help you to achieve native multimedia in the browser. Let’s take a look at each of these elements and their possible attributes.

The Audio Element

The audio element allows you to embed audio files or an audio stream into a web document. Here’s a quick piece of code showing you just how much easier it is to embed an audio file in your web document using the audio element:

<audio src="sayHello.mp3"></audio>

Much simpler, isn’t it?

Table 2.1 lists the attributes that the element can take.

Table 2.1 Audio Element Attributes

[image: image]

[image: image]

As you can see in Table 2.1, several different settings can be used with the audio element, some of which have a number of settings. A sample audio declaration in a web document might look like this:

<audio src="sayHello.ogg" controls></audio>

This simple piece of code informs the browser to embed the specified audio file in the browser and to use the browser’s own multimedia controls. Various browsers have different default controls, so how the audio controls look depends on the browser that the viewer is using. You can see examples of how these controls are rendered differently in Figures 2.2 through 2.6.

Figure 2.2 The audio controls in Firefox 5.

[image: image]

Figure 2.3 The audio controls in Safari 5.0.5.

[image: image]

Figure 2.4 The audio controls in Chrome 12.

[image: image]

Figure 2.5 The audio controls in Opera 11.50.

[image: image]

Figure 2.6 The audio controls in Internet Explorer 9.

[image: image]

You’ll learn more about the audio element in Chapter 3. More in-depth examples of its usage are provided as well as how to combine most of the attributes listed in Table 2.1.

Now that you’ve taken a quick look at the attributes of the audio element, let’s check out the video element.

The Video Element

The video element allows you to embed video content into your web document, and once again you can specify a number of attributes to control this video content.

Many attributes are the same as those specified for the audio element, but there are some extras, and they’re all listed in Table 2.2.

Table 2.2 Video Element Attributes

[image: image]

[image: image]

crossorigin

crossorigin is a very recent addition to the HTML5 specification, and as such, currently has no real-world application. None of the major browsers support it. It uses the CORS (Cross-Origin Resource Sharing) specification, which you can read about at www.w3.org/TR/cors.

mediagroup

Like crossorigin, mediagroup is a very new addition to the HTML5 specification and at the time of this writing hasn’t been implemented in any of the major browsers yet. Once implemented, it will be very useful for accessibility, because it allows scenarios such as playing a sign-language video alongside a regular video and keeps them in sync.

As you can see, many of the audio and video elements’ attributes are the same, which of course makes it that much easier when specifying them because you only need to remember one set of attributes.

An example of using the video element to display a video in a web document complete with browser controls might look like this:

<video src="snowy-tree.mp4" width="300" height="176" controls></video>

This simple example informs the browser to display a video player of size 300 pixels by 176 pixels with default media controls containing the snowy-tree.mp4 video file.

As with audio, various browsers display the controls and video differently. You can see how they look in each browser in Figures 2.7 through 2.11.

Figure 2.7 The video controls in Firefox 5.

[image: image]

Figure 2.8 The video controls in Safari 5.0.5.

[image: image]

Figure 2.9 The video controls in Chrome 12.

[image: image]

Figure 2.10 The video controls in Opera 11.50.

[image: image]

Figure 2.11 The video controls in Internet Explorer 9.

[image: image]

The Source Element

Due to different browser requirements (more on this in Chapters 3 and 4), it is often required that you specify different sources for the same audio or video element.

As you saw earlier, both the audio and video elements provide a src attribute in which to place a URL to the audio or video source. But that attribute only allows for one source. So how can you add multiple sources?

This is where the source element comes in. Any number of source elements can be contained within an audio or video element declaration, and it is through this element that you can specify multiple media sources.

The source element can contain the attributes listed in Table 2.3.

Table 2.3 Source Element Attributes

[image: image]

So the source element allows you to specify different sources for a particular multimedia offering, an example of which follows:

<audio controls>
 <source src="sayHello.ogg" type="audio/ogg">
 <source src="sayHello.mp3" type="audio/mp3">
 Sorry, your browser doesn't support the audio element
</audio>

In this example, two different audio file formats are presented to the browser for it to play. The browser will play the first format it recognises and ignore any formats that it doesn’t recognise. If it can’t find a format that it can play, it will inform the user that the browser is unable to play the audio by displaying the text, “Sorry, your browser doesn’t support the audio element.”

This process of a browser ignoring what it can’t understand proves very useful when serving up a multimedia solution for cross-browser support. As mentioned earlier, different browsers support different multimedia file formats, which you’ll read about in more detail in the next two chapters.

The Track Element

The track element is used to specify explicit external timed text tracks for media elements. It must be used in conjunction with either an audio or video element because it doesn’t represent anything on its own.

This element is mainly used to provide increased accessibility to a multimedia resource, because it allows captions, descriptions, transcripts, and subtitles to be provided. These can then be displayed in the browser in conjunction with the media being played.

In most cases, the information provided through the track element is more suited to a video media source.

Like the other elements described earlier, the track element can take a number of attributes (Table 2.4).

