
    
      [image: iOS Programming]
    

  iOS Programming: The Big Nerd Ranch Guide


Joe Conway and Aaron Hillegass












Copyright © 2012 Big Nerd Ranch, Inc.



    All rights reserved. Printed in the United States of America.
    This publication is protected by copyright, and permission must be obtained
    from the publisher prior to any prohibited reproduction, storage in a
    retrieval system, or transmission in any form or by any means,
    electronic, mechanical, photocopying, recording, or likewise.
    For information regarding permissions, contact

Big Nerd Ranch, Inc.

154 Krog Street

Suite 100

Atlanta, GA 30307

(404) 478-9005

http://www.bignerdranch.com/

book-comments@bignerdranch.com


  

    The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.
  

    Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group

800 East 96th Street

Indianapolis, IN 46240 USA

http://www.informit.com




  

    The authors and publisher have taken care in writing and printing this book
    but make no expressed or implied warranty of any kind and assume no
    responsibility for errors or omissions.
    No liability is assumed for incidental or consequential damages in connection
    with or arising out of the use of the information or programs contained herein.
  

    App Store, Apple, Cocoa, Cocoa Touch, Finder, Instruments,
    iCloud, iPad, iPhone, iPod, iPod touch, iTunes,
    Keychain, Mac, Mac OS, Multi-Touch, Objective-C, OS X, Quartz, Retina, Safari,
    and Xcode are trademarks of Apple, Inc., registered in the U.S. and other countries.
  

    Many of the designations used by manufacturers and sellers to distinguish
    their products are claimed as trademarks.
    Where those designations appear in this book,
    and the publisher was aware of a trademark claim,
    the designations have been printed with initial capital letters or in all capitals.
  
 




        ISBN-10  0132978741


        ISBN-13  978-0132978743



    Third edition, first printing, March 2012

    Release E.3.1.1                     
  




Acknowledgments




While our names appear on the cover, many people helped make this book a reality. 
We would like to take this chance to thank them.


	
The other instructors who teach the iOS Bootcamp fed us with a never-ending stream of suggestions and corrections.  
They are Scott Ritchie, Brian Hardy, Mikey Ward, Christian Keur, Alex Silverman, Owen Matthews, Brian Turner, Juan Pablo Claude, and Bolot Kerimbaev.
    

	
Our tireless editor, Susan Loper, took our distracted mumblings and made them into readable prose.
    

	
Our technical reviewers, Bill Monk and Jawwad Ahmad, helped us find and fix flaws.
    

	
Ellie Volckhausen designed the cover.  (The photo is of the bottom bracket of a bicycle frame.)
    

	
Chris Loper at IntelligentEnglish.com designed and produced the print book and the EPUB and Kindle versions.
    

	
The amazing team at Pearson Technology Group patiently guided us through the business end of book publishing.
    





The final and most important thanks goes to our students whose questions inspired us to write this book and whose frustrations inspired us to make it clear and comprehensible.


Table of Contents

 Introduction

  Prerequisites

  What’s Changed in the Third Edition?

  Our Teaching Philosophy

  How To Use This Book

  Using an eBook

  How This Book Is Organized

  Style Choices

  Typographical Conventions

  Necessary Hardware and Software

 1. A Simple iOS Application

  Creating an Xcode Project

  Building Interfaces

  Model-View-Controller

  Declarations

   Declaring instance variables

   Declaring methods

  Making Connections

   Setting pointers

   Setting targets and actions

   Summary of connections

  Implementing Methods

  Build and Run on the Simulator

  Deploying an Application

  Application Icons

  Launch Images

 2. Objective-C

  Objects

  Using Instances

   Creating objects

   Sending messages

   Destroying objects

  Beginning RandomPossessions

   Creating strings

   Format strings

   NSArray and NSMutableArray

  Subclassing an Objective-C Class

   Creating an NSObject subclass

   Instance variables

   Accessor methods

   Instance methods

   Initializers

   Other initializers and the initializer chain

   Using Initializers

   Class methods

   Testing your subclass

  Exceptions and Unrecognized Selectors

  Fast Enumeration

  Challenges

  Bronze Challenge: Bug Finding

  Silver Challenge: Another initializer

  Gold Challenge: Another Class

  Are You More Curious?

  For the More Curious: Class Names

 3. Managing Memory with ARC

  The Heap

  The Stack

  Pointer Variables and Object Ownership

  Memory Management

   Using ARC for memory management

   How objects lose owners

  Strong and Weak References

  Properties

   Declaring properties

   Synthesizing properties

   Instance variables and properties

  Copying

  Dot Syntax

  For the More Curious: Autorelease Pool and ARC History

 4. Delegation and Core Location

  Projects, Targets, and Frameworks

  Core Location

   Receiving updates from CLLocationManager

  Delegation

   Protocols

   Delegation, controllers, and memory management

  Using the Debugger

   Using breakpoints

   Diagnosing crashes and exceptions

  Bronze Challenge: Distance Filter

  Silver Challenge: Heading

  For the More Curious: Build Phases, Compiler Errors, and Linker Errors

   Preprocessing

   Compiling

   Linking

 5. MapKit and Text Input

  Object Diagrams

  MapKit Framework

  Interface Properties

  Being a MapView Delegate

   Using the documentation

   Your own MKAnnotation

   Tagging locations

   Putting the pieces together

  Bronze Challenge: Map Type

  Silver Challenge: Changing the Map Type

  Gold Challenge: Annotation Extras

 6. Subclassing UIView and UIScrollView

  Views and the View Hierarchy

  Creating a Custom View

  The drawRect: Method

  Core Graphics

  UIKit Drawing Additions

  Redrawing Views

  Motion Events

  Using UIScrollView

   Panning and paging

   Zooming

  Hiding the Status Bar

  Bronze Challenge: Colors

  Silver Challenge: Shapes

  Gold Challenge: Another View and Curves

 7. View Controllers

  UIViewController

   Creating HypnoTime

   Subclassing UIViewController

   Another UIViewController

  UITabBarController

  View Controller Lifecycle

   Initializing view controllers

   UIViewController and lazy loading

  View Controller Subclasses and Templates

  Bronze Challenge: Another Tab

  Silver Challenge: Controller Logic

  For the More Curious: The main Function and UIApplication

  For the More Curious: Retina Display

 8. Notification and Rotation

  Notification Center

  UIDevice Notifications

  Autorotation

   Setting autoresizing masks programmatically and bitwise operations

  Forcing Landscape Mode

  Bronze Challenge: Proximity Notifications

  Silver Challenge: Programmatically Setting Autoresizing Masks

  Gold Challenge: Overriding Autorotation

  For the More Curious: Overriding Autorotation

 9. UITableView and UITableViewController

  Beginning the Homepwner Application

  UITableViewController

   Subclassing UITableViewController

  UITableView’s Data Source

   Creating BNRItemStore

   Implementing data source methods

  UITableViewCells

   Creating and retrieving UITableViewCells

   Reusing UITableViewCells

  Code Snippet Library

  Bronze Challenge: Sections

  Silver Challenge: Constant Rows

  Gold Challenge: Customizing the Table

 10. Editing UITableView

  Editing Mode

  Adding Rows

  Deleting Rows

  Moving Rows

  Bronze Challenge: Renaming the Delete Button

  Silver Challenge: Preventing Reordering

  Gold Challenge: Really Preventing Reordering

 11. UINavigationController

  UINavigationController

  An Additional UIViewController

  Navigating with UINavigationController

   Pushing view controllers

   Passing data between view controllers

   Appearing and disappearing views

  UINavigationBar

  Bronze Challenge: Displaying a Number Pad

  Silver Challenge: Dismissing a Number Pad

  Gold Challenge: Pushing More View Controllers

 12. Camera

  Displaying Images and UIImageView

   Taking pictures and UIImagePickerController

   Creating BNRImageStore

   NSDictionary

   Creating and using keys

   Core Foundation and toll-free bridging

   Wrapping up BNRImageStore

   Dismissing the keyboard

  Bronze Challenge: Editing an Image

  Silver Challenge: Removing an Image

  Gold Challenge: Camera Overlay

  For the More Curious: Recording Video

 13. UIPopoverController and Modal View Controllers

  Universalizing Homepwner

   Determining device family

  UIPopoverController

  More Modal View Controllers

   Dismissing modal view controllers

   Modal view controller styles

   Completion blocks

   Modal view controller transitions

  Bronze Challenge: Universalizing Whereami

  Silver Challenge: Peeling Aways the Layers

  Gold Challenge: Popover Appearance

  For the More Curious: View Controller Relationships

   Parent-child relationships

   Presenting-presenter relationships

   Inter-family relationships

 14. Saving, Loading, and Application States

  Archiving

  Application Sandbox

   Constructing a file path

  NSKeyedArchiver and NSKeyedUnarchiver

  Application States and Transitions

  Writing to the Filesystem with NSData

  More on Low-Memory Warnings

  Model-View-Controller-Store Design Pattern

  Bronze Challenge: PNG

  Silver Challenge: Archiving Whereami

  For The More Curious: Application State Transitions

  For the More Curious: Reading and Writing to the Filesystem

  For the More Curious: The Application Bundle

 15. Subclassing UITableViewCell

  Creating HomepwnerItemCell

   Configuring a UITableViewCell subclass’s interface

   Exposing the properties of HomepwnerItemCell

   Using HomepwnerItemCell

  Image Manipulation

  Relaying Actions from UITableViewCells

   Adding pointers to cell subclass

   Relaying the message to the controller

   Objective-C selector magic

   Presenting the image in a popover controller

  Bronze Challenge: Color Coding

  Silver Challenge: Cell Base Class

  Gold Challenge: Zooming

 16. Core Data

  Object-Relational Mapping

  Moving Homepwner to Core Data

   The model file

   NSManagedObject and subclasses

   Updating BNRItemStore

   Adding BNRAssetTypes to Homepwner

  More About SQL

  Faults

  Trade-offs of Persistence Mechanisms

  Bronze Challenge: Assets on the iPad

  Silver Challenge: New Asset Types

  Gold Challenge: Showing Assets of a Type

 17. Localization

  Internationalization Using NSLocale

  Localizing Resources

  NSLocalizedString and Strings Tables

  Bronze Challenge: Another Localization

  For the More Curious: NSBundle’s Role in Internationalization

 18. NSUserDefaults

  Updating Whereami

  Using NSUserDefaults

  Silver Challenge: Initial Location

  Gold Challenge: Concise Coordinates

  For the More Curious: The Settings Application

 19. Touch Events and UIResponder

  Touch Events

  Creating the TouchTracker Application

  Drawing with TouchDrawView

  Turning Touches Into Lines

  The Responder Chain

  Bronze Challenge: Saving and Loading

  Silver Challenge: Colors

  Gold Challenge: Circles

  For the More Curious: UIControl

 20. UIGestureRecognizer and UIMenuController

  UIGestureRecognizer Subclasses

  Detecting Taps with UITapGestureRecognizer

  UIMenuController

  UILongPressGestureRecognizer

  UIPanGestureRecognizer and Simultaneous Recognizers

  For the More Curious: UIMenuController and UIResponderStandardEditActions

  For the More Curious: More on UIGestureRecognizer

  Bronze Challenge: Clearing Lines

  Silver Challenge: Mysterious Lines

  Gold Challenge: Speed and Size

  Mega-Gold Challenge: Colors

 21. Instruments

  Static Analyzer

  Instruments

   Allocations Instrument

   Time Profiler Instrument

   Leaks Instrument

  Xcode Schemes

   Creating a new scheme

  Build Settings

 22. Core Animation Layer

  Layers and Views

  Creating a CALayer

  Layer Content

  Implicitly Animatable Properties

  Bronze Challenge: Another Layer

  Silver Challenge: Corner Radius

  Gold Challenge: Shadowing

  For the More Curious: Programmatically Generating Content

  For the More Curious: Layers, Bitmaps, and Contexts

 23. Controlling Animation with CAAnimation

  Animation Objects

  Spinning with CABasicAnimation

   Timing functions

   Animation completion

  Bouncing with a CAKeyframeAnimation

  Bronze Challenge: More Animation

  Silver Challenge: Even More Animation

  Gold Challenge: Chaining Animations

  For the More Curious: The Presentation Layer and the Model Layer

 24. UIStoryboard

  Creating a Storyboard

  UITableViewControllers in Storyboards

  Segues

  More on Storyboards

 25. Web Services and UIWebView

  Web Services

   Starting the Nerdfeed application

   NSURL, NSURLRequest, and NSURLConnection

   Formatting URLs and requests

   Working with NSURLConnection

   Collecting XML data

   Parsing XML with NSXMLParser

   Constructing the tree of model objects

   A quick tip on logging

  UIWebView

  For the More Curious: NSXMLParser

  For the More Curious: The Request Body

  For the More Curious: Credentials

  Bronze Challenge: More Data

  Silver Challenge: More UIWebView

 26. UISplitViewController and NSRegularExpression

  Splitting Up Nerdfeed

  Master-Detail Communication

  Displaying the Master View Controller in Portrait Mode

  Universalizing Nerdfeed

  NSRegularExpression

   Constructing a pattern string

  Bronze Challenge: Finding the Subforum

  Silver Challenge: Swapping the Master Button

  Silver Challenge: Processing the Reply

  Gold Challenge: Showing Threads

 27. Blocks

  Blocks and Block Syntax

   Declaring block variables

   Defining block literals

   Executing blocks

   More notes about blocks

  Basics of Using Blocks

  Variable Capturing

  Typical Block Usage

  For the More Curious: The __block Modifier, Abbreviated Syntax, and Memory

  For the More Curious: Pros and Cons of Callback Options

 28. Model-View-Controller-Store

  The Need for Stores

  Creating BNRFeedStore

  Using the Store

  Building BNRFeedStore

   Initiating the connection

   Another request

  JSON Serialization

  More on Store Objects

  Bronze Challenge: UI for Song Count

  Mega-Gold Challenge: Another Web Service

  For the More Curious: JSON Data

 29. Advanced MVCS

  Caching the RSS Feed

  Advanced Caching

   NSCopying

   Finishing the BNR feed

  Read and Unread Items

  Other Benefits of Store Objects

  Bronze Challenge: Pruning the Cache

  Silver Challenge: Favorites

  Gold Challenge: JSON Caching

  For the More Curious: Designing a Store Object

   Determining external sources

   Determining singleton status

   Determining how to deliver results

  For the More Curious: Automatic Caching and Cache.db

 30. iCloud

  iCloud Requirements

  Ubiquity Containers

  Provisioning a Ubiquity Container

  Core Data and iCloud

  For the More Curious: iCloud Backups

 31. Afterword

  What to do next

  Shameless plugs

 Index

 More From Big Nerd Ranch...

Introduction




        An aspiring iOS developer faces three basic hurdles:
    
	
            You must learn the Objective-C language. Objective-C is a small and simple
                extension to the C language. After the first four chapters of this book, you will have a working knowledge of Objective-C.
            

	
                You must master the big ideas. These include things like
                memory management techniques, delegation, archiving, and the proper use of view
                controllers. The big ideas take a few days to understand. When you reach the halfway point of this book, you will understand these big ideas.
        

	                
                You must master the frameworks. The eventual goal is to
                know how to use every method of every class in every framework in iOS.
                This is a project for a lifetime: there are over 3000 methods and more than 200
                classes available in iOS. To make things even worse, Apple adds new
                classes and new methods with every release of iOS. In this book, you will be introduced to each of the subsystems that make up the iOS SDK, but we will not 
                study each one deeply. Instead, our goal is get you to the point where you can search and understand Apple’s reference documentation.
        




    
We have used this material many times at our iOS Development Bootcamp at Big Nerd
        Ranch. It is well-tested and has helped hundreds of people become iOS application developers. We
        sincerely hope that it proves useful to you.
Prerequisites



This book assumes that you are already motivated to learn to write iOS apps. We
            won’t spend any time convincing you that the iPhone, the iPad, and the iPod touch are compelling pieces of
            technology.
We also assume that you know the C programming language and something about
            object-oriented programming. If this is not true, you should probably start with an
            introductory book on C and Objective-C, such as Objective-C Programming: The Big Nerd Ranch Guide.


What’s Changed in the Third Edition?



This edition assumes that the reader is using Xcode 4.3 and running applications on an iOS 5 device or simulator. 
With iOS 5, automatic reference counting (ARC) is the default memory management for iOS. We’ve redone the memory management chapter to address ARC, and we use ARC throughout the book. 
You’ll find new chapters on using gesture recognizers, storyboards, NSRegularExpression, and iCloud. We’ve also added two chapters dedicated to the the Model-View-Controller-Store design pattern, which we use at Big Nerd Ranch and believe is well-suited for many iOS applications. 
Besides these obvious changes, we made thousands of tiny improvements that were inspired by questions from our readers and our students. Every page of this book is just a little better than the corresponding page from the second edition.

Our Teaching Philosophy



This book will teach you the essential concepts of iOS programming. At the same time, you’ll type in a lot of code and build a bunch of applications. By the end of the book, you’ll have knowledge and experience. However, all the knowledge shouldn’t (and, in this book, won’t) come first. That’s sort of the traditional way we’ve all come to know and hate. Instead, we take a learn-while-doing approach. Development concepts and actual coding go together. 
Here’s what we’ve learned over the years of teaching iOS programming:
	We’ve learned what ideas people must have to get started programming, and we focus on that subset.

	We’ve learned that people learn best when these concepts are introduced as they are needed.

	We’ve learned that programming knowledge and experience grow best when they grow together.

	We’ve learned that “going through the motions” is much more important than it sounds. Many times we’ll ask you to start typing in code before you understand it. We get that you may feel like a trained monkey typing in a bunch of code that you don’t fully grasp. But the best way to learn coding is to find and fix your typos. Far from being a drag, this basic debugging is where you really learn the ins and outs of the code. That’s why we encourage you to type in the code yourself. You could just download it, but copying and pasting is not programming. We want better for you and your skills.



What does this mean for you, the reader? To learn this way takes some trust. And we appreciate yours. It also takes patience. As we lead you through these chapters, we will try to keep you comfortable and tell you what’s happening. However, there will be times when you’ll have to take our word for it. (If you think this will bug you, keep reading – we’ve got some ideas that might help.) Don’t get discouraged if you run across a concept that you don’t understand right away. Remember that we’re intentionally not providing all the knowledge you will ever need all at once. If a concept seems unclear, we will likely discuss it in more detail later when it becomes necessary. And some things that aren’t clear at the beginning will suddenly make sense when you implement them the first (or the twelfth) time. 
People learn differently. It’s possible that you will love how we hand out concepts on an as-needed basis. It’s also possible that you’ll find it frustrating. In case of the latter, here are some options:
        
	Take a deep breath and wait it out. We’ll get there, and so will you. 

	Check the index. We’ll let it slide if you look ahead and read through a more advanced discussion that occurs later in the book. 

	Check the online Apple documentation. This is an essential developer tool, and you’ll want plenty of practice using it. Consult it early and often.

	If it’s Objective-C or object-oriented programming concepts that are giving you a hard time (or if you think they will), you might consider backing up and reading our Objective-C Programming: The Big Nerd Ranch Guide.



    
        

How To Use This Book



This book is based on the class we teach at Big Nerd Ranch.  As such, it was designed to be consumed in a certain manner. 
Set yourself a reasonable goal, like “I will do one chapter every day.” When you sit down to attack a chapter, find a quiet place where you won’t be interrupted for at least an hour.  Shut down your email, your Twitter client, and your chat program. This is not a time for multi-tasking; you will need to concentrate.
Do the actual programming. You can read through a chapter first, if you’d like. But the real learning comes when you sit down and code as you go. You will not really understand the idea until you have written a program that uses it and, perhaps more importantly, debugged that program. 
A couple of the exercises require supporting files.  For example, in the first chapter you will need an icon for your Quiz application, and we have one for you. You can download the resources and solutions to the exercises from http://www.bignerdranch.com/​solutions/​iOSProgramming3ed.zip.
There are two types of learning.  When you learn about the Civil War, you are simply adding details to a scaffolding of ideas that you already understand.  This is what we will call “Easy Learning”.  Yes, learning about the Civil War can take a long time, but you are seldom flummoxed by it.  Learning iOS programming, on the other hand, is “Hard Learning,” and you may find yourself quite baffled at times, especially in the first few days. In writing this book, we have tried to create an experience that will ease you over the bumps in the learning curve.  Here are two things you can do to make the journey easier:

	Find someone who already knows how to write iOS applications and will answer your questions.  In particular, getting your application onto the device the first time is usually very frustrating if you are doing it without the help of an experienced developer.

	Get enough sleep. Sleepy people don’t remember what they have learned.






Using an eBook




      If you’re reading this book on a eReader,
      we want to point out that reading the code may be tricky at times.
      Longer lines of code will wrap to a second line
      based on the current font size.
      This bothers us because we’re really conscientious at Big Nerd Ranch
      about the way our code appears on the page.
      Clear visual patterns in code make code easier to understand.
    

      When you get to the point where you’re actually typing in code,
      we suggest opening the book on your Mac in Adobe Digital Editions.
      (Adobe Digital Editions is a free eReader application you can download
      from http://www.adobe.com/products/digitaleditions/.)
      Make the application window large enough that
      you can see the code with no wrapping lines.
      You will also be able to see the figures in full detail.
    

      The longest lines of code in this book are 86 monospace characters.
      Use the following sample to see how your eReader displays them.

[​y​u​m​m​y​I​c​e​C​r​e​a​m​ ​a​d​d​T​o​p​p​i​n​g​s​W​i​t​h​A​r​r​a​y​:​[​N​S​A​r​r​a​y​ ​a​r​r​a​y​W​i​t​h​O​b​j​e​c​t​s​:​c​a​r​a​m​e​l​,​ ​v​a​n​i​l​l​a​,​ ​n​i​l​]​]​;​


      You can play with your eReader's settings to find the best for viewing long code lines.
    

      If you are reading on the iPad with iBooks,
      we recommend you go to the Settings app, select iBooks,
      and set Full Justification  OFF
      and Auto-hyhenation  OFF.
      Unfortunately, iBooks always displays two pages in landscape mode
      so the only way to see the code with no wrapping
      is to hold the device in portrait mode
      and select the smallest (and it is quite small) font.
    

How This Book Is Organized



In this book, each chapter addresses one or more ideas of iOS development followed by hands-on practice. For more coding practice, we issue challenges towards the end of each chapter. We encourage you to take on at least some of these. They are excellent for firming up the concepts introduced in the chapter and making you a more confident iOS programmer. Finally, most chapters conclude with one or two “For the More Curious” sections that explain certain consequences of the concepts that were introduced earlier.
        
Chapter 1 introduces you to iOS programming as you build and deploy a tiny application. You’ll get your feet wet with Xcode and the iOS simulator along with all the steps for creating projects and files. The chapter includes a discussion of Model-View-Controller and how it relates to iOS development.
Chapters 2 and 3 provide an overview of Objective-C and memory management. Although you won’t create an iOS application in these two chapters, you will build and debug a tool called RandomPossessions to ground you in these concepts. 
In Chapters 4 and 5, you will learn about the Core Location and MapKit frameworks  and create a mapping application called Whereami. You will also get plenty of experience with the important design pattern of delegation as well as working with protocols, frameworks, object diagrams, the debugger, and the Apple documentation.
Chapters 6 and 7 focus on the iOS user interface with the Hypnosister and HypnoTime applications. You will get lots of practice working with views and view controllers as well as implementing panning, zooming, and navigating between screens using a tab bar.
In Chapter 8, you will create a smaller application named HeavyRotation while learning about notifications and how to implement autorotation in an application. You will also use autoresizing to make HeavyRotation iPad-friendly.
Chapter 9 introduces the largest application in the book – Homepwner. (By the way, “Homepwner” is not a typo; you can find the definition of “pwn” at www.urbandictionary.com.) This application keeps a record of your possessions in case of fire or other catastrophe. Homepwner will take nine chapters total to complete.
In Chapters 9, 10, and 15, you will build experience with tables. You will learn about table views, their view controllers, and their data sources. You will learn how to display data in a table, how to allow the user to edit the table, and how to improve the interface.
Chapter 11 builds on the navigation experience gained in Chapter 7. You will learn how to use UINavigationController, and you will give Homepwner a drill-down interface and a navigation bar.
In Chapter 12, you’ll learn how to take pictures with the camera and how to display and store images in Homepwner. You’ll use NSDictionary and UIImagePickerController.
In Chapter 13, you’ll learn about UIPopoverController for the iPad and modal view controllers. In addition, you will make Homepwner a universal application – an application that runs natively on both the iPhone and the iPad.
Chapter 14 delves into ways to save and load data. In particular, you will archive data in the Homepwner application using the NSCoding protocol. The chapter also explains the transitions between application states, such as active, background, and suspended.
Chapter 16 is an introduction to Core Data.  You will change the Homepwner application to store and load its data using an NSManagedObjectContext.
Chapter 17 introduces the concepts and techniques of internationalization and localization. You will learn about NSLocale, strings tables, and NSBundle as you localize parts of Homepwner. This chapter will complete the Homepwner application.
In Chapter 18, you will use NSUserDefaults to save user preferences in a persistent manner.
In Chapters 19 and 20, you’ll create a drawing application named TouchTracker to learn about touch events. You’ll see how to add multi-touch capability and how to use UIGestureRecognizer to respond to particular gestures.  You’ll also get experience with the first responder and responder chain concepts and more practice with NSDictionary.
In Chapter 21, you’ll learn how to use Instruments to optimize the performance of your applications.  This chapter also includes explanations of  Xcode schemes and the static analyzer.
Chapters 22 and 23 introduce layers and the Core Animation framework with a brief return to the HypnoTime application to implement animations. You will learn about implicit animations and animation objects, like CABasicAnimation and CAKeyframeAnimation.
Chapter 24 covers a new feature of iOS for building applications called storyboards. You’ll piece together an application using UIStoryboard and learn more about the pros and cons of using storyboards to construct your applications.
Chapter 25 ventures into the wide world of web services as you create the Nerdfeed application. This application fetches and parses an RSS feed from a server using NSURLConnection and NSXMLParser.  Nerdfeed will also display a web page in a UIWebView.
In Chapter 26, you will learn about UISplitViewController and add a split view user interface to Nerdfeed to take advantage of the iPad’s larger screen size. 
Chapter 27 will teach you about the how and why of blocks – an increasingly important feature of the iOS SDK. You’ll create a simple application to prepare for using blocks in Nerdfeed in the next chapter.
In Chapters 28 and 29, you will change the architecture of the Nerdfeed application so that it uses the Model-View-Controller-Store design pattern. You’ll learn about request logic and how to best design an application that communicates with external sources of data.
In Chapter 30, you’ll learn how to enable an application to use iCloud to synchronize and back up data across a user’s iOS devices.

Style Choices



This book contains a lot of code.  We have attempted to make that code and the designs behind it exemplary. We have done our best to follow the idioms of the community, but at times we have wandered from what you might see in Apple’s sample code or code you might find in other books.  You may not understand these points now, but it is best that we spell them out before you commit to reading this book:


	
    There is an alternative syntax for calling accessor methods known as dot-notation.  In this book, we will explain dot-notation, but we will not use it. For us and for most beginners, dot-notation tends to obfuscate what is really happening.

	
    In our subclasses of UIViewController, we always change the designated initializer to init.  It is our opinion that the creator of the instance should not need to know the name of the XIB file that the view controller uses, or even if it has a XIB file at all.

	
    We will always create view controllers programmatically.  Some programmers will instantiate view controllers inside XIB files.  We’ve found this practice leads to projects that are difficult to comprehend and debug.

	
    We will nearly always start a project with the simplest template project: the empty application. The boilerplate code in the other template projects doesn’t follow the rules that precede this one, so we think they make a poor basis upon which to build.




We believe that following these rules makes our code easier to understand and easier to maintain.  After you have worked through this book (where you will do it our way), you should try breaking the rules to see if we’re wrong.


Typographical Conventions



 To make this book easier to read, certain items appear in certain font
      styles. Class names, method names, and function names appear in bold and slightly smaller than
      the default size. Class names start with capital letters, and method names start with
      lowercase letters. In this book, method and function names will be formatted the same for
      simplicity’s sake. For example, “In the loadView method of the
          RexViewController class, use the NSLog
        function to print the value to the console.”
    
 Variables, constants, types, and file names appear in a smaller size but are
      not bold. So you’ll see, “The variable fido will be of type
          float. Initialize it to M_PI.”
    
 Menu choices and buttons appear in a smaller size and are grey. For example,
        “Open Xcode and select New Project... from the File menu. Select Window-based Application and then click
          Choose....”
    
All code blocks will be in a fixed-width font. 
          Code that you need to type in is always bold. 
          For example, in the following code, you would type in everything but the first and last lines.
         (Those lines are already in the code and appear here to let you know where to add the new stuff.)

@​i​n​t​e​r​f​a​c​e​ ​Q​u​i​z​A​p​p​D​e​l​e​g​a​t​e​ ​:​ ​N​S​O​b​j​e​c​t​ ​<​U​I​A​p​p​l​i​c​a​t​i​o​n​D​e​l​e​g​a​t​e​>​ ​{​
 ​ ​ ​ ​i​n​t​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​m​o​d​e​l​ ​o​b​j​e​c​t​s​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​q​u​e​s​t​i​o​n​s​;​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​a​n​s​w​e​r​s​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​v​i​e​w​ ​o​b​j​e​c​t​s​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​q​u​e​s​t​i​o​n​F​i​e​l​d​;​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​a​n​s​w​e​r​F​i​e​l​d​;​
 ​ ​ ​ ​U​I​W​i​n​d​o​w​ ​*​w​i​n​d​o​w​;​
}​


          Code you should delete is struck through:

 ​ ​ ​ ​i​n​t​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​;​


    

Necessary Hardware and Software





       
You can only develop iOS apps on an Intel Mac.  You will need to download Apple’s iOS SDK, which includes Xcode (Apple’s Integrated Development Environment), the iOS simulator, and other development tools.
You should join Apple’s iOS Developer Program, which costs $99/year, for three reasons:


	Downloading the latest developer tools is free for members.

	Only signed apps will run on a device, and only members can sign apps. If you want to test your app on your device, you will need to join.

	You can’t put an app in the store until you are a member.




    If you are going to take the time to work through this entire book, membership in the iOS Developer Program is, without question, worth the cost. Go to http://developer.apple.com/​programs/​ios/ to join.
What about iOS devices? Most of the applications you will develop in the first half of the book are for the iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear in an iPhone-sized window. Not a compelling use of the iPad, but that’s okay when you’re starting with iOS. In these first chapters, you’ll be focused on learning the fundamentals of the iOS SDK, and these are the same across iOS devices. Later in the book, we’ll look at some iPad-only options and how to make applications run natively on both iOS device families.
      
Excited yet? Good. Let’s get started.

1
A Simple iOS Application




        In this chapter, you are going to write your first iOS application. You probably won’t
        understand everything that you are doing, and you may feel stupid just going through the
        motions. But going through the motions is enough for now. Mimicry is a powerful form of
        learning; it is how you learned to speak, and it is how you’ll start iOS
        programming. As you become more capable, you can experiment and challenge yourself to do
        creative things on the platform. For now, just do what we show you. The details will be
        explained in later chapters.
    

        When you are writing an iOS application, you must answer two basic questions: 
        
	
                How do I get my objects created and configured properly? (Example: “I want a
                button here entitled Show Estimate.”)
            

	
                How do I deal with user interaction? (Example: “When the user presses the
                button, I want this piece of code to be executed.”)
            



         
        Most of this book is dedicated to answering these questions.
    

        When an iOS application starts, it puts a view on the screen.
        You can think of this view as the background on which everything else appears: buttons, labels,
        etc. Buttons and labels are also views. In fact, anything that can appear to the user is a view.
    

        
        
        The iOS SDK is an object-oriented library, and views are represented by
        objects. Each view
        is an instance of one of several subclasses of the UIView class. For example, a
        button is an instance of UIButton, which is a subclass of
            UIView. (We will discuss objects, instances, and classes in detail in Chapter 2.)
    
        
        For your first iOS application, you will visually create and configure your view objects.
        This application, called Quiz, will show a user a question and then reveal the answer when the user presses a button. Pressing another 
        button will show a new question (Figure 1.1).
    
Figure 1.1  Your first application: Quiz
[image: Your first application: Quiz]


Creating an Xcode Project




            Open Xcode and, from the File menu, select New and then New Project.... 
        

            A new workspace window will appear, and a sheet will slide from its toolbar with several application templates to choose from. 
            On the lefthand side, select Application from the iOS section. From the choices that appear, select Single View Application 
            and press the Next button (Figure 1.2). (Apple changes these templates and their names often. If you do not see the same options for selecting 
            a template, either now or later in the book, check our forums at http://forums.bignerdranch.com for instructions on how to proceed.)
        
Figure 1.2  Creating a new project
[image: Creating a new project]



            On the next pane, enter Quiz for the Product Name and com.bignerdranch as the Company Identifier. (Or replace bignerdranch with your company name). Enter Quiz in the Class Prefix field, and from the pop-up menu labeled Device Family, select iPhone. We only want the box labeled Use Automatic Reference Counting checked, so uncheck the others. Once your screen looks like Figure 1.3, press Next.
        
Figure 1.3  Naming a new project
[image: Naming a new project]



We chose iPhone for this application’s device family, but Quiz will run on the iPad, too. It will run in an iPhone-sized window that does not make the most of the iPad screen, but that’s okay for now. For the applications in the first part of this book, we will stick with the iPhone device family template. In these chapters, you’ll be focused on learning the fundamentals of the iOS SDK, and these are the same across devices. Later, we will look at some iPad-only options and how to make applications run natively on both iOS device families.
        

            Now another sheet will appear asking you to save the project. Save the project in the directory where you plan to store all of the exercises in this book. You can uncheck the box that creates a local git repository, but keeping it checked doesn’t hurt anything.)
        

            Once the project is created, it will open in the Xcode workspace window (Figure 1.4). 

Figure 1.4  Xcode workspace window
[image: Xcode workspace window]



            (Feeling overwhelmed by the number of buttons, views, and gadgets in the workspace? Don’t worry – in this chapter, we’ll cover a few in detail, and we’ll cover others 
            later as they are needed. In the meantime, you can mouse over any of the buttons for a brief description of what it does.)
        

            Take a look at the lefthand side of the workspace window. This area is 
            called the navigator area, and it displays different navigators – tools that show you different pieces of your project. You can choose which 
            navigator to use by selecting one of the icons in the navigator selector, which is the bar just above the navigator area. 
        

