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1
August: Endings and Beginnings


The universe is built on a plan the profound symmetry of which is somehow present in the inner structure of our intellect.

PAUL VALRY



Midday, 26 August, the Sinai Desert

Its my 40th birthday. Its 40 degrees. Im covered in factor 40 sun cream, hiding in the shade of a reed shack on one side of the Red Sea. Saudi Arabia shimmers across the blue water. Out to sea, waves break where the coral cliff descends to the sea floor. The mountains of Sinai tower behind me.

Im not usually terribly bothered by birthdays, but for a mathematician 40 is significant  not because of arcane and fantastical numerology, but because there is a generally held belief that by 40 you have done your best work. Mathematics, it is said, is a young mans game. Now that I have spent 40 years roaming the mathematical gardens, is Sinai an ominous place to find myself, in a barren desert where an exiled nation wandered for 40 years? The Fields Medal, which is mathematics highest accolade, is awarded only to mathematicians under the age of 40. They are distributed every four years. This time next year, the latest batch will be announced in Madrid, but I am now too old to aspire to be on the list.

As a child, I hadnt wanted to be a mathematician at all. Id decided at an early age that I was going to study languages at university. This, I realized, was the secret to fulfilling my ultimate dream: to become a spy. My mum had been in the Foreign Office before she got married. The Diplomatic Corps in the 1960s didnt believe that motherhood was compatible with being a diplomat, so she left the Service. But according to her, theyd let her keep the little black gun that every member of the Foreign Office was required to carry. You never know when you might be recalled for some secret assignment overseas, she said, enigmatically. The gun, she claimed, was hidden somewhere in our house.

I searched high and low for the weapon, but theyd obviously been very thorough when they taught my mum the art of concealment. The only way to get my own gun was to join the Foreign Office myself and become a spy. And if I was going to look useful, Id better be able to speak Russian.

At school I signed up for every language possible: French, German and Latin. The BBC started running a Russian course on television. My French teacher, Mr Brown, tried to help me with it. But I could never get my mouth around saying hello  zdravstvuyte  and even after eight weeks of following the course I still couldnt pronounce it. I began to despair. I was also becoming increasingly frustrated by the fact that there was no logic behind why certain foreign verbs behaved the way they did, and why certain nouns were masculine or feminine. Latin did hold out some hope, its strict grammar appealing to my emerging desire for things which were part of some consistent, logical scheme and not just apparently random associations. Or perhaps it was because the teacher always used my name for second-declension nouns: Marcus, Marce, Marcum, 

One day, when I was 12, my mathematics teacher pointed at me during a class and said, du Sautoy, see me at the end of the lesson. I thought I must be in trouble. I followed him outside, and when we reached the back of the maths block he took a cigar from his pocket. He explained that this is where he came to smoke at break-time. The other teachers didnt like the smoke in the common room. He lit the cigar slowly and said to me, I think you should find out what mathematics is really about.

I dont quite know even now why he singled me out from all the others in the class for this revelation. I was far from being a maths prodigy, and lots of my friends seemed just as good at the subject. But something obviously made Mr Bailson think that I might have an appetite for finding out what lay beyond the arithmetic of the classroom.

He told me that I should read Martin Gardeners column in Scientific American. He gave me the names of a couple of books which he thought I might enjoy, including one called The Language of Mathematics, by Frank Land. The simple fact of a teacher taking a personal interest in me was enough to spur me on to investigate what it was that he found so intriguing about the subject.

That weekend my dad and I took a trip up to Oxford, the nearest academic city to our home. A little shopfront on The Broad bore the name Blackwells. It didnt look terribly promising, but someone had told my dad that this was the Mecca of academic bookshops. Entering the shop you realized why. Like Doctor Whos Tardis, the shop was huge once you had entered the tiny front door. Mathematics books, we were told, were down in the Norrington Room, as the basement was known.

As we went downstairs a vast cavernous room opened up before us, stuffed full of what looked to me like every possible science book that could ever have been published. It was an Aladdins cave of science books. We found the shelves dedicated to mathematics. While my dad searched for the books my teacher had recommended, I started pulling books off the shelves and peering inside. For some reason there seemed to be a high concentration of yellow books. But it was what I found within the yellow covers that grabbed my attention. The contents looked extraordinary. I recognized strings of Greek letters from my brief foray into learning Greek. There were storms of tiny little numbers and letters adorning xs and ys. On every page there were words in bold like Lemma and Proof.

It was completely meaningless to me. There were a few students leaning against the bookshelves who seemed to be reading the books as though they were novels. Clearly, they understood this language. It was simply code for something. From that moment I decided that I was going to learn how to decode these mathematical hieroglyphics. As we were paying at the till, I saw a table full of yellow paperbacks. Theyre mathematical journals, explained the shop assistant. The publishers are offering free copies to entice academics to take out a subscription.

I picked up a copy of something called Inventiones Mathematica and put it in the bag with the books wed just bought. Here was my challenge. Could I decode the mathematical inventions in this yellow book? Some of the articles were in German, one was in French and the rest were in English. But it was the mathematical language that I was now determined to crack. What did Hilbert space and isomorphism problem mean? What message was hidden in these lines of sigmas and deltas and symbols that I couldnt even name?

When I got home I started looking at the books wed bought. The Language of Mathematics particularly intrigued me. Before our expedition to Oxford, Id never thought of mathematics as a language. At school it seemed to be just numbers that you could multiply or divide, add or subtract, with varying degrees of difficulty. But as I looked through this book I could see why my teacher had told me to find out what maths is really about.

In this book there was no long division to lots of decimal places or anything like that. Instead there were, for example, important number sequences like the Fibonacci numbers. Apparently, the book said, these numbers explain how flowers and shells grow. You get any number in the sequence by adding the two previous numbers together. The sequence starts 1, 1, 2, 3, 5, 8, 13, 21,  The book explained how these numbers are like a code that tells a shell what to do next as it grows. A tiny snail starts off with a little 1  1 square house. Then, each time it outgrows its shell, it adds another room to the house. But since it doesnt have much to go on, it simply adds a room whose dimensions are the sum of the dimensions of the two previous rooms. The result of this growth is a spiral (Figure 1). It was beautiful and simple. These numbers are fundamental, said the book, to the way nature grows things.

Other pages depicted interesting three-dimensional objects that Id never seen before, built from pentagons and triangles. One was called an icosahedron and had 20 triangular faces (Figure 2). Apparently, if you took one of these objects (what the book called polyhedra) and counted the number of faces and points (what the book called vertices), and then subtracted the number of edges, you always got 2. For example, a cube has 6 faces, 8 vertices and 12 edges: 6 + 8  12 = 2. The book claimed that this trick would work for any polyhedron. That seemed like a bit of magic. I tried it on the one made out of 20 triangles.