Table 2.4 Track Element Attributes

[image: image]

The track element can therefore be used to specify complete transcriptions of media resources, which, for example, can be useful in making the source available to those with auditory impairments. It also allows you to specify multiple subtitles and descriptions in different languages. Here is an example:

<video src="sayHello.mp4">
 <track kind="subtitles" src="hello-en.vtt" srclang="en" label="English">
 <track kind="subtitles" src="hello-de.vtt" srclang="de" label="German">
</video>

This example specifies two different files for the sayHello.mp4 video for two different languages, English and German.

Note

[image: image]

HTML5 video and subtitles are discussed in detail in Chapter 8, so don’t fret!

A Quirk of Safari and Internet Explorer 9

Earlier in the chapter when I mentioned that native multimedia is the bee’s knees and that it doesn’t require third-party plugins, which is ideal, I might have been bending the truth a little. It’s not to say that native multimedia isn’t great, it is; it’s wonderful.

But.

For native multimedia to work in Safari and Internet Explorer 9, Apple has decided that you must have its QuickTime plugin installed, and Microsoft requires you to install its Media Player on your system.

These requirements somewhat detract from the idea of native multimedia. Why Apple and Microsoft have chosen to take this path I don’t know, but this is the way of things as they stand.

Wrapping Up

You’ve taken a brief look back at the availability of multimedia within the web browser. Predictably, the technology involved and the results that can be achieved have advanced a great deal from the days of “images only.”

You also are now aware of the three new HTML5 markup elements—audio, video, and source—that you’ll need to embed audio and video content into your web document. The track element was included because it provides you with a powerful method to make your media content accessible by allowing you to specify enhancements, such as subtitles and captions.

With this grounding in the elements and their attributes under your belt, you’ll next learn how to use these elements to bring media to your users.

With no further ado, let’s move on to the next chapter and explore what you can do with HTML5 audio.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/html/graphics/06fig21.jpg

OEBPS/html/graphics/06fig20.jpg

OEBPS/html/page-template.xpgt

	

	
	

	

	
	

OEBPS/html/graphics/03fig01.jpg
B T —
[—

OEBPS/html/graphics/03fig02.jpg

OEBPS/html/graphics/03fig03.jpg
«J > Ji»

T ——y

OEBPS/html/graphics/03fig04.jpg

OEBPS/html/graphics/06fig19.jpg

OEBPS/html/graphics/02fig03.jpg

OEBPS/html/graphics/02fig02.jpg

OEBPS/html/graphics/02fig01.jpg
7 Windows Media Player
View Play Far

& Wusc 5 Meda Gude

Show

Cip:
Author
Copyright

OEBPS/html/graphics/02fig07.jpg

OEBPS/html/graphics/02fig06.jpg
P O0000! We— 0000 ¢ m—

OEBPS/html/graphics/02fig05.jpg
T ——— @ | 001]0:01 €

OEBPS/html/graphics/05fig07.jpg

OEBPS/html/graphics/02fig04.jpg
» — 00:01 @)

OEBPS/html/graphics/05fig08.jpg

OEBPS/html/graphics/02fig09.jpg

OEBPS/html/graphics/02fig08.jpg

OEBPS/html/graphics/08tab03.jpg
P Containsthe URLto the text track data (e, 2 WebVTT i)

ind Defines thetype of ontent the track definition (and the sourcedefined in ¢) s to be used for.
can have 3 number of values:

+ subtitles. Atranscriptionortranlation of the media lement's dilog;sutable for when the
audiois avllable to the user but not understood.

+ captions. Similar to subtitles, but aso contain sound effects, music cue, and othr relevant
‘audio information;uitable for when the soundirack s unavaiabl tothe user.

+ descriptions. Textualdescriptions ofthe video companent of the media resource;sitable for when
the visual component is unavalable.

+ chapters. Chapter tite ntended fo navigating the media resource. Tis could be isplayed to
usersfor them to choose fom a s o jump to the appropriately named chapterin
the video.

«metadata. Tracksintended for use fiom script. The browser will usually not display them to the
user. This data could be used by device to determine such things as whether it can
display tornot.

srclang Specifiesthe language that the text track data pointed to1n src s n. Must be present f cind s set

tosubtitles.

Iabel Provides a userreadable titeforthetrack,which can b displayed to users when they are asked to

choose between, for example,English or German subites

defaut Ifthisattributes present, it indicates tha this track i the one o be used a the defaut i the user does

not indicate prference.

by [Define ruby content (short runs of text alongside base text, often used i East Asian documents to
indicate pronunciation orto provide short annotations. See wwviwe3 org/TR/cs3-tuby for further
nformation).

Defines a timestamp at which a cetainpiece of content within the cuetext becomes active. Similar to
Karaoke:styl text, appearing step by step.

Note that there s no end ta the text aferthe timestamp will appear unles t encounters another
timestamp or t's the end of the cue.

OEBPS/html/graphics/05tab03a.jpg
seeking
secked
ended
durtionchange

timeupdate

pay

pause.

ratechange

volumechange

s aised when the media resource’s seeking attribute i set to true.
15 ased when the media resource’s s attibute i et to false

1 ased when the media resourcestop playing because it hs inished.
1 ased when the media resoure’s duration attribute has been updated.

1s raised when the media resource’s curent layback position has been changed (e, 3 part
of normal playbac).

Is raised when the media resource that was previousy paused o longer s paused, and normal
playback has resumed.

1 s ater thepouse() methd hasreturned and the media esouc hs been paused.

