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Foreword

The steady increases in processor speeds associated with Moore’s Law has improved software performance for decades without necessitating significant changes in software designs or practices. Over the past several years, however, the exponential growth in CPU speed has stalled. Increases in software performance now stem largely from exploiting parallel processing to exchange data reliably and scalably across high-speed interconnects, dynamically balance workload in computation grids, and efficiently synchronize access to shared resources. Researchers and practitioners rely on parallel processing to accelerate scientific discoveries and deliver value to users in a wide range of application domains, including high-performance scientific computing, weather forecasting, financial services, animation rendering, text mining, homeland security and enterprise content management.

Although parallel processors and interconnects continue to improve, it remains tedious and error-prone to develop complex application and infrastructure software that can meet challenging - and changing - user requirements. This situation has yielded a ‘parallel software crisis’, in which the hardware becomes ever more capable but the software remains hard to develop, debug, optimize and evolve. Much of the effort expended on parallel software is spent rediscovering core concepts such as coordination, communication, and synchronization, and reinventing common components such as active objects, dynamic load balancers, job schedulers, message brokers and notification engines. Moreover, despite advances in key technologies, such as concurrent programming languages, vectorizing and optimizing compilers, operating system clustering techniques and grid computing middleware, many software developers lack experience of how and when to best apply these technologies.

Addressing the parallel software crisis therefore requires more than just adopting the latest technologies - it requires learning and applying successful parallel software patterns that document recurring architectures and designs and convey proven parallel software structures, algorithms and best practices. Knowledge of patterns helps researchers and practitioners to avoid rediscovering and reinventing core concepts and common components  of parallel software. Patterns can also explain how and when to best apply parallel technologies.

Popular patterns such as Adapter, Bridge, Reactor and Strategy have captured and guided the designs of application and infrastructure software for two decades. Many of these patterns were identified initially by developers of object-oriented graphical user interface frameworks that work in contexts where quality factors like usability, extensibility and portability are paramount. In addition to these quality factors, developers of parallel software must also understand and apply patterns that work in contexts in which low latency and high throughput, reliability and scalability are paramount.

Over the years, isolated coverage of parallel software patterns has appeared in various conference proceedings and books. For example, those associated with the Pattern Languages of Programming (PLoP) conferences present patterns for scalable locking and threading, synchronous and asynchronous event handling, and loosely-coupled group communication. Likewise, the Pattern-Oriented Software Architecture (POSA) series of books presents patterns for pipeline parallelism, master/slave processing, distributed request brokering and dynamic resource management. Until Jorge Ortega-Arjona published this book on patterns for parallel software design, however, no single source provided such a broad and deep spectrum of architectural patterns, design patterns and common idioms for developing parallel software.

The patterns and idioms that Jorge present in this book help to resolve key parallel software challenges such as coordinating interactions between concurrently executing tasks, partitioning parallel algorithms and data to improve performance substantially, and minimizing synchronization overhead in local and distributed shared memory In addition to describing the structure and functionality of essential parallel software patterns and idioms, Jorge also presents many examples from a range of applications domains, including high-performance scientific computing, image processing and animation rendering. Moreover, Jorge’s detailed case studies extend the book beyond a catalog of parallel software patterns to provide keen insights into parallel software design processes and methods that help alleviate key accidental and inherent complexities in parallel software development projects.

For parallel software development to develop from an art to an engineering discipline, successful practices and design expertise must be documented systematically and disseminated broadly My colleagues and I have documented and applied patterns in a wide range of distributed and parallel application and infrastructure software, including the ACE, TAO and Zircomp middleware. We’ve found that studying and applying patterns helps to:•  Facilitate reuse of architecture and design artifacts, which reduces the effort required to develop high-quality parallel software frameworks and application components. These patterns can be reused even when reuse of algorithms, implementations, interfaces or detailed designs is not feasible due to heterogeneous software and hardware platforms. 
•  Document ‘best practices’ of parallel software systems, which have traditionally resided in the minds of expert developers or buried within complex source code. Capturing the most useful strategies and tactics of parallel software in terms of patterns makes the learning curve for new developers more gentle, by giving them good role models for developing parallel software applications and infrastructure.
•  Preserve important design information, which is often lost over time in conventional development processes, causing increased maintenance costs and software defects. Software evolution effort can thus be reduced significantly by documenting the intent, structure and behavior of parallel software components in terms of the patterns they reify, as well as explaining how and when to best apply these components in various contexts.
•  Guide design choices for new systems, since patterns capture proven experience in a form that can be used to address new design challenges. By understanding the potential traps and pitfalls in their domains, developers can select suitable parallel software architectures, protocols and platform features without wasting time and effort implementing solutions that are known to be inefficient or error-prone.