The trouble was that it was quite hard to envisage the whole object clearly enough to count everything. Even if I built one from card, keeping track of all those edges seemed a bit daunting. But then my dad showed me a short cut. How many triangles are there? Well, the book said that there were 20. So thats 60 edges on 20 triangles, but each edge is shared by two triangles. That makes 30 edges. Now, that really was magic. Without looking at the icosahedron, you could work out how many edges it had. The same trick worked for the vertices. Again, 20 triangles have 60 vertices. But this time I could see from the picture that every vertex was shared by five triangles. So the icosahedron had 20 faces, 12 vertices and 30 edges. And sure enough, 20+1230=2. But why did the formula work whatever polyhedron you took?

In another book there was a whole section on the symmetry of objects like these polyhedra made out of triangles. I had a vague idea of what symmetry meant. I knew that I was symmetrical, at least on the outside. Whatever I had on the left side of my body, there was a mirror image of it on the right side. But a triangle, it seemed, had much more symmetry than just the simple mirror symmetry. You could spin it round as well, and the triangle still looked the same. I began to realize that I wasnt actually sure what it meant to say that something was symmetrical.

The book stated that the equilateral triangle had six symmetries. As I read on, I began to see that the triangles symmetry was captured by the things I could do to it that would leave it looking the same. I traced an outline around a triangular piece of card and then counted the number of ways I could pick the triangle up and put it down so that it fitted back exactly inside its outline on the paper. Each of these moves, the book said, was a symmetry of the triangle. So a symmetry was something active, not passive. The book was pushing me to think of a symmetry as an action that I could perform on the triangle to replace it inside its outline, rather than some innate property of the triangle itself. I started to count the symmetries of the triangle, thinking of them as the various different things I could do to it. I could flip the triangle over in three ways. Each time two corners swapped places. I could also spin the triangle by a third of a full rotation, either clockwise or anticlockwise. That made five symmetries. What was the sixth?

I searched desperately for what Id missed. I tried combining actions to see whether I could get a new one. After all, performing two of these moves one after the other was effectively the same as making a single move. If a symmetry was a move that put the triangle back inside its outline, then perhaps I would get a new move or a new symmetry. What if I flipped the triangle then turned it? No, that was just like one of the other flips. What about flipping, rotating and then flipping back again? No, that just created the spin in the other direction, which Id counted already. Id got five things, but whatever combination I took of these moves I couldnt get anything new. So I went back to the book.

What I found was that theyd included as a symmetry just leaving the triangle where it was. Curious  But I soon saw that if symmetry meant anything you could do to the triangle that kept it inside its outline, then not touching it at all  or, equivalently, picking it up and putting it back in exactly the same place  was also an action that had to be included.

I liked this idea of symmetry. The symmetries of an object seemed to be a bit like all the magic trick moves. The mathematician shows you the triangle, then tells you to turn away. While you are not looking, the mathematician does something to the triangle. But when you turn back it looks exactly as it did before. You could think of the total symmetry of an object as all the moves that the mathematician could make to trick you into thinking that he hadnt touched it at all.

I tried out this new magic on some other shapes. Here was an interesting one, looking like a six-pointed starfish (Figure 3). I couldnt flip it over without making it look different: it seemed to be spinning in one direction, which destroyed its reflectional mirror symmetry. But I could still spin it. With its six tentacles, there were five spins I could do, together with just leaving it where it was. Six symmetries. The same number as the triangle.

Each object had the same number of symmetries. But the book talked about a language that could articulate and give meaning to the statement These two objects have different symmetries. It would reveal why these objects represented two different species in the world of symmetry. This language could also expose, the book promised, when two objects that looked physically different actually had the same symmetries. This was the journey I was about to embark on: to discover what symmetry really is.

As I read on, the shapes and pictures gave way to symbols. Here was the language that the title of the other book was referring to. There seemed to be a way to translate the pictures into a language. I came across some of the symbols that Id seen in the yellow journal Id picked up. Everything was starting to get rather abstract, but it seemed that this language was trying to capture the discovery Id made when playing with the six symmetries of the triangle. If you took two symmetries, or magic trick moves, and did them one after the other, for example a reflection followed by a rotation, it gave you a third symmetry. The language describing these interactions had a name: group theory.

This language provided an insight into why the six symmetries of the six-pointed starfish were different to the six symmetries of the triangle. A symmetry was one of these magic trick moves, so I could perform two symmetries of an object one after the other to get a third symmetry. The group of symmetries of the starfish interact with one another very differently to the interaction between the group of symmetries of the triangle. It was the interactions among the group of symmetries of an object that distinguished the group of symmetries of the triangle from the group of symmetries of the six-pointed starfish.

In the starfish, for example, one rotation followed by another gave me a third rotation. But it didnt matter in what order I made the two rotations. For example, spinning the starfish 180 clockwise then anticlockwise 60 left the starfish in the same position as first doing the 60 anticlockwise spin and then the 180 clockwise spin. In contrast, if I took two symmetries of the triangle and combined the two magic trick moves corresponding to these symmetries, it made a big difference what order I did them in. A mirror symmetry move followed by a rotation was not the same as the rotation followed by the mirror symmetry move. The language of my book had translated the pictures into the sentence MR  RM, where M was the mirror symmetry move and R the rotation (Figure 4). The physical world of symmetry could be translated into an abstract algebraic language.

As my school years progressed, I came to see what my maths teacher had done. The arithmetic of the classroom is a bit like scales and arpeggios for a musician. My teacher had played me some of the exciting music that was waiting for me out there if I could master the technical part of the subject. I certainly didnt understand everything I read, but I did now want to know more.

Most budding musicians would abandon their instruments if all they were allowed to play and listen to were scales and arpeggios. A child starting out on an instrument will have no idea how Bach composed the Goldberg Variations or how to improvise a blues lick, yet they can still get a kick out of hearing someone else do it. Books such as The Language of Mathematics made me realize that you could do the same with maths. I didnt have a clue what a group really was, but I grasped that it was part of a secret language that could be used to unlock the science of symmetry.

This was the language I would try to learn. It might not get me into the Foreign Office, and I might have to give up the dream of being a spy, but here was a secret code that looked as intriguing as anything the world of espionage might throw up. And unlike Russian or German, this language of mathematics seemed to be a perfect idealized language in which everything made sense and there were no irregular verbs or nonsensical exceptions.

Of all the things I had seen in those books, it was group theory  the language of symmetry  that intrigued me most. It seemed to take a world that was full of pictures and turn it into words. The dangerous ambiguities that plague the visual world, with its plethora of optical illusions and mirages, were made transparent by the power of this new grammar.