Is raised when either the media resource’s defaul tPlaybackfate or playbacktate attributes
are changed.

15 raised when the media resource’s voLuse or muted attribute has changed.

OEBPS/html/graphics/08tab01.jpg
Text direction e vertial Verticalright tolet.
vertiab Vertcalle toright
Line position Lalie o-00% Percentage position of the cue eltive tothe video frame.
[Jnumber Line number tobe displayed on,
Avilve st Text aligned o startofthefine.
middle Textalgned to middle of the line.
end Text algned o end ofthelne.
Text postion Twlie o100% Percentage position of cue tex relativetothe video frame.

Textsize Swlve o-100%. The percentage size of the cue text.

OEBPS/html/graphics/08tab02.jpg
by

e

Defines lasstet that permits a S5 styledass name to be addedtothe ta, .5, <c. lasshome.
alcises the text contert.

Bolds th text content.

Underines the text conent.

Defines vice content that permits 2 voice name to be added tothe tag e, v-Spesker>,
Wwhich can then be styled via CS5.

Defines ruby content (short runs o text alongside base text, often used in East Asian documents
toindicate pronunciaton orto provide short annotations. See wwww3.org/TR/cs3 Tuby for
furthe nformation)

Defines 2 timestamp at which cetain piece of content within the cuetext becomes active

Similar o karaoke-style text appearing sep by step.

Note that there s no end tag; the text after the timestamp will appear uiess it encounters
‘another timestamp or it's the end of the cue.

OEBPS/html/graphics/04fig03.jpg

OEBPS/html/graphics/01fig01.jpg
HTML

Figure 1- The HTMLS logo in ll s lory!

OEBPS/html/graphics/04fig02.jpg

OEBPS/html/graphics/04fig05.jpg
http://localhost/htmiStest/video/videom html

refresh

OEBPS/html/graphics/9780132837453.jpg
HTML5

Multimedia
DEVELOP AND DESIGN

OEBPS/html/graphics/04fig04.jpg
ideom htmi

refresh

OEBPS/html/graphics/04fig01.jpg
rpegin
e
[
o Voot

OEBPS/html/graphics/02fig10.jpg

OEBPS/html/graphics/02tab02a.jpg
poster

width
height

crossorigin

mediagroup

‘Another boolean attribute, which indicates that the video is to be continuously played in a loop.
This s curently not supported in Firefoxs.
Allows an image fle to be displayed when there's o video data avaiable.

Ifposter i not speifed,the browser will dispay th fistframe rom the video, which may of course
ot be the image that you want shown. Itmust contain 2 valid URL to the imagein question

Specifcsthe width ofthe video element i pixes.
Specifcsthe heightof the vdeo clement inpixes

Indicates whether the ideo source can be shared across domains o not. By default the source can be
shared cross-domain.

It can have two sttings:
~ anonymous Allows anonymous access to the video source.

+ usercredentials Credentias are required to accessthe video source.

10 particular seting i specified, butcrossorigin s present, it defaults o the anonyws seting.
Because this attribute is o new to the specification,

15 yet o be implemented in any of the browsers

Allows multple media lements, i this case video sources, o be linked together. Thiscan, for example,
allow the playing and synchronisation oftwo different videos in two diferent places on the screen.

OEBPS/html/graphics/note1.jpg

OEBPS/html/graphics/02fig11.jpg
300:00 Miw== 00:00:18)

OEBPS/html/graphics/06fig07.jpg
P el

» [0000 4

OEBPS/html/graphics/06fig06.jpg

OEBPS/html/graphics/06fig05.jpg
L =

OEBPS/html/graphics/06fig04.jpg

OEBPS/html/graphics/06fig03.jpg

OEBPS/html/graphics/06fig02.jpg
PARROTS

OEBPS/html/graphics/06fig01.jpg

OEBPS/html/graphics/02tab01a.jpg
controls

muted

loop

mediagroup

Is also a boolean attribute, which if present, tells the browser to
provide a default set of controls for the audio.

Controls the default state of the audio source. Naturally,this is largely
redundant with an audio source because if you play it automatically,
you'l want it heard. Currently no browser supports this attribute.

Another boolean attribute, which indicates that the audio s to be
continuously played in a loop. It's advisable to use this with cau-

tion because it can be an annoyance to users, especally if you don't
provide any controls for them to stop it! This attribute is currently not
supported in Firefox 5

15 a relatively new attribute to the specification that i intended to
allow or prohibit cross-origin media of the audio source using the
CORS (Cross-Origin Resource Sharing) specification (which you can
read about at wwww3.0rg/TR/cors).

Basically, it specifies whether the audio source can be shared across
other domains.

It can have two settings:
- anonymous Allows anonymous access to the audio source.

« use-credentials Credentials are required to access the audio
source.

I no particular setting is specified, but crossorigin is present, it
defaults to the anonymous setting. Because this attribute is so new.
to'the specification, it is yet to be implemented in any of the major
browsers.

Allows multiple media elements, in this case audio sources, to be
linked together, This can, for example, allow the playing and synchro-
nisation of two different audio sources in two different places on the
screen.