A thorough understanding of the parallel software patterns, processes and methods in Jorge’s book will help you develop better parallel software applications and infrastructure likewise. If you want a thorough coverage of the key pattern-oriented software architectures that are shaping the next-generation of parallel software, then read this book. I’ve learned much from it and I’m confident that you will too.

 

Douglas C. Schmidt 
Nashville, Tennessee, USA




Preface

Parallelism is used to create programs that are intended to execute on many processors simultaneously. Today these processors may all be packed onto a single chip (known as  multi-core processors), into one box (yielding a multiprocessor or parallel computer) or may be separate, autonomous machines connected by a network (a distributed system). In all cases, each processor works on part of the problem and they all proceed together, exchanging data, towards a single objective.

Nowadays, parallelism is on its way to truly become the mainstream of computing. In recent years the most powerful computer system, by definition, has been a parallel computer. A simple reason for this is that once manufacturers have built the fastest processor that current technology can support, two of them are expected to execute faster. Today computer manufacturers are discovering that adding more processors to the same computer is often a highly efficient way to achieve more computing power at a low incremental cost. Hence, recent multiprocessor computers are often more powerful, and relatively less expensive. The computer market tends towards systems based on multiple processors. Within the next few years, software companies will need to start producing and selling applications that execute on these multiprocessor computers.

A parallel application or program can be defined in general terms as the specification of a set of processes that execute simultaneously, communicating among themselves to achieve a common objective. The design of parallel programs deals not only with known problems and issues present in programming single-processor computers, but must also engage with those that properly arise from the basic concurrent or simultaneous execution of processes. Due to this, designing parallel programs can be difficult, and sometimes frustrating:•  When designing a parallel program many issues arise that are related to partitioning an algorithm and its data. For example, how best to choose a parallel software description that is not too hard to program, but which offers substantial performance improvement when compared to execution on a single-processor? 
•  The overheads involved in synchronization among processes and processors may actually reduce the performance of an overall parallel software implementation. How can this problem be anticipated and mitigated?
•  Like many performance improvements, parallelizing increases the complexity of a program. How can such complexity best be managed?



These are tough problems, and there are as yet no definitive answers about how to solve a computing problem of arbitrary size on a parallel system efficiently. Designing parallel programs at the current stage of development cannot offer universal solutions. Nevertheless, we can try to provide some simple ways to get started.

The current use of parallel computers implies that software plays an increasingly important role. From clusters to supercomputers, success depends heavily on the design skills of software developers. However, besides the inherently difficult task of software design in the classical, algorithmic sense, the design of parallel software requires special skills and consideration of other particular design aspects.

Parallel software design is presented here as a study of how and at what point the organization of a parallel software system affects its performance and development. Parallel software design proposes concepts and techniques to deal with the parallelization of a problem described in algorithmic terms. Research in this area covers several approaches that provide forms for organizing software with relatively independent components that make use of multiple processors efficiently By sticking with software patterns commonly used in parallel programming it is possible to avoid a lot of errors and aggravation. By using these software patterns, we may perhaps eventually improve our knowledge of how parallel programming actually works and how to deal with its problems and issues.

This books presents patterns for parallel software design based on existing design knowledge, drawn from both well-known classic design experience as well as new and promising designs. A pattern-oriented approach to parallel software design is not only a design method in the classic sense, but a new way of managing and exploiting existing design knowledge for designing parallel programs. Using this approach leads to parallel software systems that can be considered better designed: they are modular, adaptable, understandable, evolvable and so on. Moreover, such an approach to parallel software design aims to enhance not only the build-time properties of parallel systems, but particularly also their runtime properties.

In the last decade several Pattern-Oriented Software Architecture (POSA) books [POSA1] [POSA2] [POSA4] have provided software patterns for the design and implementation of general, concurrent and distributed software systems. This book, about patterns for parallel software design, attempts to complement the software patterns presented in those POSA books. The approach taken is as follows:•  Provide architectural patterns that describe how to divide an algorithm and/or data to find a suitable partitioning and link it with a coordination scheme that allows for such a division.
•  Similarly, consider design patterns that allow a communication mechanism between parallel components to be selected based on actual characteristics, such as  the memory organization of the hardware platform and the partitioning of the problem.
•  Offer some idioms that describe synchronization mechanisms in commonly used programming languages for parallel programming.
•  Provide a method for parallel software design based on several software patterns that are applied to the development of coordination, communication and synchronization of a parallel software system.