            The navigator currently open is the 
            project navigator. (If the project navigator is not visible, click the [image: Xcode workspace window] icon in the navigator selector.)
            The project navigator shows you the files that make up your project (Figure 1.5). 
            These files can be grouped into folders to help you organize your project. A few groups have been 
            created by the template for you; you can rename them whatever you want or add new ones.
            The groups are purely for the organization of files and do not correlate to the filesystem in any way. 
        
Figure 1.5  Quiz application’s files in the project navigator
[image: Quiz application’s files in the project navigator]




Building Interfaces




            Now you’re going to create the user interface for Quiz using Xcode’s visual tool for building interfaces.
            In many GUI builders on other platforms, you describe what you want an application to look
            like and then press a button to generate a bunch of code. Xcode’s 
            interface builder is different. It is an object editor: you create and configure view objects and then save them into an archive. The archive is a XIB (pronounced “zib”) file. 
        

            A XIB file is an XML representation of the archived objects. When you build a project, the XIB file 
            is compiled into a NIB file. Developers work with XIB files (they’re easier to edit), and 
            applications use NIB files (they’re smaller and easier to parse). However, most iOS developers use the words XIB and NIB interchangeably.
        

            When you build an application, the compiled NIB file is copied into the application’s bundle. 
            The bundle is a directory containing the application’s executable and any resources the executable uses.
        

            When your application reads in, or loads, the NIB file from the bundle at runtime, the objects in the archive are
            brought to life. Your first application will have only one NIB file, and it will be loaded 
            when the application first launches. A complex application, however, can have many NIB files that are loaded as they are needed.
        

            In the project navigator, find and select the file named QuizViewController.xib.
            When you open this (or any) XIB file from the project navigator, the editor area displays a dock view and a canvas.
            The dock view is on the lefthand side of the editor area, and it shows the objects in 
            the XIB file. You can expand the dock view into an outline by clicking the disclosure button in the bottom left corner 
            of the canvas (Figure 1.6). The dock shows fewer details and is useful when screen real estate is running low.
            However, for learning purposes, it is easier to see what is going on in the outline view.
        
Figure 1.6  Editing a XIB file in Xcode
[image: Editing a XIB file in Xcode]



            Right now, the outline view shows that QuizViewController.xib contains three objects: 
        
	File's Owner
	 
                        This is the object that will have access to the objects archived in the XIB file.
                        It will be an instance of QuizViewController, which is the object responsible 
                        for managing events that occur on this interface.
                    
                    
                    

	First Responder
	
                        This object doesn’t have much use in iOS right now; it is
                        a relic from Desktop Cocoa. You can ignore it.
                

	View
	
                        An instance of UIView that represents the application interface.
                    
                




            The canvas portion of the editor area is for viewing and manipulating the layout of your interface. Click on the 
            View object in the outline view to display it on the canvas. You can move the view
            by dragging in the blue-shaded area around it. Note that moving the view doesn’t 
            change anything about the actual object; it just re-organizes the canvas. You can also close the view by clicking on 
            the x in its top left corner. Again, this doesn’t delete the view; it just removes it 
            from the canvas. You can get it back by selecting it again in the outline view.
        

            The view object in Figure 1.6 is the foundation of your user interface and appears exactly as it will in your application. 
            Flip back to Figure 1.1, and you’ll see that Quiz needs four additional interface elements: two text labels and two buttons. 
        

            
            To add these elements, you need to get to the 
            utilities area. In the top-right corner of Xcode’s toolbar, find the [image: Editing a XIB file in Xcode] buttons labeled View. These buttons toggle the navigator, debug area, and utilities area. Click the right button to reveal the utilities area 
            (Figure 1.4).
        

            The utilities area appears to the right of the editor area and has two sections: the inspector and the library. The top section is the inspector, which 
            contains settings for the file that is currently displayed in the editor area. The bottom section is the library, 
            which lists items you can add to a file or project. You can change the relative sizes of these sections by dragging the line between them.
        

            At the top of each section is a selector for different types of inspectors and libraries (Figure 1.7).
            From the library selector, select the [image: Editing a XIB file in Xcode]
            icon to reveal the object library. This library
            contains the objects you can add to a XIB file.  
        
Figure 1.7  Xcode utilities area
[image: Xcode utilities area]



            In the library, find the Label object. (It may be right at the top; if not, scroll down the list or use the search bar at 
            the bottom of the library.) Then select the label in the library and drag it onto the view object that is already on the canvas. 
            Position this label in the center of the view, near the top.
            Your interface now includes a label, and in the outline view, notice that there is now a Label underneath the View.
        

            Next, drag another label onto the view  and position it in the center closer to the bottom. Then, find 
            Round Rect Button in the library and drag two buttons onto the view. Position one below each label.
            You can resize an object by selecting it and then dragging its corners and edges. Make all four objects wide enough that they span most of the window.
        

            Now let’s give the buttons helpful titles. 
            You can edit the title of a button simply by double-clicking it. Change the top button to Show Question and 
            the bottom button to Show Answer. You can edit the text of a label the same way; delete the text in the top label so that it is blank and have the bottom label display ???. Your interface should look like the one in 
            Figure 1.8.
        
Figure 1.8  Adding buttons and labels to the view
[image: Adding buttons and labels to the view]



            The labels and buttons are objects (of type UILabel and UIButton), and objects have instance variables that specify their behavior and appearance.     
            For example, when you entered a title for the top button, you set that button’s title instance variable. You 
            can edit a few of these instance variables directly on the canvas, but most must be edited in the attributes inspector.  Select the bottom label and then click the [image: Adding buttons and labels to the view]
            icon in the inspector selector to reveal the attributes inspector.  
        

           In the attributes inspector,  you can set the instance variables of the selected object. For example, labels have a textAlignment instance variable. The default is left-aligned, but we want this text to be centered. Near the top of this inspector, find the segmented 
            control for alignment. Select the centered text option, as shown in Figure 1.9. 
        
Figure 1.9  Centering the label text
[image: Centering the label text]



            Notice the ??? is now centered in the bottom label. Now center the text in the top label. (There’s no text now, but there will be in the running application.)
            

            Your application’s interface now looks like it should, but before we start writing code, let’s dive into some programming theory.
        

Model-View-Controller




            You may hear iOS programmers mention the Model-View-Controller pattern. What this means is every object you 
            create is exactly one of the following: a model object, a view object, or a controller object. 
        

            View objects are visible to the user. In Quiz, the buttons, labels, and the view they are placed on top of are all view objects. 
            Views are usually standard UIView subclasses (UIButton, UISlider), 
            but you will sometimes write custom view classes. These typically have names like DangerMeterView or
            IncomeGraphView.
        

            Model objects hold data and know nothing about the user interface. In this application, the model 
            objects will be two lists of strings: the questions array and the answers array. Figure 1.10 
            displays the object diagram of the Quiz application’s model objects. 
        
Figure 1.10  Diagram of model objects in Quiz
[image: Diagram of model objects in Quiz]



            Model objects typically use standard collection classes (NSArray, NSDictionary,
            NSSet) and standard value types (NSString, NSDate,
            NSNumber). But there can be custom classes, which typically have names that sound like data-bearing 
            objects, such as InsurancePolicy or PlayerHistory. 
        

            View and model objects are the factory workers of an application – they focus tightly on specific tasks. 
            For example, an instance of UILabel (a view object) knows how to display text in a given font within 
            a given rectangle. An NSString instance (a model object) knows how to store a character string. But the label doesn’t know what text it should display, and the string doesn’t know what characters it should store.
        

            This is where controller objects come in. Controllers are the managers in an application. They keep the view and model objects in sync,
            control the “flow” of the application, and save the model objects out to the filesystem (Figure 1.11). 
            Controllers are the least reusable classes 
            that you will write, and they tend to have names like ScheduleController and ScoreViewController. 
        
Figure 1.11  MVC pattern
[image: MVC pattern]


 
            When you create a new iOS project from a template, the template automatically 
            makes a controller object for you. For Quiz, this controller is the QuizViewController. 
            Most applications have more than one controller object, but a simple application like Quiz only needs one. 
            (Actually, the template creates another controller for Quiz – the QuizAppDelegate. 
            Every iOS application has an “app delegate” object, and it is the primary controller of the application. However, to keep things simple, 
            we won’t use the app delegate until Chapter 6.) 
        

            One of the QuizViewController’s tasks will be 
            showing the user a new question when the Show Question button is tapped. Tapping this button will trigger a method in 
            the QuizViewController. This method will retrieve a new question from an array of questions and place that question 
            in the top label. These interactions are laid out in the object diagram for Quiz shown in Figure 1.12. 
            
Figure 1.12  Object diagram for Quiz
[image: Object diagram for Quiz]



            This diagram is the big picture of Quiz. It’s okay if it doesn’t make perfect sense yet; it will make more by the end of the chapter.
        

Declarations




            To manage its relationships and responsibilities, the QuizViewController object needs five instance variables and two methods. In this section, you 
            will declare these in the QuizViewController header file, QuizViewController.h.
        
Declaring instance variables



                 
                Here are the five instance variables QuizViewController
                needs: 
	questions
	a pointer to an NSMutableArray containing
                                instances of NSString

	answers
	a pointer to another NSMutableArray
                                containing instances of NSString

	currentQuestionIndex
	an int that holds the index of the current question
                                in the questions array

	questionField
	a pointer to the UILabel object where the
                                current question will be displayed

	answerField
	a pointer to the UILabel object where the
                                current answer will be displayed




                In the project navigator, select QuizViewController.h to open the file in the editor. Add the following code: a set of curly brackets and, inside the brackets,
                the declarations for the five instance variables. Notice the bold type? In this book, code that you need to add is always bold; 
                the code that’s not bold is there to tell you where to type in the new stuff.


@​i​n​t​e​r​f​a​c​e​ ​Q​u​i​z​V​i​e​w​C​o​n​t​r​o​l​l​e​r​ ​:​ ​U​I​V​i​e​w​C​o​n​t​r​o​l​l​e​r​
{​
 ​ ​ ​ ​i​n​t​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​m​o​d​e​l​ ​o​b​j​e​c​t​s​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​q​u​e​s​t​i​o​n​s​;​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​a​n​s​w​e​r​s​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​v​i​e​w​ ​o​b​j​e​c​t​s​ ​-​ ​d​o​n​'​t​ ​w​o​r​r​y​ ​a​b​o​u​t​ ​I​B​O​u​t​l​e​t​ ​-​
 ​ ​ ​ ​/​/​ ​w​e​'​l​l​ ​t​a​l​k​ ​a​b​o​u​t​ ​i​t​ ​s​h​o​r​t​l​y​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​q​u​e​s​t​i​o​n​F​i​e​l​d​;​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​a​n​s​w​e​r​F​i​e​l​d​;​
}​

@​e​n​d​


                (Scary syntax? Feelings of dismay? Don’t panic – you will learn more about the Objective-C
                language in the next chapter. For now, just keep going.) 
            

Declaring methods




                Each of the buttons needs to trigger a method in the QuizViewController. A method is a lot like a function – a list of instructions to be executed. Declare two methods in
                    QuizViewController.h. Add this code after the curly brackets and before the @end.


@​i​n​t​e​r​f​a​c​e​ ​Q​u​i​z​V​i​e​w​C​o​n​t​r​o​l​l​e​r​ ​:​ ​U​I​V​i​e​w​C​o​n​t​r​o​l​l​e​r​
{​
 ​ ​ ​ ​i​n​t​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​m​o​d​e​l​ ​o​b​j​e​c​t​s​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​q​u​e​s​t​i​o​n​s​;​
 ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​a​n​s​w​e​r​s​;​

 ​ ​ ​ ​/​/​ ​T​h​e​ ​v​i​e​w​ ​o​b​j​e​c​t​s​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​q​u​e​s​t​i​o​n​F​i​e​l​d​;​
 ​ ​ ​ ​I​B​O​u​t​l​e​t​ ​U​I​L​a​b​e​l​ ​*​a​n​s​w​e​r​F​i​e​l​d​;​
}​

-​ ​(​I​B​A​c​t​i​o​n​)​s​h​o​w​Q​u​e​s​t​i​o​n​:​(​i​d​)​s​e​n​d​e​r​;​
-​ ​(​I​B​A​c​t​i​o​n​)​s​h​o​w​A​n​s​w​e​r​:​(​i​d​)​s​e​n​d​e​r​;​

@​e​n​d​


                Save QuizViewController.h. 
            

                What do IBOutlet and IBAction do in the declarations you just entered?  They allow you to connect your controller and your view objects in the XIB file. 
            


Making Connections




            A connection lets one object know where another object is in memory so that the two objects can work together. 
            When the Quiz application loads QuizViewController.xib, the view objects that make up the interface and the QuizViewController 
            have no idea how to reach each other. The QuizViewController
            needs to know where the labels are in memory so that it can tell them what to display. The buttons 
            need to know where the QuizViewController is so that they can report when they are tapped.
            Your objects need connections.
        

            Figure 1.13 shows the connections for Quiz. Some have  
            already been made by the template (between the view outlet of QuizViewController and
            the UIView instance, for example), and some were made implicitly (dragging objects onto the view object in the XIB file
            set up connections between the view and the buttons and labels). However, you still have a few more connections to make to get your objects communicating properly.    
        
Figure 1.13  Current connections and needed connections
[image: Current connections and needed connections]


 
            Here are the missing connections:
         
	
                QuizViewController, the controller object, must have pointers to the
                    UILabel instances so it can tell them what to display.
                

	
                    The UIButton instances must have pointers to the QuizViewController 
                    so they can send messages to the controller when tapped.
                




        
Setting pointers




                Let’s start with the connections to the UILabel instances. The instance of QuizViewController has a pointer 
                called questionField. You want questionField to point to the instance of UILabel at the top of the view.
            

                Select QuizViewController.xib in the project navigator to reopen it. In the outline view, find the File's Owner object (which is standing in for the QuizViewController). Right-click or Control-click on the File's Owner
                to bring up the connections panel (Figure 1.14). Then drag from the circle beside questionField 
                to the UILabel.
                
Figure 1.14  Setting questionField
[image: Setting questionField]



            

                (If you do not see questionField here, double-check your QuizViewController.h file for typos. 
                Did you end each line with a semicolon? Have you saved the file since you added questionField?)
            

                Now when this XIB file is loaded when the application launches,
                the QuizViewController’s questionField pointer will automatically point to this
                instance of UILabel. This will allow the QuizViewController to talk to the label it calls questionField.
                This is the label on top of the screen.
            

                Next, drag from the circle beside answerField to the other UILabel (Figure 1.15).
                    
Figure 1.15  Setting answerField
[image: Setting answerField]


 
                Notice that you drag from the object with the pointer
                 to the object that you want that pointer to point
                at. Also, notice that the pointers that appear in the connections panel are the ones that you 
                decorated with IBOutlet in QuizViewController.h.
            

Setting targets and actions




                When a UIButton is tapped, it sends a message to
                another object. The object that is sent the message is called the target. The message is called the action, and it is the name
                of the method that tapping the button should trigger. So the button needs answers to two questions:
                “Who’s the target?” and “What’s the action?”   For the Show Question button, we want the target to be
                QuizViewController and the action to be
                    showQuestion:.
            

               To set an object’s target and
                action, you Control-drag from the object to its target. When you release the mouse, the target is set, and a pop-up
                menu appears that lets you choose the action. Select the Show Question button and 
                Control-drag (or right-drag) to the
                 File's Owner (QuizViewController). Once File's Owner is highlighted, release the mouse button and choose
                    showQuestion: from the pop-up menu, as shown in Figure 1.16. Notice that the choices in this menu are the
                methods you decorated with IBAction in QuizViewController.h. 
                
                
                
Figure 1.16  Setting Show Question target/action
[image: Setting Show Question target/action]



                Now set the target and action of the Show Answer button.
                Select the button and Control-drag from the button to the File's Owner. Then choose
                    showAnswer: from the pop-up menu (Figure 1.17). 
            
Figure 1.17  Setting Show Answer target/action
[image: Setting Show Answer target/action]



Summary of connections




                               
                There are now five connections between your QuizViewController
                and other objects. You’ve set the pointers answerField and questionField to point at the labels. That’s two. The
                QuizViewController is the target for both buttons. That’s four. The project’s template made one additional 
                connection: the view outlet of QuizViewController is connected to the View object that represents
                the background of the application. That makes five. 
            

                You can check these connections in the connections inspector. Select the File's Owner in the outline view and then click the [image: Summary of connections]
                icon in the inspector selector to reveal the connections inspector in the utilities area. 
                (Figure 1.18).
                
                
Figure 1.18  Checking connections in the Inspector
[image: Checking connections in the Inspector]



            

                Your XIB file is complete. The view objects have
                been created and configured, and all
                the necessary connections have been made to the controller object. Save your XIB file, and let’s move on to writing methods. 
            


Implementing Methods




            Methods and instance variables are declared in the header file (in this case, QuizViewController.h), 
            but the actual code for the methods is placed in the implementation file (in this case, QuizViewController.m). 
            Select QuizViewController.m in the project navigator.
        

            When you create a new application in Xcode, the template fills in a lot of boiler-plate code. This code may be useful for you later on,
            but for now, it is distracting. So we’re going to remove it. In QuizViewController.m, delete everything between the @implementation
            and @end directives so that QuizViewController.m looks like this:
            
@​i​m​p​l​e​m​e​n​t​a​t​i​o​n​ ​Q​u​i​z​V​i​e​w​C​o​n​t​r​o​l​l​e​r​

@​e​n​d​


        

            When the application launches, the QuizViewController will be sent the message initWithNibName:bundle:. In QuizViewController.m, implement the initWithNibName:bundle:
            method by adding the following code that creates two arrays and fills them with questions and answers. 

@​i​m​p​l​e​m​e​n​t​a​t​i​o​n​ ​Q​u​i​z​V​i​e​w​C​o​n​t​r​o​l​l​e​r​

-​ ​(​i​d​)​i​n​i​t​W​i​t​h​N​i​b​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​i​b​N​a​m​e​O​r​N​i​l​ ​b​u​n​d​l​e​:​(​N​S​B​u​n​d​l​e​ ​*​)​n​i​b​B​u​n​d​l​e​O​r​N​i​l​
{​
 ​ ​ ​ ​/​/​ ​C​a​l​l​ ​t​h​e​ ​i​n​i​t​ ​m​e​t​h​o​d​ ​i​m​p​l​e​m​e​n​t​e​d​ ​b​y​ ​t​h​e​ ​s​u​p​e​r​c​l​a​s​s​
 ​ ​ ​ ​s​e​l​f​ ​=​ ​[​s​u​p​e​r​ ​i​n​i​t​W​i​t​h​N​i​b​N​a​m​e​:​n​i​b​N​a​m​e​O​r​N​i​l​ ​b​u​n​d​l​e​:​n​i​b​B​u​n​d​l​e​O​r​N​i​l​]​;​
 ​ ​ ​ ​i​f​ ​(​s​e​l​f​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​t​w​o​ ​a​r​r​a​y​s​ ​a​n​d​ ​m​a​k​e​ ​t​h​e​ ​p​o​i​n​t​e​r​s​ ​p​o​i​n​t​ ​t​o​ ​t​h​e​m​
 ​ ​ ​ ​ ​ ​ ​ ​q​u​e​s​t​i​o​n​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​a​n​s​w​e​r​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​A​d​d​ ​q​u​e​s​t​i​o​n​s​ ​a​n​d​ ​a​n​s​w​e​r​s​ ​t​o​ ​t​h​e​ ​a​r​r​a​y​s​
 ​ ​ ​ ​ ​ ​ ​ ​[​q​u​e​s​t​i​o​n​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​W​h​a​t​ ​i​s​ ​7​ ​+​ ​7​?​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​a​n​s​w​e​r​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​1​4​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​[​q​u​e​s​t​i​o​n​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​W​h​a​t​ ​i​s​ ​t​h​e​ ​c​a​p​i​t​a​l​ ​o​f​ ​V​e​r​m​o​n​t​?​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​a​n​s​w​e​r​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​M​o​n​t​p​e​l​i​e​r​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​[​q​u​e​s​t​i​o​n​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​F​r​o​m​ ​w​h​a​t​ ​i​s​ ​c​o​g​n​a​c​ ​m​a​d​e​?​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​a​n​s​w​e​r​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​G​r​a​p​e​s​"​]​;​
 ​ ​ ​ ​}​

 ​ ​ ​ ​/​/​ ​R​e​t​u​r​n​ ​t​h​e​ ​a​d​d​r​e​s​s​ ​o​f​ ​t​h​e​ ​n​e​w​ ​o​b​j​e​c​t​
 ​ ​ ​ ​r​e​t​u​r​n​ ​s​e​l​f​;​
}​

@​e​n​d​


As you work through this book, you will type a lot of code. Notice that as you were typing this code, Xcode was ready to fill in parts of it for you. For example, when you started typing
           initWithNibName:bundle:,
            it suggested this method before you could finish. You can hit the Return key to accept Xcode’s suggestion or select another suggestion from the pop-up box that appears.
        

However, there are two things to watch out for when using code-completion. First, when you accept a code-completion suggestion for a method that takes arguments, Xcode puts placeholders
            in the areas for the arguments. 

Placeholders are not valid code, and you have to replace them to build the application. This can be confusing because placeholders often have the same names that you want your arguments to have. So the text of the code looks completely correct, but you get an error. 
        

            Figure 1.19 shows two placeholders you might have seen when typing in the previous code.
Figure 1.19  Example of code-completion placeholder and errors
[image: Example of code-completion placeholder and errors]



See the nibNameOrNil and nibBundleOrNil in the first line of the implementation of initWithNibName:bundle:? Those are placeholders. You can tell because they are inside slightly-shaded, rounded rectangles. The fix is to delete the placeholders and type in arguments of your own (with the same names). The rounded rectangles will go away, and your code will be correct and valid.

            Second, don’t blindly accept the first suggestion Xcode gives you without verifying 
            it. Cocoa Touch uses naming conventions, which often cause distinct methods, types, and variables to have very similar names. Many times, the code-completion will suggestion something 
            that looks an awful lot like what you want, but it is not the code you are looking for. Always double-check.
        

            Now back to your code. In the declarations in QuizViewController.h, neither questions 
            or answers is labeled IBOutlet. 
            This is because the objects that questions 
        and answers point to are created and configured programmatically in the code above instead of in the XIB file. This is a standard practice: view objects 
        are typically created in XIB files, and model objects are always created programmatically.
            
In addition to the  initWithNibName:bundle: method, we need two action methods for when the buttons are tapped. In QuizViewController.m, 
          add the following code after the implementation of initWithNibName:bundle:. Make sure this code is before the @end directive but not inside the curly brackets of the initWithNibName:bundle: implementation.


 ​ ​ ​ ​.​.​.​
 ​ ​ ​ ​/​/​ ​R​e​t​u​r​n​ ​t​h​e​ ​a​d​d​r​e​s​s​ ​o​f​ ​t​h​e​ ​n​e​w​ ​o​b​j​e​c​t​
 ​ ​ ​ ​r​e​t​u​r​n​ ​s​e​l​f​;​
}​

-​ ​(​I​B​A​c​t​i​o​n​)​s​h​o​w​Q​u​e​s​t​i​o​n​:​(​i​d​)​s​e​n​d​e​r​
{​
 ​ ​ ​ ​/​/​ ​S​t​e​p​ ​t​o​ ​t​h​e​ ​n​e​x​t​ ​q​u​e​s​t​i​o​n​
 ​ ​ ​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​+​+​;​

 ​ ​ ​ ​/​/​ ​A​m​ ​I​ ​p​a​s​t​ ​t​h​e​ ​l​a​s​t​ ​q​u​e​s​t​i​o​n​?​
 ​ ​ ​ ​i​f​ ​(​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​ ​=​=​ ​[​q​u​e​s​t​i​o​n​s​ ​c​o​u​n​t​]​)​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​G​o​ ​b​a​c​k​ ​t​o​ ​t​h​e​ ​f​i​r​s​t​ ​q​u​e​s​t​i​o​n​
 ​ ​ ​ ​ ​ ​ ​ ​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​ ​=​ ​0​;​
 ​ ​ ​ ​}​

 ​ ​ ​ ​/​/​ ​G​e​t​ ​t​h​e​ ​s​t​r​i​n​g​ ​a​t​ ​t​h​a​t​ ​i​n​d​e​x​ ​i​n​ ​t​h​e​ ​q​u​e​s​t​i​o​n​s​ ​a​r​r​a​y​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​q​u​e​s​t​i​o​n​ ​=​ ​[​q​u​e​s​t​i​o​n​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​]​;​

 ​ ​ ​ ​/​/​ ​L​o​g​ ​t​h​e​ ​s​t​r​i​n​g​ ​t​o​ ​t​h​e​ ​c​o​n​s​o​l​e​
 ​ ​ ​ ​N​S​L​o​g​(​@​"​d​i​s​p​l​a​y​i​n​g​ ​q​u​e​s​t​i​o​n​:​ ​%​@​"​,​ ​q​u​e​s​t​i​o​n​)​;​

 ​ ​ ​ ​/​/​ ​D​i​s​p​l​a​y​ ​t​h​e​ ​s​t​r​i​n​g​ ​i​n​ ​t​h​e​ ​q​u​e​s​t​i​o​n​ ​f​i​e​l​d​
 ​ ​ ​ ​[​q​u​e​s​t​i​o​n​F​i​e​l​d​ ​s​e​t​T​e​x​t​:​q​u​e​s​t​i​o​n​]​;​

 ​ ​ ​ ​/​/​ ​C​l​e​a​r​ ​t​h​e​ ​a​n​s​w​e​r​ ​f​i​e​l​d​
 ​ ​ ​ ​[​a​n​s​w​e​r​F​i​e​l​d​ ​s​e​t​T​e​x​t​:​@​"​?​?​?​"​]​;​
}​

-​ ​(​I​B​A​c​t​i​o​n​)​s​h​o​w​A​n​s​w​e​r​:​(​i​d​)​s​e​n​d​e​r​
{​
 ​ ​ ​ ​/​/​ ​W​h​a​t​ ​i​s​ ​t​h​e​ ​a​n​s​w​e​r​ ​t​o​ ​t​h​e​ ​c​u​r​r​e​n​t​ ​q​u​e​s​t​i​o​n​?​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​a​n​s​w​e​r​ ​=​ ​[​a​n​s​w​e​r​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​c​u​r​r​e​n​t​Q​u​e​s​t​i​o​n​I​n​d​e​x​]​;​

 ​ ​ ​ ​/​/​ ​D​i​s​p​l​a​y​ ​i​t​ ​i​n​ ​t​h​e​ ​a​n​s​w​e​r​ ​f​i​e​l​d​
 ​ ​ ​ ​[​a​n​s​w​e​r​F​i​e​l​d​ ​s​e​t​T​e​x​t​:​a​n​s​w​e​r​]​;​
}​

@​e​n​d​


        

                    Flip back to Figure 1.12. This diagram should make a bit more sense now that you have all of the 
                    objects and the connections shown.
                

Build and Run on the Simulator




            Now you are ready to build the application and run it on the simulator. You can click the iTunes-esque play button in the top left 
            corner of the workspace, but you’ll be doing this often enough that it’s easier to remember and use the keyboard shortcut Command-R. Either way, make sure that the Simulator
            option is selected in the pop-up menu next to the play button (Figure 1.20).
        
Figure 1.20  Running the application
[image: Running the application]



            If there are any errors or warnings, you can view them in the issue navigator by selecting the [image: Running the application]
            icon in the navigator selector 
            (Figure 1.21). The keyboard shortcut for the issue navigator is Command-4. In fact, the shortcut for any navigator is Command plus the navigator’s position in the selector. For example, the project navigator is Command-1. 
        
Figure 1.21  Issue navigator with errors and warnings
[image: Issue navigator with errors and warnings]



            You can click on any issue in the issue navigator, and it will take you to the source file 
            and the line of code where the issue occurred. Find and fix any issues you have (i.e., code typos!) by comparing your code with the book’s
            and then build the application again. Repeat this process until your application compiles. 
        

            Once your application has compiled, it will launch in the iOS simulator. But before you play with it, you’ll want the console visible so that you can see the output of the log statements. To see the console,  reveal the debug area by clicking the middle button in the [image: Issue navigator with errors and warnings] group at the top right of the workspace window. 
        

            The console is on the righthand side of the debug area, and the variables view is on the left. You can toggle these panels with the [image: Issue navigator with errors and warnings] control in the top-right corner of the debug area Figure 1.22. You can also
            resize the debug area and its panels by dragging their frames. (In fact, you can resize any area in the workspace window this way.)       
        
Figure 1.22  Debug area expanded
[image: Debug area expanded]



            Play around with the Quiz application. You should be able to tap the Show Question button 
            and see a new question in the top label; tapping Show Answer should show the right answer. If your application isn’t 
            working as expected, double-check your connections in QuizViewController.xib and check the console output when you tap the buttons.
        

Deploying an Application




            Now that you’ve written your first iOS application and
            run it on the simulator, it’s time to deploy it to a device.
        

            To install an application on your development device, you need a developer
            certificate from Apple. Developer certificates are issued to registered iOS
            Developers who have paid the developer fee. This certificate grants you the ability to
            sign your code, which allows it to run on a device. Without a valid
            certificate, devices will not run your application. 
        
 
            Apple’s Developer Program Portal
                (http://developer.apple.com) contains all the
            instructions and resources to get a valid certificate. The interface for the set-up
            process is continually being updated by Apple, so it is fruitless to describe it
            in detail. Instead, use the Development Provisioning
            Assistant, a step-by-step guide available on the program portal. 
        

            Work through the Development Provisioning Assistant, paying careful
                attention to each screen. At the end, you will have added the required
            certificates to Keychain Access and the provisioning profile 
            to Xcode. 
        

            If you’re curious about what exactly is going on
            here, there are four important items in the provisioning process: 
            
	Developer Certificate
	
                        This certificate file is added to your Mac’s keychain using Keychain Access. 
                        It is used to digitally sign your code.
                    

	App ID
	
                                The application identifier is a string that uniquely identifies your
                                application on the App Store. Application identifiers typically look
                                like this: com.bignerdranch.AwesomeApp, where the
                                name of the application follows the name of your company. 
                            

                                The App ID in your provisioning profile must match the bundle
                                identifier of your application. A development profile,
                                like you just created, will have a wildcard character (*) for its App ID and
                                therefore will match any bundle identifier. To see the bundle identifier
                                for the Quiz application, select the project in the project navigator. Then select the 
                                Quiz target and the Summary pane.
                            

	Device ID (UDID)
	This identifier is unique for each iOS device.

	Provisioning Profile
	 
                            This is a file that lives on your development device and on your
                            computer. It references a Developer Certificate, a single App ID, and a
                            list of the device IDs for the devices that the application can be installed on. This file
                            is suffixed with .mobileprovision.




        
 
            When an application is deployed to a device, Xcode uses a provisioning profile on
            your computer to access the appropriate certificate. This certificate is used to sign
            the application binary. Then, the development device’s UDID is matched to one of the
            UDIDs contained within the provisioning profile, and the App ID is matched to the bundle
            identifier. The signed binary is then sent to your development device where it is
            confirmed by the same provisioning profile on the device and, finally, launched. 
            

            Open Xcode and plug your development device (iPhone, iPod touch, or iPad) into your computer. 
            This will automatically open the Organizer window, which you can re-open by clicking the
            [image: Deploying an Application]
            button from the top right corner of the workspace. You can select Devices
            from the top of the Organizer window to view all of the provisioning information. 
        

            To run the Quiz application on your device, you must tell
            Xcode to deploy to the device instead of the
            simulator. Locate the pop-up button named Scheme in the top left of the workspace window.
            Choose iOS Device from the right portion of the list, as shown in Figure 1.23. (If iOS Device is not an option, find 
            the choice that reads something like Joe Conway's iPhone.) Build and run your application (Command-R), and 
            it will appear on your device.
       
Figure 1.23  Choosing the device
[image: Choosing the device]



        

Application Icons




          Once the Quiz application is installed on your development device, return to the device’s Home screen. You’ll see that its icon is a plain
            white tile. Let’s give Quiz a
            better icon. 
        

            An application icon is a simple image that represents the application on the iOS desktop. Different devices require different sized icons, and these requirements are shown in Table 1.1.
 
            
Table 1.1  Application icon sizes by device
	Device	Application icon size
	iPhone/iPod touch without Retina display	57x57 pixels
	iPhone/iPod touch with Retina display	114x114 pixels
	iPad	72x72 pixels




            If you supply a single application icon image at 57x57 pixels,
            that image will be scaled up on devices where a larger icon is required. This is never good. A scaled-up icon will be pixellated and scream, 
            “We’re amateurs!” to your customers. Therefore, any application you deploy to the App Store should have an icon for every device class 
            on which it can run. 
        

            We have prepared two icon image files (sizes 57x57 and 114x114) for the Quiz application.
            You can download these icons (along with resources for other chapters) from
            http://www.bignerdranch.com/​solutions/​iOSProgramming3ed.zip. 
            Unzip iOSProgramming3ed.zip and find the Icon.png and the Icon@2x.png files in the Resources
            directory of the unzipped folder. (If you open these images, you’ll see that they aren’t glossy and don’t have rounded corners like other application icons. These
            effects are applied for you by the OS.)
        

            Now you’re going to add these icons to your application bundle as resources. In general, there are two kinds of files in an application: code and 
            resources. Code (like QuizViewController.h and QuizViewController.m) is used to create the application itself. Resources are things like images 
            and sounds that are used by the application at runtime. XIB files, which are read in at runtime, are also resources.
        

            In the project navigator, select the Quiz project, which is at the top of the list and slightly shaded. Then, in the editor area, 
            select Quiz from under the Targets heading. Finally, select Summary
            from the top of the editor area (Figure 1.24).
        
Figure 1.24  Adding the smaller icon in the Summary panel
[image: Adding the smaller icon in the Summary panel]



            This panel is where you can set a number of options for the application, including its icon. Drag the Icon.png file from 
             Finder onto the tile in the App Icons section. This will copy the Icon.png file into your project’s 
            directory on the filesystem and add a reference to that file in the project navigator. (You can Control-click on a file in the project navigator 
            and select the option to Show in Finder to confirm this.)
        
Next, drag the Icon@2x.png file from Finder onto the tile labeled Retina Display. (Note that there isn’t a tile here for the iPad because Quiz is an iPhone application.)

            Build and run the application again. After you exit the application, you should see the Quiz
            application with the BNR logo.
        

            When you dragged the image files onto the icon tiles, two things happened. First, the image files were added to your project. (You can verify this by returning to the 
            project navigator, where you’ll find Icon.png and Icon@2x.png in the list of files.)
            Second, two entries were made in the Quiz-Info.plist file. When you add an icon, the Icon files value is updated with the names 
            of the files you added. You can verify this by selecting Quiz-Info.plist and viewing it in the editor area. You can also select the Info item 
            next to Summary to see the same information.
        