OEBPS/html/graphics/06fig10.jpg

OEBPS/html/graphics/06fig18.jpg

OEBPS/html/graphics/06fig17.jpg

OEBPS/html/graphics/06fig16.jpg

OEBPS/html/graphics/06fig15.jpg

OEBPS/html/graphics/06fig14.jpg

OEBPS/html/graphics/06fig13.jpg

OEBPS/html/graphics/06fig12.jpg

OEBPS/html/graphics/06fig11.jpg

OEBPS/html/graphics/09tab01.jpg
ATTRIBUTE DESCRIPTION
width Defines the width of the canvas drawing area.

height Defines the height of the canvas drawing area.

OEBPS/html/graphics/06fig09.jpg

OEBPS/html/graphics/03tab01.jpg
Oggvords @ Filorist @ chomess O Operaose

we3 @satrise @ chomesr Olegr Bios
wav @rico36r @ chomess @ Safarise O Operatost
anc @iz @chomess Clegr Biosy # Android 2+

ey @safarize @ cChomess O lEgr Biosy * Android 2+

OEBPS/html/graphics/06fig08.jpg
1l

P
»/ — o000

OEBPS/html/graphics/09tab02.jpg
width
height
data

The width of the returned image data rectangle.
The height of the returned image data rectangle.

Atwo-dimensional array that contains the actual pixel information
for each pixel. Each pixel has four entries listed sequentially; values
for the pixels are red, green, blue, and alpha channel.

if the first pixel is white, it would contain the

datalol{o] = 255 1/ red chamel
datafol{a] - 255 // green chamnel
data[0][2] = 255 // blue channel
datalo][3] = 1 /7 alpha chamel (opacity)

OEBPS/html/graphics/04tab03.jpg
width Yes The width o the targe display area.
height Yes The height o the arge display area.

device-width Yes The width of the devices rendeing area.

deviceeight ves The heghtofthe deic’ renderng re.

orentation ves Ovintaion of the renderingdevie: portait orLandscape.
aspectratio Yes Ratio of target udth tothe etght.

devicesspectrato Yes Ratio of device-wddth tothe device-height.

resoluton Yes Densityofpises i th device

calor Yes Number ofbits pe clour component.

colorindex Yes Number ofentrie incolour ookup tabie.

g No Tests i the devie i rd-based o .

monechvome Yes Number of bispe pixlin monochrome device

scan No For TV browsing: progressive of scan.

OEBPS/html/graphics/04tab02.jpg
TvPE
all

braille
embossed
handheld

print

proje
screen
speech
tty

v

DEFINITION
Suitable for all devices.

Aimed at Braille tactile feedback devices.

Aimed at paged braille printers

Intended for handheld devices, such as mobile phones.

Targets paged material and material for display in print preview mode.
Suitable for projected presentations.

Suitable for displaying on a colour computer screen.

Intended for speech synthesisers.

Aimed at devices with a fixed-pitch character grid, such as a terminal.

Intended for a television-type device.

OEBPS/html/graphics/09fig02.jpg

OEBPS/html/graphics/04tab01.jpg
FORMAT BROWSER
TheoraOgg @ Ficlox3ss @ Chiome s+ 0 operatoss

MPA/HI6s @ safarize ® Chiomes-? ey Bos * Android 2+

webM @ricfoxgs @ Chrome 6+ 0 opera e Qe ® Androidzar

OEBPS/html/graphics/09fig01.jpg

OEBPS/html/graphics/11fig01.jpg

OEBPS/html/graphics/09fig04.jpg

OEBPS/html/graphics/09fig03.jpg

OEBPS/html/graphics/09fig05.jpg

OEBPS/html/graphics/08fig01.jpg
Elephant's Dream

OEBPS/html/graphics/08fig03.jpg

OEBPS/html/graphics/08fig02.jpg
Elephant's Dream

OEBPS/html/graphics/08fig05.jpg
d

IR A the fertwe can see .

\
P
l’lﬂ

OEBPS/html/graphics/tip.jpg

OEBPS/html/graphics/08fig04.jpg
Elephant's DREAN

OEBPS/html/graphics/08fig07.jpg
P @ 00.00/00:00

OEBPS/html/graphics/08fig06.jpg

OEBPS/html/graphics/08fig09.jpg

OEBPS/html/graphics/08fig08.jpg
Chapters >
Subritles

Nene

English subties

German subtitles

[E— T R 7P

OEBPS/html/graphics/10fig01.jpg

OEBPS/html/graphics/10fig02.jpg
SVG SVG

OEBPS/html/graphics/37453.jpg
HTMLS

Multimedia

OEBPS/html/graphics/10fig03.jpg

OEBPS/html/graphics/10fig04.jpg

OEBPS/html/graphics/10fig05.jpg

OEBPS/html/graphics/10fig06.jpg
H5

OEBPS/html/graphics/10fig07.jpg

OEBPS/html/graphics/10fig08.jpg
@

OEBPS/html/graphics/05tab02.jpg
ATTRIBUTE

width

height

videoWidth

videoHeight

poster

DESCRIPTION
Contains the width of the video element in pixels or percentage.
Altering this value will not affect the value of videkidth.
Contains the height of the video element in pixels or percentage.
Altering this value will not affect the value of videofieight.

15 a read-only attribute that contains the actual width of the video
media file in pixels, or 0 ifits not known, at the time the video
is loaded.