The Structure of the Book 

Chapters 1 and 2 are introductory chapters about the two main issues that this book covers: software patterns and parallel programming. Chapter 1, Software Patterns, introduces some basic concepts that are used as background for presenting the software patterns in the book: definition, description, mining, languages and systems, and categories. In the same way, Chapter 2, A Brief Introduction to Parallel Programming, introduces some common concepts and elements of parallel programming, which are used in the descriptions of the software patterns in this book.

Chapters 3 through 5 present the actual patterns for parallel programming. Chapter 3, Architectural Patterns for Parallel Programming, presents the basic organizational structures commonly used in the composition of parallel software systems. Chapter 4,  Design Patterns for Communication Components, introduces some common software subsystems used for enabling communication between and among parallel components. Chapter 5, Some Idioms for Synchronization Mechanisms, provides the descriptions of synchronization mechanisms as idioms in some parallel programming languages.

Chapter 6, Two Case Studies, introduces two broader examples that involve and span many of the patterns presented in Chapters 3, 4 and 5. The idea is to explain how architectural patterns for parallel programming, design patterns for communication components and idioms for synchronization mechanisms are used together to solve each example.

From these example descriptions, a common general method for parallel software design is obtained: this method is explicitly presented in Chapter 7, Parallel Software Design.  This chapter describes the concept of parallel software design as a result of considering software design issues within parallelism. It presents a method for parallel software design that is based on the concepts of coordination, communication and synchronization. These concepts are the unifying elements of concurrent, distributed and parallel programming. Furthermore, they map precisely to the patterns proposed here:•  Architectural patterns for parallel programming are used for designing the coordination of a parallel software system.
•  Design patterns for communication components are applied to the design and implementation of communication within a coordination scheme.
•  Idioms for synchronization components are used in implementing the communication scheme.



The design method is complete when a total parallel software system is produced by including the sequential code that performs the actual processing of data.

Chapter 8, Parallel Software Architecture, discusses how a software architecture for parallel software systems is proposed, relating parallel software design to parallel software theory and technology Finally, Chapter 9, Directions in Patterns for Parallel Programming,  concludes the book by pointing out directions that more complete efforts in software patterns for parallel programming would have to take, as well as two problems considered for further development in parallel software design: tangible description and the need for measurements. This chapter finishes with a remark about the future of this area.
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CHAPTER 1
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Software Patterns

‘Patterns expose knowledge about software construction that has been gained by experts over many years. All work on patterns should therefore focus on making this precious resource widely available. Every software developer should be able to use patterns effectively when building software systems. When this is achieved, we will be able to celebrate the human intelligence that patterns reflect, both each individual pattern and in all patterns in their entirety.’

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland and M. Stal
 A Final Remark’, Pattern-Oriented Software Architecture (1996), p. 428.

 

 

This introductory chapter about software patterns presents some basic concepts, such as definition, description, languages and systems and categories. This chapter also addresses key questions related to software patterns, such as ‘What are patterns?’ and ‘How are patterns documented?’




1.1 The Concept of a Software Pattern 

Current interest in software patterns was originally inspired by the work of the British architect Christopher Alexander and his colleagues [AIS+77] [Ale79]. Alexander was the first to describe what he called a pattern language, which mapped various problems in building architecture to proven solutions. In Alexander’s terms, a pattern is ‘a three-part rule, which expresses a relation between a certain context, a problem, and a solution’  [Ale79].

Since the mid-1990s, pattern-based design has been adapted for use by the software development community. The resulting software patterns are literary forms that describe recurring designs used in software development. They have been used extensively in the development of object-oriented systems, and have been highly effective in capturing, transferring and applying design knowledge at different levels of software design [Ram98]. In general, patterns exist in any context in which there are design decisions to be made.

Software patterns focus on capturing and systematizing successful experience and techniques used in previous software development. They describe successful solutions to common software problems with the intention of creating handbooks of good design and programming practices for software development. Their long term goal is to gather design experience and techniques for software development. Even though much work remains before that goal is reached, two decades of applying pattern-oriented software architectures and techniques have shown that software patterns help developers reuse successful software practices [POSA1] [POSA2] [POSA4] [POSA5]. Moreover, they help developers to communicate their experience better, reason about what they do and why they do it.