Ive been sitting on the beach in the shade of our shack reading one of those yellow books Id seen in Blackwells. For me, the stories in those books are as exciting as the best holiday novel. This one is written in the language of symmetry and tells the tales of some of the strange symmetrical objects that this language helped unleash. But it also is a book full of unfinished stories. My 40th birthday is just a staging post on my journey to answering the questions that have obsessed me as I journeyed further into this world of symmetry.

From the vantage point of my birthday, sitting here on the beach in Sinai, I have travelled a long way since I first started to learn the language of symmetry. My steps along this path are a tiny part of a grander quest which has engaged mathematicians ever since they realized that symmetry held the key to understanding many of natures intimate secrets.

Natures language

The sun is setting behind the mountains of Sinai, and the tide is receding across the coral shelf that runs parallel to the coastline. It is time for white men and crustaceans to emerge from the shade. A bit of exercise might help sort out the mess in my head. There are two Israeli guys up ahead who are staying in the Bedouin camp. For them, Sinai is a welcome escape from guard duty in Gaza. Their backs are scorched from snorkelling too long in the Sinai sun. Theyre pointing excitedly into the water, intrigued by something theyve found on the surface of the coral. When I look down, I suddenly notice the coral surface is covered with one of natures most remarkable symmetrical animals.

There in the water is a real starfish like the picture Id played with as a child. Im not sure if Ive ever seen a live starfish before. This one has the classic five tentacles that most people associate with starfish, but it is not as rigid as the cartoon-style crustaceans Im used to seeing. Apparently some starfish, not content with the simple five-pointed pentacle, have gone for even showier displays of symmetry. The sunflower starfish starts out life with five legs, but during its eight-year life span it can grow as many as 24 legs. Being able to generate a shape which looks exactly the same in 24 different directions is some feat of biological engineering.

Why, though, is symmetry so pervasive in nature? It is not just a matter of aesthetics. Just as it is for me and mathematics, symmetry in nature is about language. It provides a way for animals and plants to convey a multitude of messages, from genetic superiority to nutritional information. Symmetry is often a sign of meaning, and can therefore be interpreted as a very basic, almost primeval form of communication. For an insect such as the bee, symmetry is fundamental to survival.

The eyesight of the bee is extremely limited. As it flies round negotiating the world, its brain receives images that are as distorted as if we were looking at the world through a thick sheet of glass. The bee cant judge distances, so it continually crashes into things. The bee suffers a form of colour-blindness. The background green of the garden appears grey; red stands out more clearly as a blackness against the grey. But even through this thick-rimmed pair of glasses, there is one thing that burns strongly in the eyes of the bee: symmetry.

The honeybee likes the pentagonal symmetry of honeysuckle, the hexagonal shape of the clematis, and the highly radial symmetry of the daisy or sunflower. The bumblebee prefers mirror symmetry, such as the symmetry of the orchid, pea or foxglove. The eyesight of bees has evolved sufficiently for them to pick out these significant shapes. For in symmetry there is sustenance. The bees that are drawn to shapes with pattern are the insects that will not go hungry. For the bee, survival of the fittest means becoming an expert at symmetry. The bee that could not read the signs and signals of sustenance was left buzzing randomly round the garden, unable to keep up with its superior competitors who could spot the patterns.

Because the plant is equally dependent on attracting the bee to its flower for pollination and prolonging its genetic heritage, it too has played its part in this natural dialogue. The flower that can achieve perfect symmetry attracts more bees and survives longer in the evolutionary battle. Symmetry is the language used by the flower and bee to communicate with each other. For the flower, the hexagon or the pentagon is like a billboard shouting out Visit me! For the bee, encoded in the symmetrical shape is the message that Here is food! Symmetry denotes something special, something with meaning. Against the static white noise that makes up most of the bees visual world, the six perfect petals of the clematis stand out like a musical phrase full of harmony.

As natures garden evolved, so too did the variety of shapes and colours exploited by the plant world. After millions of years of spring following winter to produce another year of geometric evolution, the garden is now a plethora of patterns trumpeting their greetings and promises of sweet sustenance.

But symmetry is not an easy thing to achieve. A plant has to work hard and be able to divert important natural resources to achieve the balance and beauty of the orchid or the sunflower. Beauty of form is an extravagance. That is why only the fittest and healthiest individual plants have enough energy to spare to create a shape with balance. The superiority of the symmetrical flower is reflected in a greater production of nectar, and that nectar has a higher sugar content. Symmetry tastes sweet.

The flower or animal with symmetry is sending out a very clear signal of its genetic superiority over its neighbours. That is why the animal world is populated by shapes that strive for perfect balance. Humans and animals are genetically programmed to look upon these shapes as beautiful  we are attracted to those animals whose genetic make-up is so superior that they can use energy to make symmetry.

Humans and animals alike will choose a face that has perfect left  right mirror symmetry over an unsymmetrical face. Most of the animals in the natural world favour such bilateral mirror symmetry. A line down the middle separates the shape into two different halves. But although they are different, there is a perfect correspondence which matches one half to the other. At least externally. The asymmetry of our internal organs is still something of a mystery and only goes to reinforce the wonder at how symmetrical the exterior is.

Studies indicate that the more symmetrical among us are more likely to start having sex at an earlier age. Even the smell men emit seems to be more appealing to women when the male has more symmetry. In one study, sweaty T-shirts that had been worn by men were offered to a selection of women, and those who were ovulating were drawn to the tee-shirts worn by the men with the most symmetrical bodies. It seems, though, that men are not programmed to pick up the scent of a symmetrical woman.

Animal rights activists have used symmetry as evidence of cruelty to animals. Battery farm eggs are likely to be far less symmetrical than free-range eggs: battery hens are suffering trauma and wasting energy that could have been used to realize perfection. Unlike the tortured artist thriving in adversity to create great art, the hen needs comfort and luxury to produce perfect symmetry.

Animals have also been drawn to mirror symmetry because of the superior motor skills it offers. Symmetry is often associated with the idea of a shape being in perfect balance  one half with another. Nearly all motor abilities are reliant on symmetry to propel them in the most efficient manner. It is the most symmetrical two- and four-legged members of a species who can move the fastest. The food goes to the animal with the most symmetry because its going to get to the dinner table first. Similarly, the prey who can run fastest stands the best chance of avoiding becoming dinner. So natural selection favours the form that creates the fastest animal  and balance in motion is intimately tied up with symmetry of form. The animal with one leg much longer than the others is going to run round in circles and wont survive the fierce pace of natural selection.