Is a read-only attribute that contains the actual height of the
video media file in pixels, or o if it’s not known, at the time the
video is loaded.

Contains the URL to the poster image for the video, if any.

OEBPS/html/graphics/10fig09.jpg

OEBPS/html/graphics/05tab03.jpg
loadstart Is raised when the browse sarts looking for media data toload.

progress Is raised when the browser s rtriving media dta.

suspend Is raised when the browser was fetching media data but paused and has ot yet etched the.
entire media resource.

abort Is raised when the browser stopsfetching media data but not because of an error.

ermor 1s raised when an error ocurred while the browser was fetching the media data.

emptied Is raised when the network connection was lost while the browser was fetching media data or
the load() method was alled when one such method was already in proess.

stalled Is raised when the browser s attemping tofetch media data, but for some reason the data
isn' beng transfrred.

loadedmetadata 1s raised when the duration and dimensions of the media resource have been acquired by
the browser

loadeddata Is raised when the browser knows thestat postion of the media resource.

canplay 1s rised when the browser can start playback fo the frsttime but an't guarantee that if

Playback begins now that t won'thave to pause o etch more media data

canplaythrough 15 rased when the browser i capable of playing the media resource fiom stat o finish
ithout having to pause to fetch more media data.

playing 15 rased when playback of a media resource s ready tostart afterhaving been previously
paused or delayed due tolack of suffcient media data.

waiting 15 rased when the browser has stopped playback due to insuffcient media data being.
availabl. It does, however, expect the required data to become available shorly

OEBPS/html/graphics/02tab02.jpg
ste Provides the address of the media resourc, i this case a video file o stream. Tis attribute must
contain a valid URLto the video source.

preload Isused o hint o the browser how to preload the video sourc, i at al. Again, It only a hintto e
browser which may choose o overide it with possile use stting.
Ithas three possibl setings:

“none Informs the browser tha the user s ot expected to want o view the video, 5o there's
1o need to perform any preloading.

+ metadata Informs the browser thatthe user may want o view the video, and therefor ts meta-
data (e, dimensions, duration)should be preloaded.

“auto el the browser to decde whether to downioad the metadata the entire source, o not
to download anything. This i the defaultfpreload s not specifie.

autoplay 15 boolean attrbute that informs the browser to automatically start playing the video source as soon
asit can. It not consdered good practce o do this!

controls 1 l50.2 boolean attribute, which if present, tell the browser to provide adefault se of contrls for
thevideo.

muted Controls the default state of thevideo source. This means that you can specfy that an automaticaly

playing video can be muted when it begins to play, thus preventing any ritation to the user.
“This atribute is currently not supported n any of the major browsers.

OEBPS/html/graphics/05tab04.jpg
oad() Causes all activity on a mediaresource o be suspended immediately, and the clement in
question i reset to default values (fo a comprehensiv st of the default vlues that are
e, 0 1o wwwwwhatwg,org/specs/ web-apps/curtent-work/multpage/the-video-elemen.
htmiidom-media-load).

This method causes the loadstart event tobe aise.

playl) Informs the media lement to begin playback ofa media resourc.
1fthe media esource was previously paused, theresource’s pausedattribute wilbe set to
false and the play event raised

pause() Causes a media resource o stop playing.
This wil cause the media element'spaused attribute to be s to true and theefore aise
apuse event,

CanPlayTypeltype) Takes astring epresentation of a MIME type (e, audlo/ogs, video/spd) 2 2 parameter
‘and returs astring value Indicating the browser' perceved abity to lay that partcular
media type.

The values that can be returned include:
- Anempty string._ The browser i unable to play @ media resourceof this type.

« “maybe” “The browser cant sayfor cetain that it can or cannot play a media
resource ofthistype.
- “probably” The browsers pretty sure it can play a media resource of this type.

addTextTrack(kin, Returns and adds a text track, which taso adds to the media element’s st o text tracks.
Uabell1anguagel) 1he 4104 parameter can be one of:

-+ subtites

- captions

+ descriptions

+ chapters

- metadata

The optional Label and Language parameters default to an emptysting if they e not provided.
You'l read more about text tracks in Chapter 8.

OEBPS/html/graphics/02tab01.jpg
ATTRIBUTE

st

preload

autoplay

DESCRIPTION

Provides the address of the media resource, in this case an audio file
or stream, This attribute must contain a valid URL to the audio source.

Is used to hint to the browser how to preload the audio source, if at
all. It only advises the browser what to do, but ultimately the browser
will do what it wants (e.g. based on a user setting).

It has three possible settings:

« none Informs the browser not to preload the audio file. The
user is not expected to play the audio, so there's no
need to perform any preloading. It will begin to load
s 500 as the user clicks the Play button.

+ metadata Informs the browser to only preload information about
the audio file (e.g., dimensions, duration, etc)). The
user may want to play the audio. Its metadata (e g,
dimensions, duration) should be preloaded. The rest of
the audio will download when the user clicks the Play
button

- auto Tellsthe browser to decide whether to download the
metadata, the entire source, or not to download any-
thing. This is the default if preload is not specified.

Support for this attribut
currently support it

poor; only Firefox 5 and Chrome 12

Is a boolean attribute that informs the browser to automatically start
playing the audio source when the page is loaded. Use this with cau-
tion because autoplaying audio can be an annoyance to users.