Launch Images




             Another item you can set for an application in the Summary panel is the launch image, which appears 
            while an application is loading. (If you don’t supply a launch image, the user will see a black screen during this period.) 
                The launch image has a specific role on iOS: it conveys to the user that the application is indeed launching and depicts the user interface
                that the user will interact with once the application has finished launching. Therefore, a good launch image is a content-less screenshot 
                of the application. For example, the Weather application’s interface is a rounded square with the name of a city 
            and its current temperature; Weather’s launch image is just that rounded square. (Keep in mind that 
            the launch image is replaced after the application has launched; it does not become the background image of the application.)
        

            Xcode can grab a screenshot from your device, and you can use this screenshot as the launch image for Quiz.
            To get a screenshot, build and run Quiz on a device. Open the Organizer window in Xcode and locate 
            your device from the device list. (It will be the one with a green dot next to it.) Underneath your device, select the Screenshots item.
            In the bottom righthand corner of the editor area, click New Screenshot, and the screenshot will appear in the editor area. You can either drag this image 
            onto the Launch Images tile or click the Save as Launch Image button at the bottom of the Organizer window (Figure 1.25). (For most applications, 
            you will first have to edit the screenshot in an image-editing application to get the right look.)
        
Figure 1.25  Taking a screenshot with Xcode
[image: Taking a screenshot with Xcode]



        Build and run the application. As the application launches, you will briefly see the launch image.
        

            A launch image must fit the screen of the device it is being 
            launched on. Table 1.2 shows the different size images you will need for each type of device.
        
Table 1.2  Launch image sizes by device
	Device	Launch image size
	iPhone/iPod touch without Retina display	320x480 pixels
	iPhone/iPod touch with Retina display	640x960 pixels
	iPad	1024x768 pixels



   
            (Note that Table 1.2 lists the screen 
            resolutions of the devices; the real status bar is overlaid on top of the status bar in the launch image.)
        

            Just like with application icons, there are tiles for different-sized images 
            for each supported device. And, just like with icons, if you provide only one image, that image will be scaled to fit the device’s screen. So provide an image for every possible device.
        

            One thing the launch image should not do is display a splash screen for your company or application. While many applications (especially games) use splash screens as launch images, 
            here is the argument against it: The amount of time it takes to load any application depends on the hardware it is running on. Right now, 
            iOS devices aren’t very powerful, and a large application may take a few seconds to load. This gives the user ample time to ingest a launch image. 
            However, as iOS devices become more powerful, that launch image may only appear for a fraction of a second. This would appear as a disconcerting flash to users, 
            who would wonder, “Have I pressed something wrong? How do I go back to that screen?”
            There are infinite ways of expressing your creativity on the platform from within an application – the launch image isn’t one of them.
        

            Congratulations! You have written your first application and installed it on your
            device. Now it is time to dive into the big ideas that make it work.
        

2
Objective-C




        iOS applications are written in the Objective-C language using the Cocoa Touch library. Objective-C is a simple extension of
        the C language, and Cocoa Touch is a collection of Objective-C classes. This book assumes you know some C and understand the ideas of object-oriented
        programming. If C or object-oriented programming makes you feel uneasy, we recommend starting with 
        Objective-C Programming: The Big Nerd Ranch Guide.
    

        In this chapter, you will learn the basics of Objective-C and create an application called
        RandomPossessions. Even if you are familiar with Objective-C, you should still go through this chapter 
        to create the BNRItem class that you will use later in this book.
    
Objects




            Let’s say you need a way to represent a party. Your party has a few attributes that are unique to it, like a name, a date, and a list of invitees.  You can also ask the party to do things, like send an email reminder to all the invitees, print name tags, or cancel the party altogether.

            In C, you would define a structure to hold the data that describes a party.
            The structure would have data members – one for each of the party’s attributes.
            Each data member would have a name and a type. 
        

            To create an individual party, you would use the function malloc to allocate a chunk of memory 
            large enough to hold the structure. You would write C functions to set the value of its attributes and have it perform actions.
        

            In Objective-C, instead of using a structure to represent a party, you use a class. A class is like a cookie-cutter that produces objects. The Party class creates objects, and these objects are instances of the Party class. Each instance of the Party class can hold the data for a single party (Figure 2.1).
        
Figure 2.1  A class and its instances
[image: A class and its instances]



            An instance of Party, like all objects, is a chunk of data stored in memory, and it stores the values for its attributes in instance variables.  So an instance of Party might have the instance variables name, date, and budget.
        
A C structure is a chunk of memory, and an object is a chunk of memory.
            A C structure has data members, each with a name and a type.
            Similarly, an object has instance variables, each with a name and a type.
        

            But there is an important difference between a structure in C and a class in Objective-C: a class has methods.
            A method is similar to a function: it has a name, a return type, and a list of parameters that it expects. A method also has access to 
            an object’s instance variables. If you want an object to run the code in one of its methods, you send that object a message.


Using Instances




        In order to use an instance of a class (an object), you must have a variable that points to the object. A pointer variable stores the location of an object in memory, not the object itself. (It “points to” the object.) A variable that points to an object 
                is declared like so:
                
P​a​r​t​y​ ​*​p​a​r​t​y​I​n​s​t​a​n​c​e​;​


                This variable is named partyInstance. It is meant to be a pointer to an instance of the class 
                Party. However, this does not create a Party instance – only a variable 
                that can point to a Party object.
            
Creating objects




                An object has a life span: it is created, sent messages, and
                then destroyed when it is no longer needed.
            

                
                To create an object, you send an alloc message to a class.
                In response, the class creates an object in memory and gives you a pointer to it, and then you store that pointer in a variable:
            
P​a​r​t​y​ ​*​p​a​r​t​y​I​n​s​t​a​n​c​e​ ​=​ ​[​P​a​r​t​y​ ​a​l​l​o​c​]​;​


                Here an instance of type Party is created, and you
                are returned a pointer to it in the variable partyInstance. When you
                have a pointer to an instance, you can send messages to it. The first message you
                always send to a newly allocated instance is an initialization message.  Although sending an alloc message to a class creates an
                instance, the instance isn’t valid until it has been initialized. 
            
[​p​a​r​t​y​I​n​s​t​a​n​c​e​ ​i​n​i​t​]​;​


 Because an object must be allocated and initialized before it can be used, we
                always combine these two messages in one line.


P​a​r​t​y​ ​*​p​a​r​t​y​I​n​s​t​a​n​c​e​ ​=​ ​[​[​P​a​r​t​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​


            

                The code to the right of the assignment operator (=) says, “Create an instance of Party
                and send it the message init.” Both
                alloc and init return a pointer to
                the newly created object so that you have a reference to it. 
            

                Combining two messages in a single line of code is called a nested message
                send. The innermost brackets are evaluated first, so the message
                alloc is sent to the class
                Party first. This returns a new, uninitialized
                instance of Party that is then sent the message
                init. 
            

Sending messages



                
                What do you do with an instance that has been initialized? You send it more messages.
            

Let’s take a closer look at message anatomy. First of all, a message is always contained in square brackets. Within a pair of square brackets, a message has three parts:
                
                
	receiver
	a pointer to the object being asked to execute a method

	selector
	the name of the method to be executed

	arguments
	the values to be supplied as the parameters to the method




            

                A party might have a list of attendees that you can add to by sending the party the message addAttendee:.               
                
[​p​a​r​t​y​I​n​s​t​a​n​c​e​ ​a​d​d​A​t​t​e​n​d​e​e​:​s​o​m​e​P​e​r​s​o​n​]​;​


                
                Sending the addAttendee: message to partyInstance (the receiver) triggers the addAttendee: method (named by the selector) and passes in somePerson (an argument).
                
            
                
                The addAttendee: message has only one
                argument, but Objective-C methods can take a number of arguments or none at all.  The message
                init, for instance, has no arguments. 
            

                An attendee to a party might RSVP with an edible item. Thus, a party may have another method named addAttendee:withDish:. This message takes two arguments:
                the attendee and the dish the attendee plans to bring. Each argument is paired with a label in the selector, and each label ends with a colon. The selector is all of the labels taken together 
                (Figure 2.2).
            
Figure 2.2  Parts of a message send
[image: Parts of a message send]


 
                This pairing of labels and arguments is an important feature of Objective-C. In other languages, this method would look like this:
                
p​a​r​t​y​I​n​s​t​a​n​c​e​.​a​d​d​A​t​t​e​n​d​e​e​W​i​t​h​D​i​s​h​(​s​o​m​e​P​e​r​s​o​n​,​ ​d​e​v​i​l​e​d​E​g​g​s​)​;​


            

                In these languages, it isn’t completely obvious what each of the arguments sent to
                this function are. In Objective-C, however, each argument is paired with the appropriate
                label. 
                
[​p​a​r​t​y​I​n​s​t​a​n​c​e​ ​a​d​d​A​t​t​e​n​d​e​e​:​s​o​m​e​P​e​r​s​o​n​ ​w​i​t​h​D​i​s​h​:​d​e​v​i​l​e​d​E​g​g​s​]​;​


            

                It takes some getting used to, but eventually, Objective-C programmers appreciate 
                the clarity of arguments being interposed into the selector. The trick is to remember that for every pair of square brackets, there is only one message being sent. 
                Even though addAttendee:withDish: has two labels, it is still only one message, 
                and sending that message results in only one method being executed. 
            

                In Objective-C, the name of a method is what makes it unique. Therefore, a class cannot have two methods with the same name. 
                However, two methods can have the same individual label, as long as the name of 
                each method differs when taken as a whole. For example, our Party class has two methods, addAttendee:
                and addAttendee:withDish:. These are two distinct methods and do not share any code.
            

                Also, notice the distinction being made between a message and a method:
                a method is a chunk of code that can be executed, and a message is the act of asking a class or object to 
                execute a method. The name of a message always matches the name of the method to be executed.
            

Destroying objects




            To destroy an object, you set the variable that points at it to nil.
                
p​a​r​t​y​I​n​s​t​a​n​c​e​ ​=​ ​n​i​l​;​


            
             
                This line of code destroys the object pointed to by the
                partyInstance variable and sets the value of the partyInstance variable to nil. 
                (It’s actually a bit more complicated than that, and you’ll learn about the details of memory management in the next chapter.)
            

            The value nil is the zero pointer. (C programmers know it as NULL. Java programmers know it as
                null.) A pointer that has a value of nil is typically used to represent the absence of an object.
                For example, a party could have a venue. While the organizer of the party 
                is still determining where to host the party, venue would point to nil. This allows us to 
                do things like so:
                
i​f​ ​(​v​e​n​u​e​ ​=​=​ ​n​i​l​)​ ​{​
 ​ ​ ​ ​[​o​r​g​a​n​i​z​e​r​ ​r​e​m​i​n​d​T​o​F​i​n​d​V​e​n​u​e​F​o​r​P​a​r​t​y​]​;​
}​


                Objective-C programmers typically use the shorthand form of determining if a pointer is nil:
                
i​f​ ​(​!​v​e​n​u​e​)​ ​{​
 ​ ​ ​ ​[​o​r​g​a​n​i​z​e​r​ ​r​e​m​i​n​d​T​o​F​i​n​d​V​e​n​u​e​F​o​r​P​a​r​t​y​]​;​
}​


                Since the ! operator means “not,” this reads as “if there is not a venue” and will evaluate 
                to true if venue is nil.
            

                If you send a message to a variable that is nil, nothing happens. In other languages,
                sending a message to the zero pointer is illegal, so you see this sort of thing a lot:
            
/​/​ ​I​s​ ​v​e​n​u​e​ ​n​o​n​-​n​i​l​?​
i​f​ ​(​v​e​n​u​e​)​ ​{​
 ​ ​ ​ ​[​v​e​n​u​e​ ​s​e​n​d​C​o​n​f​i​r​m​a​t​i​o​n​]​;​
}​

 
                

                In Objective-C, this check is unnecessary because a message sent to nil
                is ignored. Therefore, you can simply send a message without a nil-check:
                
[​v​e​n​u​e​ ​s​e​n​d​C​o​n​f​i​r​m​a​t​i​o​n​]​;​


                If the venue hasn’t been chosen yet, you won’t send a confirmation anywhere. (A corollary: if your program isn’t doing anything when you think it
                should be doing something, an unexpected nil pointer is often the
                culprit.)
            


Beginning RandomPossessions




            Before you dive into the UIKit, the set of libraries for creating iOS
            applications, you’re going to write an application that will let you focus on the
            Objective-C language. Open Xcode and select File → New → New
                Project.... In the lefthand
            table in the Mac OS X section, click Application and then select Command Line Tool from the upper
            panel, as shown in Figure 2.3. Click the
            Next button. 
        
Figure 2.3  Creating a command line tool
[image: Creating a command line tool]



            (If there is no Command Line Tool choice, first make sure that you have selected Application from underneath the Mac OS X
            header. If Command Line Tool is still is not an option, visit our forums at 
            http://forums.bignerdranch.com. 
            Apple frequently changes the names 
            and style of these templates. We’ll keep you updated as the templates change.)
        

            On the next panel, name the product RandomPossessions, choose Foundation as its type, and make sure the box labeled Use Automatic Reference Counting is checked (Figure 2.4).
            Click Next, and you will be prompted to save the project. Save it some place safe – you will be reusing parts of this code 
            in future projects.
        
Figure 2.4  Naming the project
[image: Naming the project]


 
            One source file (main.m) has been created for you
            in the RandomPossessions group of the project navigator
            (Figure 2.5). 
            
Figure 2.5  Project navigator for command line tool template
[image: Project navigator for command line tool template]



            Click on main.m to open it in the editor area, and you’ll see that some code has been written for you – 
            most notably, a main function that is the entry point of any C or
            Objective-C application. 
        
 
            Time to put your knowledge of Objective-C basics to the test. Delete the line of code
            that NSLogs “Hello, World!” and replace it with lines that
            create and destroy an instance of the Objective-C class NSMutableArray. 


#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​

i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​i​n​s​e​r​t​ ​c​o​d​e​ ​h​e​r​e​.​.​.​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​H​e​l​l​o​,​ ​W​o​r​l​d​!​"​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​a​ ​m​u​t​a​b​l​e​ ​a​r​r​a​y​ ​o​b​j​e​c​t​,​ ​s​t​o​r​e​ ​i​t​s​ ​a​d​d​r​e​s​s​ ​i​n​ ​i​t​e​m​s​ ​v​a​r​i​a​b​l​e​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​D​e​s​t​r​o​y​ ​t​h​e​ ​a​r​r​a​y​ ​p​o​i​n​t​e​d​ ​t​o​ ​b​y​ ​i​t​e​m​s​
 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​
 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


        
 
            Once you have an instance of NSMutableArray, you can send it
            messages, like addObject: and insertObject:atIndex:. In this code, the receiver is the items variable that points at the newly instantiated 
            NSMutableArray. Add a few strings to the array instance.


i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​a​ ​m​u​t​a​b​l​e​ ​a​r​r​a​y​ ​o​b​j​e​c​t​,​ ​s​t​o​r​e​ ​i​t​s​ ​a​d​d​r​e​s​s​ ​i​n​ ​i​t​e​m​s​ ​v​a​r​i​a​b​l​e​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​S​e​n​d​ ​t​h​e​ ​m​e​s​s​a​g​e​ ​a​d​d​O​b​j​e​c​t​:​ ​t​o​ ​t​h​e​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​p​o​i​n​t​e​d​ ​t​o​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​b​y​ ​t​h​e​ ​v​a​r​i​a​b​l​e​ ​i​t​e​m​s​,​ ​p​a​s​s​i​n​g​ ​a​ ​s​t​r​i​n​g​ ​e​a​c​h​ ​t​i​m​e​.​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​O​n​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​w​o​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​h​r​e​e​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​S​e​n​d​ ​a​n​o​t​h​e​r​ ​m​e​s​s​a​g​e​,​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​a​t​I​n​d​e​x​:​,​ ​t​o​ ​t​h​a​t​ ​s​a​m​e​ ​a​r​r​a​y​ ​o​b​j​e​c​t​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​@​"​Z​e​r​o​"​ ​a​t​I​n​d​e​x​:​0​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​
 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


        
 
            When this application executes, it creates an NSMutableArray
            and fills it with four instances of NSString (another Objective-C class). Let’s
            confirm that these strings were added to the array. In main.m, after adding the final object to the array, loop through every
            item in the array and print each one to the console. 
        
i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​a​ ​m​u​t​a​b​l​e​ ​a​r​r​a​y​ ​o​b​j​e​c​t​,​ ​s​t​o​r​e​ ​i​t​s​ ​a​d​d​r​e​s​s​ ​i​n​ ​i​t​e​m​s​ ​v​a​r​i​a​b​l​e​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​S​e​n​d​ ​t​h​e​ ​m​e​s​s​a​g​e​ ​a​d​d​O​b​j​e​c​t​:​ ​t​o​ ​t​h​e​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​p​o​i​n​t​e​d​ ​t​o​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​b​y​ ​t​h​e​ ​v​a​r​i​a​b​l​e​ ​i​t​e​m​s​,​ ​p​a​s​s​i​n​g​ ​a​ ​s​t​r​i​n​g​ ​e​a​c​h​ ​t​i​m​e​.​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​O​n​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​w​o​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​h​r​e​e​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​S​e​n​d​ ​a​n​o​t​h​e​r​ ​m​e​s​s​a​g​e​,​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​a​t​I​n​d​e​x​:​,​ ​t​o​ ​t​h​a​t​ ​s​a​m​e​ ​a​r​r​a​y​ ​o​b​j​e​c​t​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​@​"​Z​e​r​o​"​ ​a​t​I​n​d​e​x​:​0​]​;​
 ​ ​ ​ ​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​F​o​r​ ​e​v​e​r​y​ ​i​t​e​m​ ​i​n​ ​t​h​e​ ​a​r​r​a​y​ ​a​s​ ​d​e​t​e​r​m​i​n​e​d​ ​b​y​ ​s​e​n​d​i​n​g​ ​c​o​u​n​t​ ​t​o​ ​i​t​e​m​s​
 ​ ​ ​ ​ ​ ​ ​ ​f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​W​e​ ​g​e​t​ ​t​h​e​ ​i​t​h​ ​o​b​j​e​c​t​ ​f​r​o​m​ ​t​h​e​ ​a​r​r​a​y​ ​a​n​d​ ​p​a​s​s​ ​i​t​ ​a​s​ ​a​n​ ​a​r​g​u​m​e​n​t​ ​t​o​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​N​S​L​o​g​,​ ​w​h​i​c​h​ ​i​m​p​l​i​c​i​t​l​y​ ​s​e​n​d​s​ ​t​h​e​ ​d​e​s​c​r​i​p​t​i​o​n​ ​m​e​s​s​a​g​e​ ​t​o​ ​t​h​a​t​ ​o​b​j​e​c​t​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​}​

 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​
 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


            There is some interesting syntax in this code that we’ll get to in a second. But for now,  
            go ahead and click the Run button. It may seem like nothing has happened because the program exits right away, but the
            log navigator tells another story.
        

            To reveal the log navigator, select the [image: Project navigator for command line tool template] icon
            or use the keyboard shortcut 
            Command-7. The log navigator stores the build results and console output from each build of your application.   Select 
            Debug RandomPossessions at the top of the log navigator to see your console output in the editor area (Figure 2.6). 
        
Figure 2.6  Console output
[image: Console output]



            Now let’s go back and take a closer look at the code in your main function.
        
Creating strings



 
            First, notice the @"One" argument in the first 
            addObject: message sent to items. 

[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​O​n​e​"​]​;​


            In Objective-C, when you want a hard-coded string, you prefix a character string with
            an @ symbol. This creates an instance of NSString
            that holds the character string. 
        

                But, wait – aren’t instances created by sending alloc to a class? Yes, but the 
                @ prefix is a special case just for the NSString class. It is convenient shorthand for creating strings. 
        
    
            The following code shows three such uses, and each is  completely valid Objective-C, 
            where length is a message you can send to an instance of NSString:  


N​S​S​t​r​i​n​g​ ​*​m​y​S​t​r​i​n​g​ ​=​ ​@​"​H​e​l​l​o​,​ ​W​o​r​l​d​!​"​;​
i​n​t​ ​l​e​n​ ​=​ ​[​m​y​S​t​r​i​n​g​ ​l​e​n​g​t​h​]​;​

l​e​n​ ​=​ ​[​@​"​H​e​l​l​o​,​ ​W​o​r​l​d​!​"​ ​l​e​n​g​t​h​]​;​

m​y​S​t​r​i​n​g​ ​=​ ​[​[​N​S​S​t​r​i​n​g​ ​a​l​l​o​c​]​ ​i​n​i​t​W​i​t​h​S​t​r​i​n​g​:​@​"​H​e​l​l​o​,​ ​W​o​r​l​d​!​"​]​;​
l​e​n​ ​=​ ​[​m​y​S​t​r​i​n​g​ ​l​e​n​g​t​h​]​;​


        

Format strings



 
            Next, let’s look at the NSLog function we used to print to the console.
            NSLog takes a variable number of arguments and prints a string to the console. 
            The first argument is required and must be an NSString instance. This instance is called the format string, and it
            contains text and a number of tokens.  The tokens (also called format specifications) 
            are prefixed with a percent symbol (%), and each additional argument passed to the function 
            replaces a token in the format string. Tokens also specify the type of the argument they correspond to. Here’s an example:

i​n​t​ ​a​ ​=​ ​1​;​
f​l​o​a​t​ ​b​ ​=​ ​2​.​5​;​
c​h​a​r​ ​c​ ​=​ ​'​A​'​;​
N​S​L​o​g​(​@​"​I​n​t​e​g​e​r​:​ ​%​d​ ​F​l​o​a​t​:​ ​%​f​ ​C​h​a​r​:​ ​%​c​"​,​ ​a​,​ ​b​,​ ​c​)​;​


            
            The order of the arguments matters: the first token is replaced with 
            the second argument (the format string is always the first argument), the second token is replaced with the third argument, and so on.
           
            The console output would be

I​n​t​e​g​e​r​:​ ​1​ ​F​l​o​a​t​:​ ​2​.​5​ ​C​h​a​r​:​ ​A​


        

            In C, there is a function called printf that does the same thing. However, NSLog
             adds one more token to the available list: 
            %@. The type of the argument this token responds to is “any object.” When %@ is encountered in the format string, instead of the token being replaced by the corresponding argument, that argument is sent the message description. The description method returns an NSString that
            replaces the token.
        Because the argument is sent a message, that argument must be an object. As we’ll see shortly, every object implements the method description, so any object will work. 
        

NSArray and NSMutableArray



 
                What exactly is this NSMutableArray object you’re using? An array is a collection object (also called a container). The Cocoa Touch 
                frameworks provide a handful of collection objects, including NSDictionary and NSSet, and each has 
                a slightly different use. An array is an ordered list of objects, and these objects can be accessed by an index. Other languages might
                call it a list or a vector. An NSArray is
                immutable, which means you cannot add or remove objects after the array is instantiated. You can, however, retrieve objects from
                the array. NSArray’s mutable subclass, NSMutableArray, lets you add and
                remove objects dynamically. 
            
 
                In Objective-C, an array does not actually contain the objects that belong to it;
                instead it holds a pointer to each object. When an object is added to
                an array, 
                

 ​ ​ ​ ​[​a​r​r​a​y​ ​a​d​d​O​b​j​e​c​t​:​o​b​j​e​c​t​]​;​

 
                the address of that object in memory is stored inside the array. 
            
 
                So, to recap, in your command line tool, you created an instance of NSMutableArray and
                added four instances of NSString to it, as shown in Figure 2.7. 
            
Figure 2.7  NSMutableArray instance
[image: NSMutableArray instance]



                Arrays can only hold references to Objective-C objects. This means primitives and C structures
                cannot be added to an array. For example, you cannot
                have an array of ints. Also, because arrays hold
                pointers to objects, a single array can contain objects of different types. This is different from most strongly-typed languages where an
                array can only hold objects of its declared type. 
            
 
                You can ask an array how many objects it is currently storing by sending it
                the message count. 
            
 ​ ​ ​ ​i​n​t​ ​n​u​m​b​e​r​O​f​O​b​j​e​c​t​s​ ​=​ ​[​a​r​r​a​y​ ​c​o​u​n​t​]​;​


                This information is important because
                if you ask for an object from an array at an index that is greater than the number
                of objects in the array, an exception will be thrown. (Exceptions are very bad; they
                will most likely cause your application to crash. We’ll talk more about exceptions at the end of this chapter.)               
            
 
                When an object is added to an array with
                the message addObject:, it is added at the end of the
                array. You can also insert objects at a specific index – as long as that index is less
                than or equal to the current number of objects in the array.  
               

 ​ ​ ​ ​i​n​t​ ​n​u​m​b​e​r​O​f​O​b​j​e​c​t​s​ ​=​ ​[​a​r​r​a​y​ ​c​o​u​n​t​]​;​
 ​ ​ ​ ​[​a​r​r​a​y​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​o​b​j​e​c​t​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​a​t​I​n​d​e​x​:​n​u​m​b​e​r​O​f​O​b​j​e​c​t​s​]​;​


            

                Note that you cannot add nil to an array. If you need to add
                “holes” to an array, you must use NSNull.
                NSNull is an object that represents
                nil and is used specifically for this task.  

 ​ ​ ​ ​[​a​r​r​a​y​ ​a​d​d​O​b​j​e​c​t​:​[​N​S​N​u​l​l​ ​n​u​l​l​]​]​;​


            
 
                To retrieve the pointer to an object later, you send the message
                objectAtIndex: to the array.
                

 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​o​b​j​e​c​t​ ​=​ ​[​a​r​r​a​y​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​0​]​;​


            


Subclassing an Objective-C Class




            Classes, like NSMutableArray, exist in a hierarchy, and every class has exactly one superclass – except for the root class of the entire
            hierarchy: NSObject (Figure 2.8). A class inherits the behavior of its superclass, which means, at a minimum, every class inherits
           the methods and instance variables defined in NSObject.
        

            As the top superclass, NSObject’s role is to implement the basic behavior of every object in Cocoa Touch. 
            Three of the methods NSObject implements are alloc, init, and description. (We sometimes 
            say “description is a method on NSObject” and mean the same thing.) 
        
Figure 2.8  Class hierarchy
[image: Class hierarchy]



            A subclass adds methods and instance variables to extend the behavior of its superclass.  For example, NSMutableArray extends 
            NSArray’s ability to hold pointers to objects by adding the ability to dynamically add and remove objects. 
        

            A subclass can also override methods of its superclass. For example, sending the description message to an NSObject returns
            the object’s class and its address in memory, like this: <QuizViewController: 0x4b222a0>. 

            A subclass of 
            NSObject can override this method to return something that better describes an instance of that subclass. For example, NSString overrides description 
            to return the string itself. NSArray overrides description to return the description of every object in the array.
        
Creating an NSObject subclass



            
            In this section, you’re going to create a subclass of NSObject named BNRItem.  An instance of the BNRItem class will represent an item that a person owns in the real world.
            To create a new class in Xcode, choose File → New → New File.... In the lefthand table of 
            the panel that appears, select Cocoa from the 
            Mac OS X section. Then select Objective-C class from the upper 
            panel and hit Next (Figure 2.9). 
        
Figure 2.9  Creating a class
[image: Creating a class]



            On the next panel, name this new class BNRItem. Select NSObject as the superclass and click Next, 
            as shown in Figure 2.10.
        
Figure 2.10  Choosing a superclass
[image: Choosing a superclass]



            A panel will drop down that prompts you to create the files for this new class (Figure 2.11).
            When creating a new class for a project, you want to save the files that describe it inside the project’s source directory on the filesystem. By default, the current project directory is already selected for you. You can also choose the group in the project navigator that these files will be 
            added to. Because these groups are simply for organizing and because this project is very small, just stick with 
            the default. Make sure the checkbox is selected for the RandomPossessions target. This ensures that this class will be compiled when the RandomPossessions project is built. Click Create.
        
Figure 2.11  Saving class files
[image: Saving class files]


            
        Creating the BNRItem class generated two files: BNRItem.h and BNRItem.m. Locate those files in the project navigator. BNRItem.h is the header file (also called an interface file). This file declares
            the name of the new class, its superclass, the instance variables that each instance of
            this class has, and any methods this class implements. BNRItem.m is the implementation file,
            and it contains the code for the methods that the class implements.  Every Objective-C class has these two files.
            You can think of the header file as a user manual for an instance of a class 
            and the implementation file as the engineering details that define how it really works.
        


            Open BNRItem.h in the editor area by clicking on it
            in the project navigator. The file currently looks like this:            

#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​

@​i​n​t​e​r​f​a​c​e​ ​B​N​R​I​t​e​m​ ​:​ ​N​S​O​b​j​e​c​t​

@​e​n​d​


        

            Objective-C retains all the keywords of the C language, and additional keywords specific to Objective-C are
            distinguishable by the @ prefix. To declare a class in Objective-C, you use the keyword
            @interface followed by the name of this new class. After a
            colon comes the name of the superclass. Objective-C only allows single inheritance, so you
            will only ever see the following pattern:
            
@​i​n​t​e​r​f​a​c​e​ ​C​l​a​s​s​N​a​m​e​ ​:​ ​S​u​p​e​r​c​l​a​s​s​N​a​m​e​


        

            The @end directive
            indicates that the class has been fully declared.
            

Instance variables



 

                So far, the BNRItem class doesn’t add anything to its superclass NSObject. It needs some item-like instance
                variables. An item, in our world, is going to have a name, a serial number,
                a value, and a date of creation. 
            

           Instance variables for a class are declared in between curly brackets immediately after the class declaration.
                In BNRItem.h, add four instance variables (and the curly brackets that contain them) to the BNRItem class:

#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​

@​i​n​t​e​r​f​a​c​e​ ​B​N​R​I​t​e​m​ ​:​ ​N​S​O​b​j​e​c​t​
{​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​i​t​e​m​N​a​m​e​;​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​s​e​r​i​a​l​N​u​m​b​e​r​;​
 ​ ​ ​ ​i​n​t​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​
 ​ ​ ​ ​N​S​D​a​t​e​ ​*​d​a​t​e​C​r​e​a​t​e​d​;​
}​

@​e​n​d​

                
            

                                Now every instance of BNRItem has one spot for a simple integer and three spots to hold references to objects, specifically two NSString instances and one                           NSDate instance. (A reference is another 
                word for pointer; the * denotes that the variable is a pointer.)
                Figure 2.12 shows an example of a BNRItem instance after its instance variables have been given values.
                
Figure 2.12  A BNRItem instance
[image: A BNRItem instance]



            Notice that Figure 2.12 shows a total of four objects: the BNRItem,
                two NSStrings, and the NSDate. Each of these objects is its own object and exists independently of the others.
                The BNRItem only has pointers to the three other objects. These pointers are the instance variables of 
                BNRItem. 
            

                For example, every BNRItem has a pointer instance variable named itemName. The 
                itemName of the BNRItem shown in Figure 2.12 points to an NSString instance whose contents are 
                “Red Sofa.” The “Red Sofa” string does not live inside the BNRItem, though. The BNRItem 
                instance knows where the “Red Sofa” string lives in memory and stores its address as itemName. One way to think of this relationship is “the BNRItem calls this string 
                its itemName. ”
            

                The story is different for the instance variable valueInDollars. This instance variable is not a pointer to another 
                object; it is just an int. Non-pointer instance variables are stored inside the object itself. The idea of pointers is not easy to understand 
                at first. In the next chapter, you’ll learn more about objects, pointers, and instance variables, and, throughout this book, we will make use of object diagrams like Figure 2.12
                to drive home the difference between an object 
                and a pointer to an object.
            

Accessor methods




                Now that you have instance variables, you need a way to get and set their values. In
                object-oriented languages, we call methods that get and set instance variables
                accessors. Individually, we call them getters and
                setters. Without these methods, an object cannot access the instance variables of
                another object. 
            

                

                Accessor methods look like this:  

/​/​ ​a​ ​g​e​t​t​e​r​ ​m​e​t​h​o​d​
-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​i​t​e​m​N​a​m​e​
{​
 ​ ​ ​ ​/​/​ ​R​e​t​u​r​n​ ​a​ ​p​o​i​n​t​e​r​ ​t​o​ ​t​h​e​ ​o​b​j​e​c​t​ ​t​h​i​s​ ​B​N​R​I​t​e​m​ ​c​a​l​l​s​ ​i​t​s​ ​i​t​e​m​N​a​m​e​
 ​ ​ ​ ​r​e​t​u​r​n​ ​i​t​e​m​N​a​m​e​;​
}​

/​/​ ​a​ ​s​e​t​t​e​r​ ​m​e​t​h​o​d​
-​ ​(​v​o​i​d​)​s​e​t​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​e​w​I​t​e​m​N​a​m​e​
{​
 ​ ​ ​ ​/​/​ ​C​h​a​n​g​e​ ​t​h​e​ ​i​n​s​t​a​n​c​e​ ​v​a​r​i​a​b​l​e​ ​t​o​ ​p​o​i​n​t​ ​a​t​ ​a​n​o​t​h​e​r​ ​s​t​r​i​n​g​,​
 ​ ​ ​ ​/​/​ ​t​h​i​s​ ​B​N​R​I​t​e​m​ ​w​i​l​l​ ​n​o​w​ ​c​a​l​l​ ​t​h​i​s​ ​n​e​w​ ​s​t​r​i​n​g​ ​i​t​s​ ​i​t​e​m​N​a​m​e​
 ​ ​ ​ ​i​t​e​m​N​a​m​e​ ​=​ ​n​e​w​I​t​e​m​N​a​m​e​;​
}​


            

                Then, if you wanted to access (set or get) a BNRItem’s itemName, you would send the BNRItem one of these messages:

/​/​ ​C​r​e​a​t​e​ ​a​ ​n​e​w​ ​B​N​R​I​t​e​m​ ​i​n​s​t​a​n​c​e​
B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

/​/​ ​S​e​t​ ​i​t​e​m​N​a​m​e​ ​t​o​ ​a​ ​n​e​w​ ​N​S​S​t​r​i​n​g​
[​p​ ​s​e​t​I​t​e​m​N​a​m​e​:​@​"​R​e​d​ ​S​o​f​a​"​]​;​

/​/​ ​G​e​t​ ​t​h​e​ ​p​o​i​n​t​e​r​ ​o​f​ ​t​h​e​ ​B​N​R​I​t​e​m​'​s​ ​i​t​e​m​N​a​m​e​
N​S​S​t​r​i​n​g​ ​*​s​t​r​ ​=​ ​[​p​ ​i​t​e​m​N​a​m​e​]​;​

/​/​ ​P​r​i​n​t​ ​t​h​a​t​ ​o​b​j​e​c​t​
N​S​L​o​g​(​@​"​%​@​"​,​ ​s​t​r​)​;​ ​/​/​ ​T​h​i​s​ ​w​o​u​l​d​ ​p​r​i​n​t​ ​"​R​e​d​ ​S​o​f​a​"​


            

                In Objective-C, the name of a setter method is set plus the name of 
                the instance variable it is changing – in this case, setItemName:. In other languages, the name of the getter method would likely be getItemName.
                However, in Objective-C, the name of the getter method is just the name of the instance variable. Some of the cooler parts of 
                the Cocoa Touch library make the assumption that your classes follow this convention; therefore, stylish Cocoa Touch programmers always 
                do so.
            