But symmetry isnt just a genetic language for declaring to potential mates how good ones DNA is. Back in the hive, away from the search for symmetrical flowers and nectar, symmetry also pervades the bees home life. As the young bees gorge themselves on the honey that has been collected, they secrete small slivers of wax. The temperature of the hive is maintained at 35C by the concentration of bees, which makes the wax malleable enough to be shaped by the worker bees, who collect the wax secretions and mould the cells in which the honey will be stored. The hexagonal lattice that the bees use to store their honey exploits another facet of symmetry. Not only is it a harbinger of meaning and language, but also symmetry is natures way of being efficient and economical. For the bee, the lattice of hexagons allows the colony to pack the most honey into the greatest space without wasting too much wax on building its walls.

Although bees have known for ages that hexagons are the most efficient shape for building a honey store, it is only very recently that mathematicians have fully explained the Honeycomb Conjecture: from the infinite choice of different structures that the bees could have built, it is hexagons that use the least wax to create the most cells.

Although symmetry is genetically hard to achieve, many natural phenomena will gravitate towards symmetry as the most stable and efficient state. The inanimate world is full of examples of the drive for symmetry of form. When a soap bubble forms it tries to assume the shape of a perfect sphere, the three-dimensional shape with the most symmetry. However much you rotate or reflect a sphere, its shape still looks the same. But for the soap film it is the efficiency of the shape of the sphere that appeals. The energy in the soap film is directly proportional to the surface area of the bubble. The sphere is the shape with the smallest surface area that can contain a given volume of air, and hence it is the shape that uses the least energy. Like a stone rolling down a mountain to the point of lowest energy in the valley below, the symmetrical sphere represents the optimal shape for the soap film.

The raindrop as it falls through the sky is not in fact the tear shape that artists often paint  thats just an artistic convention to give a sense of rain in motion. The true picture of a drop of water falling from the sky is a perfect sphere. Lead shot manufacturers have exploited this fact since the eighteenth century: molten lead is dropped from a great height into buckets of cold water to make perfectly spherical balls.

Scientists have discovered mysterious symmetries hiding at the heart of many parts of the natural world  fundamental physics, biology and chemistry all depend on a complex variety of symmetrical objects. The snowflake and the deadly HIV virus both exploit symmetry. In the chemical world, a diamond gets its strength from its highly symmetrical arrangement of carbon atoms. In physics, scientists established the connection between electricity and magnetism by discovering how these parts are simply two different sides of a common symmetrical phenomenon. New fundamental particles have been predicted thanks to spinning through the symmetries of strange shapes. The different symmetries hint at the existence of new particles which are mirroring particles we already understand.

For as long as humans have been communicating with each other, symmetry has remained a central idea in the lexicon. Repeating patterns is key to how a baby first learns language. Symmetry continues to inform the way we craft words in songs and poetry. From the first cave paintings to modern art, from primitive drumbeats to contemporary music, artists have continually pushed symmetry to the extremes. As with the humble bee, symmetry has provided manufacturers with efficient ways to create and build, from the Arab carpet weavers to the engineers who have managed to encode more and more data onto smaller and smaller electronic devices. Symmetry is behind every step in our evolutionary development.

The word symmetry conjures to mind objects which are well balanced, with perfect proportions. Such objects capture a sense of beauty and form. The human mind is constantly drawn to anything that embodies some aspect of symmetry. Our brain seems programmed to notice and search for order and structure. Artwork, architecture and music from ancient times to the present day play on the idea of things which mirror each other in interesting ways. Symmetry is about connections between different parts of the same object. It sets up a natural internal dialogue in the shape.

I cant step over the starfish in the sea without spinning the pentacle in my head. I cant ignore the strange pattern that adorns my swimming trunks. Even footsteps in the sand get me thinking about a problem that I cant stop exploring once its occurred to me. How many different ways can I mark out shapes in the sand as I make my way along the beach? My simple footsteps are something called a glide reflection  each step is got by reflecting the previous footstep then gliding it across the sand. Now I hop along the beach kangaroo-fashion, and my two feet create a pattern with simple reflection. When I spin in the air and land facing the other way, I get a pattern with two lines of reflectional symmetry. In all, I manage to make seven different symmetries in the sand. The Bedouin fishermen who are catching our dinner are laughing at me as I jump and hop around in my exploration of symmetry in the sand.

The symmetry seekers

Mathematics is sometimes called the quest for patterns. Jumping about in the sand, I found I could make seven different types of pattern with my footprints. But is it possible to classify all the possible patterns that could be found in nature? Is there a limit to what patterns we might find? Could we even make a list of all these possible symmetries? For the mathematician, the pattern searcher, understanding symmetry is one of the principal themes in the quest to chart the mathematical world.

For several millennia, mathematicians have been gradually accumulating symmetrical shapes as they explored further and further afield. But symmetry is a slippery concept. What exactly is it? When do two objects have the same symmetries and when are they different? It took a stunning breakthrough during the revolutionary fervour of nineteenth-century Paris for a new language to emerge that could capture the true meaning of the word. As Id learnt from the book my teacher had recommended, it was called group theory. This new language became the seed for a mathematical revolution which would match in its implications the political upheaval then taking place on the streets of Paris. Suddenly, mathematics had the tools to build ships to set sail for the very limits of the world of symmetry.

One of the most important discoveries revealed by this new nineteenth-century language of group theory was that behind symmetry lay a concept of prime building blocks. The Ancient Greeks knew that every number can be divided into prime numbers  indivisible numbers  and that these numbers were the building blocks of all other numbers. The nineteenth-century language for symmetry threw up the far subtler fact that, just like the division of numbers, every symmetrical object could also be divided into certain smaller objects whose collection of symmetries were indivisible. For example, the rotations of a 15-sided figure could be built from the rotations of a pentagon and the rotations of a triangle. But the group of rotations of these prime-sided figures could not be divided up into smaller groups of symmetries. The group of symmetries of the pentagon was an indivisible group of symmetries. The crucial thing about these indivisible groups of symmetries was the fact that they were the building blocks from which all symmetrical objects could be built. Just as the prime number 5 is a building block of larger numbers, the pentagon was one of the building blocks in the world of symmetry.

It took mathematicians a long time to fully grasp the idea of what made a symmetrical object indivisible. But when they did, they saw the prospect of producing a periodic table of symmetry consisting of all the different possible indivisible symmetrical objects, in the same way that chemistrys periodic table collects together the chemically indivisible elements from which all other substances are made. Such a table would list all the building blocks out of which all possible symmetrical objects can be constructed. Prime numbers are the key to the first objects to be included in the periodic table of symmetry: the rotational symmetries of a prime-sided polygon or coin. But in the world of symmetry there turned out to be other, stranger objects whose symmetries were indivisible. One of the first of these more exotic building blocks of symmetry was the rotational symmetries of the icosahedron with its 20 triangular faces. The mathematicians of the nineteenth century discovered that the icosahedron was an object whose symmetries could not be reduced to smaller objects.