OEBPS/html/graphics/129tab01.jpg
fill

contain

cover

none

scale-down

‘The contents fill the container.

‘The contents fill the container, and the aspect ratio of the
multimedia element is maintained.

‘The contents fll the container completely.

‘The contents ill the entire container irrespective of the
aspect ratio, 50 some stretching may occur.

Apply whichever one of none or contain would result in
2 smaller size.

OEBPS/html/graphics/05tab01.jpg
duration

volume.

paused

playbackRate

ended

loop

controls

muted

cuentsre

‘Containsthe duration of the audio orvideo. This i a read-only attribute and may only be
available i the video has been preloaded.

When this value becomes avalabe for reaing, the drat fonchange event s raised.
Contains thevolume stting for the audioor videa.

olsthe lowest value; .0 s thehghest.

When this value is changed, the volusechanged vent i ased.

152 boolean attribute that
paused.

‘When this value changes o true, a pause event i aised.
‘When this value changes o alse, a play event i aised.

cates whether o not the audio orvide resource s currently

Indicatesthe required speed at which the audio orvideo resource s to be layed. Vald values
ange fiom 101010,

Anegative value playsthe resource backwards faste; a postve alue plays tforward faster.
Avalue of 0stops playback.
‘When this value changes,aratechange event s raised.

152 boolean attribute that indicates whether the audioorvideo resource has finshed playing
(2nd the play direction i forward! See defaultPlaybackatelater inthis table and playbackate
earie).

15 boolean attribute that indicates whether o notthe audio or video i o play automatically.
152 boolean attibute thatindicates whether ornot the audio or video resourc s setto loop.

5.2 boolean attribute that indicates whetheror ot the browser i to
seton the audio o ideo.

Jay it defat contol

5.2 boolean attibute that indicates whether ornot the audioor video is muted.
Containsthe URLto the media source asset intheattibute ofthe audioor video element

Initialy ampy, this contains the URL to the media source that's actually selected for play by the
audio or video element, usually set via a child source clement.

OEBPS/html/graphics/07fig05.jpg

OEBPS/html/graphics/07fig06.jpg

OEBPS/html/graphics/07fig07.jpg

OEBPS/html/graphics/07fig08.jpg

OEBPS/html/graphics/02tab04.jpg
ATTRIBUTE
Kind

srclang.

Tabel

default

DESCRIPTION

Specifies what type of data ths instance of the track element provides
for the specified media element. It can have any of the following.
values:

+ subtitles A full transcription of the dialogue, which is suitable
for use when the audio s available but not under-
stood. The contents will be displayed as an overlay
on the video.

- captions A transcripton of the dilogue, sound efects, and
otherrelevant audio nformation, and s suable
‘when the audio/soundtrack is unavailable. The con-
et are overlayed on the video and are abeled as
usefl fo those with auditory mpairments

- descriptions Provides textual descriptions of the video component
of the media resource and s intended for when the
visual component is unavailable.

+ chapters Specifies chapter titles and is used to navigate the
contents of the media resource.

« metadata Contains information that s to be used via a sript
and s not actually displayed on the browser in
any way.

If this atribute is omitted, the default value is subtitles.

Provides the address of the text track data, which must be a valid URL.
The file provided at this source needs to be in a specifc format fo it to
be understood—two of which are WebSRT and WebVTT. Both formats
are discussed in Chapter 8.

Indicates the language of the text track data.

Specifies a user-readable title for the track, which provides a more
understandable title for the user to read. Must be unique across track
elements of the same kind attribute for the same resource.

Informs the browser that the track element in question i to be used
as the default if the user’ preferences do not indicate that a different
‘one would be more appropriate.

OEBPS/html/graphics/07fig01.jpg
2D

OEBPS/html/graphics/08fig10.jpg

OEBPS/html/graphics/02tab03.jpg
ATTRIBUTE

st

type

media

DESCRIPTION

Provides the address of the media resource, be it audio or video. As
with the sxc attribute of the audio and video elements, this must
contain a valid URL to the source in question.

Specifies the type of the media resource to aid the browser in deter-
miningif it can actually play this source or not. The value must be a
valid MIME type, which tells the browser what format the source is in

The most common include:

+ audio/ogg
audio/mp3
« video/mpg.
video/ogg
video/webm

In some cases, the codec that the source is encoded with may also
need to be specified to ensure that it can be played. You'll learn more
‘about MIME type and codecs in Chapters 3 and 4

Specifies the intended media type of the resource in question, because
it might target a certain type of device with a certain height, width,
resolution, or aspect ratio.

This value must be a valid media query. You can read more

about this attribute in the media queries specification at
http://dev.w3.org/csswg/css3-mediaqueries.

You'l learn more about media queries and their uses in Chapter 4.