                In BNRItem.h, declare accessor methods for the instance variables of BNRItem. You will need getters 
                and setters for valueInDollars, itemName, and serialNumber. For dateCreated,
                you only need a getter method.
 
            
#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​

@​i​n​t​e​r​f​a​c​e​ ​B​N​R​I​t​e​m​ ​:​ ​N​S​O​b​j​e​c​t​
{​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​i​t​e​m​N​a​m​e​;​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​s​e​r​i​a​l​N​u​m​b​e​r​;​
 ​ ​ ​ ​i​n​t​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​
 ​ ​ ​ ​N​S​D​a​t​e​ ​*​d​a​t​e​C​r​e​a​t​e​d​;​
}​
-​ ​(​v​o​i​d​)​s​e​t​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​t​r​;​
-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​i​t​e​m​N​a​m​e​;​

-​ ​(​v​o​i​d​)​s​e​t​S​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​t​r​;​
-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​s​e​r​i​a​l​N​u​m​b​e​r​;​

-​ ​(​v​o​i​d​)​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​i​;​
-​ ​(​i​n​t​)​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​

-​ ​(​N​S​D​a​t​e​ ​*​)​d​a​t​e​C​r​e​a​t​e​d​;​
@​e​n​d​


                (For those of you with some experience in Objective-C, we’ll talk about properties in the next chapter.)
            

                Now that these accessors have been declared, they need to be defined in the implementation file. Select BNRItem.m in the project navigator to open it in the editor area.
            

                At the top of any implementation file, you must import the header
                file of that class. 
                The implementation of a class
                needs to know how it has been declared. (Importing a file is the same as including a file in the C language except you are 
                ensured that the file will only be included once.) 
            

                After the import statement is the implementation block that
                begins with the @implementation keyword followed by the name of
                the class that is being implemented. All of the method definitions in the
                implementation file are inside this implementation block. Methods are defined until you close out the
                block with the @end keyword. 
            

                When you created this class, the template you used may have inserted methods for you. However, we want to start from scratch. Using
                boilerplate methods before you understand what they do keeps you from learning how things actually work. In BNRItem.m, delete everything that the template may have added
                between @implementation and @end.
                Your file should look like this:
                
#​i​m​p​o​r​t​ ​"​B​N​R​I​t​e​m​.​h​"​

@​i​m​p​l​e​m​e​n​t​a​t​i​o​n​ ​B​N​R​I​t​e​m​

@​e​n​d​


            

                Now we can define some methods of our own – starting with the accessor methods for the variables you declared in BNRItem.h. 
               We’re going to skip memory management until the next chapter, so the accessor methods for BNRItem are very simple.
               In BNRItem.m, add the following code.
               


#​i​m​p​o​r​t​ ​"​B​N​R​I​t​e​m​.​h​"​

@​i​m​p​l​e​m​e​n​t​a​t​i​o​n​ ​B​N​R​I​t​e​m​

-​ ​(​v​o​i​d​)​s​e​t​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​t​r​
{​
 ​ ​ ​ ​i​t​e​m​N​a​m​e​ ​=​ ​s​t​r​;​
}​
-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​i​t​e​m​N​a​m​e​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​i​t​e​m​N​a​m​e​;​
}​

-​ ​(​v​o​i​d​)​s​e​t​S​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​t​r​
{​
 ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​ ​=​ ​s​t​r​;​
}​

-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​s​e​r​i​a​l​N​u​m​b​e​r​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​s​e​r​i​a​l​N​u​m​b​e​r​;​
}​

-​ ​(​v​o​i​d​)​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​i​
{​
 ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​ ​=​ ​i​;​
}​

-​ ​(​i​n​t​)​v​a​l​u​e​I​n​D​o​l​l​a​r​s​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​
}​

-​ ​(​N​S​D​a​t​e​ ​*​)​d​a​t​e​C​r​e​a​t​e​d​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​d​a​t​e​C​r​e​a​t​e​d​;​
}​

@​e​n​d​


            
Notice that the setter methods assign the appropriate instance variable to point at the incoming object, and the getter methods return a pointer 
                to the object the instance variable points at. (For valueInDollars, the setter just assigns the passed-in value 
                to the instance variable, and the getter just returns the instance variable’s value.)
 
Build your application (without running) to ensure that there are no compiler errors or warnings. To build only, select 
                Product → Build or use the shortcut Command-B.
            

                Now that your accessors have been declared and defined, you can send messages to
                BNRItem instances to get and set their instance variables.
                Let’s test this out. In main.m, import the header file for BNRItem
                and create a new BNRItem instance. After it is created, log its instance variables to the console.

#​i​m​p​o​r​t​ ​"​B​N​R​I​t​e​m​.​h​"​

i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​O​n​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​w​o​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​h​r​e​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​@​"​Z​e​r​o​"​ ​a​t​I​n​d​e​x​:​0​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​}​

 ​ ​ ​ ​ ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​ ​%​@​ ​%​@​ ​%​d​"​,​ ​[​p​ ​i​t​e​m​N​a​m​e​]​,​ ​[​p​ ​d​a​t​e​C​r​e​a​t​e​d​]​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​p​ ​s​e​r​i​a​l​N​u​m​b​e​r​]​,​ ​[​p​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​

 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​

 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


            

                Build and run the application. Check the console by selecting the entry at the top of the log navigator. At the end of the 
                console output, you should see a line that has three “(null)” strings and a 0. When an object 
                is created, all of its instance variables are set to 0. For pointers to objects, 
                that pointer points to nil; for primitives like int, the value is 0. 
            
To give this BNRItem some substance, you need to create new objects and pass them as arguments to the setter methods for 
                this instance. In main.m, type in the following code:

/​/​ ​N​o​t​i​c​e​ ​w​e​ ​o​m​i​t​t​e​d​ ​s​o​m​e​ ​o​f​ ​t​h​e​ ​s​u​r​r​o​u​n​d​i​n​g​ ​c​o​d​e​.​ ​T​h​e​ ​b​o​l​d​ ​c​o​d​e​ ​i​s​ ​t​h​e​ ​c​o​d​e​ ​t​o​ ​a​d​d​,​
/​/​ ​t​h​e​ ​n​o​n​-​b​o​l​d​ ​c​o​d​e​ ​i​s​ ​e​x​i​s​t​i​n​g​ ​c​o​d​e​ ​t​h​a​t​ ​s​h​o​w​s​ ​y​o​u​ ​w​h​e​r​e​ ​t​o​ ​t​y​p​e​ ​i​n​ ​t​h​e​ ​n​e​w​ ​s​t​u​f​f​.​

B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

/​/​ ​T​h​i​s​ ​c​r​e​a​t​e​s​ ​a​ ​n​e​w​ ​N​S​S​t​r​i​n​g​,​ ​"​R​e​d​ ​S​o​f​a​"​ ​a​n​d​ ​g​i​v​e​s​ ​i​t​ ​t​o​ ​t​h​e​ ​B​N​R​I​t​e​m​
[​p​ ​s​e​t​I​t​e​m​N​a​m​e​:​@​"​R​e​d​ ​S​o​f​a​"​]​;​

/​/​ ​T​h​i​s​ ​c​r​e​a​t​e​s​ ​a​ ​n​e​w​ ​N​S​S​t​r​i​n​g​,​ ​"​A​1​B​2​C​"​ ​a​n​d​ ​g​i​v​e​s​ ​i​t​ ​t​o​ ​t​h​e​ ​B​N​R​I​t​e​m​
[​p​ ​s​e​t​S​e​r​i​a​l​N​u​m​b​e​r​:​@​"​A​1​B​2​C​"​]​;​

/​/​ ​W​e​ ​s​e​n​d​ ​t​h​e​ ​v​a​l​u​e​ ​1​0​0​ ​t​o​ ​b​e​ ​u​s​e​d​ ​a​s​ ​t​h​e​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​ ​o​f​ ​t​h​i​s​ ​B​N​R​I​t​e​m​
[​p​ ​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​1​0​0​]​;​

N​S​L​o​g​(​@​"​%​@​ ​%​@​ ​%​@​ ​%​d​"​,​ ​[​p​ ​i​t​e​m​N​a​m​e​]​,​ ​[​p​ ​d​a​t​e​C​r​e​a​t​e​d​]​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​p​ ​s​e​r​i​a​l​N​u​m​b​e​r​]​,​ ​[​p​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​]​)​;​


                Build and run the application. Now you should see values for everything but the dateCreated, which we’ll take care of shortly.
            

Instance methods




                Not all instance methods are accessors. You will regularly find yourself wanting
                to send messages to instances that perform other tasks. One such message is description.
                You can implement this method in BNRItem to return a string that describes 
                a BNRItem instance. Because BNRItem is a subclass of 
                NSObject (the class that originally declares the description method), 
                when you re-implement description in the BNRItem class, you are 
                overriding it. 
                When overriding a method, all you need to do is define it in the implementation
                file; you do not need to declare it in the header file because it has already been
                declared by the superclass. 

            

                In BNRItem.m, override the description method. This new code can go anywhere between @implementation and @end,
                as long as it is not inside the curly brackets of an existing method.

-​ ​(​N​S​S​t​r​i​n​g​ ​*​)​d​e​s​c​r​i​p​t​i​o​n​
{​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​d​e​s​c​r​i​p​t​i​o​n​S​t​r​i​n​g​ ​=​
 ​ ​ ​ ​ ​ ​ ​ ​[​[​N​S​S​t​r​i​n​g​ ​a​l​l​o​c​]​ ​i​n​i​t​W​i​t​h​F​o​r​m​a​t​:​@​"​%​@​ ​(​%​@​)​:​ ​W​o​r​t​h​ ​$​%​d​,​ ​r​e​c​o​r​d​e​d​ ​o​n​ ​%​@​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​N​a​m​e​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​d​a​t​e​C​r​e​a​t​e​d​]​;​

 ​ ​ ​ ​r​e​t​u​r​n​ ​d​e​s​c​r​i​p​t​i​o​n​S​t​r​i​n​g​;​

}​



            
 
                Now whenever you send the message description to an
                instance of BNRItem, it will return an
                NSString that describes that instance. In main.m, substitute this 
                new method into the NSLog that prints out the
                instance variables of the BNRItem.

[​p​ ​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​1​0​0​]​;​

N​S​L​o​g​(​@​"​%​@​ ​%​@​ ​%​@​ ​%​d​"​,​ ​[​p​ ​i​t​e​m​N​a​m​e​]​,​ ​[​p​ ​d​a​t​e​C​r​e​a​t​e​d​]​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​p​ ​s​e​r​i​a​l​N​u​m​b​e​r​]​,​ ​[​p​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​]​)​;​

/​/​ ​R​e​m​e​m​b​e​r​,​ ​a​n​ ​N​S​L​o​g​ ​w​i​t​h​ ​%​@​ ​a​s​ ​t​h​e​ ​t​o​k​e​n​ ​w​i​l​l​ ​p​r​i​n​t​ ​t​h​e​
/​/​ ​d​e​s​c​r​i​p​t​i​o​n​ ​o​f​ ​t​h​e​ ​c​o​r​r​e​s​p​o​n​d​i​n​g​ ​a​r​g​u​m​e​n​t​
N​S​L​o​g​(​@​"​%​@​"​,​ ​p​)​;​

i​t​e​m​s​ ​=​ ​n​i​l​;​


                Build and run the application and check your results in the log navigator. You should 
                see a log statement that looks like this:

R​e​d​ ​S​o​f​a​ ​(​A​1​B​2​C​)​:​ ​W​o​r​t​h​ ​$​1​0​0​,​ ​r​e​c​o​r​d​e​d​ ​o​n​ ​(​n​u​l​l​)​


            

                What if you want to create an entirely new instance method, one that you are not
                overriding from the superclass? You declare the new method in the header file
                and define it in the implementation file. A good method to begin with is an object’s
                initializer. 
            

Initializers




                
                At the beginning of this chapter, we discussed how an instance is created: its
                class is sent the message alloc, which creates an instance
                of that class and returns a pointer to it, and then that instance is sent the message
                init, which gives its instance variables initial values. As you start to 
                write more complicated classes, you will want to create initialization methods, or initializers, that are like init but take arguments that the object 
                can use to initialize itself. For example, the BNRItem class would be much 
                cleaner if we could pass one or more of its instance variables as part of the initialization process.
            

           To cover the different possible initialization scenarios, many classes have more than one initializer. Each initializer 
                begins with the word init. Naming initializers this way doesn’t make these methods different from other instance methods; it is only a naming convention.
                However, the Objective-C community is all about naming conventions, which you should strictly adhere to. (Seriously. Disregarding
                naming conventions in Objective-C results in problems that are worse than most
                beginners would imagine.) 
            

           For each class, regardless of how many initialization methods there are, one method is chosen 
                as the designated initializer. 
                The designated initializer makes sure that 
                every instance variable of an object is valid. (“Valid” has different meanings, 
                but in this context it means “when you send messages to this object after initializing it, you
                can predict the outcome and nothing bad will happen.”) 
            

                Typically, the designated initializer has 
                parameters for the most important and frequently used instance variables of an object. 
                The BNRItem class has four instance variables, but only three are writeable. 
                Therefore, BNRItem’s designated initializer should accept three
                arguments.  In BNRItem.h, declare the designated initializer:                

 ​ ​ ​ ​N​S​D​a​t​e​ ​*​d​a​t​e​C​r​e​a​t​e​d​;​
}​

-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​v​a​l​u​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​N​u​m​b​e​r​;​

-​ ​(​v​o​i​d​)​s​e​t​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​t​r​;​



            

            This method’s name, or selector, is initWithItemName:​valueInDollars:​serialNumber:.
                This selector has three labels (initWithItemName:,
                valueInDollars:, and serialNumber:), 
                which tells you that the method accepts three arguments. 
            

                These arguments each have a type and a parameter name. In the declaration, the type follows the label
                in parentheses. The parameter name then follows the type. So the label
                initWithItemName: is expecting a pointer to an instance of
                type NSString. Within the body of this method, you can use name
                to reference the NSString object pointed to. 
            
id




                    Take another look at the initializer’s declaration; 
                    its return type is id (pronounced “eye-dee”). This type is defined as “a
                    pointer to any object.” (id is a lot like void * in C.)
                    init methods are always declared to return
                    id. 
                

Why not make the return type BNRItem *? After all, that is the type of object 
                    that is returned from this method. A problem will arise, however, if BNRItem is ever subclassed. 
                    The subclass would inherit all of the methods from BNRItem, including this initializer and its return type. 
                    An instance of the subclass could then be sent this initializer message, but what would be returned? Not a BNRItem,
                    but an instance of the subclass. 
                    You might think, “No problem. Override the initializer in the subclass to change the return type.” But in Objective-C, you cannot have two methods with the same selector and different return types (or arguments). By specifying that an initialization
                    method returns “any object,” we never have to worry what happens with a subclass.
                

isa




                    As programmers, we always know the type of the object that is returned from an initializer. (How do we know this? It is an instance of the class we sent alloc
                    to.) The object itself also knows its type – thanks to its isa pointer. 
                

                    Every object has an instance variable called isa. When an instance is created by sending alloc
                    to a class, that class sets the isa instance variable of the returned object to point back at the class that created it (Figure 2.13). We call it the isa pointer 
                    because an object “is a” instance of that class.
                
Figure 2.13  The isa pointer
[image: The isa pointer]



                    The isa pointer is where Objective-C gets much of its power. At runtime, when a message is sent to an object,
                    that object goes to the class named in its isa pointer and says, “I was sent this message. Run the code 
                    for the matching method.” This is different than most compiled languages, where the method to be executed is determined 
                    at compile time.
                

Implementing the designated initializer




                    Now that you have declared the designated initializer in BNRItem.h, you need to implement it.
                    Open BNRItem.m. Recall that the definitions for methods go
                    within the implementation block in the implementation file, so add the designated
                    initializer there.
                    

@​i​m​p​l​e​m​e​n​t​a​t​i​o​n​ ​B​N​R​I​t​e​m​

-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​v​a​l​u​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​N​u​m​b​e​r​
{​
 ​ ​ ​ ​/​/​ ​C​a​l​l​ ​t​h​e​ ​s​u​p​e​r​c​l​a​s​s​'​s​ ​d​e​s​i​g​n​a​t​e​d​ ​i​n​i​t​i​a​l​i​z​e​r​
 ​ ​ ​ ​s​e​l​f​ ​=​ ​[​s​u​p​e​r​ ​i​n​i​t​]​;​

 ​ ​ ​ ​/​/​ ​G​i​v​e​ ​t​h​e​ ​i​n​s​t​a​n​c​e​ ​v​a​r​i​a​b​l​e​s​ ​i​n​i​t​i​a​l​ ​v​a​l​u​e​s​
 ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​I​t​e​m​N​a​m​e​:​n​a​m​e​]​;​
 ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​S​e​r​i​a​l​N​u​m​b​e​r​:​s​N​u​m​b​e​r​]​;​
 ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​v​a​l​u​e​]​;​
 ​ ​ ​ ​d​a​t​e​C​r​e​a​t​e​d​ ​=​ ​[​[​N​S​D​a​t​e​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​/​/​ ​R​e​t​u​r​n​ ​t​h​e​ ​a​d​d​r​e​s​s​ ​o​f​ ​t​h​e​ ​n​e​w​l​y​ ​i​n​i​t​i​a​l​i​z​e​d​ ​o​b​j​e​c​t​
 ​ ​ ​ ​r​e​t​u​r​n​ ​s​e​l​f​;​
}​


                

                    In the designated initializer, the first thing you always do is call the superclass’s designated initializer using super.
                    The last thing you do is return a pointer to the successfully initialized object using self. So to
                    understand what’s going on in an initializer, you will need to know about self and
                    super.
                

self




                    Inside a method, self is an implicit local variable. There is
                    no need to declare it, and it is automatically set to point to the object that was sent the message. (Most object-oriented languages have this concept, but some call it
                    this instead of self.)
                    Typically, self is used so that an object can send a message to itself:

-​ ​(​v​o​i​d​)​c​h​i​c​k​e​n​D​a​n​c​e​
{​
 ​ ​ ​ ​[​s​e​l​f​ ​p​r​e​t​e​n​d​H​a​n​d​s​A​r​e​B​e​a​k​s​]​;​
 ​ ​ ​ ​[​s​e​l​f​ ​f​l​a​p​W​i​n​g​s​]​;​
 ​ ​ ​ ​[​s​e​l​f​ ​s​h​a​k​e​T​a​i​l​F​e​a​t​h​e​r​s​]​;​
}​


                   
                

                In the last line of an init method, you always return the
                    newly initialized object so that the caller can assign it to a variable: 

r​e​t​u​r​n​ ​s​e​l​f​;​


                

super




                    Often when you are overriding a method, you want to keep what the method of the superclass is doing and have your subclass add something new on top of it. To make this easier, there is a 
                    compiler directive in Objective-C called super:

-​ ​(​v​o​i​d​)​s​o​m​e​M​e​t​h​o​d​
{​
 ​ ​ ​ ​[​s​e​l​f​ ​d​o​M​o​r​e​S​t​u​f​f​]​;​
 ​ ​ ​ ​[​s​u​p​e​r​ ​s​o​m​e​M​e​t​h​o​d​]​;​
}​


                

                    How does super work? Usually when you send a message to an
                    object, the search for a method of that name starts in the object’s class. If there
                    is no such method, the search continues in the superclass of the object. The search
                    will continue up the inheritance hierarchy until a suitable method is found. (If it
                    gets to the top of the hierarchy and no method is found, an exception is thrown.)


                    When you send a message to super, you are sending a message to
                    self, but the search for the method skips the object’s class and starts at
                    the superclass.
                    In the case of BNRItem’s designated initializer, we send the init message to super. This calls NSObject’s implementation 
                    of init. 
                

                   If an initializer message fails, it will return nil.
                    Therefore, it is a good idea to
                    save the return value of the superclass’s initializer into the
                    self variable and confirm that it is not
                    nil before doing any further initialization. In
                    BNRItem.m, edit your designated initializer to confirm
                    the initialization of the superclass.
                    
-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​v​a​l​u​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​N​u​m​b​e​r​
{​
 ​ ​ ​ ​/​/​ ​C​a​l​l​ ​t​h​e​ ​s​u​p​e​r​c​l​a​s​s​'​s​ ​d​e​s​i​g​n​a​t​e​d​ ​i​n​i​t​i​a​l​i​z​e​r​
 ​ ​ ​ ​s​e​l​f​ ​=​ ​[​s​u​p​e​r​ ​i​n​i​t​]​;​

 ​ ​ ​ ​/​/​ ​D​i​d​ ​t​h​e​ ​s​u​p​e​r​c​l​a​s​s​'​s​ ​d​e​s​i​g​n​a​t​e​d​ ​i​n​i​t​i​a​l​i​z​e​r​ ​s​u​c​c​e​e​d​?​
 ​ ​ ​ ​i​f​ ​(​s​e​l​f​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​/​/​ ​G​i​v​e​ ​t​h​e​ ​i​n​s​t​a​n​c​e​ ​v​a​r​i​a​b​l​e​s​ ​i​n​i​t​i​a​l​ ​v​a​l​u​e​s​
 ​ ​ ​ ​ ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​I​t​e​m​N​a​m​e​:​n​a​m​e​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​S​e​r​i​a​l​N​u​m​b​e​r​:​s​N​u​m​b​e​r​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​s​e​l​f​ ​s​e​t​V​a​l​u​e​I​n​D​o​l​l​a​r​s​:​v​a​l​u​e​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​d​a​t​e​C​r​e​a​t​e​d​ ​=​ ​[​[​N​S​D​a​t​e​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​}​

 ​ ​ ​ ​/​/​ ​R​e​t​u​r​n​ ​t​h​e​ ​a​d​d​r​e​s​s​ ​o​f​ ​t​h​e​ ​n​e​w​l​y​ ​i​n​i​t​i​a​l​i​z​e​d​ ​o​b​j​e​c​t​
 ​ ​ ​ ​r​e​t​u​r​n​ ​s​e​l​f​;​
}​


                


Other initializers and the initializer chain




                A class can have more than one initializer. First, let’s consider a hypothetical example. BNRItem could have an initializer 
                that takes only an NSString for the itemName. Its declaration would look like this:
            
-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​;​


                In this initializer’s definition, you wouldn’t replicate the code in the designated initializer. Instead, this initializer would simply 
                call the designated initializer, pass the information it was given as the itemName, and pass default values for the other arguments.
                
            
-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​[​s​e​l​f​ ​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​n​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​0​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​@​"​"​]​;​
}​

Using initializers as a chain like this reduces the chance for error and makes maintaining code easier. For classes that have more than one initializer, the programmer who created the class chooses 
                which initializer is designated. 
                You only write the core of the initializer once in the designated initializer, and other
                initialization methods simply call that core with default values.

                
                Now let’s look at a real example. BNRItem actually has another initializer, init, which it inherits it from its superclass NSObject.
                If init is sent to an instance of BNRItem, none of the stuff you put in the designated
                initializer will be called. Therefore, you must link BNRItem’s implementation of init to 
                its designated initializer. 
            

                In BNRItem.m, override the init method to call the designated initializer with default values for 
                all of the arguments.

-​ ​(​i​d​)​i​n​i​t​
{​
 ​ ​ ​ ​r​e​t​u​r​n​ ​[​s​e​l​f​ ​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​@​"​I​t​e​m​"​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​0​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​@​"​"​]​;​
}​


            

                The relationships between BNRItem’s initializers (real and hypothetical) are shown 
                in Figure 2.14; the designated initializers are white, and the additional initializer is gray.
            
Figure 2.14  Initializer chain
[image: Initializer chain]



               Let’s form some simple rules for initializers from these ideas.
                
	
                    A class inherits all initializers from its superclass and can add as many as it wants for its own purposes.
                

	
                    Each class picks one initializer as its designated initializer.
                

	
                    The designated initializer calls the superclass’s designated initializer.
                

	
                    Any other initializer a class has calls the class’s designated initializer.
                

	
                    If a class declares a designated initializer that is different from its superclass,
                    the superclass’s designated initializer must be overridden to call the new 
                    designated initializer.
                



            
            

Using Initializers




                Currently, the code in main.m sends the message init to the new instance of BNRItem. With 
                these new initializer methods, this message will run the init method you just implemented in BNRItem, which 
                calls the designated initializer )initWithItemName:​valueInDollars:​serialNumber:) and passes default values. Let’s make sure this works as intended.
            

                In main.m, log the BNRItem to the console after it is initialized but before the setter messages 
                are sent.
                
B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

N​S​L​o​g​(​@​"​%​@​"​,​ ​p​)​;​

/​/​ ​T​h​i​s​ ​c​r​e​a​t​e​s​ ​a​ ​n​e​w​ ​N​S​S​t​r​i​n​g​,​ ​"​R​e​d​ ​S​o​f​a​"​,​ ​a​n​d​ ​g​i​v​e​s​ ​i​t​ ​t​o​ ​t​h​e​ ​B​N​R​I​t​e​m​
[​p​ ​s​e​t​I​t​e​m​N​a​m​e​:​@​"​R​e​d​ ​S​o​f​a​"​]​;​


            

                Build and run the application. Notice that the console spits out the following messages:
                
I​t​e​m​ ​(​)​:​ ​W​o​r​t​h​ ​$​0​,​ ​r​e​c​o​r​d​e​d​ ​o​n​ ​2​0​1​1​-​0​7​-​1​9​ ​1​8​:​5​6​:​4​2​ ​+​0​0​0​0​
R​e​d​ ​S​o​f​a​ ​(​A​1​B​2​C​)​:​ ​W​o​r​t​h​ ​$​1​0​0​,​ ​r​e​c​o​r​d​e​d​ ​o​n​ ​2​0​1​1​-​0​7​-​1​9​ ​1​8​:​5​6​:​4​2​ ​+​0​0​0​0​


            

                Now replace the code that initializes the BNRItem and the code sets its instance variables with a single 
                message send using the designated initializer. Also, get rid of the code that populates the NSMutableArray
                with strings and prints them to the console. In main.m, 
                make the following changes:
                
#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​
#​i​m​p​o​r​t​ ​"​B​N​R​I​t​e​m​.​h​"​

i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​

 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​O​n​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​w​o​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​@​"​T​h​r​e​e​"​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​i​n​s​e​r​t​O​b​j​e​c​t​:​@​"​Z​e​r​o​"​ ​a​t​I​n​d​e​x​:​0​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​}​
 ​ ​ ​ ​ ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​ ​%​@​ ​%​@​ ​%​d​"​,​ ​[​p​ ​i​t​e​m​N​a​m​e​]​,​ ​[​p​ ​d​a​t​e​C​r​e​a​t​e​d​]​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​p​ ​s​e​r​i​a​l​N​u​m​b​e​r​]​,​ ​[​p​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​
 ​ ​ ​ ​ ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​@​"​R​e​d​ ​S​o​f​a​"​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​1​0​0​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​@​"​A​1​B​2​C​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​p​)​;​

 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​
 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


                Build and run the application. Notice that the console now prints a single BNRItem that was instantiated with the 
                values passed to BNRItem’s designated initializer.
            

Class methods




                Methods come in two flavors: instance methods and class methods.
                Instance methods (like init) are
                sent to instances of the class, and class methods (like
                alloc) are sent to the class itself. Class methods typically either
                create new instances of the class or retrieve some global property of the class. Class methods do not operate on an instance or have any access
                to instance variables. 
            

                Syntactically, class methods differ from instance methods by the first character
                in their declaration. An instance method uses the -
                character just before the return type, and a class method uses the + character.
                
            

                One common use for class methods is to provide convenient ways to create
                instances of that class. For the BNRItem class, it would
                be nice if you could create a random item so that you could test your
                class without having to think up a bunch of clever names. In BNRItem.h, declare a class
                method that will create a random item.

@​i​n​t​e​r​f​a​c​e​ ​B​N​R​I​t​e​m​ ​:​ ​N​S​O​b​j​e​c​t​
{​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​i​t​e​m​N​a​m​e​;​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​s​e​r​i​a​l​N​u​m​b​e​r​;​
 ​ ​ ​ ​i​n​t​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​
 ​ ​ ​ ​N​S​D​a​t​e​ ​*​d​a​t​e​C​r​e​a​t​e​d​;​
}​

+​ ​(​i​d​)​r​a​n​d​o​m​I​t​e​m​;​

-​ ​(​i​d​)​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​(​N​S​S​t​r​i​n​g​ ​*​)​n​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​(​i​n​t​)​v​a​l​u​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​(​N​S​S​t​r​i​n​g​ ​*​)​s​N​u​m​b​e​r​;​



                Notice the order of the declarations for the methods. Class methods come first, followed by initializers, followed by any other methods. 
                This is a convention that makes your header files easier to read.
            
 
In BNRItem.m, implement
                randomItem to create,
                configure, and return a BNRItem instance. (Again, make sure this method is between the @implementation
                and @end.)

+​ ​(​i​d​)​r​a​n​d​o​m​I​t​e​m​
{​
 ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​a​n​ ​a​r​r​a​y​ ​o​f​ ​t​h​r​e​e​ ​a​d​j​e​c​t​i​v​e​s​
 ​ ​ ​ ​N​S​A​r​r​a​y​ ​*​r​a​n​d​o​m​A​d​j​e​c​t​i​v​e​L​i​s​t​ ​=​ ​[​N​S​A​r​r​a​y​ ​a​r​r​a​y​W​i​t​h​O​b​j​e​c​t​s​:​@​"​F​l​u​f​f​y​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​@​"​R​u​s​t​y​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​@​"​S​h​i​n​y​"​,​ ​n​i​l​]​;​

 ​ ​ ​ ​/​/​ ​C​r​e​a​t​e​ ​a​n​ ​a​r​r​a​y​ ​o​f​ ​t​h​r​e​e​ ​n​o​u​n​s​
 ​ ​ ​ ​N​S​A​r​r​a​y​ ​*​r​a​n​d​o​m​N​o​u​n​L​i​s​t​ ​=​ ​[​N​S​A​r​r​a​y​ ​a​r​r​a​y​W​i​t​h​O​b​j​e​c​t​s​:​@​"​B​e​a​r​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​@​"​S​p​o​r​k​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​@​"​M​a​c​"​,​ ​n​i​l​]​;​

 ​ ​ ​ ​/​/​ ​G​e​t​ ​t​h​e​ ​i​n​d​e​x​ ​o​f​ ​a​ ​r​a​n​d​o​m​ ​a​d​j​e​c​t​i​v​e​/​n​o​u​n​ ​f​r​o​m​ ​t​h​e​ ​l​i​s​t​s​
 ​ ​ ​ ​/​/​ ​N​o​t​e​:​ ​T​h​e​ ​%​ ​o​p​e​r​a​t​o​r​,​ ​c​a​l​l​e​d​ ​t​h​e​ ​m​o​d​u​l​o​ ​o​p​e​r​a​t​o​r​,​ ​g​i​v​e​s​
 ​ ​ ​ ​/​/​ ​y​o​u​ ​t​h​e​ ​r​e​m​a​i​n​d​e​r​.​ ​S​o​ ​a​d​j​e​c​t​i​v​e​I​n​d​e​x​ ​i​s​ ​a​ ​r​a​n​d​o​m​ ​n​u​m​b​e​r​
 ​ ​ ​ ​/​/​ ​f​r​o​m​ ​0​ ​t​o​ ​2​ ​i​n​c​l​u​s​i​v​e​.​
 ​ ​ ​ ​N​S​I​n​t​e​g​e​r​ ​a​d​j​e​c​t​i​v​e​I​n​d​e​x​ ​=​ ​r​a​n​d​(​)​ ​%​ ​[​r​a​n​d​o​m​A​d​j​e​c​t​i​v​e​L​i​s​t​ ​c​o​u​n​t​]​;​
 ​ ​ ​ ​N​S​I​n​t​e​g​e​r​ ​n​o​u​n​I​n​d​e​x​ ​=​ ​r​a​n​d​(​)​ ​%​ ​[​r​a​n​d​o​m​N​o​u​n​L​i​s​t​ ​c​o​u​n​t​]​;​

 ​ ​ ​ ​/​/​ ​N​o​t​e​ ​t​h​a​t​ ​N​S​I​n​t​e​g​e​r​ ​i​s​ ​n​o​t​ ​a​n​ ​o​b​j​e​c​t​,​ ​b​u​t​ ​a​ ​t​y​p​e​ ​d​e​f​i​n​i​t​i​o​n​
 ​ ​ ​ ​/​/​ ​f​o​r​ ​"​u​n​s​i​g​n​e​d​ ​l​o​n​g​"​

 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​r​a​n​d​o​m​N​a​m​e​ ​=​ ​[​N​S​S​t​r​i​n​g​ ​s​t​r​i​n​g​W​i​t​h​F​o​r​m​a​t​:​@​"​%​@​ ​%​@​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​r​a​n​d​o​m​A​d​j​e​c​t​i​v​e​L​i​s​t​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​a​d​j​e​c​t​i​v​e​I​n​d​e​x​]​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​r​a​n​d​o​m​N​o​u​n​L​i​s​t​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​n​o​u​n​I​n​d​e​x​]​]​;​

 ​ ​ ​ ​i​n​t​ ​r​a​n​d​o​m​V​a​l​u​e​ ​=​ ​r​a​n​d​(​)​ ​%​ ​1​0​0​;​

 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​r​a​n​d​o​m​S​e​r​i​a​l​N​u​m​b​e​r​ ​=​ ​[​N​S​S​t​r​i​n​g​ ​s​t​r​i​n​g​W​i​t​h​F​o​r​m​a​t​:​@​"​%​c​%​c​%​c​%​c​%​c​"​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​'​0​'​ ​+​ ​r​a​n​d​(​)​ ​%​ ​1​0​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​'​A​'​ ​+​ ​r​a​n​d​(​)​ ​%​ ​2​6​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​'​0​'​ ​+​ ​r​a​n​d​(​)​ ​%​ ​1​0​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​'​A​'​ ​+​ ​r​a​n​d​(​)​ ​%​ ​2​6​,​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​'​0​'​ ​+​ ​r​a​n​d​(​)​ ​%​ ​1​0​]​;​


 ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​n​e​w​I​t​e​m​ ​=​
 ​ ​ ​ ​ ​ ​ ​ ​[​[​s​e​l​f​ ​a​l​l​o​c​]​ ​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​r​a​n​d​o​m​N​a​m​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​r​a​n​d​o​m​V​a​l​u​e​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​r​a​n​d​o​m​S​e​r​i​a​l​N​u​m​b​e​r​]​;​
 ​ ​ ​ ​r​e​t​u​r​n​ ​n​e​w​I​t​e​m​;​
}​



            
 
                This method creates two arrays using the method arrayWithObjects:.  This method takes a list of objects terminated by nil.  nil is not added to the array; it just indicates the end of the argument list.
Then randomItem creates a string from a random adjective and noun,  a random integer value, and another string
                from random numbers and letters. It then creates an
                instance of BNRItem and sends it the designated
                initializer message with these randomly-created objects and int as parameters.
            