Ever since the Ancient Greeks discovered the icosahedron thousands of years ago, mathematicians have been marvelling at and exploring the world of symmetry. But this new window opened up by group theory offered the prospect of mastering and classifying this world. If you knew the building blocks of symmetry, you could become symmetrys architect. The mathematicians of the nineteenth and twentieth centuries unearthed and added more and more indivisible symmetrical objects to this mathematical periodic table. But the list just kept on growing, and they began to wonder whether a list of all possible indivisible symmetrical objects could ever be completed.

Then, in the 1970s, along came a band of mathematical explorers whose skills, determination and sheer persistence were equal to the task of navigating the limits of this complex world. The explorers divided into two distinct teams. One specialized in finding more and more exotic mathematical objects whose symmetries were indivisible. Like pirates hunting for treasure, this was the fun team to be in, looking out for new building blocks of symmetry. But the stakes were high. While a few of them carved their names into the annals of symmetry with their discoveries, many searched in vain and returned empty-handed. Luck as much as judgement was an important factor in whether there was treasure at the end of any particular rainbow.

In contrast to the swashbuckling of this first team, the second one consisted of a more disciplined fighting force. This well organized troop worked from the other end, exploiting the limitations of symmetry. They soberly assessed each twist and turn, explaining why there were no new indivisible symmetries that could possibly exist if you set off in certain directions.

The first team consisted of a ramshackle collection of mathematical mavericks. One of the most colourful was John Horton Conway, currently professor at the University of Princeton. His mathematical and personal charisma have given him almost cult status. Conways performances when he presents the spoils of his mathematical raids are almost magical in quality. He weaves together what at first sight look like mathematical curios or tricks, but by the end of the lecture has arrived at answers to very fundamental questions of mathematics. Each revelation of a fundamental insight is preceded by his characteristic laugh, as if he too is surprised at where he has arrived. At the same time he has reduced a room of serious academics to playful children. They rush up at the end of the lecture to play with the mathematical toys he produces from a suitcase of tricks that he often carries with him.

At the helm of the second team was Daniel Gorenstein. During the 1960s, hundreds of mathematicians around the world turned their attention to understanding the limits of the world of symmetry. Their efforts were focused more on showing what was not possible. In 1972 Gorenstein decided that a coordinated attack combining everyones individual skills was needed. Without his stewardship, mathematicians might still have been wandering the globe unaware of each others progress. Advances were sometimes painstaking and treacherous as they battled their way through complex and lengthy proofs, some extending to thousands of pages of logical argument. Gorenstein often referred to those decades of exploration as the Thirty Years War.

While the first team of explorers plundered new territories, the second team systematically surveyed what was and was not possible. Would the second team ever be able to show the first team that there was no longer anywhere new to explore? Or would the world of symmetry turn out not to be a closed globe but an infinite expanse that would see these two teams journeying for ever, destined never to close the loop? Might there always be uncharted waters? Many in the first team hoped that the journey would go on for ever, revealing ever more exotic symmetries. But the second team hankered after closure and complete knowledge.

Towards the end of the 1970s, mathematicians realized that the two teams were finally closing in on each other. A complete taxonomy of symmetry was in sight  a periodic table containing all the building blocks of symmetry was emerging. Most mathematicians were thrilled at the prospect of a proof that the symmetry seekers had found all the building blocks. But not all were happy. The pirate captain, John Conway, was asked whether he was optimistic or pessimistic about such a prospect. Rather enigmatically he replied, A pessimist, but still hopefulI was delighted to find that the answer was misinterpreted in exactly the way I had maliciously desired! For a treasure seeker like Conway, these symmetrical objects were beautiful things, and Id like to see more of them, but I am reluctantly coming round to the view that there are likely to be no more to be seen.

In contrast, Gorenstein and his military cohort found optimism in finally seeing an end to the exploration with the cessation of the Thirty Years War. By the beginning of the 1980s two more indivisible symmetrical building blocks were added to the list, but at that point they could see the other team on the horizon. As the teams approached each other, people began to realize: thats it. No more surprises out there. The world of symmetry had been circumnavigated. Word started to spread in 1980 that the search was over, the classification complete. But it was a strange ending to such an epic journey. There was no climactic moment when a mathematician put down the chalk and the audience rose to their feet to applaud the great achievement. There were no press conferences to announce that finally the proof had been finished. No one is even too clear who had actually finished it. Some still question whether it truly has been completed.

It was not something that made the news outside the mathematical community. At the time I was in the sixth form. My bedroom wall at home was covered not with posters of bands or football stars, but newspaper cuttings about mathematics. I would trawl through the papers for exciting breakthroughs to stick up on my wall. I had recently been looking through the numerous articles Id cut out, but not one made any mention of this phenomenal achievement. Intriguingly, I did discover that one of the cuttings Id had next to my bed was a letter to the Guardian about a false proof of Fermats Last Theorem that the newspaper had published a week earlier. The letter came from the mathematician who would later become my doctoral supervisor.

For the mathematical community, however, it was big news. It was a mammoth feat. For centuries no one had believed it possible: to write down a set of basic symmetrical objects that could be used to build all possible symmetrical objects. As mathematicians had gradually got to grips with what symmetry actually meant, they seemed to be gazing upon an endless world filled with a chaotic and infinitely varied range of symmetrical objects. Thats why there was such a momentous sense of achievement in the mathematical community at what these mathematicians had done.

It was a mathematical proof like no other. Mathematicians are used to seeing the names of specific individuals attached to proofs of theorems: Andrew Wiless proof of Fermats Last Theorem, for example, or Grigori Perelmans proof of the Poincar Conjecture. Mathematicians will hide away for years, working in isolation, determined to get their name on the theorem. But for the first time in mathematics, here was a proof which involved such a collective effort that it was impossible and meaningless to put a single name to it.

That said, the mathematicians who had discovered new islands of symmetry on the way had not been shy about planting a flag and getting their name on the map: the first, second, third and fourth Janko groups, the Harada  Norton group, Conway One, Two and Three. There were some bitter arguments about who had discovered certain groups of symmetries first and whose name the group should go by. But any attempt to name the proof of the classification would probably require at least a hundred different names to be attached to it.

Unlike any other proof, this one was so immense that it was unclear whether any one person could claim to have read all the ten thousand pages spread over five hundred different journals that completed its account. For many, such a proof went against the ethos of simplicity in mathematics, expressed in 1940 by the Cambridge mathematician G. H. Hardy: A mathematical proof should resemble a simple and clear-cut constellation, not a scattered cluster in the Milky Way.

Although this wasnt an elegant one-line proof, it was as rich and varied as the wonders to be found in the Milky Way. Each new discovery by the symmetry seekers was greeted by mathematicians with as much excitement as the discovery of new moons and planets. Just as the Milky Way is an exotic treasure trove full of beautiful stars and nebulae, the proof, although vast and complex, is full of jewels that would have appealed to Hardys sense of aesthetics. But the story of symmetry is different to the discoveries of astronomy. With crystal-clear logic, the new mathematical proof explained why all these symmetries should be out there and why we werent going to find any more. There was no randomness in this arrangement. No other configuration would work.