Software patterns are found at every level of software development: from the programming language level (the ‘language idioms’) to entire software systems, known as ‘architectural patterns’. They are also commonly used to describe software processes. Moreover, classic algorithms and data types can be considered as programming-language level pattern-like entities. In particular, software patterns are viewed as well-documented design descriptions for software design.

 

What is a Pattern?

 

Defining a software pattern is not easy. Inside the pattern community it is generally accepted that a pattern is ‘a recurring solution to a standard problem’ [Cop94] [Gab96]. In a wider sense, a pattern is ‘a way to capture and systemize proven practice in any discipline’  [AIS+77] [Ale79].

For our purposes we consider a software pattern as a function-form relation that occurs in a context, where the function is described in problem domain terms as a group of unresolved trade-offs or forces, and the form is a structure described in solution domain terms that achieves a good and acceptable equilibrium among those forces. This definition  of a software pattern is consistent with the previous definitions and relates software patterns with software design.

In general, the concept of software patterns is not confined to a particular software domain. As software patterns express recurring designs, they can be used to document design decisions at any level in any software domain. This generality is particularly important for parallel software design: software patterns are useful in documenting the design decisions in any aspects of a complete parallel system: for example, to document hardware systems or subsystems, communication and synchronization mechanisms, partitioning and mapping policies and so on.

 

An Example: The Manager-Workers Pattern

To show how software patterns are applied to parallel programming, a well-known example is presented in this section: the Manager-Workers pattern. This is a simple and classical example, presented in many parallel programming books and publications [Hoa78] [And91] [FP92] [Fos94] [KSS96] [Har98] [And00] [Ort04].

The Manager-Workers organization is one of the simplest patterns for parallel programs. It is often used to solve problems in which a single algorithm is applied independently to many different pieces of data. A manager (usually associated with the main process of the parallel program) partitions work (commonly the pieces of data to process) among a set of workers. These are launched together and executed simultaneously, assigning each one a separate portion of work. The manager waits for all workers to complete their work, then continues. A diagram showing the structure of the Manager-Workers pattern is shown in Figure 1.1.

Figure 1.1: A Manager-Workers organization block diagram

[image: 003]

The Manager-Workers pattern describes a simple kind of parallel execution, used when the amount of data on which to operate is known in advance and where it is easy to partition such data into roughly equal parts whose operation does not depend on each other. The absence of data dependencies is a key requirement that ensures no synchronization is required among the workers. A summary of the Manager-Workers pattern [Ort04] is shown in Figure 1.2.

Figure 1.2: A summary of the Manager-Workers pattern

[image: 004]

To illustrate an application of the Manager-Workers pattern, we present a case study based on the Polygon Overlay problem [Ort04] [WL96]. The objective of this case study is to obtain the overlay of two rectangular maps, A and B, each covering the same area, which is decomposed into a set of non-overlapping rectangular polygons. This type of problem is common in geographical information systems, in which one map represents, for example, soil type, and another, vegetation. Their conjunction is thus an overlay that represents how combinations of soil type and vegetation are distributed. Overlaying both maps therefore creates a new map consisting of the non-empty polygons in the geometric intersection of A and B.

To simplify this problem for practical purposes, all polygons are considered as non-empty rectangles, with vertices on a rectangular integer grid [0...N]x[0...M] (Figure 1.3). Both input maps have identical extents, each completely covered by its rectangular decomposition.

Figure 1.3: The polygon overlay problem for two maps A and B

[image: 005]

A sequential solution to this problem iterates through each polygon belonging to A and finds all intersections with any polygon in B. Although this is an effective solution, it can run slowly, depending on the number of polygons into which each map is divided. It is possible to obtain intersections in parallel, however, since the overlaying operation of two polygons can be performed potentially independently of the overlay of any other two polygons.

For experienced parallel programmers, developing a parallel solution for the Polygon Overlay problem is straightforward: simply link the concrete requirements of functionality of the problem with a concrete solution based on a parallel technology Moreover, since experienced programmers understand typical structures of parallel programs, they would immediately recognize a solution to the problem based on the Manager-Workers pattern, as well as its partitioning policies, its communication and synchronization mechanisms, its mapping strategies and so on.

Nevertheless, consider novice parallel programmers, who might learn about the Manager-Workers pattern and parallel systems by reading the literature [And91] [Fos94] [Har98] [And00], but cannot adequately and efficiently exploit such knowledge to solve the Polygon Overlay problem. The main problem faced by novice parallel programmers is their lack of design experience, which could prevent them from linking the functionality  of the problem with a parallel programming solution. The typical effects of this lack of experience are design problems that might be detected late in subsequent development, for example in the form of poor performance or deadlocks during execution.