 
                In this method, you also used stringWithFormat:, which is a class method of
                NSString. This message is sent directly to
                NSString, and the method returns an NSString instance with
                the passed-in parameters. In Objective-C, class methods that return an
                object of their type (like stringWithFormat: and
                randomItem) are called convenience
                methods. 
            

                Notice the use of self in
                randomItem. Because randomItem is a class method,
                self refers to the BNRItem class
                itself instead of an instance. Class methods should use self in convenience methods
                instead of their class name so that a subclass can be sent the same message. In this case, if you create a subclass of
                BNRItem, you can send that subclass the message
                randomItem. Using self
                (instead of BNRItem) will allocate an instance of the class that was sent the message and set 
                the instance’s isa pointer to that class.
            

Testing your subclass




                Open main.m. Delete the code that previously created and logged
                a single BNRItem. Then add BNRItem instances to
                the array and log them instead. Change your main function to look just like this:
                

#​i​m​p​o​r​t​ ​<​F​o​u​n​d​a​t​i​o​n​/​F​o​u​n​d​a​t​i​o​n​.​h​>​
#​i​m​p​o​r​t​ ​"​B​N​R​I​t​e​m​.​h​"​

i​n​t​ ​m​a​i​n​ ​(​i​n​t​ ​a​r​g​c​,​ ​c​o​n​s​t​ ​c​h​a​r​ ​*​ ​a​r​g​v​[​]​)​
{​
 ​ ​ ​ ​@​a​u​t​o​r​e​l​e​a​s​e​p​o​o​l​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​*​i​t​e​m​s​ ​=​ ​[​[​N​S​M​u​t​a​b​l​e​A​r​r​a​y​ ​a​l​l​o​c​]​ ​i​n​i​t​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​[​B​N​R​I​t​e​m​ ​a​l​l​o​c​]​ ​i​n​i​t​W​i​t​h​I​t​e​m​N​a​m​e​:​@​"​R​e​d​ ​S​o​f​a​"​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​:​1​0​0​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​s​e​r​i​a​l​N​u​m​b​e​r​:​@​"​A​1​B​2​C​"​]​;​

 ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​p​)​;​

 ​ ​ ​ ​
 ​ ​ ​ ​ ​ ​ ​ ​f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​1​0​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​B​N​R​I​t​e​m​ ​r​a​n​d​o​m​I​t​e​m​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​p​]​;​
 ​ ​ ​ ​ ​ ​ ​ ​}​

 ​ ​ ​ ​ ​ ​ ​ ​f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​)​;​
 ​ ​ ​ ​ ​ ​ ​ ​}​
 ​ ​ ​ ​

 ​ ​ ​ ​ ​ ​ ​ ​i​t​e​m​s​ ​=​ ​n​i​l​;​
 ​ ​ ​ ​}​
 ​ ​ ​ ​r​e​t​u​r​n​ ​0​;​
}​


            
 
                Build and run your application and then check the output in the log navigator. 
                All you did was replace what objects you added to the array, and the code runs perfectly 
                fine with a different output (Figure 2.15).
                Creating this class was a success.
            
Figure 2.15  Application result
[image: Application result]


 
                Check out the #import statements at the top of
                main.m. Why did you have to import the class header
                BNRItem.h when you didn’t you have to import, say,
                NSMutableArray.h?
                NSMutableArray comes from the Foundation framework, so it
                is included when you import Foundation/Foundation.h. On the
                other hand, your class exists in its own file, so you have to explicitly import
                it into main.m. Otherwise, the compiler won’t know
                it exists and will complain loudly. 
            


Exceptions and Unrecognized Selectors



 
            An object only responds to a message if its class implements the associated method. Objective-C is a dynamically-typed language, so it can’t always figure out at compile
            time (when the application is built) whether an object will respond to a message. Xcode will
            give you an error if it thinks you are sending a message to an object that won’t respond, but if it isn’t sure, it will let the application 
            build.
        

            If, for some reason (and there are many), you end up sending a
            message to an object that doesn’t respond, your
            application will throw an exception. Exceptions are also known as run-time errors because they occur once your application is running as opposed
            to compile-time errors that show up when your application is being built, or compiled. (We’ll come back to compile-time errors in Chapter 4.) 
        
 
            To practice dealing with exceptions, we’re going to cause one in RandomPossessions. In BNRItem.h, declare a new method:
            
@​i​n​t​e​r​f​a​c​e​ ​B​N​R​I​t​e​m​ ​:​ ​N​S​O​b​j​e​c​t​
{​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​i​t​e​m​N​a​m​e​;​
 ​ ​ ​ ​N​S​S​t​r​i​n​g​ ​*​s​e​r​i​a​l​N​u​m​b​e​r​;​
 ​ ​ ​ ​i​n​t​ ​v​a​l​u​e​I​n​D​o​l​l​a​r​s​;​
 ​ ​ ​ ​N​S​D​a​t​e​ ​*​d​a​t​e​C​r​e​a​t​e​d​;​
}​
-​ ​(​v​o​i​d​)​d​o​S​o​m​e​t​h​i​n​g​W​e​i​r​d​;​

+​ ​(​i​d​)​r​a​n​d​o​m​I​t​e​m​;​


        

            You are going to send the message doSomethingWeird to an instance of BNRItem. The problem?
            You didn’t implement doSomethingWeird in BNRItem.m – you only declared it in BNRItem.h.
            Therefore, BNRItem does not implement doSomethingWeird, and an exception will be thrown.
            In main.m, send this message to a BNRItem.
            
f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​1​0​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​B​N​R​I​t​e​m​ ​r​a​n​d​o​m​I​t​e​m​]​;​
 ​ ​ ​ ​[​p​ ​d​o​S​o​m​e​t​h​i​n​g​W​e​i​r​d​]​;​
 ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​p​]​;​
}​


            Build and run the application. Your application will compile, start running, and then halt. 
            Check your console and find the line that looks like this:
            
2​0​1​1​-​1​1​-​1​4​ ​1​2​:​2​3​:​4​7​.​9​9​0​ ​R​a​n​d​o​m​P​o​s​s​e​s​s​i​o​n​s​[​1​0​2​8​8​:​7​0​7​]​ ​*​*​*​
T​e​r​m​i​n​a​t​i​n​g​ ​a​p​p​ ​d​u​e​ ​t​o​ ​u​n​c​a​u​g​h​t​ ​e​x​c​e​p​t​i​o​n​ ​'​N​S​I​n​v​a​l​i​d​A​r​g​u​m​e​n​t​E​x​c​e​p​t​i​o​n​'​,​ ​r​e​a​s​o​n​:​
'​-​[​B​N​R​I​t​e​m​ ​d​o​S​o​m​e​t​h​i​n​g​W​e​i​r​d​]​:​ ​u​n​r​e​c​o​g​n​i​z​e​d​ ​s​e​l​e​c​t​o​r​ ​s​e​n​t​ ​t​o​ ​i​n​s​t​a​n​c​e​ ​0​x​1​0​0​1​1​7​2​8​0​'​


        
 
            This is what an exception looks like. What exactly is it saying? First it tells us the date, time, and name of the application. You can ignore that information and focus on what comes after the “***.” That line tells us that an exception occurred and the reason.
        

        The reason is the most important piece of information an exception gives you. 
            Here the reason tells us that an unrecognized selector was sent
            to an instance. You know that selector means message. You sent a message to an object,
            and the object does not implement that method. 
        
 
            The type of the receiver and the name of the message are also in this output, which makes it
            easier to debug. An instance of BNRItem was sent the
            message doSomethingWeird. The - at the
            beginning tells you the receiver was an instance of BNRItem. A
            + would mean the class itself was the receiver.
        

            Xcode did try to warn us that something bad might happen: check the issue navigator to see the 
            warning from the compiler that BNRItem has an incomplete implementation.
        

            There are two important lessons to take away from this. First, always check the console if your application halts or crashes;
            errors that occur at runtime (exceptions) are just as important as those that occur during compiling. Second, remember  
            that unrecognized selector means the message you are sending isn’t implemented by the receiver. 
            And by remember, I mean write it down somewhere. You will make 
            this mistake more than once, and you’ll want to be able to diagnose it quickly.
        
     
Some languages use try and catch blocks to handle exceptions. While Objective-C has this 
            ability, we don’t use it very often in application code. Typically, an exception is a programmer 
            error and should be fixed in the code instead of handled at runtime.
        

            Before continuing, remove the exception-causing code: first from main.m...
            
f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​1​0​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​p​ ​=​ ​[​B​N​R​I​t​e​m​ ​r​a​n​d​o​m​I​t​e​m​]​;​
 ​ ​ ​ ​[​p​ ​d​o​S​o​m​e​t​h​i​n​g​W​e​i​r​d​]​;​
 ​ ​ ​ ​[​i​t​e​m​s​ ​a​d​d​O​b​j​e​c​t​:​p​]​;​
}​


        and then from BNRItem.h...
            
-​ ​(​v​o​i​d​)​d​o​S​o​m​e​t​h​i​n​g​W​e​i​r​d​;​


        

Fast Enumeration



 
            Before
            Objective-C 2.0, we iterated through arrays the way you did in your main function:

f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​i​t​e​m​ ​=​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​;​
 ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​i​t​e​m​)​;​
}​


        
 
            Objective-C 2.0 introduced fast enumeration. With fast enumeration, you can write that code segment much more succinctly. Make the following change in main.m:

f​o​r​ ​(​i​n​t​ ​i​ ​=​ ​0​;​ ​i​ ​<​ ​[​i​t​e​m​s​ ​c​o​u​n​t​]​;​ ​i​+​+​)​ ​{​
 ​ ​ ​ ​B​N​R​I​t​e​m​ ​*​i​t​e​m​ ​=​ ​[​i​t​e​m​s​ ​o​b​j​e​c​t​A​t​I​n​d​e​x​:​i​]​;​
 ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​i​t​e​m​)​;​
}​

f​o​r​ ​(​B​N​R​I​t​e​m​ ​*​i​t​e​m​ ​i​n​ ​i​t​e​m​s​)​ ​{​
 ​ ​ ​ ​N​S​L​o​g​(​@​"​%​@​"​,​ ​i​t​e​m​)​;​
}​

i​t​e​m​s​ ​=​ ​n​i​l​;​


        

            In this chapter, we have covered the basics of Objective-C. In the next chapter, we will discuss memory management in Cocoa Touch.
        

Challenges




            Most chapters in this book will finish with at least one challenge that encourages you to take your work in the chapter one step further and prove to yourself what you’ve learned.  We suggest that you tackle as                many of these challenges as you can to cement your knowledge and move from learning iOS development from us to doing iOS development on your own. 
        

            Challenges come in three levels of difficulty: 
            
	
                    Bronze challenges typically ask you to do something very similar to what you did in the chapter. These challenges reinforce what you learned 
                    in the chapter and force you to type in similar code without having it laid out in front of you. Practice makes perfect.
                

	
                    Silver-level challenges require you to do more digging and more thinking. You will need to use methods, classes, and properties that you haven’t seen before. But the tasks are still similar to what you did
                    in the chapter.
                

	
                    Gold challenges are difficult and can take hours to complete. They require you to understand the concepts from the chapter and then do some quality thinking and problem-solving on your own.                                     Tackling these challenges will prepare you for the real-world work of iOS development. 
                




        

            Before beginning any challenge: always make a copy of your project directory in Finder and attack the challenge 
            in that copy. Many chapters build on previous chapters, and working on challenges in a copy of the project assures you will be able to progress through the book.
        

Bronze Challenge: Bug Finding



Create a bug in your program by asking for the eleventh item in the array. Run it and note the exception that gets thrown.

Silver Challenge: Another initializer




            Create another initializer method for BNRItem. This initializer is not the designated initializer of BNRItem. It 
            takes an NSString that identifies the itemName of the item and an NSString
            that identifies the serialNumber.
        

Gold Challenge: Another Class




            Create a subclass of BNRItem named BNRContainer. A BNRContainer should have an array 
            of subitems that contains instances of BNRItem. Printing the description of a BNRContainer
            should show you the name of the container, its value in dollars (a sum of all items in the container plus the value of the container itself), and a list of 
            every BNRItem it contains. A properly-written BNRContainer can contain instances of BNRContainer. It can also report back its full value and every contained item properly.
        

Are You More Curious?




        In addition to Challenges, many chapters will conclude with one or more “For the More Curious” sections. These sections offer deeper explanations of or additional information
        about the topics presented in the chapter. The knowledge in these sections is not absolutely essential to get you where you’re going, but we hope you’ll find it interesting
        and useful.
    

For the More Curious: Class Names




In simple applications like RandomPossessions, we only use a handful of classes. However, as applications grow larger and more complex,
        the number of classes grows. At some point, you will run into a situation where you have two classes that could easily 
        be named the same thing. This is bad news. If two classes have the same name, it is impossible for your program to figure out which one it should use. 
        This is known as a namespace collision.
    

        Other languages solve this problem by declaring classes inside a namespace. You can think of a namespace as a group, to which 
        classes belong. To use a class in these languages, you have to specify both the class name and the namespace. 
    

        Objective-C has no notion of namespaces. Instead, we prefix class names with two or three letters to keep them distinct. For example, in this exercise, the class was named 
        BNRItem instead of Item.
    

        Stylish Objective-C programmers always prefix their model and view classes. The prefix is typically related to the name of the application you are developing 
        or the library it belongs to. For example, if I were writing an application named “MovieViewer,” I would prefix all classes with MV.
        Classes that you will use across multiple projects typically bear a prefix that is related to your name (JC), your company’s name (BNR),
        or a portable library (a library for dealing with maps might use MAP).
    

        Controller objects, on the other hand, are typically only used in a single application and do not need a prefix. This isn’t a rule – you can prefix your controller objects 
        if you like, and you definitely should if they will be used in other applications.
    
                              
                Notice that Apple’s classes have prefixes, too. Apple’s classes are organized into frameworks (which we’ll talk about in Chapter 4), and each framework has its own
        prefix. For instance, the UILabel class belongs to the UIKit framework. The classes NSArray and NSString belong to
        the Foundation framework. (The NS stands for NeXTSTEP, the platform for which these classes were originally designed.)

3
Managing Memory with ARC




        In this chapter, you’ll learn how memory is managed in iOS and the concepts that underlie automatic reference counting, or ARC. We’ll start with some basics of application memory.
    
The Heap




All Objective-C objects are stored in a part of memory called the heap. When we send an alloc message to a class, 
                a chunk of memory is allocated from the heap. This chunk includes space for the object’s instance variables. 
            

                For example, consider an instance of NSDate, which represents a specific point in time. An NSDate has two instance variables: a double that stores the number of 
                seconds since a fixed reference point in time and the isa pointer, which every object inherits from NSObject. A double is eight bytes,
                and a pointer is 4 bytes, so each time alloc is sent to the NSDate class,
                12 bytes is allocated from the heap for a new NSDate object. 
            

                Consider another example: BNRItem. A BNRItem
                has five instance variables: four pointers (isa, itemName, serialNumber, and dateCreated)
                and an int (valueInDollars).
                The amount of memory needed for an int is four bytes, so the total size of a BNRItem is 20 bytes (Figure 3.1).
            
Figure 3.1  Byte count of BNRItem and NSDate instances
[image: Byte count of BNRItem and NSDate instances]



                Notice in Figure 3.1 that the NSDate object does not live inside the BNRItem. Objects never live inside one another; they 
                exist separately on the heap. Instead, objects keep references to other objects as needed. These references are the pointer instance variables of an object. 
                Thus, when a BNRItem’s dateCreated instance variable is set, the address of the NSDate instance 
                is stored in the BNRItem, not the NSDate itself. 
                So, if the NSDate was 10, 20, or even 1000 bytes, it wouldn’t affect the size of the BNRItem.)
                
            





End of sample




    To search for additional titles please go to 

    
    http://search.overdrive.com.   


OEBPS/TableViewControllers/RowContent.png
ItemsViewController BNRItemStore

P <
tableView:cellForRowAtindexPath: ob_e;;A"" dox:
\ dataSource L S allitems
\ K
UlTableView NSMutableArray
UlTableViewCell BNRItem

gets its content from..

UlTableViewCell BNRItem
- gets its content from.

UlTableViewCell BNRItem
----gets its content from...---»

UlTableViewCell BNRItem
---gets its content from...-






OEBPS/MapKit/NewClassDialog.png
Choose a template for your new file:

mios

& & - -
Cocoa Touch i [ h h
T vy vy e
User Inerface
e Objective-C class Objective-C Objective-C class  Objective-C protocol

EeE category extension

Resource

Other R
& Mac 05 X [

Cocoa =

Cand i+ Objective-C test

User Inerface ‘case class

Core Data

Resource

Other

7 Objective-C class.
An Objective-C class, with Implementation and header files.

Cancel

Previous





OEBPS/View/HardChallenge.png





OEBPS/xcode_icons/connections_inspector.png





OEBPS/CAAnimation/Keyframes.png
toValue

=






OEBPS/Rotation/StrutSpringExample.png





OEBPS/Instruments/DataMining.png
‘Specific Data Mining.
@ mach_msg_trap  Prune






OEBPS/Simple/NecessaryConnections.png
Connections needed
...................... >

Connections already made
>

File's Owner

QuizViewController

Y
© o view
A/
UlView *-..answerlLabel
target .
showAnswer: .- target questionLabel ..
: showQuestion: - -
: subviewsl |
- ¥
UlButton UlLabel

UlButton

UlLabel






OEBPS/xcode_icons/breakpoint_navigator.png





OEBPS/TableViewControllers/TVCTVRelationship.png
UlTableView

conforms to

conforms to

UITabIeVnewComroIIer

tableView





OEBPS/TableViewControllers/AppDiagram.png
, Views

UlTableView

View.
subviews [

A N / S e

Controllers ) tableView view  dataSource _delegate
window » ‘

| ttemsViewController

HomepwnerAppDelegate

BNRItemStore

NSMutableArray

BNRIitem






OEBPS/CoreData/ModelDiagramSetUnfaulted.png
,,jgv“gf",f’ edObject possessions set fault
i (Possession, assetType = 2)

,,gswt'f': ﬁdOb'ect possessions set fault
——————»| .
ectronics (Possession, assetType = 3)





OEBPS/TableViewControllers/Loopy_allocate.png
BNRitemStore

calls if no defaultStore.

alloc

- calls-+|

allocWithZone:

defaultstore

v






OEBPS/xcode_icons/organizer_selector.png





OEBPS/Rotation/NotificationCenter.png
I
|
.! S NSNotification
postNotification: " "
. name = "LostDog

I
observers — y

]
NSNotificationCenter






OEBPS/TableViewControllers/UITableViews.png
‘Settings Sounds

A Contacts

N Silent

Vibrate

A Ring

Vibrate

| e—) <)

gtone
New Text Message
New Voicemail

New Mail

Harp >

Tritone >

S
Joe Conway :
3 v
Mark Fenoglio )
i -
Brian Hardy "
Aaron Hillegass N

Scott

tchie

W<

Alex Silverman i

Joe Conway

mobile 555-5555

fingtone Default

Toxt Share
wessage || contact

Add o






OEBPS/Localization/DocInspector.png
D e
» Identity and Type
» Localization
b Target Membershi
¥ Text Settings.
Text Encoding [ Unicode (UTF-16)
Line Endings [ Default - Mac 05 X / Uni

indent Using [ Spaces ¢
wans| a9 40
T den
() Wrap lines






OEBPS/Instruments/NewScheme.png
Target [ Ay TouchTracker

(e | 06 ]





OEBPS/View/Hierarchy.png
- --- Before Screen Update

UlWindow

subviews

MKMapView

7

subviews

UlTextField

> (ren =5
—> Button | _

UlButton

Final Screen





OEBPS/TableViewEdit/HeaderXIBLayout.png
addNewltem:

toggleEditingMode:
@ Placeholders.

| File's Owner —

@ First Responder headerView

V3 Objects






OEBPS/Camera/CameraIcon.png
/. Toolbar , & Bar Button Item - Camera_

DB 8B|®(s ©

v Bar Button ltem

stye | Bordered
dentifer | Camera
Tint [ == Default

4 Enabled

00| % =

(o o (B8






OEBPS/CoreData/DropButton.png
Name
Serial
Value

showAssetTypePicker:

~






OEBPS/Simple/runButton.png
806

@_ () [Quiz ) iPhone 5.0 Simulator

Sipiaecir b





OEBPS/View/Olive.png





OEBPS/Camera/CacheDiagram.png
BNRItemStore

BNRImageStore

>
dictionary

BNRItem

itemName = @"Red Sofa"
serialNumber = @"14G32"
valuelnDollars = 120
dateCreated = May 17, 2001
imageKey = @"459723AB212"

BNRItem

itemName = @"Blue Bike"
serialNumber = @"432XB12"
valuelnDollars = 254
dateCreated = May 23, 2009
imageKey = @"032012BA298"

N
2o
c
&
i Z
>4
3 [ T
2
NSMutableDictionary |

Ulimage

@"032012BA298" —|

@"459723AB212" —

Ulimage






OEBPS/SplitViewController/Screenshot.png
ﬁ 13. User Defaults :: Re: For the More Curious: NSUserDefaultsControl.. |

Big Nerd Ranch General Dis...

212, forums.bignerdranc|

5, ¥se

B index «Cocas Progeamming for Mac OS X (3rd Edtion) < 13. ser Defauts

8. NSArrayController :: Chall...

8. NSArrayController :: Re: S e e i
For the More Curious: NSUserDefaultsController

11. Basic Core Data :: Re: Th... s s topic.. | (Saaren)

For the More Curious: NsUserDefaultsController P

11. Basic Core Data :: Re: Th.. by s 4729 o o Sep 14, 2010 120 3 o
18Uk o writecode hat uses the st modem tachques nd 50 fm wonderng i bindings shoukd indecd be uied

nsaad o trget/acticn

13. User Defaults :: Re: For...

161 s bicings, 3¢ icased o p. 207, sppears | e 1 do e than wht s hown fn Fiure 13,6, v tried to
camment ot code that was added 1 i chapter bt have b bl 10 e a o correct cod t include
iPhone Programming: The Bi... | = ot iom i

Re: For the More Curlous: NSUserDefaultsContraller o

iPhone Programming: The Bi... | e sz S

iPhone Programming: The Bi... | 1w st e smy oo

PrtorenceControler

. Delegation and Core Locat...

. MapKit and Text Input ::

PrtecenceContoter






OEBPS/Archiving/DockScreenshot.png





OEBPS/MVCS2/NFModel.png
Choose a template for

your new file:

Wios
Cocoa Touch
Cand Ci+
User Interface

Resource
Other

& Mac 05 X
=
ol
e
G,

|

Other

Mapping Model  NSManagedObject
Subclass

~ Data Model

A Core Data model file that allows you to use the design component of Xcode.

Cancel

Previous





OEBPS/NavigationController/NavPointer.png
ItemsViewController

navigationController

UINavigationController

—viewControllers |

DetailViewController

navigationController ™ ’






OEBPS/CoreData/Objects.png
BNRItem

dateCreated
imageKey
orderingValue
itemName
serialNumber
thumbnailData
valuelnDollars

thumbnail

assetType

NSSet

items

AssetType
label





OEBPS/View/Rect.png
y - float

origin: CGPoint

widh : float

oo W





OEBPS/Instruments/Analyze.png
T e
g
ﬂnmwn

8//\

o Gy~






OEBPS/Rotation/Sizes.png





OEBPS/xcode_icons/data_model_inspector.png





OEBPS/MVCS/ObjCProtocol.png
Choose a template for your new file:

mios

Cand Cr

User Interface
Core Data,
Resource
Other

& Macos x
Cocon
CandCrs
User Interface
Core Data

Resource
Other

h

h

Objective-C class Objective-C Objective-C class
category. extension

brotocol

h| Objective-C protocol

An Objective-C protocol which includes the <Foundation/Foundation.h> header.

Previous

[N





OEBPS/xcode_icons/log_navigator.png





OEBPS/CoreLocation/objectDiagram.png
locationManager:didUpdateToLocation:fromLocation:

WhereamiViewController

sta;tUpdatingLocation





OEBPS/TableViewCell/ShowImageAction.png
Comecton (Aion %
T = T
e

Type [id v

Event

Touch Up Inside
Arguments (Sender

Cancel





OEBPS/MVCS/MVCDirty2.png
Model View

T~ Controller /
5 s

4. complicated requests
‘‘‘‘‘‘‘‘‘ Controller

=T /N

HTTP






OEBPS/CoreLocation/VariableArea.png
1 > 2 & % 4 Whereami) ¥ Thread 1 [TT|0 -[WhereamiViewController initWithNibName:bundle:)

Local & Q All Output ¢ (Clear) (1 JHHI (0

¥ [ self = WhereamiViewController %) 0x6831750 GNU_gdb 6.3.50-20050815 (Apple version gdb-1705) (Tue Jul 5
» UlViewController = (UViewController) ..} 07:36:45 UTC 2011)

> locationManager = (CLLocationManager ) 0x0 Copyright 2004 Free Software Foundation, Inc.
3 _cmd ~ (SEL) Ox5353ec initWithNibName:bundle. GDB is free software, covered by the GNJ General Public
F C Uicense, and you are
» 3 nibNameOrNil = (_NSCFConstantString ) 0xd6a8 WhereamiVie. g
»gmb-umlzomn R T welcome to change it and/or distribute copies of it under

certain conditions.
Type "show copying” to see the conditions.

There is absolutely no warranty for GDB. Type "show
warranty" for details.

This GDB was configured as "x86_64-apple-

darwin'. sharedLibrary apply-load-rules all
Attaching to process 9435.

Pending breakpoint 1 - "WhereaniViewController.m":1
resolved

Current language: auto; currently objective-c

(gdb)






OEBPS/MapKit/MKDocs.png
Match Type (Prefix

DocSers (3of7DocSes %)

Organizer - Documentation

System Guides.
0 i
105 2.2 t0 105 3.0 API Differences
105 2.2 to 105 3.0 API Differences
Displaying Maps
Displaying Maps
05 3.2 t0 105 4.0 APl Differences
105 3.2 to 105 4.0 API Differences
Tools Guides
OResuls
Sample Code
10 Resuls
MapCallouts
» ™ MapCallouts
» I Regions
Regions
urrentaddress
Weatherap
» B Currentaddress
» ™ WeatherMap
» ™ WorldCities
» ™ WorldCities

Responding to Map Position Changes

— mapView:regionWillChangeAnimated:
— mapView:regionDidChangeAnimated:

Loading the Map Data

— mapViewnillstartLoadingHap:

— mapViewbidPinishLoadingMap:

— mapViewbidPailLoadingMap:withError:

Tracking the User Location

— mapViewdillStartLocatingUser:

— mapViewbidstopLocatingUsex
didupdatevserLocation:

— mapView:annotationView:calloutAccessoryControlTapped:

Dragging an Annotation View
— mapView:annotationView:didChangeDragState: fron0ldstate:

Selecting Annotation Views

~ mapView:didSelectAnnotationView:
~ mapView:didDeselectAnnotationView:






OEBPS/Rotation/XIBLayout.png
O






OEBPS/Preferences/SegmentedControl.png
DB 8|
¥ _Segmented Control

Styte Bar D)
State () Momentary
Tint (=1 pefauit %)

Segments






OEBPS/MapKit/FinishedConnections.png
D8 = |

 outiers
Cindistor __~(x Laige Wi Ac.._@
locatonTieFeld

searchDisplayController o

¥ _Referencing Outlets

TV @
= TenFied
NewReeracing Ouis °

¥ Referencing Outlet Collections
New Referencing Outlet Collection o)





OEBPS/TabBar/WindowAndVC.png
subviews

v

HypnosisViewController HypnosisView






OEBPS/Simple/AnswerField.png
© Placeholders

L]

@ First Responder

% Objects

View

File's Owner
Outlets

pe——

questonfield

searchDisplayController

Referencing Outlets

New Referencing Outet
Referencing Outlet Collections
New Referencing Outlt Colecton
Received Actions

ri—

Show Question

72

Show Answer

==a






OEBPS/CoreData/ModelDiagramUnfaulted.png
Possession
"Emerald Necklace" osloe ahiject faull
$1200 (AssetType, PK=2)
3/16/2009

Possession
"Laptop" assetType object fault
$1421 (AssetType, PK=3)

9/11/2010






OEBPS/CAAnimation/KeyPathExtension.png
e m

| <4 » i |d Q> core Animation Extensi.. ) Key Path Support for Structure Fields

Qv key path structure
[ Reference

0 Results.

System Guides.

Show 104 More Resuits.

Core Animation...ramming Guide

- Core Animatio...-Value Coding
B Key Path Sup...ructure Fields

'~ Providing Layer Content
— What Is Core Animation?

ore Animation...camming Guide
Mac 05 X Man Pages.
» I Core Animation...ramming Guide
S 4.0 AP Diffs
105 4.0 API Diffs
btool
NSError Class Reference
CTrrame Reference
NSError Class Reference
05 Manual Pages
Crront Reference
Tools Guides
Show 2 More Resuts
Debugging with GB
GDB Release Notes
Documentation Set Guide
» [ ¥code Release Notes

Key Path Support for Structure Fields

cannination provides support for accessing the fields of selected structures
using key paths. This is useful for specifying these structure fields as the key
paths for animations, as well as setting and getting values using

setValue: forKeyPath: and valueForKeyPath:.

CATransforn3D exposes the following fields:

Structure Field  Description

The rotat the x

rotation.x n,

rotation.y | The rotation, in radians, in the y axi

rotation.z The rotation, in radians, i

radians,

rotation setting the rotation. - field.
scale.x Scale factor for the x axis.
scale.y Scale factor for the y axis.
scale.z Scale factor for the z axis.

scale Average of all three scale factors.





OEBPS/Storyboard/CreateStorytime.png
Choose options for your new project:

rouane

Company Identifier | com.bignerdranch

Bundle Identifier com bignerdranch Storytime

Class Prefix [BNR

Device Family | iPhone B

() Use Core Data
4 Use Automatic Reference Counting
() Include Unit Tests.






OEBPS/CoreData/ModelDiagramSetFault.png
Possession
"Bling Ring"
$421
NSManagedObject i 9/19/2010
TJewelry" | possessions | NSSet
Possession
"Emerald Necklace"
$1200
_ 3/16/2009
- NSMan;gfdomect possessions set fault
Electronics’ (Possession, assetType = 3)






OEBPS/Simple/issueNav.png
n ola|
m-ym.

Mo

o] QuisVewControlerm
O Parse Issue
Bipeted’ a end of declaration
. Unused Entity Issue
i G e
O Parse Issue
Biranats v before
. Unused Entity Issue
s et e






OEBPS/Archiving/AppSupport.png
[ 38EDBCO6-...3179F026BA » cuments id | items.archive
(1 819767D7-..19D7FD32E8 ~ . Homepuner

(3 Library »

& tmp »






OEBPS/NavigationController/ConfiguredXIB.png
Label






OEBPS/View/ViewHierarchy2.png
v-

subviews

superview

HypnosisView

subviews

superview

HypnosisView anotherView






OEBPS/Storyboard/SetRelationship.png
Storyboard Segues

Relationship - rootViewController
Push

Modal
Custom






OEBPS/SplitViewController/messagingDiagram.png
ListViewController

~

2 <
, N
, N
listViewController:handleObject: FestViewControl er:handlebjest:
/” \\\
4 N
| WebViewController ChannelViewController
< -
N s
N ’
. %
conforms to corforms to
N L
N
_____________ D Y - S

|
- (void)listViewController:(ListViewController *)lvc |
handleCbjest:idioh]: '

|





OEBPS/TableViewCell/ImageViewControllerXIB.png
V¥ Objects

vl

w <

Scroll

scrollView

Image View <

imageView






OEBPS/Instruments/Breadcrumb.png
EH Statistics 4 ) Object Summary ) Line ) [¥] ~[TouchDrawView touchesBegan:withEvent:]





OEBPS/CoreLocation/BuildPhases.png
PROJECT Summay  Info  BuildSettings | BuildPhases | Build Rules
B3 whereami Q@ )

TARGETS » Target Dependencies (0 tems)

v Compile Sources 3 tems)
Name Compile Fiags
[m main.m i Whereami

[m WhereamippDelegate.m in Whereari

[m WhereamiViewControllerm ..in Wherearni

+ -

¥ Link Binary With Libraries (3 items)

€8 UKt framework Required +
€8 Foundation.framework Required +
6 CoreGraphics.framework Required +
+ - Drag to reorder frameworks.

¥ Copy Bundle Resources (2 tems)
[ InfoPlist.strings _..in Whereamij(localization).\proj
WhereamiViewControllerxib .. Whereami/(ocalization) Ipro)






OEBPS/TableViewEdit/HeaderFooterDiagram.png
This is a cell e
i T
7 L Header View
/VThls is a cell (UISlider)
' L
Bl ot <o L
sl .-

o " Footer View
This is a cell (UlLabel)

This is a cell -

I'm a label!





OEBPS/CoreLocation/delegationvstargetaction.png
e T
. <

| UlButton | MyTarget

locationManager:didFailWithError:

CLLocationManager WhereamiViewController
----- delegate----
< ~7

-
~ -

IocationManager:didUpdateLocation:fromLocation:





OEBPS/TableViewCell/CustomButton.png
DB =

v Button

Type [ Custom






OEBPS/xcode_icons/size_inspector.png





OEBPS/Archiving/Sandbox.png
A, Application e Instal| m—
> E Documents <= Backup ==
v Q Library

> m Caches

» i Preferences <«@m==Backup ===

- @

iTunes





OEBPS/ObjectiveCNew/NewClass.png
Choose a template for your new file:

Bios

Cocoa Touch
Cand Cr
User Interface
Core Data,
Resource
Other

& Macos x

Cand Cr

N N N
fch h h
Objectve-C Objective-C class  Objectve-C protocol
category xtension

Objective-C test

User Interface case class
Core Data
-
Other
T Objective-C class.
| An Objective-C class, with implementation and header files.
[ Cancel |





OEBPS/MapKit/Screenshot.png
il
p






OEBPS/MapKit/TFAttributes.png
bDe s )
v Textrieid
Text[Text
Paceholder  Enter Location Name ___|
Background [Background Image v

Disabled [ Disabled Background Imagd v |

Nignment [ = | = | = |
Border Style | [EEN=ET—"}

Clear Button [ Never appears. .