OEBPS/html/graphics/07fig02.jpg
20D

OEBPS/html/graphics/07fig03.jpg

OEBPS/html/graphics/07fig04.jpg

OEBPS/html/graphics/08fig11.jpg
(00:00:00)
(00:00:28)
©0:01:02)

(00:03:10)
(00:05:47)

(00:07:27)

(©0:08:13)
Subtites

None
Enalish subites
German subrites

@ 0000/00:00

OEBPS/html/graphics/10fig10.jpg

OEBPS/html/graphics/10fig11.jpg

OEBPS/html/graphics/10fig12.jpg

OEBPS/html/graphics/tip1.jpg

OEBPS/html/graphics/10fig13.jpg

OEBPS/html/graphics/note.jpg

OEBPS/html/graphics/10fig14.jpg

OEBPS/html/graphics/10fig15.jpg

OEBPS/html/graphics/07tab01.jpg
transition-property Specifesthe names)ofthe transition to which the tansiton i tobe applied
(€8, background color,font-s1ze,none, o).
transition-duration Defines thelength of time n seconds tha the transiton willactually take. A value of

os indicates that the transiton i o take place immediately.

transition-timing-function Specifesthe functon to be used incalculating the intermedite vlues duing the tran-
siton, There are a number of predefined values for thi property: eae, inear, ease-in,
ease-cut, ease-in-out, and cubic-bezser(), which allows you to define your own.

transition-delay Defines when the tranition will stat. A value of 0, the default settng, causes the
transition to begin immediately.

OEBPS/html/graphics/07tab02.jpg
animation-name Identifes the animation niame(s) to apply.Each name should be a defined Keyframe.
animation functon.

animation-duration Defines thelength of time it should take for the animation to complete one cycle.

‘animation-timing function Defines how the animation wil progess over one cycl ofts durations. i can be one of
2 number of predefined values: ease, Lnear, esse- i, ease-out, ease-in-out,of Ubic-
beztex(). Note that these arethe same values that can be used or atranst1on-tining-
function a5 mentioned in Table 71,

animation-teratin-count Specifies the number of teratons the animationis o perform, Can be s o fnfinite,
which wil ause the animation to loop continuously

animation-direction Defines whetheror ot the animation should play in reverse on alternate cycles. Valid
Values arenormal and altenate. A value of ormalis the defaut

animation-delay Indicates when the animation willtrt. Allows dely to be added tothe beginning
of the animation frequired. A value o s, the default causesthe animation to begin
immedistely

animation- il mode Indicates what values are appied by the animation outsde of the time it is executing.

By default, the values contained within the animation frames are not prsisted once the
animationis complete. Seting this value can override that by using one of four diferent

walues:

“none. Noneof the values persit outside ofthe animation. Thisis the default

« backards. Values defined inthe irst frame will b persisted once the animation
is complte.

+ forsards. Values defined inthe ina rame will b persisted once the animation
is complete.

“both. Values in both thefrst and final frame will e persisted when the

‘animation is complete.

OEBPS/html/graphics/07fig09.jpg

OEBPS/html/graphics/07fig16.jpg

OEBPS/html/graphics/07fig17.jpg

OEBPS/html/graphics/07fig18.jpg

OEBPS/html/graphics/07fig19.jpg

OEBPS/html/graphics/07fig12.jpg

OEBPS/html/graphics/07fig13.jpg

OEBPS/html/graphics/07fig14.jpg

OEBPS/html/graphics/07fig15.jpg

OEBPS/html/graphics/05fig01.jpg

OEBPS/html/graphics/05fig02.jpg

OEBPS/html/graphics/07fig10.jpg

OEBPS/html/graphics/07fig11.jpg

OEBPS/html/graphics/05fig05.jpg

OEBPS/html/graphics/05fig06.jpg

OEBPS/html/graphics/05fig03.jpg

OEBPS/html/graphics/01tab01.jpg
1 footer <footen>
2 wenu <menu>

3 title <header>

4 snall <snally

5 text articles, csection, caside>
6 content articles, csection, caside>
7 header <header>

8 nav <wavs

? copyright nfa

0 button nfa

OEBPS/html/graphics/05fig04.jpg

OEBPS/html/graphics/11tab03.jpg
onopen

onmessage

onclose

onerror

Raised when a WebSocket connection has been successfully made to
the server n question.

Raised when a message has been received over the open WebSocket
connection.

Raised when the open WebSocket connection i closed.

Raised when the open WebSocket connection reports an error.

OEBPS/html/graphics/05tab01c.jpg
defaultPlaybackRate.

played

seckable

mediaGroup

contoler
detauitted
sudiotracks
videoTracks

textiracks

Indicates the required speed at which the audio or video resource is to be played when it starts.
Valid values range from 1.0to 1.0

Anegative value playsthe resource backwards faste; positive value plays it forward faster.
‘Avalue o 0stops playback. Normal play rate s o
When this value changes, a ratechange event is raised.

Returnsa Tisekanges object ndicating the time ranges ifany, tha the browser has 5o far layed
of the resaurce.

Returnsa Tirakanges object that ndicates the time ranges, fany, of the media resource that
the browser can"seck” o (i, look ahead),which depends on how much of the resource s
actuallyloaded.

Containsthe resource'ssediatroup atrbute value, which allows multiple media clements o be
linked together via a common name/group (sce Chapter 2 or mre detals),

Containsthe resource’scurrent media controle i se; therwise nll.
152 boolean that reflects the value of the resource’smited atribute (see Chapter 2,

Containsthe live audio trac st tht

available i the media element’ resource, f any.

Containsthe ive video track s tht is avalabl i the media element’ esource, f any.