Conway, the Long John Silver of mathematics, decided that an account should be published of the lands they had discovered on their voyage. Based in Cambridge, he was aided by Rob Curtis, Simon Norton, Richard Parker and Rob Wilson. Together they produced what is now known as the Atlas: mathematical charts documenting the topography of each new group of symmetries encountered.

Because so much of science depends on symmetry, this endeavour was not idle butterfly collecting. Huge swathes of mathematics, physics and chemistry can be explained in terms of the underlying symmetry of the structures under investigation. The Atlas of symmetry therefore became a Rosetta Stone for many scientists. Anyone faced with a question that reduced to understanding symmetry could now refer to this catalogue. Many mathematicians found that they could now prove their theorems simply by checking that the result is true for all the indivisible symmetrical building blocks in Conway & Co.s Atlas. A famous number theorist at Harvard declared that if the library burnt down and he could rescue one book, it would be the Atlas of symmetry.

The charts in the Atlas are as fundamental to mathematics as the periodic table has been for chemists. For thousands of years, scientists had been striving to understand the basic constituents of matter itself. The Ancient Greeks had believed the building blocks to be earth, wind, fire and water. But twentieth-century chemistry settled on the periodic table originated by the Russian scientist Dmitri Mendeleev, which in its present-day form lists over a hundred chemical elements starting with hydrogen, helium and lithium. From the atoms of the elements in the table, one can build all the molecules in the known universe.

Now, two millennia after the Ancient Greeks had started to explore shapes with symmetry, mathematics had got its own periodic table. It lists the elements of the science of symmetry, the atoms from which all possible symmetries are built. But atlas is a better word than table for this huge red book which sits on many a mathematicians bookshelf. Inside are the contours, the towns and cities that make up every basic symmetrical territory.

Conway actually began compiling the Atlas years before anyone knew whether it would have a final page or whether it was destined to be an infinite volume. Once they knew that the journey was over, the Cambridge Five took their Atlas to their publisher to share the map with the scientific community. In 1985 this extraordinary document started running off the presses. The same year, I visited Cambridge as a spotty, twenty-year-old Oxford undergraduate hoping to begin my own personal journey into the world of symmetry.

Setting sail

After years of training at school and then university, practising my arithmetic scales and mathematical counterpoint, I was ready to start my own work. But I needed a mentor to help steer me in the right direction. My tutor at Oxford went through the list of group theorists at Cambridge and picked one out. Write to Simon Norton, he said. We arranged to meet in the common room of the maths department at Cambridge.

I wasnt sure what Norton looked like, so faced with a common room full of mathematicians I felt a bit daunted. Like most mathematicians I am naturally quite shy. Im not someone who likes to hold out my hand and introduce myself to people. I hate parties, and Im terrified of the telephone. Mathematics had provided a safe haven full of things that didnt behave unexpectedly (or at least if they did, you knew that there was some perfectly logical explanation for their strange behaviour). What I loved about mathematics was that a proof spoke for itself: it didnt need you to present its credentials and persuade others of its validity. It was all there on the table.

No one seemed to be expecting me. Everyone seemed to have their head deep in something. Some were scribbling away animatedly on pads of paper, but most were engrossed in games of backgammon and go. I interrupted one of the groups to ask whether they could direct me towards Dr Norton.

A student pointed to the back of the common room: Hes sitting over there. I could see what looked like a tramp, with wild black hair sprouting out all over his head, trousers frayed at the turn-ups, wearing a shirt full of holes. He was surrounded by plastic bags which seemed to contain his worldly possessions. He looked like a scarecrow. Yeah, thats Simon.

I went over and introduced myself. In a strange nasally voice with a hint of a nervous laugh, he said hello, but avoided any attempt of mine to shake his hand, recoiling as if I was about to assault him. Conversation was difficult. Id met some pretty strange characters through my undergraduate studies, but no one like this. What seemed to excite him most was the route Id taken from Oxford to Cambridge. He started producing bus and train timetables from his bags. Apparently there was an intriguing route I could have taken via Bletchley. Not that he needed the timetables: he seemed to know them all off by heart. Hed already planned my trip back.

While I sat there desperately trying to get some idea of where the future of group theory lay and getting instead a description of the nations bus service, a large man bounded towards us and sat himself down next to Simon Norton. I wasnt quite sure who he was, but he seemed to think I should. He too had hair sprouting all over the place, this time ginger brown, and he grinned at me with a frighteningly wild glint in his eyes. It was deepest winter, but this man was happily sitting in sandals and a T-shirt with the decimal expansion of pi running across the whole stretch of his corpulent body. He looked like a slightly mad clown. As I was about to find out, this was John Conway, captain of the Cambridge ship.

I told him that I was interested in coming to Cambridge to do my PhD in group theory. Whats your name  with your initials? Er  Marcus du Sautoy, Marcus P. F. du Sautoy. Drop the F. and the du, change the S of Sautoy to a Z and you can join us. I hadnt a clue what he was talking about, and it obviously showed on my face. Had I failed some strange initiation rite? Or was this a strange puzzle I had to solve? Mathematicians can be quite cruel once they know how to do something and they enjoy seeing you squirm as you struggle to catch on. But I couldnt get this one.

He threw a big red book down in front of me. It landed with an impressive thwack on the square white table between us. On the front cover, Atlas of Finite Groups, and below the title five names:



J. H. Conway

R. T. Curtis

S. P. Norton

R. A. Parker

R. A. Wilson



Its an atlas of symmetry. Thats me at the top. Then, in order, those who joined the group. Of course, now I got it. Each with two initials, each with a six-letter surname starting with a letter in the alphabet to denote the order they arrived in the group. I was only going to be let on board if my name was M. P. Zautoy. When you look inside, there is a sixth mathematician who is thanked for his computational assistance in preparing the book. But with a name like J. G. Thackray, he was never going to make it onto the front cover.

When we first got it back from the printers, the typesetters had messed up the symmetry in our names. It was all misaligned. I insisted it go back to the printers and they do it all again. The Atlas of symmetry would never have appeared were it not for people such as Conway who were so obsessed with symmetry as to insist on such details.

I like symmetrical things. Ive always loved gems and crystals and polyhedral shapes. I could see this from the office hed emerged from. It was crammed with symmetrical models of all shapes, sizes and colours, many hanging from the ceiling. They looked like an array of stellated candle holders from a Byzantine church. Conways office was a shrine to symmetry.