(] Clear when editing begins

Text Color [ MR | Default
Font System 14.0

Min Font Size:
o Adjust to Fit

Capialzation [ None
Correction  Default ¢
Keyboard [ Default ¢
Appearance [ Default 3|
RewmKey(Done ]

() Auto-enable Return Key
[ Secure.






OEBPS/ObjectiveCNew/ApplicationChoice.png
Choose a template for your new project:

mios

<
sopicain A -

e Cocon Aopiicaf N Coe Anplescript
& Mac 05 X ‘Application
Application
| Framework & Library
| Aoplication Plug-in
System Plug-in
Other
! Command Line Tool
= “This template builds a command-line tool.

Cancel Previous | ([Nextin)





OEBPS/Rotation/Universal.png
Info Build Settings

PROJECT Summary
HeawRotaton 105 Appiiaton Target
TARGETS Identifier | com.bignerdranch.HeavyRotation

eeatoion F
=] -
oevces (unverss¢)

Deployment Target [5.0






OEBPS/NavigationController/DragOutletCreate.png
L e

2« > DB [ DetaitviewController )[4 @interface DewailViewController | @ &
H
J
;
5 simport WIKit/UIKit. N
i 1 @interface DetoiWienController : UlviewController {
e
5| gend
i

|| Serial

Value

Label






OEBPS/MapKit/XIBCallout2.png
) Placeholders

locationTitleField
!

{_ File's Owner <\
@ First Respon&

I delegate.

W Objects

[#]

Text Field

Large White Activity (ndicator

activitylndicator

worldView

IF delegate
a2 ~

MKMapView






OEBPS/TabBar/topLevel.png
Top-level object
(strong)

(weak)





OEBPS/Camera/Mode.png
v Image View

=

Image
Highlighted

Mode [ Aspect Fit

Tag






OEBPS/Simple/NameNewProject.png
Choose options for your new project:

Product Name | Quiz

Company Identifier | com.bignerdranch

Bundle Identifier com bignerdranch.Quiz

-
osvce Famiy

(] Use Storyboard
& Use Automatic Reference Counting
() Include Unit Tests.

[ Goncel ] [Cprevious ) [Eibexti





OEBPS/xcode_icons/view_selector.png
=






OEBPS/Instruments/ChangeScheme.png
(Joc Conay's Prone 0. +) ()

Allocations
Scheme Destination Breakpaints
Build ument
> B3 targer | info | Arguments
Run TouchTrack. —
> (% pebug Build Configuration [ Release

Instrument [ Allocations

Executable [ /A TouchTracker.app .

[ Duplicate Scheme

| [ Manage Schemes.






OEBPS/CALayer/Image.png





OEBPS/iCloud/ProvProfile.png
Provisioning Portal : Big Nerd Ranch, Inc

Home.
Centificates
Devices

App IDs

Development Distribution

Create iOS Development Provisioning Profile

How To

Go 10105 Dev Center

[— Generate provisioning profiles here. All fields are required unless otherwise noted. To leam more, visit the How To section.

Distribution

Profile Name. Necdfeed

Certificates Select All
(0 Aaron Hillegass
(O Bl Monk
(O Brian Turer
(0 Franz parkins
@ Joe Conway I
(0 Michael Ward
) Owen Mathews.

App 1D [ Nerdfeed

O Andrew Lunsford
O Bolot Kerimbaey.
O Christian Keur

0 Jeremy Weissinger
0 Juan Pablo Claude
O Nathaniel Chandler





OEBPS/CoreLocation/UnimpWarning.png
‘Semantic Issue
Incomplete implementation

© Method definition for 'doSomethingWeirc

not found





OEBPS/MapKit/DocIcons.png
Objective-C Class
Objective-C Protocol
Objective-C Category ]
Objective-C Method

Objective-C Property

C Function
C Typedef

€ Enumeration
€ Macro

Constant variable





OEBPS/TableViewEdit/Opacity0.png





OEBPS/Instruments/Stack.png
Extended Detail
+ Description
Category: Line:
Type: Malloc
Pointer. 0182480
Retain Count: 1
Size: 32

v Stack Trace %a
0[] aalloc
1 [ clas createnstance
2 [ +{NsObject allocWitnZone]
3 [P -TouchDrawView toucheste.
4 [ -tumindow _sendTouchesFor.
5 [ -tumindow sendevent]
6 [ -{uikppication sendevent]
7 [ _UiappiicationHandietvent
8 [ PurpletventCallack
9 5] _CrRUNLOOP.IS_CALUING.O.
10 [ _crruntoopbosourcel
11 [ _crruntoophun
12 [ crruntoopunspecific
13 [ CrRuntoopRuniniode
24 B ibentunodal
Ukppiicationtain
16 . main
7 [ stn






OEBPS/Storyboard/MainStoryboard.png
PROJECT Summary

5 storyume 105 Apiicaton Target

Identifier |com.bignerdranch.Storytime

Version 1.0 Build (1.0

oo (one 4]

Deployment Target [5.0

v iPhone / iPod Deployment Info.

Main Storyboard [Storytime v]

Vain nterface )






OEBPS/Camera/ConnectInGutter.png
—weak IB0utlet UILabel dateLabel;
Tweak T80utlet UIImageView +inageView
3

@property (nonatomic, strong) BNRIten xite

- (18Action) takePicture: (id)sender;

@end





OEBPS/WebServices/doublePointer.png
currentString

| RsSitem | NSMutableString






OEBPS/MapKit/methodDiscussion.png
mapView:didUpdateUserLocation:
Tells the delegate that the location of the user was updated.

- (void)mapView: (MKMapView *)mapView didUpdateUserLocation: (MkUserLocation
*) userLocation

Parameters
mapView
The map view that is tracking the user's location.

userLocation
The location object representing the user’s latest location.

Discussion
While the showsUserLocation property is set to vEs, this method is called whenever a new
location update is received by the map view.

currently running in the background. If you
the background, you must use the Core

This method is not called if the apy
want to receive location updates wt
Location framework.

Availal
Availabl

Declared In
MKMapView.h






OEBPS/NavigationController/NavHierarchyView.png
UINavigationController

topViewController view navigationBar

12:43 AM =

PersonViewController UlNavigationBar

Edit ;__
_ -
view Joe Conway
UlView
mobile 555-5555
ringtone  Default >

Text Message Add to Favorites





OEBPS/Instruments/AllocatedInstances.png
Graph | Category Live Bytes | #Living |#Transitory | Overall Bytes |\"#Overallw# Allocations (Net / Overall)
O tne 192 Bytes 5 0 1528nes 6





OEBPS/MapKit/Map.png
@

MKCoordinateRegion{center, span}

@,

center’
CLLocationCoordinate2D
{latitude, longitude}

Spring
Creek

span.longitudeDelta

span.latitudeDelta





OEBPS/CALayer/Perspective.png
Objects viewed with Perspective Objects viewed without Perspective
Ay [ 2%






OEBPS/NavigationController/Stack.png
UINavigationController

rootViewController

topViewController

viewControllers
NSArray
s
c
Joe Conway ListViewController DetailViewController Joe Conway
Mark Fenoglio
> Tobllo 665-5556
Brian Hardy N ringtone  Default
Aaron Hillegass H
| Toxt Message Add to Favorites
Scott Ritchie v






OEBPS/TableViewEdit/TableViewMove.png
©0 0 0 ©

© © ©

0 ©

Done New
Rusty Spork (9Q65B)
Rusty Mac (6W63R): Wo...
Rusty Spork (2529D):...
Rusty Spork (7F82M):...

Rusty Spork (4B13B):...
Rusty Mac (ON63C): Wo...

Shiny Bear (4P51G): Wo...
Fluffy Mac (5M73L): Wor...

Fluffy Bear (7034W)






OEBPS/WebServices/modelObjects.png
ListViewentrolier

channel

title = "BNR Forums"
shortDescription = "The forums for BNR"

items

RSSltem RSSltem RSSltem

title = "1" title = "2" title = "3"
link = "http://" link = "http://" link = "http://"





OEBPS/TableViewEdit/BasicEditable.png
© 0 0 0 O ©

Done New
Rusty Spork (9Q65B): Wort...
Rusty Mac (6W63R): Worth...
Rusty Spork (2529D): Worth...
Rusty Spork (7F82M): Wort...
Rusty Spork (4B13B): Wort...

Rusty Mac (ON63C): Worth...





OEBPS/MVCS2/UpdatingFeed.png
ListViewController BNRFeedStore @

fetchRSSFeed.

reloadData

|
|
UlTableView L
|
e |
return cached channel E
H - 1
H 1
| . :
! 1
! reloadData y A
! Pl P
- o ! Filesyst
“ __"return updated channel ! cache new feed| " "eSYstem
: - :
| | ~
! ] N
i i
H 1
! 1
! 1
i

R

¥





OEBPS/Multitouch/objects.png
4

2 CGPoint begin

c a "

g Line

comprete! z CGPoint begin

TouchDrawView § " ne

=< CGPoint begin

CGPoint end

CGPoint begin
CGPoint end

| UlTouch NSValue
l

UlTouch

NSValue
CGPoint begin

CGPoint end

KreuonaiasN






OEBPS/NavigationController/Screenshot.png
Rusty Spork (2M5B5): Worth $7...

Rusty Bear (629A7): Worth $62,...

Fluffy Bear (9D8HS): Worth $72,

Shiny Mac (2J5X3): Worth $62,...
Fluffy Bear (2J6X7): Worth $69,...
Fluffy Bear (4S7E9): Worth $21,...
Fluffy Mac (3CON6): Worth $13,...
Shiny Mac (7K5X1): Worth $96,...

Shiny Mac (5M7L9): Worth $4,...

Name  Rusty Spork

Serial

Value

2M585

77

Feb 21, 2011






OEBPS/MVCS/MVCDirty1.png
Model View





OEBPS/Preferences/SMXib.png
e [ AP
Standard = Satellite Both






OEBPS/Camera/DragAction.png
Siapart

BNRIter

UlTextFiel snaseFicld:

UlTextField sserialunberrield;

UlTextField wvalveField;

| UILabel wcatelabels
UlInageView =inageview;

2

] 5 DetailViewController : UIVieuController
o4
5

Serial
Value

3 o) BNRIten witem;

Insert Outlet, Action, or Outlet Collection

EHHH






OEBPS/Camera/Screenshot.png
Name | Rusty Spork
Serial | 8Q2U8
Value | 73

Sep 8, 2011






OEBPS/Simple/QuestionField.png
© Placeholders

L]

@ Fist Responder

% Objects

View

Lo
Fil's Oner

Outlets

i

avestonrild

ospieyContrller
Referencing Outets
New Referencog Ouet

Referencing Outlet Collections
New Referencing Outlt Colecton
Received Actions

Jri—

showQuest

Show Question

77

Show Answer





OEBPS/View/ScrollViewWindow.png
b oo IscrollView contentSizelwidth ______ 4

-

[scrollView contentSize].height
|

I = e e e e






OEBPS/Archiving/ShowPackageContents.png
7 Applications
[ Documents
H Movies
A music
s Picwres.
i users

v SEARCH FOR
(O Today

[ 12C73D89.. EC3A3E8S (] Documents

v
(2 Library
& mp

(11 990D7399..CBC3A317

Show Package Contents
Move to Trash

[BRRL

GetInfo

Compress “Homepwner”
Burn "Homepwner” to Disc...
Duplicate

Make Alias

Quick Look "Homepwner”

Copy *Homepwner”

Show View Options

@ @ G Gl Gl G G G ED256286-788C-436D-0FF7- 1DA3F + CaBeEE

xssusese






OEBPS/Rotation/vcTemplate2.png
Choose options for your new file:

o

Subclass of [UIViewController v)

(] Targeted for iPad
4 With XI8 for user interface






OEBPS/xcode_icons/debug_navigator.png





OEBPS/TabBar/TVCFilesOwner.png
TimeViewController

I File's Owner H N :
:-f'-lff-o-"!'le-r-4 ) | UNView | TimeViewController.xib
I e
1 !
subviews
v

[ uiButton UlLabel |

L





OEBPS/Storyboard/Navtable.png





OEBPS/TabBar/Lifecycle.png
Sent
viewDidLoad

View asked to
appear on
screen

View
visible
on screen

Low memory
~“warning occurs

View removed
from
screen =

View not
visible
on screen

viewWillDisappear:

Sent
viewDidDisappear:

Sent
viewDidUnload

Property view is released and
settonil

Sent
didReceiveMemoryWarning

Low memory
warning occurs






OEBPS/Simple/UtilityArea.png
Utilities Area

EIEEEI

d
'

No Selection

| [4l] objects

\:smg

Label - A variably sized amount of
Label static text.

~~ Round Rect Button - Intercepts touch |
\ ‘events and sends an action message to a'
- target object when it's tapped.

~— 7 Segmented Control - Displays
\ 1 | 2 | multiple segments, each of which
functinne ac 2 diccrata huttan

@04—

Inspector Selector

<+———Inspector

<«—Library Selector

Library





OEBPS/MVCS2/SingleDown.png
RSSChannel
items

RSSChannel
items






OEBPS/iCloud/ManageStorage.png
. ATE&T 2 1:00 PM Q P

Joe Conway’s...

This iPhone 1.9GB >
Documents & Data 8.2 KB
" Unknown 82KB >






OEBPS/TabBar/AddFilesToProject.png
Choose options for adding these files:

Destination

Folders.

Add to targets

@ Copy items into destination group's folder (if needed)

(@) Create groups for any added folders
() Create folder references for any added folders

™ & HypnoTime

[ Concel ] [Eifinish)





OEBPS/TableViewControllers/ConfigureHomepwner.png
Choose options for your new project:

Product Name | Homepwner

Company identifier | com.bignerdranch

Bundle Identifier com bignerdranch Homepwner

-
osvce Famiy

() Use Core Data
4 Use Automatic Reference Counting
() Include Unit Tests.

[ Goncel ] [CPrevious ] [EiNext™)





OEBPS/Archiving/Alert.png
Read Failed

The operation couldn't be
completed. (Cocoa error 260.)

]
OK






OEBPS/NavigationController/BeefyNavItem.png
UlINavigationController _—

|
topViewController

UlviewController

leftBarButtonltem e\ riew

UlBarButtonltem

—— navigationltem —»{

UlNavigationitem

/

rightBarButtonltem

title = @"Edit"

UlButton

UlBarButtonltem

title = @"Press me."

systemltem = UlBarButtonSystemItemAction






OEBPS/Instruments/ExpandedAnalysis.png
= - (int)numberOfLines

ok

v [ TouchDrawView.m | {
© Logic error .
¥ O Lo e garbage value revured to caller 1w int count;
~ Undefined or garbage value returned to caller -
= //~Check that they are na
w0 if (linesInProcess && conm
m cpunt = [LlinesInProce
m
o return coun





OEBPS/TableViewCell/BaseCellHierarchy.png
inherits from

UlTableViewCall

inherits from

inherits from

HomepwneritemCell

Cell with UlStepper






OEBPS/Storyboard/FirstScreen.png
00!

Ol

ollel





OEBPS/Instruments/TimeProfileResults.png
= Call Tree ¢ ) Samples.
Running (Self) | _|Symbol Name

76L0ms
610.0ms
423.0ms
382.0ms
107.0ms.
70.0ms.
5Loms
28.0ms.
2L.0ms
20.0ms.
20.0ms.

12.0ms

103% [

25.7% [5] »aa write word CoreGraphics

20.6% [ »CGSFillDRAMSbyL CoreGraphics
»CGSColorMaskCopyARGEBB88 CorcGraphics

12.9% [ baa render CoreGraphics

3.6% (1] »mach_absolute_time fbSystem .yl
23% [§ bas_cubeto CoreGraphics
17% ) »mach_msg_trap li5ystem. 5.9yl
09% [ cos ibsystemB.dyib
0% (5] b_udwsi3 libgce s 1dyl>
0.6% [5] pmunmap o5 stem. 5.3y
0.6% [ pobjc_msgsend_Iibobjc Adylio
8] psin | 5.dyib ©
0.4% (5] b_mmap lbystem .yl
0.4% | »aa_distribute_edges CoreGraphics.






OEBPS/CoreLocation/CompileError.png
m I elal=E

oy Type

v iy WhereamiviewControllern
» © Semantic Issue
Eahmot find protocol declaration for ‘CLLocationManagerDelegate”
» © Semantic Issue
Eahmot find protocol declaration for ‘CLLocationManagerDelegate”
» © Parse Issue
Ol type name ‘ClLocationManager”
» © Parse Issue
Ciférown type name ‘ClLocationManager”
v Iy WhereamiviewControllerm
© Semantic ssue
3R o Undeclared identier CLLocationManager’
© arse ssue
Expectcd a type
© arse ssue
Epectcd a e
© arse ssue
Epected a type
© parse ssue
Epectcd a e






OEBPS/iCloud/AppID.png
Go 10105 Dev Center

Provisioning Portal : Big Nerd Ranch, Inc

Home

Centificates Manage How To

- (NewappiD_]
a0 Ao ]
App IDs are an integral part of the iOS Development and Provisioning Process that allows an application to communicate with the

Provisioning
Apple Push Notification service and/or an external hardware accessory. In addition, an App ID can also be used to share keychain data
(such as passwords) between a suite of applications and share document and configuration data between your applications using

Distribution
iCloud.





OEBPS/xcode_icons/project_navigator.png





OEBPS/Instruments/Heapshot.png
v Heapshot Analysis |Snapshot Timestamp | Heap Growth # Persistent

Mark Heap >~ Baseline - 12:39.600.430 764.62 KB 9167
¥ Allocation Lifespan VHeapshot 1 13:30.441.108 L43KB 24
Al Objects Created ¥ < non-object > 109 k8 14
© Created & Sl Living > Gstvent 128 Bytes 1
Created & Destroyed »Line 96 Bytes 3
 Gall Tree b CPBasicHash (value-store) 48 Bytes 3
»CPasicash 48 Bytes 1

Separate by Categor
et »CrBasicHash (key-store) 32 Bytes 2

‘Separate by Thread





OEBPS/Simple/CenteringLabels.png
b8 &

v Label

Text 777

Lines

Behavior @ Enabled

Baseline [ Align Centers
Line Breaks [ Truncate Tail

Alignment

ot ystem system sze (1]
fontsize

4 Adjust to Fit Width

Text Color | mmm | Default
Highlighted | W | Default
Shadow [ =1 Default
Shadow Offset





OEBPS/MVCS/BNRConnectionFlow.png
BNRConnection NSURLConnection

|

]

|

it

|

|

i

]

FE O !

IA"~’ ]

! T~ |

: SEET :

| P ~~-a| NSXMLParser !

: :

! ]

! ]

i -4 1

" __.parseinto” i !

id<NSXMLParserDelegate> l¢--~~

execute . _ Block

]
:
~~
1
1
1
channel !
1

’
/
’
’
/

ListViewController |«__setCh an/n ol:






OEBPS/Rotation/UIImageView.png
DB e|w| s ©

¥ Image View

B —
Y —
State [ Highlighted
onine
v S
- IS
Interaction [_] User Interaction Enabled

) Mutiple Touch

Alpha

Background [ — | ¢ |






OEBPS/MapKit/DropMapView.png
S Whereami - WhereamiViewContrlleri

R e e Ty Maﬁ

B i Bsocso
» 5 bagki ramenork

) WhereamiAppelegate
WhereamiAppDelegate.n
) Wheresmveaconroliecn
o WhereamiViewControlerm
WhereamViewControliecsb
> I supporting e
v 3 Framevcris.
¥ 6 Coretocation framework
> i eaders
¥ CoreGraphicsframework
» (2 Headers
» G Ui famework
» 6 roundation famework
» 3 roducs

© Placeholders

Fies Ouner
First Responder

¥ Map view,

Tyoe (ap )

sehair () shows Use Location
4 Allows Zooming.
4 Alows Scrolling

s+ 0@E 6

Inerscton o User neracion Ensbied

& Matipe Touch
Ao

Orawing  Opaque (] Hidden
& Clears Graphics Context
4 Clip Subviews.
& Avoresize Subiews.

suucniog| —00) [






OEBPS/CoreLocation/DebuggerBar.png
Current point

of execution

/=] (id) initwWithNibName: (NSString *)nibNameOrNil bundle: (NSBundle *)nibBu
ul {

15| self = [super initWithNibName:nibNameOrNil bundle:nibBundleOrNill;

16/

v if(self) {
18| // Create location manager object
B locationManager = [[CLLocationManager alloc] initl;

)
n [locationManager setDelegate:self];

2. 4 | Whereami ) ¥ Thread 1 ) [[1]0 ~[WhereamiViewController initWithNibName:bundle:]

R N————

of method
Continue P Stepinto

. over
executing o method

Toggle debugger
area





OEBPS/TableViewControllers/CellTypes.png
UITableViewCellStyleDefault

UITableViewCellStyleSubtitle

UITableViewCellStyleValuel

UITableViewCellStyleValue2

w Text Label >

7> Text Label >
£ Detail Text Label

I L Uitall iee Lapell

Text Label Detail Text Label >





OEBPS/TableViewControllers/CodeSnippetLibrary.png
Di{lle =

[ [l Code Snippet Library ) (=15

{}

{}
{}
{}
{}
{}
{}

C Block typedef - Used for defining a
block s a type.

C Inline Block as Variable - Used for
saving a biock to a variable 5o we can
pass it as an argument multple times.

C typedef - Used for defining a type.

C++ Class Declaration - Used for
describing a new class type containing
instance variables, member functions,

C#+ Class Template - Used to define:
2 new cass template.

Co+ Function Template - Used to
define 2 new function template.

C++ Namespace Definition - Used
0 define a new namespace or extend an
existing namespace.






OEBPS/ObjectiveCNew/FirstConsole.png
n QO A -8 | 4 » |/ Debug RandomPossessions

2 Debug RandomPossessions GNU gdb 6.3.50-20050815 (Apple version gdb-1515) (Sat Jan 8 00:26:08 UTC 2011)
1/20/11 10:05 PM. Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
 Build RandomPossessions There is absolutely no warranty for GDB. Type "show warranty" for details.
* 1/20/11 10:05 P This GDB was configured as "x86_64-apple-darwin".tty /dev/ttys000
[Switching to process 823]
05:17.262 RandonPossessions [92:
05:17.264 RandonPossessions [92:
17.265 RandonPossessions 92
05:17.265 RandonPossessions [92:
Progran exited with status value

Build RandomPossessions
A 1/20/11 10:05 PM






OEBPS/Simple/Screenshot.png
What is the capital of Vermont?

Show Question

Show Answer






OEBPS/ObjectiveCNew/InitializerChain.png
init

initWithitemName:
valuelnDollars:
serialNumber:

designated initializer






OEBPS/Instruments/RecordRefs.png
Instrum

@@@ \-Touchmcku ;] (@IO]0) aa:a

Inspection Range il

Instruments

€ ocarons
& ~

Target

e >

Launch Configuration
1 Discard unrecorded data upon stop
9 Record reference counts
0 0nly track active alocations,
O dentify C++ Objects
0 Enable NsZombie detection

Track Display

P S— | N T :

W Allocations $ Type: ( Overlay B

 Heapshot Analysis 200m; @ 1x
Recorded Types

Mark Heap
¥ Allocation Lifespan
O Al Objects Created
© Created & Still Living
OCreated & Destroyed
¥ Gall Tree

Separate by Cateqory

@ Record all types.

Oignore types with NS’ prefixes
Oignore types with ‘CF' prefixes
Oignore types with Malioc' prefixes

Configure






OEBPS/SplitViewController/controllerDiagram.png
UISplitViewController

viewControllers

master

detail

UINavigationController

0—

UlINavigationController

—1

T
viewControllers

v

v

ListViewController

r—webViewController —|

T
viewControllers

v

'

WebViewController

/

13. User Defaults Reé For the More Curious: NSUserDefaultsControl.. |

Big Nerd Ranch General Dis...
8. NSArrayController :: Chall...

8. NSArrayController :: Re:

11. Basic Core Data :: Re: Th...
11. Basic Core Data :: Re: Th.

iPhone Programming: The Bi...
iPhone Programming: The Bi...
iPhone Programming: The Bi...

4. Delegation and Core Locat...

5. MapKit and Text Input :

5. MapKit and Text Input ::...

5. MapKit and Text Input :

5. MapKit and Text Input ::...

5. MapKit and Text Input :

5. MapKit and Text Input

More Curious: NsUserDefaultsController
o (sesen

For the More Curious: NsUserDefaultsController

by pats472 n o 14, 2010 1603

8 t wrie cade st s th st modern tachques 3050 wondero  biniogs ek e e s
tesd o g scon.

111 i bindings, a5 dscisedan p. 207, appers | e 1 do e hanwhat hw i P 13,6, ve i (o
st th b 3 shvn e e

Re: For the More Curious: NSUserDefaultsControler

1w b gt i o Hore 1 mysltions

[m————

prteenceCatrtecm






OEBPS/Front/bnr_logo_200x200_bw.png
T,

nero

rancsx





OEBPS/TableViewControllers/StandardAllocate.png
Sranlas st

NSAllocateObject()

Fatlinoa sl

R e i

Tt T |

| EEE—— | |
|

alloc r--calls- | allocWithZone: | !

|

|





OEBPS/CALayer/LayerViewHierarchy.png
delegate
“UWindow |47 [ GALayer

I e
subview delegate subI:Iyer
[ Uview 4 {_cALayer
I e B

subview delegate sublayer

"I cALayer






OEBPS/MemoryManagementNew/StackedUp.png
alloc's frame

randomltem's
frame

randomlitem's
frame

randomlitem's
frame

main's frame

main's frame

main's frame

main's frame

main's frame

time






OEBPS/TableViewCell/Screenshot.png
ﬂ Homepwner !!

Rusty Spork =

8Q2U8

Shiny Spork
‘- svas &






OEBPS/ObjectiveCNew/ApplicationChoice2.png
Choose options for your new project:

Product Name | RandomPossessions

Company identifier | com.bignerdranch

Bundle Identifier com.bignerdranch.RandomPossessions.

Type

4 Use Automatic Reference Counting

[ Goncel ] [CPrevious | [EiNext™)





OEBPS/Instruments/SchemeEdit.png
TouchTracker +] [ Joe Conway’s iFhone 50 <] (8]

Scheme. Destination Breakpoints

Run TouchTrack...
> [ pebug

Test
> & pebug

Profile TouchTra...
> & pelease

Archive
> B pelease

Build Options ¥ Parallelize Build
When enabled, independent argets are bult n parallel Insead of oneat a ime.

4 Find Implicit Dependencies
When enabled, Xcode detects and buikds other target dependencies automaticall.

Targets Analyze | Test | Run | Profile | Archive

A TouchTracker 4 4 & 7

+ -

4

Duplicate Scheme

Manage Schemes... =






OEBPS/TabBar/resolutions.png
As described to As renglered to 3GS As rendered to
Core Graphics (1 point = 1 pixel) Retina Display
(vector graphics) (1 point = 2 pixels)





OEBPS/TableViewControllers/Allocate.png
creates object

NSAllocateObject()

NSObject calls

BNRItemStore






OEBPS/Instruments/AnalyzerResults.png
B olal=

CIED sy Tyee

TouchTracker
Malt™
v [g TouchDrawview.m

v @ Logic error.
Undefined or garbage value returned to caller

3 Undefined or garbage value returned to caller






OEBPS/CoreLocation/LinkerError.png
Recent | @IIITEETTED Al

A Build target Whereami
R ——
© process heramiHresmt-fo i
@ Precompile Whereami/Whereami-Prefix.pch
O o e 835t 65 s s o
@ Compile WhereamAppDeegatern 1 1Usrs occomueyDesio 055 5lutons 0. Wheream < s
© Compiewhereammrescorale i Towrsecomey Desaop/0Sssoumars/03. Whereamirwherayere
0 LAt 5 et s o
ot et oo
O MCtocssonkecarsamest freces o
~[WhereamiViewController initWithNibName:bundle:] in WhereamiViewController.o
iy ot oo e e
G, e i command e i i coe s -+ s vocaton)

Activity Log Complete ~ 7/31/11 248 PM
2errors






OEBPS/MapKit/annotationDiagram.png
MKMapView

[<—subviews —

[~annotations |

\

MKAnnotationView

MKAnnotationView

——annotation — coordinate = {37.3, 122.0}

BNRMapPoint

title = @'BNR HQ"

MKUserLocation
annotaton——»  F---------






OEBPS/PopoverModal/FullScreenStyle.png
m Rusty Spork

Name | Rusty Spork
Serial | 58560
Value | 77

2011-04-27






OEBPS/Localization/LocalizingXIB.png
DB =
> Identity and Type
> Interface Builder Document
¥ Localization

English

Spanish

+0
b Target Membership.
v Text Settings






OEBPS/CAAnimation/BounceScreenshot.png
esday, January 5, 2010 11:15:30 PM

What time is it?






OEBPS/Instruments/Levels.png
Summary. Info | BuildSettings | Build Phases Build Rules

Basic @) | Combined

Setting A Resolved ATouchTracker [ TouchTracker 105 Defaut
VArchitectures
Additional SOKs
Architectures Standard (armv7) Standard (@rmv?) - 3 armv7
Base SDK Latest 105 (105 5.0) Latest 05 (105 5.0) ¢ | 105 5.0
uild Active Architecture Only Not R
Supported Pltforms. iphonesimulator iph. iphonesimulator iph.._

Valid Architectures armv6 armv? farmv6 a7





OEBPS/Rotation/vcTemplate.png
Choose a template for your new file:

mios

& & - -
Cocoa Touch i [ h h
T vy vy e
User Inerface
e Objective-C class Objective-C Objective-C class  Objective-C protocol

EeE category extension

Resource

Other R
& Mac 05 X [

Cocoa =

Cand i+ Objective-C test

User Inerface ‘case class

Core Data

Resource

Other

7 Objective-C class.
An Objective-C class, with Implementation and header files.

Cancel

Previous





OEBPS/xcode_icons/attributes_inspector.png





OEBPS/Archiving/PackageContents.png
v DEVICES

E iDisk.

2 Macintosh HD

(©) Cwilization V Gold &
v PLACES

I Desicop.

4 joeconway

7 Applications

[ Documents

H movies

A music

I

M Homepwner
[ Pkginfo

|} MainWindow.nib

| itemDetailViewController.nib
) Info.plist

Today, 12:44 PM
Today, 12:44 PM,
Today, 12:44 PM
Today, 12:44 PM,
Today, 12:44 PM

[ @ (@r (0 (dr (v (- (] ED25B286-788C-47 + .\ Homepwner
A

BRI






OEBPS/TableViewEdit/NewXIB.png
Choose a template for your new fil
i0s

Cocoa Touch
Cand C+

e Storyboard View Window
Resource
Other

y
v

K Macos x

Cocoa
Cand Cr+ Application

User Interface
Core Data,
Resource

Other

An empty Interface Builder document for an 105 interface.

(oo | [Emom





OEBPS/CoreData/RelationshipsP.png
B imagekey

8 temname

[ orderingvalue

B seriaiNumber

thumbnail
thumbnailData

String 3
Undefined &
inary Data &

D valveDollars __ Integer 32 %
e
v Relationships
Destination inverse
0 asserType BNRAsseType ___items






OEBPS/Camera/ImageViewXIB.png





OEBPS/MapKit/AIAttributes.png
b8 &
v Actity

| ©

icator View

Style [ Large White
Behavior (] Animating
™ Hides When Stopped.





OEBPS/Localization/SpanishXIB.png
Nombre

Nuamero de serie

Valor

Label






OEBPS/NavigationController/ScreenshotWithoutButton.png
Rusty Spork (2M5B5): Worth $7...
Fluffy Spork (6Z9A7): Worth $6...

Fluffy Bear (9D8HS): Worth $72,...





OEBPS/WebServices/CreateProject.png
Choose options for your new project:

Product Name |Nerdfeed ]

Company Identifier | com.bignerdranch

Bundle Identifier com bignerdranch.Nerdfeed

s (o

() Use Core Data
4 Use Automatic Reference Counting
() Include Unit Tests.

[ Goncel ] [CPrevious ) [EiNextin





OEBPS/TabBar/TVCView.png
TimeViewController

UlView

UlButton

[—view

[~ subviews |

UlLabel






OEBPS/Instruments/Profile.png
[} TouchTracker-Info.plist
» £ Frameworks.





OEBPS/CoreLocation/CLLocationDiagram.png
CLLocation
horizontalAccuracy = 10000

CLLocationCoordinate2D

latitude = 43.13
longitude = 89.33






OEBPS/PopoverModal/PopoverRunning.png
Laptop

Name | Laptop
Serial [ sesso

Value | 2145

2011-04-27






OEBPS/CoreLocation/ConfigureWhereami.png
Choose options for your new project:

Product Name | Whereami ]

Company Identifier | com.bignerdranch |

Bundle Identifier com bignerdranch Wherear

-
s e

(] Use Storyboard
@ Use Automatic Reference Counting
() Include Unit Tests.

[ Goncel ] [CPrevious ) [EiNextig





OEBPS/SplitViewController/MasterPopover.png
test

Re: test

atest

How To Resize Image When...

Re: Challenge - my solution
How do you build and run th...
Missing content mode comb...
Re: Data Source Challenge-M...

Re: Data Source Challenge-M...

Re: Data Source Challenge-M.
(ot e I (nscenang [ o)

Fixing the scrollRowToVisibl.

Re: Challenge: Make a Deleg... o (anestos s B
Re: Challenge 1 has me stum...
Challenge 2: Adding sorting
Re: Challenge 2: Adding sort...
Re: Challenge 2: Adding sort...

NSArrayController insert vs...

Re: NSArrayController insert.

Re: NSArrayController insert...

Re: NSArrayController insert...