15 ead-only attribute that contans a st of the text racks vailableinthe media element’s

resource, if any.

OEBPS/html/graphics/11tab01.jpg
METHOD DESCRIPTION

send(data) Sends the specified data across the open connection. The data can be
a string, an ArzayBuffer, or a Blob.

close() Closes the open connection.

OEBPS/html/graphics/11tab02.jpg
readystate

bufferedinount

extensions.

protocols

Contains the current state of the WebSocket connection, which can
be one of the following (corresponding integer values are shown in
braclets):

+ COMECTING (o). The connection has not yet been established.

- OPEN (). ‘The connection is established and communication
across it s possible.

+ CLOSING (2. The connection s currentiy closing down.
+CLOSED(). The connection has been closed or could not be
opened.

Contains the number of bytes that have been queued up using the
send() method but have not yet been sent across the connection.
This does not include any overheads used by the protocol.

Contains the extensions selected by the server (if any).

Contains the subprotocol that the server has selected for use (if any).

OEBPS/html/graphics/05tab01b.jpg
secking,

currentrime

nitialTime

startOfsetTime

‘When this value is set, the loadedaetadata event s raised.

- HAVE_CURRENT_DATA () Enough data has been retieved to know the start position of the
audio or video but not enough to actually play it

When this value i et the Toadeddata event s raised

- HAVE_FUTURE_ORTA(5) Enough atahas been retive sohat the resurcecan be
Playe. Paying th resource now however might mean that
iayback may sttempt o cvertake the amunt f th esource
et
When thisvalue s et the carply even s aised

« HAVE_ENOUGH_DATA (4) Enough ofthe data has been etieved tha the resource can be.
played without fear of playback reaching the end ofthe avallable
data before the end of the resource has been loaded.

When this value s set, the canplaythraugh event s rased.

You couldcheck tisattribute perodically to see when to start/stop displaying a wating con for
eample

15 boolean attribute that indicates whether the browser is currentlylooking or a difierent
playback positon within the audio or video resource. For example,the user may have dragged
the default controls forward 1o play at later point i the resource.

Containsthe current time n seconds thatthe playback positon withinthe audio or video
esource hasreached.

When this value changes, th tseupdate event is raised.
When this value equalsthe end of the media resource, the ended event s rased.

Containsthe nitialplayback positon o the audio or video resource.

Contains a Dae abjectrepresenting the current timeline offet the expici date and time
cortesponding tothe zerotime n theresource) within the resource.

OEBPS/html/graphics/05tab01a.jpg
startTime

crossorigin

networkstate

preload

bufered

readystate

‘Contains the start-time value of the audio or video element. This is usually o but can occasion-
allybe a positve value or variousreasons, such s being part of a ve stream or i s a frag-
ment from a larger audio orvdeo resource

Containsthe sttingforthe audtoor video element’s crossOrigin atrbute. This sitended to
allow orprohibt cross-origin medi of the audio source using the CORS (Cross-Origin Resource.
Sharng) specificaton (see Chapter 2 for mare detals).

Contains the current network stat of the audio or video element,

1t can have one of four settings (the numeric value i provided in brackets after thesetting

name):

« NETWORK_EMPTY (o) Indicatesthatthe element has notyet been ntialsed
When this value i st, the enptied event i raised. The abort and
ervor events canalso e aised when this values set.

+ NETWORK_IDLE () A resourceto lay has been selected but i not curently being

played.
When this value i st, the suspend event is aised. The sbort and
ervor events canalso be raised.

+ NETWORK_LOADING (2 The browser i currently attempting to download data,

When this value i et the folowing eventsare rised: loadstart,
progress, and stalled.

+ NETWORK_NO_SOURCE () The element iscurrenly looking fora resource to play but hasn't
yet found one.

Containsthe value of the element’s preload attribute, which i used to rovide a hit to the
browseron how the mediasource i to be preloaded (sce Chapter 2 for more detal).

Containsthe time range of the audioor vidco element that the browser has currntly bufered
fany)

Thisreturns Tinekange objec,

Containsthe current ready state of the audso o viceo clement and can contain one of ive
possible values(the numeric valueis provided in brackets after the value name)

- HAVE_NOTHING (0) Ther

- HAVE_METADATA () The metadata of the lement inquestion s currrtly avaiable.
I the case ofthe video lement, it also indicatesthat the
video's dimensions e avalabl. Th resource’sstat postion
is currently unknown.

s curtently no information on the clement avaiable.

OEBPS/html/graphics/11fig03.jpg
Connection Status: Open (Connection Status: Open

veszage |

message [Test Message | Gnd)

Cler: Test Messax
Sarvar: Tast Massage

OEBPS/html/graphics/11fig02.jpg
[——¥]

rate: 44100

channels: 2

length: 2048
[-0.0020826864056289196][0.03907433897256851][0.052807144820690155]
[-0.017523478716611862][-0.07334524393081665][-0, 1289338320493698]
[0.047963064163923264][0.09296827763319016][0.0814201831817627)
[-0.13930198550224304][-0.12914502620697021][0. 11272022873163223]
10.12237294018268585][0.06835687905550003][-0.1242295578122139]

OEBPS/html/graphics/pub.jpg
Peachit
eachpi