Ive got a book with Eschers prints sitting on my piano, he said. I try to ration myself to an Escher picture a day. Often I cant resist cheating and turning the page early, but I always insist on at least going out of the room first before I can turn the next page. One of my favourites is a picture of a tin box that Escher designed for a Dutch chocolate manufacturer [Figure 5]. Its an icosahedron made up of twenty triangles covered in starfish and shells. Escher was very clever. The starfish have all got a little twist on them so the five arms seem to spin anticlockwise. That means the shape doesnt have any reflective symmetry. Its only symmetries are the different rotations of the shape. Its symmetries are the first building block in the book.

He flipped the book open to the first map in the Atlas. At the top was its name, A5, followed by a small table of numbers which provided the mathematical details of how to navigate the symmetries of this island.

When Im interested in something I like to name it, list it, and then write a book about it. But if you want to make your name, then its the penultimate entry in the Atlas youll really want to understand.

Conway turned towards the back, to a page where the heading reads simply M. It sounded like the name of a spy, but he explained that M stands for Monster, a name he coined after the object was discovered. Id heard some mention of this huge symmetrical object during my last undergraduate year. It certainly wasnt on the syllabus  it had been constructed for the first time in 1980. But Id started going to some research seminars that year just to get a feel for what was out there beyond the weekly exercises dished out by our lecturers. I was quite shocked that despite having spent three years at university learning the language of mathematics, the seminars washed over me like a sea of meaningless words and symbols. It was obvious that I still had a long way to go. The Monster had figured in a number of seminars, but beyond an exotic sounding name I really had no idea what this object really was.

Its got 808,017,424,794,512,875,886,459,904,961,710,757,005,754, 368,000,000,000 symmetries. Thats why its called the Monster. I stared at him in amazement, not because the object had more symmetries than there are atoms in the sun, but because, without batting an eyelid, he could reel off the size of it. He could see that I was impressed. Thats nothing. I could tell you all the digits on the back of my T-shirt too. I looked at the shirt, which said  =  followed by a huge string of digits. I could tell him the first six digits, 3.141 59, but thats as far as I can go. But Conway claimed he could recall the decimal expansion of  to thousands of decimal places. There werent any obvious patterns in these numbers to help him generate them  not like the Fibonacci numbers, with their rule of adding two successive numbers to get the next in the sequence. But Conway has the sort of mind that can sniff out the least bit of structure to help him recall something so massively complex. And its not an autistic mind, one that simply absorbs random information. Conway had taught himself these skills; his is an analytic mind that finds ways to perform such feats.

Forget pi. Its these numbers that are really interesting, he said, pointing to the beginning of the huge tables that represented the charting of this huge inhospitable land called the Monster. 196,883. Thats the smallest-dimensional space in which you can represent this object. The Monster is like some huge great symmetrical snowflake that you can see only when you get to 196,883-dimensional space.

Eschers chocolate box was a symmetrical object that existed in our three-dimensional world. You could see this object, touch it, play with it. Sitting at the front of the Atlas, it had only 60 different symmetries. Spanning pages and pages at the end of the Atlas was this vast creature that required you to enter 196,883-dimensional space before you saw it. Of course, you could never see this object in a visual sense.

One of my most exciting revelations in the previous years had been how the language of mathematics provides alternative ways of seeing the world. Eschers visual paradoxes reveal how bad we can be at perceiving reality. By changing physical space into the language of mathematics, these paradoxes are easily exposed. Equations allow you to see into the future by making predictions about the flight of a planet or the evolution of the economy. This was a language with far more power for me than the French and Russian Id battled with at school. But it was the ability of this language to conjure up in the minds eye things that our physical eyes could never perceive that was for me one of the greatest thrills. Mathematical language opens up a virtual window onto spaces beyond our physical three-dimensional world.

We are actually all used to the idea of turning space into numbers. When we look up the location of a city in an atlas, we find it identified by a grid location. For example, the maths department I visited in Cambridge can be found at latitude 52.2N and longitude 0.1E. The same principle is used in mathematics to change geometry into numbers. For example, the four corners of a square can be described by their coordinates: (0, 0), (1, 0), (0, 1) and (1, 1). And similarly in three dimensions: one just adds another coordinate. For example, the eight corners of a cube can be described by eight triples: (0, 0, 0), (1, 0, 0), (0, 1, 0), and so on, up to (1, 1, 1) (Figure 6). The coordinate (1, 0, 1) locates or encodes a point on the three-dimensional cube reached by travelling one step east and one step vertically upwards.

The beauty of mathematics is that, now that I have this translation of pictures into a new language of numbers, I can portray the geometry of a cube in four dimensions without having to concern myself at all with trying to visualize it. This four-dimensional figure, known as a hypercube or tesseract, has 16 vertices each described by four coordinates, starting at (0, 0, 0, 0), then (1, 0, 0, 0) and (0, 1, 0, 0), and stretching out to the farthest point at (1, 1, 1, 1). The numbers become a code to describe the shape. Although I cant see the hypercube, the mathematical language allows me to manipulate it and explore its symmetries. The numbers give me, if you like, a sixth sense  the feeling that I really can see in four dimensions.

Despite my newly acquired ability to see higher-dimensional shapes, Conway and Nortons ability to conjure up a symmetrical snowflake in 196,883-dimensional space was a pretty mind-boggling thought experiment. This was not an object you would see dropping from the sky. To construct such an object you were forced to rely on mathematical language. It existed in a mathematical world where physical objects are replaced by numbers encoding these objects. Just as the hypercube can be described by strings of quadruples made of 0s and 1s, Conway and Norton could pin down the Monster using strings of 196,883 numbers. And, according to Conway, 196,883 wasnt random.

The amazing thing, he said to me, is that 1 + 196,883= 196,884.

I looked a bit blank. That didnt strike me as something that would get anyone too excited as a great mathematical discovery. Ahhh, but 196,884 is the first coefficient in the Fourier expansion of the modular function. Now, I vaguely knew what this meant. It was something important in number theory. But it was not something which seemed to have anything to do with the symmetry of a huge snowflake. Thats the point, Conway countered. When someone told me about it it sounded like pure numerology. But then I went down to the library here in the department to find a book about these modular forms. OK  whats the next number on the list?

I looked at the table. It was 21,296,876, the size of the next important dimension in which you could see this snowflake. Well, when I went and looked up the second coefficient of the modular function in this book in the library, it was 21,493,760. I looked blank again. The point is that 21,493,760 = 1 + 196,883+21,296,876. Simon and I found a way to use all the numbers coming from the table for the Monster, to get all the terms in the Fourier expansion of the modular function.

The point was that this strange thing called the modular function can essentially be described by a sequence of numbers starting 196,884, 21,493,760, 864,299,970,  Similarly the contours of this monstrous snowflake were defined by another sequence of numbers: 196,883, 21,296,876, 842,609,326,  Conway and Norton had found a bit of mathematical magic which seemed to miraculously turn one set of numbers into the other.