The main objective of this book is to show how a solid understanding of groups of software patterns for parallel programming during the design process can enable novice programmers to leverage the knowledge of experienced parallel programmers. Such novices must find pattern(s) that describe (or nearly describe) their problem, understand whether the forces match the constraints of such a problem, grasp the solution description(s) and map them to a design. During this process parallel programmers can start to formulate their own body of experience. Although this process may sound simple, we will show how it works for the Polygon Overlay problem using the Manager-Workers pattern as a design guide.

As described in the Context section of the Manager-Workers pattern (Figure 1.2), we are just about to start the design of a parallel program. In parallel programming, the programming language and the parallel hardware are typically given resources. Nevertheless, let us assume that the Polygon Overlay problem involves tasks of a scale that would be unrealistic or not cost-effective for a sequential system to handle (Figure 1.2). The solution to the Polygon Overlay problem thus lends itself to using parallelism, as explained later when describing the parallel solution.

Note also that the Polygon Overlay problem matches the Problem description provided by the pattern (Figure 1.2), since it involves only a single overlaying operation that is performed repeatedly on all the rectangles, which are ordered inside each map. The rectangles can be overlaid without a specific order. It is important to preserve the order of rectangles in the final result, however, so we need to keep track of which rectangle in A is overlaid with which rectangle in B. As mentioned earlier, if the overlaying is performed serially, it would be executed as a sequence of serial jobs, applying the same operation to each rectangle iteratively, which takes a long time to run. Nevertheless, we can take advantage of the independence between overlaying different sections of both maps, and hence perform the whole overlaying process as efficiently as possible.

Notice that most of the forces, as described in the Manager-Workers pattern (Figure 1.2) are present in the Polygon Overlay problem:•  The Polygon Overlay problem requires that its solution preserves the order of rectangles from maps A and B. Nevertheless, notice that all pairs of rectangles, one from A and one from B, can be overlaid without a specific order among them.
•  The overlaying can be performed independently between any rectangle from A and any rectangle from B.
•  Although rectangles have different sizes, the overlaying operation requires a representation of the rectangles (normally, their coordinates within the map).
•  The Manager-Workers organization ensures that adding a new worker does not affect the rest of the workers, but it can influence the total execution time of the parallel program.



Considering the previous analysis of the context, problem, and forces for the Polygon Overlay problem, our conclusion is to use the Manager-Workers pattern to create a parallel solution. Such a parallel solution can be described as follows (Figure 1.2): using the Manager-Workers pattern, a set of workers do the actual polygon overlaying by simultaneously finding intersections for each sub-map in A with each sub-map in B. For the two input maps, the manager divides all the polygons belonging to A into sub-maps, and for each of them the workers find all the intersections with a sub-map of B (Figure 1.4). The key for the parallel solution is to limit the part of both maps, A and B, that workers must examine to find the overlaps. The manager is responsible for tracking which sub-map is sent to which worker so that each overlaying is performed in the right order. At the end of the whole process, each worker returns its result map to the manager, which assembles them into a complete result map.

Figure 1.4: A Manager-Workers block diagram for solving the Polygon Overlay problem
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The solution to the Polygon Overlay problem using the Manager-Workers pattern can be developed further to obtain a complete parallel program. Nevertheless, our objective with this case study is simply to show how a software pattern can be used to design a solution from a problem description, so we stop here. Several questions, however, arise from this example, such as ‘Why use the Manager-Workers pattern to solve the Polygon Overlay problem?’, ‘Why not use another pattern?’, ‘What are the characteristics and features of this problem that lead us to select Manager-Workers pattern as a description of the coordination of its solution?’. The rest of this book attempts to provide answers to questions like these; first, however, the following sections address other issues about software patterns.




1.2 Pattern Description, Organization and Categorization 

Describing Patterns: The POSA Form

Software patterns are usually documented in several forms. These forms are known as  pattern schemata, pattern forms or pattern templates. Numerous examples of these templates can be found in the literature [GHJV95] [POSA1] [PLoP1]. The typical form is a collection of sections that characterize different aspects of a software pattern. The collection of sections varies from author to author and from domain to domain.