OEBPS/iCloud/ChangeProvProfile.png
Summary Info | Build Settings

Basic I Levels

Setting e Nerdfeed
v Code Signing
Code Signing Entitlements Nerdfeed/Nerdfeed.entitlements
¥ Code Signing Identity iPhone Developer: Joe Conway Il (CNRPRY2)3) 5
Debug Don't Code Sign
AI0s SDRis Automatic Profile Selector (Recommended)
Reltase . s Devsler
Any 0SSOI iPhone Distribution
Code Signing Resource Rules Path
Ostnr Coode Sininwa Figs Nerdfeed _(for Application Identifiers ‘com.bignerdranch.Nerdfeed)

7 iPhone Developer: Joe Conway il (7CNRPRY2J3)





OEBPS/TabBar/CreateHVC.png
Choose options for your new fi

Class [ HypnosisviewControl

Subclass of [NSObject 1)

] Targeted for iPad
] With XIB for user interface






OEBPS/xcode_icons/issue_navigator.png





OEBPS/TabBar/TabBarDiagram.png
View gets
swapped in here

view HypnosisViewController
tabBar

view

UlTabBarController | ViewControllers

TimeViewController

”

Whattimeis it? |
view






OEBPS/xcode_icons/map_kit_arrow.png





OEBPS/CALayer/LayerDiagram.png
HypnosisView

boxLayer

layer

CALayer
(an implicit layer)

sublayers

CALayer
(an explicit layer)





OEBPS/CALayer/ChoppyAnimation.png
Destination Set
Original Position During First
Animation

Original Destination
(First Animation)





OEBPS/View/EmptyApplicationTemplate.png
Choose a template for your new project:

05

Application
Framework & Library
Other

& Macos x
Application
Framework & Library
Application Plug-in
System Pug-in
Other

o 1z ;
PEY -

Master-oel opencGame rag-tasea Single vew

Application Application Application

X

Tabbed Application  Utiity Aplication

Empty Application

“This template provides a starting point for any application. It provides just an application
delegate and a window.






OEBPS/TableViewControllers/CellReuse.png
Cell 1 goes S

offscreen...
UlTableViewCell 2
UlTableViewCell 3
TableView scrolls Visible Portion

this direction of UlTableView

UlTableViewCell 5

UlTableViewCell 6

i
i
I
I
1
i
i
I
1
i
'
1
! UlTableViewCell 4
I
1
i
i
I
1
i
i
I
1
1
i
I
I

- and is reinserted - UlTableViewCell 1
into new visible spot H






OEBPS/iCloud/MoveProvProfile.png
A A O

Repositories Projects Archives Documentation

x

LIBRARY
Nerdfeed

Creation Date Friday, January 20, 2012 12:18:0

2§ Software Images
.. Device Logs
Screenshots.

Expiration Date Saturday, January 19, 2013 12:1¢
Profile Identifier A987DA9C-745C-4501-A7A4-3

App Identifier UB3L3WESMK.com.bignerdranch.
» m#za(cucn) ] T Devices Joe Conway's iPad, Joe Conway's

Joe Conway's iPh...
v B 501 0nd05) 5.

[£] Provisioning Profiles " drag to Portal Team
4 Applications Nerdfeed January 19, 2013 12:18 PM_Big Nerd Ranch, Inc

C°"_s°"L i0S Team Provisioning... January 11,2013 11:51PM Big Nerd Ranch, Inc
.. Device S
- NCS Pearson Common... January 8, 2013 5:35 PM  NCS Pearson Inc.

B Screenshots . o
7 . Big|Nerd RanchiiPad o iOS Team Provisioning... December 13, 2012 1:0... NCS Pearson Inc.

DEVICES

5.0 (9A5302b) Development November 9, 2012 3:49... Big Nerd Ranch, Inc

» R BNR iPad Jazz October 23, 2012 4:06 PM NCS Pearson Inc.
4.3.1(8G4) iPad eText Reader October 11, 2012 2:09 PM NCS Pearson Inc.

> lc(‘;';:';s")" Ead eTexteCollege October 11, 2012 2:09 PM NCS Pearson Inc.
IPhone eTextRumba October 11, 2012 2:08 PM NCS Pearson Inc.

> W1 gsn

W !erl moquon's 1Ph...





OEBPS/MemoryManagementNew/PointerChange.png
roTTTTTTTTT T 3
' "
i i BNRitem NSString
' i
!| BNRItem NSString H "Rusty Spork"
| —itemName > . H
1 "Rusty Spork'" h )
! " itemName
i
; i NSString
H " "Shiny Spork"
I Il






OEBPS/TabBar/TVCXIB.png
What time is






OEBPS/PopoverModal/Family1.png
UlTabBarController

A

viewControllers

tabBarController
parentViewController

o

UINavigationController

navigationController
parentViewController

tabBarController

viewControllers

‘ UlViewController
[J—






OEBPS/TabBar/NewXIB.png
Choose a template for your new file:

Wios

Cocoa Touch
Cand Cr

e Storyboard View Window
Resource
Other

Y
v

& Macos x

Cocoa
Cand Cr+ Application

User Interface
Core Data,
Resource

Other

An empty Interface Builder document for an 105 Interface.

(oo | [Emon





OEBPS/iCloud/UbiquityContainer.png
Application
Sandbox

Joe Conway's
iPhone
Filesystem

iCloud

Servers
Application
_com. Sandbox
bignerdranch.
Nerdfeed
A 13

/ \
4 \

Joe Conway's
iPad
Filesystem

com. .
bignerdranch. bignerdranch.
Nerdfeed Nerdfeed

Ubiquity
Container
Directory

Ubiquity
Container
Directory






OEBPS/CoreLocation/DebugNavigator.png
n© 4
e
Whereami
¥ paused

Thread 1
¥ ¥ com appie main-thread

71 1 -[WhereamiAppDelegate applica.
[ 2 -WiApplication _callinitializatio.
[33 - UtApplication _runWithURL:pa.
[ 4 -UtApplication handleEventwit.
[35 -WiApplication sendEvent]

[0 6 _uiApplicationHandleEvent

[597 PurpleEventCallback

[ 8_CFRUNLOOP.I5_CALLING_OUT.
Bl 9 _CFRunLoopDoSourcel

B 10_CFRunLoopRun

B 11 CFRunLoopRunspecific

B 12 CFRunLoopRuninMode

[0 13 ~UiApplication _run]

[ 14 UtapplicationMain

1 15 main

» ¥ Thread 2






OEBPS/CAAnimation/MultipleKeyframes.png
Ao

5,

e
P AV
KT D)
~ L
= LD

i





OEBPS/Camera/CameraTypes.png
Camera

PhotoLibrary

SavedPhotoAlbums

Camera Roll






OEBPS/MVCS/WhereamiFlow.png
startUpdatingLocation

~

~

b\

fetch new location

e N
\
e N

WhereamiViewController CLLocationManager A .
l<-delegate-- Location
g Hardware
AN 7 AN e
S na \\ //
Io.catlonManager: . return new location
didUpdateToLocation:

frol

mLocation:





OEBPS/PopoverModal/FormStyle.png
Rusty Spork

Name | Rusty Spork

Serial | 80928

Value 11

2011-04-27






OEBPS/ObjectiveCNew/SecondConsole.png
| 4 » | /\ Debug RandomPossessions

GNU gdb 6.3.50-20050815 (Apple version gdb-1515) (Sat Jan 8
Copyright 2004 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-apple-darwin".tty /dev/ttysi
[Switching to process 2041]

2011-01-26 0 RandonPossessions [204:

26:08 UTC 2011)

0f] Rusty Spork (SBSM2): Worth $77, recorded on 2011-01-26 O

2011-01-26 RandonPossessions [2041:a0f] Fluffy Spork (7A926): Worth $62, recorded on 2011-81-26
2011-01-26 RandonPossessions [2041:a0f] Fluffy Bear (6H8DY): Worth $72, recorded on 2011-01-26 0
2011-01-26 RandonPossessions [ ] Shiny Mac (3X532): Worth $62, recorded on 2011-81-26

RandonPossessions [ 1 Fluffy Bear (7632
RandonPossessions [2041:a0] Fluffy Bear (9E754)
RandonPossessions [2041:a0f] Shiny Bear (6NOC3)
RandonPossessions [2041:a0f] Shiny Mac (1X5K7): Worth $96, recorded on 2011-01-26
RandonPossessions [ ] Shiny Mac (3L7M5): Worth $46, recorded on 2011-81-26
RandonPossessions [ 1 Fluffy Bear (74HO): Worth $14, recorded on 2011-81-2
RandonPossessions [2041:a0f] Red Sofa (A182C): Worth $100, recorded on 2011-81-26

Worth $69, recorded on 2011-01-26
Worth $21; recorded on 2011-81-26 0f
Worth $13, recorded on 2011-01-26

2011-01-26
2011-01-26
2011-01-26

2011-01-26
2011-01-26 o
Progran exited with status value






OEBPS/CoreLocation/ControllerDelegate.png
WhereamViewController

N

locationManager delegate

CLLocationManager





OEBPS/CoreLocation/preprocessor.png
CoreLocation.h UIKit.h

Tiapert ST e Timpert I e e

Sagart S acceteraseter b Siegart S ihceeteronsier.
ot S ccess ity Singars I ihccess sty
e i e e

s S Singors Sk uisieren

- A
replaced with WhereamiViewController.h o K

/

"=~ #import <CoreLocation/
Corelocation.h> replaced WIth
#import <UIKit/UIKit.h> = /
nertace weressuopmetegte © Iswject /

ey TN R————

. /
Interface files LR e /,/
[ ——— ,
e
- /
replaced\ WhereamiViewController.m // main.m
< [#import ! _ - #inport <UIKit/UTKit.h>
(MhereaniViewController.h TR e

sminesize vindon; ukssticatiowaintarse, arov, i, piU);

Implementation files o [t

(ngptication shpotication
Fir om0t ors OSDLckonry

oo
i

11 crene acation savser pgect -
77 SR S T et o our wereosgpneteate
Tacatsimne: = [(ELlocpeiomarsner ovioe oie)s
oatiamaniger setoetmiersetsls

174 s U resots rom the Location msger
Hlocaciamansge setistance e Kepseancersitemone]

—T— generates
generates

v

WhereamiViewController.mi main.mi

[T T it srse, v s €

Intermediate files

synesize vincou: toreiesspant + sool = [Dihuteretessersol stoc)

il
- (800U sptsestions ULrpcation shootscotion g
rtenaomcioguisnapt o DLctonary s e

guscsiomintane, o o, 0

Prrm—
{

17 crese tocatian samser obgect -

77 S S T e e e weressmgmmetesnte
Tocotsommarager = [{Ciocationtomssr stiee] Gnit:
fissitriecapi St

17 e ot a1 resutes fron e Loca
ticiomanaser Sxpistamer eerciopsancer riane;






OEBPS/ObjectiveCNew/PossessionDiagram.png
@"Red Sofa"
itemName

BNRitem [ NSString |
- serialNumber —»|
valuelnDollars = 120 @"12A139B"

dateCreated
May 12, 2011






OEBPS/Rotation/ChangeScheme.png
Ll | | He .__" : n ¢ iPad muiato ’
¥ iPad 5.1 Simulator

iPhone 5.1 Simulator
e





OEBPS/Instruments/Cycles.png
) B3 Cycles & Roots ¢ ) Leak Cycles

# Type Details Graph
Cycles (1)
1 PNSMutableArray - S nodes  Complex Cycle
NSMutableArray
4
]

Malloc 16NSMutabloArray” containinghrray

- dnovarl

c
3





OEBPS/TableViewControllers/EmptyTV.png





OEBPS/NavigationController/ObjectDiagram.png
UlView

subviews

UlWindow

Controllers

UlNavigationBar

rootViewController

window

HomepwnerAppDelegate

[—subviews ¥ \

serialNumberField

viewControllers

ItemsViewController

UlTableView

allltems

NSArray

Name | Rusty Spork

Serial  2ms85
Valug® 77

A
Feb 21, 2011
ehizfueal

valueField
| X

. dateLabel
view "

Detail ViewController

BNRItem






OEBPS/TableViewControllers/CellLayout.png
UlTableViewCell contentView Accessory Indicator






OEBPS/TableViewControllers/TableViewBasic.png
Rusty Spork (5B5M2): Worth $7...
Fluffy Spork (7A9Z6): Worth $6...
Fluffy Bear (6H8D9): Worth $72,...
Shiny Mac (3X5J2): Worth $62,...
Fluffy Bear (7X6J2): Worth $6

Fluffy Bear (9E7S4): Worth $21,...
Shiny Bear (6NOC3): Worth $13,...

Shiny Mac (1X5K7): Worth $96,...

Shiny Mac (9L7M5): Worth $4¢

Fluffy Bear (7WA4H0): Worth $14,...






OEBPS/Blocks/capture.png
- method's frame

—‘———‘——”——
- (void)method <~

{

int val = 5;

void (*block)(void) = Avoid(void) {
NSLog(@"%d", val);<-----=-=="""""
b






OEBPS/PopoverModal/ItemsListRunning.png
G Homepwner

Rusty Spork (5B56Q): Worth $77, recorded on 2011-04-27 15:08:31 +0000
Rusty Mac (OR36W): Worth $27, recorded on 2011-04-27 15:12:12 +0000
Rusty Spork (8D92S): Worth $11, recorded on 2011-04-27 15:12:15 +0000

Rusty Spork (9M28F): Worth $35, recorded on 2011-04-27 15:12:18 +0000






OEBPS/Simple/AddIcon.png
PROJECT

| Summary

Info. Build Settings Build Phases

Build Rules.

Bz

¥ iPhone / iPod Deployment Info

TARGETS

Main Inerface |

Supported Device Orientations.

Portrait

App Icons

No

image
specified

i

upsm T CEEE
Right

No
image
specified

Retina Display





OEBPS/MVCS2/CacheFlow.png
ListViewController BNRFeedStore Web
Server
T

e ' :
T =~~fetchTopSongs: i
! withCompletion:--- 5 i
i Request-_ |

! 7’
: -
| 7
! Response
! S
i e i

| ;

H deliver data.- - ---- i
«----""7 from '
i :
. - N 1
’ A :
4 y :
\ / i
S 1
| deliver data.---- E
e == from '






OEBPS/WebServices/delegateFlow.png
. The parser begins parsing and finds a channel element
NSXMLParser ListViewController
—delegate —»{

T RS

parserDidStartDocument: >

L parser:didStartElement:

“ehannel” channel = [[RSSChannel alloc] init];

setDelegate:channel —

<

B. The parser finds a item element enclosed in a channel element
ListViewController

channel N

v —parent
NSXMLParser RSSChannel

—delegate

L parser:didStartElement:
“item" —> [RSSItem xitem = [[RSSItem alloc] init];
[items addObject:item];

P—
-~ setDelegate:item |

C. The parser finds a link element with a string inside the item element,
and then the end of the item element

ListViewController

channel ~

Y parent
RSSChannel

Ll >
v parent
NSXMLParser RSSltem

—delegate

— parser:didStartElement:
"link"
—— parser:foundCharacters:

"http://forum.com” ﬂl
| palserp:didEndElement: [link appendString:@"http://forum.com"];

link"
“— parser:didEndElement:

"item" |
«——— setDelegate:parent

link = [[NSMutableString alloc] init];






OEBPS/TableViewControllers/CellHierarchy.png
textLabel
detailTextLabel

UlLabel

UlTableViewCell

contentView

A4
UlView

imageView

UlimageView

UlLabel






OEBPS/Multitouch/ResponderChain.png
UlViewController nextResponder UlWindow nextResponder UlApplication

7y v

view nextResponder  gyperview

UlView

|'¥-... superview
A
nextRestponder
UlView T Bl
... with no view controller... [€~=~~"""77777777777






OEBPS/ObjectiveCNew/ProjectNavigator.png
RandomPossessions
7 arger, Mac 05 X SOK 106

(] RandomPossessions

) Randompossessions.1
(] Supporting Files
[h) RandomPossessions-Prefix.pch
(] Frameworks
& Foundation.framework
] Products
s





OEBPS/Camera/UseInterface.png





OEBPS/MVCS/Flow.png
ListViewController BNRFeedStore

Web Server
1 1

Fee | i

i ~~s I i

: Sea 1 1

' fetchRSSFeedWithCompletion: | H

Continue handling } N ! !
events 77N ~~< ‘:P E

A v |~~~ Web Service I

\ g H Request H

i ol

. ]

i Web Service -~ :

! Response !

i

| i

i i

| |

. i I

i I

o S ! :

show reloadData I I

» | ! :
UlAlertView UlTableView H |
@"Error!" i i
i I

I |
B v





OEBPS/Storyboard/ClassIdentityModal.png
D B 8-
v Custom Class

Class [ModalViewController O] v |

® O





OEBPS/GestureRecognizers/TouchTrackerScreenshot.png





OEBPS/CoreData/PropertiesA.png
¥ Relationship.

v Auributes

Type Name [items.

string + Destination [ BNRItem =
Inverse [ No Inverse Relationship

= Propertes () Transient  Optional
Arranged ] Ordered
v Relationships Plural @ To-Many Relationship

I —TT—Te— 0 D O

Unlimited (2] () Maximum

Delete Rule [ Nullfy






OEBPS/MemoryManagementNew/AllPointers_retainCycle_fixed.png
main's frame

NSMutableArray

—items —»|

NSDate

BNRItem

container

containeditem

BNRItem

|
dateCreated
- NSString
[-serialNumber
~
itemName
NSString
"Backpack"
NSDate
|
dateCreated
- NSString
[-serialNumber
itemName
NSString

"Calculator"






OEBPS/Simple/OrganizerScreenshot.png
LIBRARY
2. Developer Profle Screenshot 20110119 17.24.
] Provisioning profies January 19, 2011
¥ Software mages
 Devce Logs
% Screenshots
Devices

T

41 (@8117)
Show Question

Joe Conway's iPad
B e

Joe Conway's iPhone
42.1(8C148) 4

Provisioning Profles
- Applications
B Console
. Device Logs
" Screenshots
A PD 277

B

@ 1

Remove  Export Save as Launch Image






OEBPS/PopoverModal/ViewControllerRelationship.png
Family 1

i i
i '
i '
| a
1 i parentViewController parentViewController % !
i H tabBarController navigationController | :
I & - N4 '
i UlTabBarController UlINavigationController UlViewController E
i

i '
I '
i '
i '
i '
i '
i '
i '
| 1
R '

presentingViewController A presentViewController:
animated:completion:

UINavigationController

T
viewControllers

v

navigationController

]
i
]
|
| parentViewController
i
i
i
i

17

UlViewController






OEBPS/Instruments/TimeSample.png
Choose a Template for the Trace Document:

i
w meen twe e
Memory == =
W B -
.
Bosrir || Dmrose | nvosor  cwmomonse srenve

Al
Memory

U L
File System - .
o

Al ﬂ Time Profiler

Memory

@
File System
Behavior

Performs low-overhead time-based sampling of processes running on the system’s CPUs.






OEBPS/PopoverModal/presentationContext.png
UlINavigationController

—viewControllers —|

UlViewController
definesPresentationContext = YES

A Y
/ \
’ \
. / \
presentedViewController / >
presentViewController: \
A animated:completion: 5\
;
/
L1 /
UlViewController

presentedViewController





OEBPS/CALayer/Block.png
=

You are getting sleepy.,






OEBPS/TableViewCell/TableViewCellHierarchy.png
subviews’\

H
H
i UlimageView
i
subviews !
H
i
T e Hoar - R
1
contentView H
H
o UlLabel
i
- H
thumbnailView H
P e UlLabel
ST

serialNumberLabel ™





OEBPS/iCloud/EntitlementsSetting.png
PROJECT

‘Summary

Nerdfeed

105 Application Target

TARGETS

Identifier |com bignerdranch.Nerdfecd

Version 1.0

Devices [ Universal ¢

Deployment Target [5.0

Build (1.

» iPhone / iPod Deployment Info

> iPad Deployment Info

b Linked Frameworks and Libraries

v Entitlements

Entitlements (¥ Enable Entitlements

Entitlements File

Nerdfeed

Cloud Key-Value Store

com.bignerdranch.Nerdfeed

iCloud Containers

com.bignerdranch.Nerdfeed

+ -

Keychain Access Groups

com.bignerdranch.Nerdfeed






OEBPS/CoreLocation/AddFramework.png
Choose frameworks and libraries to add:

Q

& AssetsLibrary.framework
& AudioToolbox.framework
& AudioUnit.framework

& AVFoundation.framework
Bt

1 CPNetwork.framework

1 CoreAudio.framework

1 CoreBluetooth.framework
& CoreData.framework

& CoreFoundation.framework
& CoreGraphics.framework
6 Corelmage.framework

& CoreMedia.framework

& CoreMIDI.framework

1 CoreMotion.framework
& CoreTelephony.framework.

| Add Other... | [ Cancel | (iAdd ]






OEBPS/TableViewControllers/DocsWindow.png
°o o m

Organizer - Documentation

| 4 > | igi0S 4.1 Library ) [ User Ex... ) || Tables || UTableViewDataSource Protocol Reference

Q- UrTableViewDataSource.

Reference
Show 1 More Results

otocol Reference

System Guides
Show 5 More Results
[ Table View Progr..ing Guide for 05
able View Progr...ng Guide for 105
UIKit Framework Reference
UIKit Framework Reference
UTableviewControler Class Reference
UTableviewControler Class Reference
UiSearchDisplayC.. Class Reference
UiSearchDisplayC.. Class Reference
NFetchedResult.. Class Reference
UlTableView Class Reference
UlTableView Class Reference
NSFetchedResult... Class Reference
{5 Tools Guides
OResuls
7 Sample Code
Show 26 More Results
TheElements
» 7 Thetlements
» 1 DrilDownsave
» 1 DrilDownsave
» B Navgar
» B Navgar
» B Generickeychain
» B Generickeychain
» 7 AdvancedURLConnections
» B AdvancedURLConnections
» B UCatslog
» B UCatslog
» ) iPhoneCoreDarafecipes

Tasks

Configuring a Table View

— tableView:cellForRovhtIndexPath: required method
— numberofSectionsInTableview:

— tableview: nunber0fRowsInSect ion:
— sectionIndexTitlesForTableview:

required method

— tableView:sectionForSectionIndexTitle:atIndex:
— tableView:titleForHeaderInSection:
— tableView:titleForFooterInSection:

Inserting or Deleting Table Rows

~ tableView:commitBditingStyle: forRowAtIndexPath:
— tableView:canEditRowAtIndexPath:

Reordering Table Rows

— tableView:canloveRowAt IndexPath:
— tableView:moveRowhtIndexPath:toIndexPath:

Instance Methods

numberOfSectionsinTableView:
Asks the data source to return the number of sections in the table view.

- (NSInteger)numberOfSectionsInTableView: (UITableview *)tableView

Parameters
tableView
An object representing the table view requesting this information.

Return Value

The number of sections in tableView. The default value is 1.

NI





OEBPS/ObjectiveCNew/Classes.png
inherits from

£
0 —-——m-——
= s
£ &
.A_nv 1<
£ 19
--—1 Q!
1 @1
1=
=
=
1,
1<
I J





OEBPS/View/subviews.png
UlWindow

rr——
subviews

Keuysjqeinpusn

UlScrollView

rm——
subviews

AenyajgeiniSN






OEBPS/MVCS2/LinkEntity.png
ENTITIES

FETCH REQUESTS

CONFIGURATIONS
Default






OEBPS/View/CreateHypnosisView.png
Choose a template for your new file:

mios

& & - -
Cocoa Touch i [ h h
T vy vy e
User Inerface
e Objective-C class Objective-C Objective-C class  Objective-C protocol

EeE category extension

Resource

Other R
& Mac 05 X [

Cocoa =

Cand i+ Objective-C test

User Inerface ‘case class

Core Data

Resource

Other

7 Objective-C class.
An Objective-C class, with Implementation and header files.

Cancel

Previous





OEBPS/PopoverModal/PresenterPresentee.png
UlViewController

presentedViewController presentingViewController

UlViewController






OEBPS/TableViewEdit/FilesOwnerItems.png
D sja|
¥ Custom Class

o vt Olr)

¥ User Defined Runtime Attributes.
P ——r——y— Ty

©





OEBPS/Storyboard/FullCanvas.png
@_

0 ST
I [ =}

Red >

Whito

r®

[ view convoter |





OEBPS/CoreData/CreateModel.png
Choose a template for your new file:

05

Cocoa Touch
Cand Crr
User Interface

Resource
=H Other

| macosx
- Cocoa

CandCes

User Interface

Core Data,
Resource
Other

=N )
m
Mapping Model  NSManagedObject
Subclass

Data Model

A Core Data model file that allows you to use the design component of Xcode.

Previous






OEBPS/Storyboard/PushSegue.png





OEBPS/xcode_icons/object_library.png





OEBPS/Camera/Dictionary.png
NSMutableDictionary

"megaman figurine"

"residence"

"owner"

Toy






OEBPS/MVCS2/MarkedRead.png
- 3

Can't get Mapview v

Re: Error on page 411

pragma mark v
Re: my solution to the challe...
Re: Solution?

Re: NSXML Parser not engag...
28. Your First Cocoa Applicat...
Re: Strange behaviour when...

Re: randomindex





OEBPS/Instruments/Configurations.png
PROJECT | ifo | Build Settings

¥ DT

TARGETS i0S Deployment Target (5.0 v

A TouchTracker
¥ Configuratons
Name Sased on Configuration file
» Debug No Configurations Set

> Release No Configurations Set





OEBPS/ObjectiveCNew/ArrayDiagram.png
4
7]
=
c
~d
[
g
o
>
3
<






OEBPS/CoreData/Scheme.png
Homepwner +] (Phone 5.1 Smuiator 5 (m)

Scheme Destination Sreakpoints
> @ :...u Info | Arguments | Options Diagnostics
]
= & -com.apple.CoreData.SQLDebug
est 1
o 4
e e
Analyze = ;
= OXEREIT—
e ame alue
> & Release:
s
Expand Variables Based On | A Homepwner =
Bul setings e SARCHS)wil be expanded eative o this trget.
Duplicate Scheme Manage Schemes... | f—0r—]






OEBPS/TabBar/TextTabBar.png





OEBPS/Instruments/Containers.png
Workspace

-—
WORKSPACE

Targets

o
=
5]
L
[3]
()






OEBPS/MVCS/BNRConnectionDelegate.png
NSURLRequest

forums.bignerdranch.com

request request
delegate

BNRConnection NSURLConnection

completionBlock

internalConnection





OEBPS/TableViewCell/HomepwnerItemCellClass.png





OEBPS/CALayer/DrawingStackTrace.png
#  Thread-12

[
1
2
3
o
H
B
7
5

~(HyprosisView drawRect]
~[UView(CALayerDelegate) drawLayer.inContext]
~[CALayer drawinContext]

backing_callback

CABackingstoreUpdate

~[CALayer _display]

CALayerDisplaylfieeded
CA:Context::commit_transaction
CA:Transaction::commit





OEBPS/Simple/questionDrag.png
‘Show Question

utton - Show Answer






OEBPS/Simple/NewProject.png
Choose a template for your new project:

@ ios
A m 27
T
Framework & Library E2
Oter
Waster-petail Openci Game
e oricaton
Application -
Framework & ibrary ¥
Application Plug-in
Syoem Pl
oter Tabbed Appicaion Uity Applcaion  Empy Application

1| single view Application

“This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storyboard o nib file that contains the view.

[ cancel | Previous | [[Next- ]






OEBPS/CoreLocation/compiler.png
Intermediate files

Object files

WhereamiAppDelegate.mi

T were

- st Ugpcation st
ot o seny )

sereseiete
e el T

main.mi

T s e, o e ©

compiler creates

WhereamiAppDelegate.o

compiler creates

¥

main.o

has link to

A
CorelLocation (Library)






OEBPS/Instruments/InstrumentChoice.png
Choose Trace Template or Existing Document:

T s s
Vemars
oy

—

Activity Monitor

o Setem
Bl
L e
s i
il ke
B oocumen “
oxen &
e Zamiice Time ot Snarsion Treats |t

! Allocations

“This template measures heap memory usage by tracking allocations, including specific
object allocations by class. It also can record virtual memory statistics by region.

D) o)






OEBPS/TableViewEdit/AnnotatedRun.png
Toggles edit mode Adds new item

Allows deletion Done New Allows reordering
&) Rusty Spork (2M5B5):...
&) Fluffy Spork (6Z9A7):...
&) Fluffy Bear (9D8H6): Wo...
&) Shiny Mac (2J5X3): Wor...





OEBPS/Camera/ConnectAction.png
Connection (Adtion 9
Obect s Owner

P e r—

Type [id

e

( Cancel ) (Connect )






OEBPS/SplitViewController/splitViewProperty.png
UlISplitViewController

v I v
viewControllers

splitViewController

splitviewController UlNavigationController

[
viewControllers

ListViewController






OEBPS/TableViewCell/ItemCellAutoresize.png





OEBPS/TabBar/Cascade.png
Before Memory Warnir After Memory Warning

i
TimeViewController UlView TimeViewController i
[~ view —| !

T i

subviews E

timeLabel L] timeLabel ;

i

i

i

UlLabel UlLabel H

Two Strong References One Strong Reference 1

[ — |

|

|






OEBPS/WebServices/NSURL.png
NSURLConnection

NSURLRequest

cachePolicy
[ request —| timeout

httpHeaders
httpBody

NSURL

URL

http://www.bignerdranch.com






OEBPS/Simple/PlaceholderExample.png
806 B Qui

. xcodeproj — [m| QuizViewController.m

(%) (®) [Quiz ) Phone 5.1 Smuttor | 3 Finished running Quiz on (Phane 5.1 Simulator
Run_ Stop Scheme Breakpoints Projec OL
mznea==8 <> | [Quz) [ JQuiz) [B QuizViewControllerm ) No Selection
Quiz 7
¥ B9 Trger o5 5051 77 quizviewController.n
77 auie
v Eaaue 7
] QuizAppDelegate.n 7/ Created by Joe Conway on 2/18/12.
m QuizAppDelegare.m 77 Copyright (c) 2012 Big Nerd Ranch. ALL rights reserved.

) QuisViewConroler "

QuizViewControler #inport “QuizVienController.h®

< QuizViewController.xib

o Ermmtnos @inplenentation QuizViewController
¥ [ Frameworks = (id)initWithNibName: (NSString *)nibNaneOrNil bundle: (NSBundle *)nibBundle0rNil
> (] Products B

o Self = Lsuper initWithNibName: nibNaneONl bundle: nibBundlerNill;

if (self) {
77 Create two arrays and make the pointers point to them
questions = [[NSMutableArray alloc] init
answers = [INSHutableArray alloc] initl;

7/ Add questions and
[questions addobject
[answers addobject

swers to the arrays
What is 7 + 77

[questions addobject
[answers addObject:@Montpelier"];

[questions addobject
[answers addobject

Fron what is cognac made?
‘Grapes"]






OEBPS/xcode_icons/debug_area_selector.png





OEBPS/Instruments/RecordedRefs.png
auswn o

|Catagory-
Line
Line
Line
Line
Line
Line
Line

GvantTypa==ifaf
Malloc

Retain

Release

Retain

Release

Release

Free

cormrNe

| Timestamp

00:59.938.257
00:59.938.297
00:59.938.304
01:00.127.439
01:00.127.443
01:08.933.142
01:08.933.142

/Address

0x8007da0
0x8007da0
0x8007d20
0x8007da0
0x8007d20
0x8007da0
0x8007da0

Size

espanaibiebl
TouchTracker
TouchTracker
TouchTracker
TouchTracker
TouchTracker
TouchTracker
TouchTracker

esponsibie-Galler
~[TouchDrawview touch.
~[TouchDrawView touch.
~[TouchDrawView touch.
~[TouchDrawView endTo.
~[TouchDrawView endTo.
~[TouchDrawView clearAll]
~[TouchDrawView clearAll]





OEBPS/ObjectiveCNew/SuperclassChoice.png
Choose options for your new file:

o

Subclass of [NsObject )

With XIB for user interface






OEBPS/Simple/ProjectWindow.png
Identfe | com bigneraranch.uiz

Version 10
Devices (ihone 2]
Deployment Taget (50 v

¥ iPhone | iPod Deployment fo

Main Storybosrd
Main inerface

‘Supported Device Orentations

BoBE&E

Upsde | Ladsae  Landsae

e .
?

+ 08066






OEBPS/Simple/MVCDiagram.png
|
User interacts with view object

View sends message
to controller

I

Controller updates view with
changes in model objects

Controller updates
model objects

Controller takes data
from model objects that its
views are interested in





OEBPS/NavigationController/NavBarNavItem.png
UINavigationController

—navigationBar

topViewController

ItemsViewController

navigationltem

UINavigationBar

T
|

1
configures itself from
1

UINavigationltem






OEBPS/Storyboard/StoryboardOD.png
UINavigationController

T
[ i UlViewController

UlTableViewController

L UlViewController

presented modally
1

v

UlViewController






OEBPS/Simple/Model.png
| »"Whatis 7+7?"
——-"What is the capital of Vermont?"
—"From what is cognac made?"

KenryajqeinysN
N = O

4
——"Montpelier"
e e

- O

KenryajqeinpisSN
N






OEBPS/TabBar/faces.png





OEBPS/TabBar/IconTabBar.png
® (]

Time
Hypnosis





OEBPS/MemoryManagementNew/NameNewProject2.png
Choose options for your new project:

Product Name | Quiz

Company Identifier | com.bignerdranch

Bundle Identifier com bignerdranch.Quiz

-
osvce Famiy

(] Use Storyboard
& Use Automatic Reference Counting
() Include Unit Tests.

[ Goncel ] [Cprevious ) [Eibexti





OEBPS/TabBar/TVCDiagram.png
rootViewController -

subviews

T aeaniss e

\ UlLabel subviews

\
\
\
\





OEBPS/TabBar/IdentityInspector.png
D e e
—
o Tmevenconter—Ol)
e
o s e

©

Label | File's Owner
BB .
Object 1D -1
Lock [ Inherited - (Nothing) |
Notes (] Show With Selection






OEBPS/CoreData/NewEntityA.png
ENTITIES v Auributes

© BNRAsserType
@ sviem B abel Suing ¢

FETCH REQUESTS.

Type






OEBPS/Blocks/__block.png
[ Shared Memory |

val = 5;
I method's frame val
——""“// val
- (void)method <~~~
{
__block int val = 5; block
void (*block)(void) = Avoid(void) { N Block

NSLog(@"%d", val);<---==-==""""""
%






OEBPS/CoreData/Entity.png
elational Model

Person
personiD | firstName [ lastName
4 Celia Monroe
5 John Smith
Linda Gow

| <g=—=Core Data—=F>,

R A

Object Model

Person
7
Celia
Monroe Person
John
Smith Person
6
Linda
Gow






OEBPS/NavigationController/SimpleNavItem.png
UINavigationController UlViewController

_ topViewController —»

navigationBar navigationltem

¢ UINavigationitem
Home Page title = @"Home Page"






OEBPS/Rotation/InterfaceOrientationPlist.png
PROJECT | summary | info Build Settings Build Phases

3 HeawyRotation 105 Apiicaton Target

TARGETS dentifier | com.bignerdranch. eavyfotation
R Version 1.0 Build [10
Devices [ Universal ¢
Deployment Target [5.0 v)

¥ iPhone / iPod Deployment Info.