To the non-mathematically sensitive, this might not sound like much, but I knew enough by now to appreciate that this was weird. It was as if an archaeologist excavating a Mayan pyramid in the jungles of Guatemala had revealed strange patterns only ever seen before in the tombs of Egypt: you would have to infer some connection between the two cultures. Conways excavations had revealed a similar link between two mathematical carvings: the modular function from number theory and this Monstrous symmetry. The two things didnt appear to have anything to do with each other. Yet the secret of which dimensional space this Monstrous creature lived in seemed to be programmed into the modular function.

That experience was the most exciting of my mathematical life, said Conway. But what does it mean? Thats the point: we dont understand it. Why is there a connection? Monstrous moonshine, Simon Norton chipped in. Thats what we called it, this strange numerology, Conway explained, Monstrous moonshine.

It was an intriguing name which immediately caught ones attention. But what sense of the word moonshine were they referring to? The name given to the illegal production of whiskey? Was this connection so strange it was hard to swallow? Well, the whole subject is vaguely illicit! Conway admitted. Or perhaps moonshine was being used to indicate that they were speaking complete nonsense. But this seemed to be more than mad numerology. You might have legitimately dismissed as some strange coincidence the observation that 196,883, the first dimension in which you can see the Monster, and 196,884, the first number in the modular function, were so close. But it had to be more than numerological nonsense that all the numbers that Conway and his crew had documented in the Atlas to help navigate the symmetries of the Monster were so directly connected to the numbers coming out of this object in number theory. The connections are just too astonishing to be accidental.

Indeed, what they seemed to be getting at with their use of moonshine was that there appeared to be a kind of mathematical sun whose rays were illuminating the numbers in the Monster and the modular function from number theory. Although we could see the reflected moonlight, no one could see the sun which was the source of the connection between these numbers. The source of this moonshine, Conway said, was one of the greatest mysteries in the subject. I could see the appeal of the problem. The strange interconnected nature of mathematics was one of the aspects of it that Id begun to find most intriguing. Finding the tunnel between these two subjects, the Monster and the modular function, looked a fascinating project. Like Bottom in A Midsummer Nights Dream, who could resist the mathematical weavers call to Find out Moonshine?

And then, as if I wasnt there, the two of them started bandying round bigger and bigger numbers, coordinates that theyd documented in their Atlas, as they explored more and more of the strange implications of this moonshine. This object was so familiar to them that they had no need to look at the chart open in front of me. They lived the Monster. It was a friend, someone they knew intimately. But this creature was keeping some of its secrets close to its chest, despite the probing questions Conway and Norton were firing at it. I sat there in awe at their ability and command of something so complex that it seemed to lie beyond the capacity of a normal mind. But just as Conway had found clues in the decimal expansion of  to help him remember so many digits, the Monster, despite its size and complexity, had given up enough of the secrets of what made it tick for Conway and Norton to find a way in.

After a while sitting listening to the two of them firing numbers at each other in a mathematical duel, I quietly took my leave. I followed the instructions that Norton had plucked from his plastic bags for the best route back from Cambridge to Oxford.

Midnight, 26 August, the Sinai Desert

At last the temperature has dipped to something bearable. Im lying out on the sand with the night sky burning above me. I still get a real thrill just looking up into space and wondering whats out there. What shape is it? What does it mean to say that the universe is unbounded yet finite?

I must admit that I am actually a little stoned, thanks to a birthday present from our Bedouin host. The grass grown on the other side of the mountain by the Bedouin is some of the best in the Middle East. Perhaps its a bit sad of me to be pretending to be as hip as the two other kids we are sharing the beach with. Perhaps its just me trying to deal with the crisis of hitting 40. At university Id prudishly passed on joints, convinced that however good they might be for inspiring poetry, they were bad for the mathematical mind  although Ive subsequently discovered several mathematicians whove produced their best work under the influence.

The moon has just risen over the mountains of Saudi Arabia. Why does it look so much bigger here than it ever does in London? Is there some strange lensing effect that the atmosphere has here which magnifies the moon? The moon is ageing, in its last quarter. For the Bedouin, the phases of the moon control the cycles of their year, the crescent new moon marking a new month. According to my hosts, my birthday falls this year in the month of Rajab. Next year my birthday will have crept into another month of the Islamic year. Its the power of mathematics which gets you from one date to the other, although ultimately the authorities across the water in Saudi Arabia have the final say on the Islamic calendar.

The waves are gently lapping over the coral reef. The moonlight is glistening off the surface of the sea. Those photons of light have been on an extraordinary journey. Launched from the sun that set behind me, theyve bounced off the moon and hit the surface of the sea before finally landing in my eye. But what actually happens to that photon once its entered my eye? Whats the strange mix of physics and biology that gives me the sensation of seeing the shimmer on the waves?

The moon has been pushing and pulling the sea all day. The tide has turned again, and has now covered the coral shelf where I saw the symmetrical starfish this afternoon. Why are there two high tides a day rather than just one? Its a question that has quite a subtle answer, I realize as I try to work it out, drawing pictures in the sand of moons orbiting the Earth. Science progresses because of the questions we cant answer. Without unsolved problems to work on, mathematics would die. Eventually, I give up on my sketches in the sand. The mysterious moonshine lights my way back to my shack, glowing beneath the stars.






End of sample




    To search for additional titles please go to 

    
    http://search.overdrive.com.   


OPS/images/f004-01.jpg





OPS/images/297a.jpg





OPS/images/297.jpg





OPS/images/9780007380879_Cover.jpg





OPS/images/page_235.jpg





OPS/images/page_236.jpg





OPS/images/page_223.jpg





OPS/images/page_223-1.jpg





OPS/images/page_158.jpg





OPS/images/9780007380879_Cover.png
9
2
A
23]
P
g
3
S
2
&
=
s

Finding Moonshine

A mathematician’s journey
through symmetry

i
[==]

Marcus du Sautoy





OPS/images/page_159.jpg





OPS/images/page_6.jpg





OPS/images/page_6-1.jpg
S

CppKAV3/2





OPS/images/page_139.jpg
G={ XX X3 Xp X5 Xe Y 1Y Y3 ©






OPS/images/page_153.jpg
: Ixi) 41
1+ (2x3x 1)+ =






OPS/images/page_6-2.jpg





OPS/images/page_98.jpg
1
- (n'—6n*+23n*~ 18n+24)





OPS/page-template.xpgt
 

   

   
	 
    

     
	 
    

     
	 
	 
    

     
	 
    

     
	 
	 
    

     
         
             
             
             
             
             
        
    

  

   
     
  





OPS/images/logo.jpg