Main Storyboard )
Main Interface )

Supported Device Orientations.

Portrait Upside e s o
Down Right






OEBPS/NavigationController/HomepwnerNavBar.png
—
e || e
Rusty Spork (2M5B5): Worth $7...
Rusty Bear (629A7): Worth $62,...
Fluffy Bear (9D8HS): Worth $72,...

Shinv Mac (2J5X3): Worth $6






OEBPS/TabBar/OutlineView.png
 Placeholders

. Fie's Owner
Fist Responder

v View
_JLabel - 722
Button - What time is it?






OEBPS/Simple/debuggerArea.png
< » | [MQuiz) [ |Classes » m| QuizAppDelegate.m ) [ -showQuestion:

// Log the string to the console
NSLog(@"displaying question: %@", question); 0

e // Display the string in the question field
A i At b Pl -

Q Al Output 3 Clear ) (IO TN O

Yoo ey

07 28: 29 UTC 2010)

Copyright 2004 Free Software
Foundation, Inc.

GDB is free software, covered by
the GNU General Public License,
and you are

welcome to change it and/or
distribute copies of it under
certain conditions.

Type “"show copying" to see the
conditions.

There is absolutely no warranty
for GDB. Type "show warranty"
for details.

This GDB was configured as
""x86_64-apple-darwin".Attaching
to process 1716.

2010-10-24 14:44:15.563 Quiz
[1716:207] displaying question:
What is the capital of Vermont?






OEBPS/WebServices/delegateFlow2.png
. The parser finds the end of the channel element

ListViewController
channel ~
v parent
NSXMLParser RSSChannel

parser:didEndElement: items N

l "channel" _:)

¢ setDelegate:parent |

RSSltem

. The parser finishes parsing the document

NSXMLParser

parserDidEndDocument: ﬁ] channel

RSSChannel

You are left with the final object graph
ListViewController

channel

v
RSSChannel

RSSltem

R






OEBPS/CoreData/AddCDFramework.png
Choose frameworks and libraries to add:

Q

v (ios 5.1

& Accelerate.framework

& Accounts.framework

& AddressBook.framework
& AddressBookUl.framework
& AssetsLibrary.framework
& AudioToolbox.framework
& AudioUnit.framework

& AVFoundation.framework
Bt

& CPNetwork.framework

& CoreAudio.framework

& CoreBluetooth.framework
& CoreFoundation.framework

& CoreGraphics.framework






OEBPS/CoreLocation/TurnOnException.png
B ® s =\=8

Foobar
1 sreakpoint

£ All Exceptions

 Exception Breakpoint
Exception
Break

vE

Action Click to add an action
Options (] Automatically continue after evaluating

(Done )

+ - | D@ )






OEBPS/View/RunningNoText.png





OEBPS/Instruments/LineInstances.png
H statistics ¢
# Address

0 0x182480

1 0x160860

2 0x189910

3 0x189170

4 0x186930

Object Summary.
Category.
Line
Line
Line
Line
Line

Line
Timest.
00:05.15
00:05.61
00:06.04
00:06.42.
01:27.02

Live

s.
32
32
32
32
32

Responsible.
TouchTracker
TouchTracker
TouchTracker
TouchTracker
TouchTracker

Responsible Caller
~[TouchDrawview tc
~[TouchDrawView t
~[TouchDrawView t
~[TouchDrawView
~[TouchDrawView t





OEBPS/Instruments/BasicObjectAlloc.png
®o00 Instruments1 ¥,

(O) A TouchTacker 3] (0.0 0| [EN=NED (@

Instruments.

] e}
N Allocations ) B statstics ¢ ) Object Summary
v Heapshot Analysis (Graph  Category UveByies | #Lving # Transiory | OverallBytes | #Overall
Cmarkress ) @ -AlAlocons© O 499.18K8 s w7 sseike o3
'+ Alocation Uifespan O walloc 16 Byes 20758 1584 619 saexs 2
Al Ojects Created ) walloc 32 Bes a2k 170 W s 138
© Created & il Lviog O Crsuing (mmutable)  22.78K8 s00 3w 300k &
O Creted & Destroyed O Malloc 88yes s72K8 72 24 sk 7
v Calree O walloc 48 Byes 1B12Ke 280 100 1781k 38
P O Croasichash (alve-st.. 19948 128 s as3oxe 34
e T ) Crsuing Gtore) 864 pytes 7 m sie 31
B ) Craasichash (y-store)  18.94K8 % 187 430k 2
St () Crsuing (utae) 248005 7 209 800k 25
eyt ) walloc 64 Bytes 7008 2 E 969K 13
Show OB1-C Only O Cioictonary (muable) 558K e 1 647k 13
bk S Q ety ot | 45518 E 3 9558 1
rsex (mutable) 800 8ytes £ o 362K 1
e ) Croicorary Gmmutable) 480 Bytes 10 8 450k
Seie ) waloc 80 yes 388 51 3 7038
O Cramay utablevar..  2.23K8 el v
) walloc 9 Byees 431k ks 2 sk
O oo ssapyes 18 43 286K
O _Nsamaym 672 pes 2 “o 191K
O Walloc 100k 0008 o 6 ook
O CrNumber 544 Byes 34 s 70ames
O walloc 144 Bytes 169K8 2 2 5.77K8






OEBPS/Simple/Controller.png
UlButton UlLabel

action = showAnswer: text="27?"

UlButton
action = showQuestion:

UlLabel
text ="Whatis 7 + 7?"

questionField

QuizViewController

currentQuestionindex = 1

4"
"Montpelier" €—————
"Grapes" ¢————

Kenys|qeinpiSN
Keuya|qeinisN

—»"What is 7+77?" H
—"What is the capital of Vermont?"
—"From what is cognac made?"






OEBPS/Instruments/SourceCode.png
) B Statistics ¢ ) Object Summary ) Line ) [] -[TouchDrawView touchesBegan:withEvent:]

o) TouchDrawviewm

| B

)

NSValue xkey = [N

tl;

// Create a line for the value
CGPoint loc = [t
locationInView:self];

[newLine setBegin:loc]
[newLine setEnd:locl;

// Put pair in dictionary
[ jects

) 24.6%

) 18.5%






OEBPS/Storyboard/BasicCell.png
DB B|®w s ©

¥ Table View Cell
Style [ Basic .
Image v

dentifier | Reuse Identifier
Selection [ Blue

L —
T 0| I )
=2 width
@ nden Wil Edting
(] Shows Re-order Controls





OEBPS/TabBar/NewEmptyProjectHT.png
Choose options for your new project:

Product Name | HypnoTime

Company Identifier | com.bignerdranch
Bundle Identifier com bignerdranch.HypnoTime

Class Prefix

Device Family | iPhone :)

() Use Core Data
 Use Automatic Reference Counting
() Include Unit Tests.

Cancel





OEBPS/MapKit/DocCallout.png
Explore Option  Search Option  Bookmarks Option Navigation Bar
e 0

Organizer - Documentation

L8 80
__ Devices Repositories Projects Archives N i

oo | 4> | 09105 43 Ubrary ) [ User Experience ) [ MKMapViewDelegate Protocol Reference
Q& Mwspviewodegste ;

Match Type (Preix

— ' MKMapViewDelegate Protocol
Docses (3 700c 505
s (s 5 Reference

Next
Find Options

‘MKMapViewDelegate Conforms to NsObject
MKMapViewDelegate

[ Stem Guides. Framework ISystem/Library/Frameworks /MapKi.framework
6Results

~ 105220105 3.0 API Differences Availability Available in i0S 3.0 and later.
1052.2 10105 3.0 API Differences
Displaying Maps. Declared in MKMapView.h
Displaying Maps
105 3.2 0 105 4.0 API Differences Related sample code 3::51::;!;
1053.2 10 105 4.0 API Differences e

Tools Guides.

OResults

v 1 Sample Code
10 Results

» I MaoCallouts Overview
> B MaoCallouts
K The ytapvieunelegate protocol defines a set of optional methods that you can use
»> B Current to receive map-related update messages. Because many map operations require the
Rl o HEapView class to Ioad data asynchronously, the map view calls these methods to

notify your application when specific operations complete. The map view also uses
these methods to request annotation and overlay views and to manage interactions
with those views.

» 7 Currentaddress
» ) WeatherMap

» 1 WorldCities.

» 7 WorldCites Before releasing an 1MapV ew object, for which you have set a delegate, remember
1o set that object’s delegate property to nil. One place you can do this is in the
dealloc method where you dispose of the map view.

Search Results Current Document





OEBPS/MemoryManagementNew/AllPointers_retainCycle_2.png
main's frame

—items = nil

NSDate

|
dateCreated
BNRItem - NSSting
f~serialNumber
itemName
NSString
"Backpack"
containedltem
container
NSDate
|
dateCreated
BNRitem - NSString
—serialNumber
itemName
NSString

"Calculator"






OEBPS/Simple/answerDrag.png
il Gwner
) Frst Responder

Label - 77
Label
utton - Show Question

Show Answer






OEBPS/ObjectiveCNew/ClassInstance.png
The class acts as a factory

' name : NSString * '
' date: NSDate * '
! budget : Int !

1
i !

- sandReminder
- cancel

that creates instances of that class
Party Party

remne = @-Lentyy's Birthdey* rame = @"Prom"
date = 4/12/2015 date = 5142013
budget = 200 budget = 10000

- sendReminder - sendReminder
- cancel - cancel





OEBPS/NavigationController/ConnectionDiagram.png
<————nameField

<+———serialNumberField

- valueField

== daelabel






OEBPS/Archiving/ArchiveArray.png
NSString

encodeObject:forKey: ~ | NSString
BNRItem je0 > NSString
-7
encodeObject:forKey: encodeObjectiforKey: - NSDate
NSMutableArray —
vy encodeObject:forKey: NSString
" T BNRItem | encodeObject:forKey: .|
encodeWithCoder: NSString
i eEcB@éObiecmorKey: - o] Nsstring
NSKeyedArchiver encodeObject:forKey:
“=s]  NSDate






OEBPS/Storyboard/ActionsInStoryboard.png
Modal View Controller





OEBPS/CoreData/ComboRunning.png
Homepuner Stapler

Name | Stapler Electronics

Serial | 1234 Furniture v

Val 4
alue Jewelry

Type: Furniture |
Apr 27, 2011






OEBPS/NavigationController/VCCreate.png
Choose options for your new file:

Class

L B e coenter s

(] Targeted for iPad
4 With XI8 for user interface

[ previos | [ Mo ]





OEBPS/GestureRecognizers/GRFlow.png
UlApplication

touch event

v

UlWindow

touch event
A

UlGestureRecognizer

NSArray

action:" """~
'

i
|
\
1
1

Yes

Recognized
Gesture?

gestureRecognizers

\

UlView






OEBPS/TableViewControllers/EditSnippet.png
il Objectve-C i Metrod
£} summary s for avercin e it method o a Obiecive

Platform (Al %) Language (Objective-C D
Completion Shortcut  nit
Completion Scopes (Class Implementation DBE
- Cid)init {
self = [super initl;
if (self) {
initializations
3

return self;

&






OEBPS/CoreData/AttributesP.png
Homepwner.xcdatamodeld ) [fg Homepwner... ) [ BNRitem ) | 4 >

D s|s|
v Auributes Y ewibwne
Tvpe Name thumbnail
(B dateCreated Date & Properties @ Transient @ Optional
8 imagekey Sting ¢ () indexed
8 emname Suing ¢
B seriaiNember  String ¢ Aibute Type Undefined )
U thumbrall N Advanced (] Index in Spotlight
D el s O Store In External Record Fle
valuelnDollars __Integer 32 ¢
s v Userinto






OEBPS/View/InfoPlist.png
PROJECT Sommary | nfo | muldSewngs  uild Phases
boom 7 Custom 105 Target Propertes
[T Type Value
TanceTs Localizaton naive deveopmertregon ~ Sng ¢
- Bundle display name String ${PRODUCT_NAME}

Executable file String S{EXECUTABLE_NAME}
Icon fle String
sundle dentifer Sting  com.bignerdranch.S(PRODUCT_NAME:rfc1034identifer}
InfoDictionary version Suing 60
Bundle name String ${PRODUCT_NAME}
Bundle 05 Type code Suing  APRL
sundle versions strng, short Swng 10
sundle creator 05 Type code Sung 7
sundle vrsion Sring 10
Application requires iPhone enviro  © @ Boolean YES
Vain it file base name Sting  MainWindow

» Supported interface orentations Ay Gitems)
Status bar s intally idden 30 foolean L VES

Services -

Status bar style

Supported external accessory

Supported interface orientations

Supported interface orientatio.

Supported interface orientatio.
Tools owned after installation

Upgrade other bundle identiier
URL types v





OEBPS/Archiving/EncoderHierarchy.png
encodeWithCoder:

BNRIitem

7|
encndeVOLithCoaer:
JPled NSString
-
__encodeWithCoder:
encodeWithCoder: M
T
encodeWithCoder:
S~ NSString

NSDate

A






OEBPS/TabBar/Cascade_weak.png
Before Memory Warning

TimeViewController

timeLabel

One Weak Reference
and One Strong Reference

After Memory Warning

UlView

TimeViewController

subviews
N
T (strong)

UlLabel

timeLabel

One Weak Reference
(object automatically destroyed
and pointer set to nil)

UlLabel






OEBPS/MVCS/MVC.png
Web File
Server System
\ /

request  request
\ 7






OEBPS/xcode_icons/code_snippet_library.png





OEBPS/Front/cover.jpg
- ‘;;E'
i0S PROGRAMMING

JOE CONWAY & AARON HILLEGASS






OEBPS/TableViewControllers/RowGrab.png
UlTableView

ItemsViewController BNRItemStore
-.dataSource - - p|
\ I \ |
\, ’ \
N ’ \ alllitems
\ \
tableView:numberOfRowsInSection: count NSMutableArray






OEBPS/CoreData/ModelDiagramFault.png
Possession

"Emerald Necklace" assetType [0 "
3/16/2009

NSManagedObiject

Possession
"Laptop" assetType object fault
$1421 (AssetType, PK=3)

9/11/2010






OEBPS/TableViewCell/HomepwnerItemCellOutlets.png
All outlets should have these three settings the same
Pt

Connection” (Outlet DI

Homepwner Item Cell 11

Crr—

P nameLabel v L

[ 1 %0 5 o valuslabel
thumbnailView ?’abel s s Label 7
Label — 0 20%
A rrr el et sl z






OEBPS/WebServices/connectionFlow.png
NSURLConnection [ ListviewController | NSMutableData
delegate -+~ > [—data |

. Start

_—connection:didReceiveResponse: >
connection:didReceiveData: —__,,
connection:didReceiveData: —_,, appendData: —
connection:didReceiveData: appendData:
conneciionDidFinisiloading: - o appendData:






OEBPS/WebServices/Screenshot.png
Big Nerd Ranch General Discussions :: Re: problems posting new tem
5. NSArrayControle : Challenge 1 1 Author XCoder
5. NSArrayControler : Re: Challenge 1 :: Reply by staniey!

11. Basic Core Data : Re: The “data” binding Is deprecated In Mac 0S X ve...

1Phone Programming: The Big Nerd Ranch Guide :: xib & UlView : Author..
Phone Programiming: The Big Nerd Ranch Guide :: UISpltView under a U
1Phone Programiming: The Big Nerd Ranch Guide :: Text fle with special ch

1Phone Programming: The Blg Nerd Ranch Gulde :: Re: Text fle with speci...

 Delegation and Core Location : Re: Runtime Errors with IPhone 0 4
. MapKit and Text Input :: Reusing Placemark Data :: Author Rosellewind
. MapKit and Text Input :: Whereami under 108 4.2.1 :: Author PaulBenz

. MapKit and Text Input ::Re: Whereami under 10S 4.2.1 :: Reply by smee.

. MapKit and Text nput : Ertor: MapKIUMapKILh: No such fle or. :: Auth..

. MapKit and Text Input : s Error: MapKIVMapKith: No such flsor.
. MapKit and Text Input : s Error: MapKIVMapKith: No such flsor.
MWapKIVMapKIL No such i or..

apKIUMapKILh: No such fle or.

. MapKit and Text Input
. MapKit and Text Input

. Subclassing UlView : Instantating a UIView query :: Author PhillpAntho..

- Notifcation and Rotation :: Re: Beware: proximity sensor doesn't work..

- Notifcation and Rotation :: Re: Beware: proximity sensor doesn't work..

13. Camera and UllmagePickerControllr : Why override - idjcopyWithZon...
13. Camers and UllmagePickerController :: Re: Why override - (d)copyWih...

(G 21. b Services :: Mt Lovel XL Parsing :: Author manuslaharoz






OEBPS/Simple/SchemePick.png
@ (m) (Quiz) 05 Device

Sssiaasrore o





OEBPS/Rotation/RunningRotated.png





OEBPS/Instruments/ChooseScheme.png
@ @ Allocations » Joe Conway's |Phone

i TouchTracker >
= "7 Allocations Vv Joe Conway H |Phone

iPad 5.0 Simulator
iPhone 5.0 Simulator

Edit Scheme...
New Scheme...

Manage Schemes... Ugsdofte: Simpallates. ..






OEBPS/NavigationController/XIBView.png
| < > | [narual) S Homepwner ) 1) DeaiViewConvolerh ) No Secton
+ #import <UIKit/UIKit.h>

> @interface DetailViewController : UIViewController
1L

o}

* @end






OEBPS/MapKit/ObjectDiagram.png
I
I
I
MKMapView UlActivityindicatorView UlTextField I
I
I
I
I

, . worldView locationTitleField
/ delegate activitylndicator delegate !

Controller

A
WhereamiViewController

=

annotation

- delegate

locationManager

I

1 BNRMapPoint {
: NSString "title;
I

]

CLLocationManager

CLLocationCoordinate2D coordinate;
Model






OEBPS/MapKit/MKClassEnter.png
Choose options for your new file:

Class

Subclass of [NSObject

Targeted for iPad
] With XIB for user interface

1]

[CPrevious ] [Ebext™)





OEBPS/GestureRecognizers/UIMenuController.png
Copy Delete





OEBPS/CoreData/NewEntityP.png
ENTITIES

£ BNRItem

FETCH REQUESTS

CONFIGURATIONS
@ pefau






OEBPS/xcode_icons/file_inspector.png





OEBPS/Storyboard/FirstCanvas.png
Root View Controller






OEBPS/View/CreateProject2.png
Choose options for your new project:

Product Name | Hypnosister ]

Company Identifier | com.bignerdranch ]
Bundle Identifier com.bignerdranch.Hypnosister

Class Prefix

Device Family | iPhone o

() Use Core Data
4 Use Automatic Reference Counting
[ Include Unit Tests.

(proios | [ Mot ]





OEBPS/CoreLocation/breakpoint.png
~ (id)initWithNibName: (NSString +)nibNameOrNil bundle: (NSBundle *)nibBundledrNil
1
Self = (super initWithNibName:nibNameOrNil bundle:nibBundlerNill;

if(self) {
7/ Create location manager object
TocationManager = [[CLLocationManager alloc] initl;

[locationManager setDelegate:selfl;





OEBPS/PopoverModal/HomepwnerUniversal.png
PROJECT Summary

5 Homepuner 105 Applicaton Target

TARGETS

Identifier |com.bignerdranch.Homepwner






OEBPS/Localization/ProjWindowLocalized.png
4+ DetailViewController.xib (English)
& DetailViewController.xib (Spanish)





OEBPS/CoreLocation/SimulateLocation.png
30
3
2 }
33
L

return self;

Don't Simulate Location

Johannesburg, South Africa
Moscow, Russia

Tokyo, Japan

Sydney, Australia
Hong Kong, China
Honolulu, HI, USA

San Francisco, CA, USA
Mexico City, Mexico
New York, NY, USA

Rio de Janeiro, Brazil

No GPX files in project





OEBPS/Storyboard/StaticCells.png
DB =

¥ Table View

Content [ Static Cells

Sections

Separator [ Single Line
= Default é

Selection [ Single Selection
Editing [ No Selection During Editing
¥ Show Selection on Touch

T |





OEBPS/NavigationController/OutletName.png
Y
Connection (Outet ) |2
Object | File's Owner 5
e !
Type [Urtextrela
songe (Weak )

( Cancel ) (Connect )






OEBPS/SplitViewController/SimulatorChange.png
IPad im
i0S Device
J] ¥ iPad 5.1 Simulator





OEBPS/WebServices/ObjectDiagram.png
D )

i
i UlTableView UlWebView ,
| i
1 i
1 i
1 . 1
e f- B et ? -------------- e

Controller dataSource i
view delegate ~ webViewController ~ View

WebViewController

\ viewControllers

UlNavigationController

channel

RSSitem RSSltem RSSltem






OEBPS/SplitViewController/UniversalDialog.png
| 4 > | [")Nerdfeed
PROJECT

l Summary ’ Info

M ltargel 105 SDK 5.1

4 Nerdfeed i0S Application Target

h| ChannelViewController.h
E ChannelViewController.m
v (] Nerdfeed
[h] NerdfeedAppDelegate.h
|m] NerdfeedAppDelegate.m
» (] Supporting Files
[h] ListviewController.h
m| ListviewController.m

Bundle Identifier | com.bignerdranch.Nerdfeed

Version 1.0
Devices | Universal s

Deployment Target iPhone
‘ iPad

TARGETS
Nerdfeed






OEBPS/ObjectiveCNew/SaveNewClass.png
[EIDEE « 0

FAVORITES ) main.m
All My Files » [ RandomPos...ns.xcodeproj | |h| RandomPos...s-Prefix.pch
RandomPossessions.1

~ | [ £ RandomPossessions | (Q

€} jocconway b
#\ Applications L "
[ Documents

>
[ Users PM
(=] Dropbox it
a »
SHARED. P
L1 il Phillps...
1 Brian Turn...
Group [ (] RandomPossessions o

Targets (¥ M RandomPossessions






OEBPS/MemoryManagementNew/AllPointers.png
NSDate

main's frame

NSMutableArray

r—items |

|
dateCreated
BNRitem — NSString
- serialNumber
I~
itemName
NSString
NSDate
dateCreated
BNRItem — NSString
- serialNumber
~
itemName

NSString






OEBPS/View/ViewHierarchy1.png
." subviews .
superview + superview

HypnosisView HypnosisView






OEBPS/WebServices/RequestFormat.png
HTTPBody

allHTTPHeaderFields

NSURLRequest

URL (minus host) "HTTP Version"

"Request-URI"
HTTPMethod

"Request-Line"
GET /smartfeed.php?limit=NO_LIMIT&count_limit=20&s0: ;_?;y—: vanuard HTTP/1.1

Accept: application/xml,application/xhtml+xml, text/html;q=0.9,text/
plain;q=0.8, image/png,*/*;q=0.5

Host: forums.bignerdranch.com

Accept-Encoding: gzip, deflate "HTTP Headers"
Accept-Language: en-us

Connection: keep-alive

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac 0S X 10_6_6; en-us)

<xml>
<string>optional body</string> "HTTP Body"
</xmb>





OEBPS/MVCS2/LinkDiagram.png
BNRFeedStore

Archive

link urlString





OEBPS/CAAnimation/SpinScreenshot.png
.
s
s
2
2,

7
7
(N

What time is it?






OEBPS/Simple/connectionsInsp.png
D e s °

¥ Outes

Eeparcoir

o 8
. hatrenciog Outers
e ey o —
. Referencng Oute Colectons
B e —

¥ Received Actons
Chowhnswst: - » Batan - Srom.
¥ utan - Show.. @)





OEBPS/Camera/ControlAction.png
Object - File's Owner
e
Teld )

Touch Up Inside






OEBPS/Storyboard/CreateStoryboard.png
Choose a template for your new fil

Bios

CrmaTo &

Cand s

e View Empty Window

Resource

Other

K Mac 05 X ]

Cocon =

Cand s Application

User Interface

Core Dara

Resource

Other

“~= Sstoryboard
An empty Interface Builder Storyboard document for an 10S interface.

[ Cancel |

Previous

[ Next ]





OEBPS/MVCS/MVCS.png
Controller

External
Source

Controller

/

Model

View

view |






OEBPS/Rotation/Autosizing.png
DB e s ©
PG r—)
N X
2509

I

Wl
I

Autosizing

Eample

Arrange [ PositonView v}





OEBPS/SplitViewController/Range.png
Range
{location, Length’
e, 17
G, 11

o, 17

@, 17) (18, 17

# of Characters

0 5 10 15 20 25 gu 35

This is a pattern

17

Hey, This is a pattern

>
This is a pattern, silly
T —>

This is a pattern This is a pattern

4——17— — 4——17——>






OEBPS/Blocks/executor.png
BNREXxecutor

return a + b;






OEBPS/Simple/ButtonsLabels.png





OEBPS/TableViewControllers/NewSnippet.png
| e [Table viewRows
) s

Platform (All

Completion Shortcut [tablerows.

Language (Objecti

Completion Scopes (Class Implementation

- (NsInteger)tableView: (UITableView ) tableView
nunber0fRowsInSection: (NSInteger)section

1
return <#nunber of rows#>
¥
(e )

( Done )






OEBPS/Blocks/BlockyConfig.png
Choose options for your new project:

Product Name
Company Identifer
Bundle dentifier
Class prefix

Device Family

com.bignerdranch

‘com.bignerdranch.slocky

iPhone o

() Use Core Data
4 Use Automatic Reference Counting
() Include Unit Tests.






OEBPS/CoreData/Store.png
BNRItem [+

BNRIitemStore
ﬂ—— [« allltems —
\_’é context
/
NSManagedObjectContext model
7
persistentStoreCoordinator
5
NSPersistentStoreCoordinator NSManagedObjectModel
managedObjectModel
l NSEntityDescription | NSEntityDescription
SQLite Persistent Store BNRItem BNRAssetType






OEBPS/Localization/InternationalSettings.png
Language English

Voice Control English

Keyboards 1

Region Format  United States

Region Format Example

Tuesday, January 5, 2010
12:34 AM
(408) 555-1212






OEBPS/MVCS/ActorPattern.png
ListViewController

\
\
\
\

A

BNRFeedStore

executes callback

fetchRSS_FeedWithCompIetion:

creates

transfers
data to

External
Source

receives data
from






OEBPS/CAAnimation/AnimationInheritance.png
" durabion
| timingFunction
' delegate

! CATransition !

_________ ———

'CABas|cAn|mat|on | :r CAKeyframeAmmahon

| | fromValue i !values
| toValue \ 1keyTimes
"""""""" | timingFunctions






OEBPS/MemoryManagementNew/ByteCount.png
BNRItem

itemName

serialNumber

dateCreated

valuelnDollars

dateCreated

elapsedTime





OEBPS/MemoryManagementNew/AllPointers_retainCycle.png
main's frame

NSMutableArray

—items —»|

NSDate

|
dateCreated
BNRitem = NSString
[-serialNumber
~
itemName
NSString
"Backpack"
containeditem
container
NSDate
|
dateCreated
BNRItem ~ NSString
[-serialNumber
itemName
NSString

"Calculator"






OEBPS/xcode_icons/identity_inspector.png





OEBPS/TabBar/BarItem.png
KeypadViewController

tabBartem

PQRS

*

UITabBarltem






OEBPS/SplitViewController/RegexSearch.png
Show Find Options

Recent Results
Contains "finally”, ignore case

Clear Recents
T —————————

RO e — )

Style ( Regular Expression # ) Hits must ( contain search term :) [ Match Case (¥ Wrap






OEBPS/iCloud/ConfigureAppID.png
UB3L3WESMK.com.bignerdran.. @ Configurable for Development

Nerdfeed & Contiguabis fas Eragucion ® Enabled @ Enabled © Enabled Configure

@  Enable for iCloud © Enabled





OEBPS/MVCS2/MergedChannel.png
ListViewController

channel

v

RSSChannel

K4

gets data from

__ mergesinto __ |
on completion

BNRConnection

xmlRootObject

v

RSSChannel

A8
gets data from





OEBPS/MVCS2/DoubleDown.png
Memory

RSSChannel

items

NSArray

RSSltem

RSSChannel

items

NSArray

RSSltem






OEBPS/Instruments/AllocationOptions.png
-

W Allocations.

+ Heapshot Analysis

Mark Heap )

¥ Allocation Lifespan

© Al Objects Created

O Created & Still Living

O Created & Destroyed

¥ Gall Tree
Separate by Category
Separate by Thread
Invert Call Tree:

 Hide Missing Symbols
Hide System Libraries
Show Obj-C Only
Flatten Recursion

» Call Tree Constraints

» Specific Data Mining





OEBPS/Archiving/TypicalApplicationLifetime.png
Not Running

Application Launches

application:didFinishLaunchingWithOptions:
applicationDidBecomeActive:

Home Button Pressed
applicationWillResignActive:

S SN

Inactive

applicationDidEnterBackground:

SIS SN

| N —

System runs

low on memory\

Application
Icon Tapped

applicationWillEnterForeground:
applicationDidBecomeActive:

Suspended

Background | — After 5 Seconds





OEBPS/CoreData/ChangeEntityClass.png
D e
Name BNRRem |
B w—
() Abstract Entity

Parent Entiy [ No Parent Entity

Indexes






OEBPS/Blocks/operationQueue.png
NSOperationQueue

operations

NSOperation

NSOperation

NSOperation

NSOperation

NSOperation

Processes
event

Redraws
views





OEBPS/CoreLocation/UnimpError.png
Ing) WhereamiViewController.m

© Automatic Reference Counting Issue
Receiver type 'WhereamiViewController’ for instance message does not declare a method with selector 'doSomethingWeird"





OEBPS/TabBar/TVCConnections.png
@ Placeholders

[ File's WnerN

@ First Responder ™~ _

W# Objects.
v | View Tl
| Label - 72

Button - What time is it?

TT timeLabel






OEBPS/MVCS2/ThreeChannel.png
immediately returned
RSSChannel

ListViewController

i Filesystem
returned on service complete

———————— RSSChannel [-------

A

merged into
BNRConnection RSSChannel

- xmIRootObject ] e m e —

created for reading from server






OEBPS/TableViewCell/ItemCellInterface.png
-
7 P el
i ifbs\ B
EET T
-

abor |






OEBPS/Camera/BackgroundViewClass.png
b sja|
¥ Custom Class

Class (Wiconwel _O[v)

s ©





OEBPS/Instruments/ViewDebug.png
_YApple LLVM compiler 3.0 - Preprocessing

¥ Preprocessor Macros <Multiple values>
Debug © DEBUG=1
Release






OEBPS/ObjectiveCNew/MessageSend.png
The selector is the name

The receiver is a pointer to ol the method being wiggered  The aupuments are used
the object being sent the message by the method

[ partyInstance addAttendee: somePerson
withDish: deviledEggs 1;





OEBPS/ObjectiveCNew/isa.png
[ BNRitem |
1
|
BNRItem isa/}t !
isa f
ISa
BNRItem





OEBPS/TableViewCell/CompletedCells.png
sy pork
sy Spork
Sty sork

sy Spork

)

£





OEBPS/Blocks/DelegationContrast.png
customMethod:

Control

—

target

DelegatingObject

. customMethod:
i \

Controller \
\\
— \
7 7 observer —
N ~ NSNotificationCenter
// N
; N
.
delegate N h\
N postNotifipation:
\ \
\
anotherProtocolMethod: NotifyingObject






OEBPS/TableViewCell/CellEditingLayout.png
[contentView bounds].size.width

contentView enters editing mode

UlTableViewCell ¢

Delete Control contentView  Reorder Control
\

— >

[contentView bounds].size.width





OEBPS/Storyboard/ConfiguredCells.png
Red

White

Table View

Static Content






OEBPS/CAAnimation/Animatable.png
e m

| 4 > | igMacOs .

ore Animation Programming Guide » _ Animatable Properties

Q- animatable properties

Reference
0 Results
System Guides.
27 Resuls

Core Animation...ramming Guide ||
NSAnimatablePr...tocol Reference |||
AUGenericView Class Reference
FxPlug SDK Overview
CAReplicatorLayer Class Reference,
CAEmiterCell Class Reference ||
CAGradientlayer Class Reference | |
View Programming Guide for i05 | |
IKimageView Class Reference.

CAShapeLayer Class Reference

PR Lt TR D R

Animatable Properties

Many of the properties in CALayer and CIFilter can be animated. This article
lists those properties, along with the animation used by default.

CALayer Animatable Properties

The following cALayer class properties can be animated by Core Ar
caLayer for more information.

= anchorPoint
Uses the default implied CABasicAnimation described in Table 1.

= backgroundColor

Uses the default implied CABasicAnimation described in Table 1.
(subproperties are animated using a basic animation)

* backgroundrilters

Uses the default implied CATransitionAnimation described in Table 2.
Sub-properties of the filters are animated using the default implied
CABasicAnimation described in Table 1.






OEBPS/Storyboard/ModalViewController.png
Choose options for your new fil

Class

il =

(] Targeted for iPad
() With XIB for user interface

(revows | (o]





OEBPS/Simple/IBModule.png
Canvas

Outline View

File's Owner
@ First Responder

®

HC

Dock/Outline View Toggle





OEBPS/Simple/ExpandedNavigator.png
e
/5 T 105 50K 5.0
v (5 Quiz
n] QuizappDeiegate.n
In) QuizAppDelegate.m
5] QuisViewContralerh
[n) QuisViewContralerm
% QuizViewContraler-xio
v (2] Supporting Files.
) Quiz-info.pist
5 nfoPist tings

» (] Frameworks
» () products





OEBPS/View/ViewRedraw.png
Run Loop receives
event, calls your
method...

Run Loop
waits
for events

Autorelease
Pool
Drained

- (void)buttonTapped:(id)sender

[labelField setText:@"fido"];

...Do some other stuff...

[anotherView setNeedsDisplay];

- (void)setText:(NSString *)d

...Note new string...
[self setNeedsDisplay];

Run Loop redraws:
labelField
anotherView






OEBPS/Multitouch/Running.png





OEBPS/CALayer/QuartzCore.png
PROJECT Summary Info Build Settings | Build Phases

HypnoTime 2

TARGETS » Target Dependencies (0 tems)

» Copy Bunde Resources (4 items)

» Compile Sources (s items)

7 Link Binary With Libraries (4 items)

& Foundation.framework
& UIkit framework

6 CoreGraphics.framework
& QuartzCore.framework

+ - Drag to reorder frameworks