In parallel programming, as in other software domains, the most common forms are the ‘Gang of Four’ (GoF) form [GHJV95] and the ‘Pattern-Oriented Software Architecture’ (POSA) form [POSA1]. Both forms use diagrams based on Unified Modeling Language (UML) and plain text. This book uses the POSA form to describe software patterns. This form uses the following sections [POSA1]:•  Name. A word or phrase that essentially describes the pattern.
•  Brief. A description of the pattern stating what it does.
•  Example. A real-world example that shows the existence of a problem and the need for the pattern.
•  Context. The situation or circumstance in which the pattern is applied.
•  Problem. A description of the conflict the pattern solves, including a discussion about the forces.
•  Solution. A description of the fundamental principle of the solution which serves as base for the pattern.
•  Structure. A detailed specification (usually based on UML diagrams) describing structural aspects of the pattern.
•  Dynamics. Typical scenarios describing the behavior through time of the participants within the pattern. Normally UML sequence diagrams are used.
•  Implementation. Guidelines for implementing the pattern.
•  Example resolved. Restating the Example section, this section presents a discussion about any important aspects of solving the problem proposed as the example.
•  Known uses. Example uses of the pattern (at least three) taken from existing systems.
•  Consequences. Benefits and liabilities that occur when applying the pattern.
•  See also. References to other patterns that solve similar problems, or to patterns that help to refine the pattern being defined.



Pattern Languages and Systems: Organizing Patterns

In general - and independently of the domain - patterns are distilled from successful designs, which means that the main source of patterns is the analysis of existing successful solutions, identifying their recurring forms and designs. This discovery and documentation of patterns produces a large number of them: every day someone somewhere discovers a pattern and works on documenting it. Nevertheless, patterns are only useful if they can be organized in a way that makes them easy to select and use. Normal practice is to gather related patterns into structured pattern collections [POSA5].

When the pattern organization process advances, it often yields a network of relations between patterns known as a pattern language or pattern system. These networks are collections of interrelated patterns that can be used to describe or design a concrete system in a domain [PLoP1]. The term ‘pattern language’ was originally suggested by Alexander et al. [AIS+77]: the term ‘pattern system’ was proposed later by Buschmann et al. [POSA1].

A pattern language or system is a set of patterns complete enough for design within a domain. It is a method for composing patterns to synthesize solutions to diverse objectives [POSA1]. Hence software patterns become the building blocks for design, or suggest important elements that should be presented in the software system. Each software pattern suggests instructions for solution structure or contains a solution fragment. The fragments and instructions are merged to yield a system design.

 

Software Pattern Categories

Software patterns cover various levels of scale and abstraction. They range from those that help in structuring a software system into subsystems, through those that support the refinement of subsystems and components, to those that are used to implementing particular design aspects in a specific programming language. Based on a description such as this, software patterns are commonly grouped into three categories, each one consisting of patterns having a similar level of scale or abstraction [POSA1]:•  Architectural patterns. ‘An architectural pattern expresses a fundamental structural organization schema for Software systems. It provides a set of predefined subsystems, specifies their responsibilities, and includes rules and guidelines for organizing the relationships between them’. 
•  Design patterns. ‘A design pattern provides a scheme for refining the subsystems or components of a Software system, or the relationship between them. It describes a commonly-recurring Structure of communicating components that solves a general design problem within a particular context’. 
•  Idioms. An idiom is a low-level pattern specific to a programming language. An idiom describes how to implement particular aspects of components or the relationship between them using the features of the given language’. 



In this book we are concerned about architectural patterns as high-level software patterns used for specifying the coordination of parallel software systems, about design patterns as refinement schemes for inter-component communication, and about idioms as low-level patterns used for describing synchronization mechanisms in different languages.




1.3 Summary 

This chapter has briefly introduced the reader to the field of software patterns. Addressing issues such as the concept of a software pattern, its description, organization and categorization, this chapter has provided a simple introduction intended to help clarify the remaining patterns for parallel software design presented in this book.




CHAPTER 2
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A Brief Introduction to Parallel Programming

‘Hard work is a series o simple jobs that were not carried out on time’

Anonymous

 

 

Parallel computing involves the simultaneous use of multiple computer resources to solve a single computational problem. The problem is divided into multiple discrete series of instructions that can be executed simultaneously on different processors. Parallel computing has traditionally been associated with ‘high performance computing’, which uses high-end computer resources to solve ‘grand challenge’ computational problems. With the advent of commodity-market multi-core processors [AMD08] [Inte108] and clusters of blade computers or low-cost servers, parallel computing is now available to many application developers. Regardless of the parallel computing infrastructure, however, many computational problems can be divided into discrete parts that can be solved simultaneously, and hence solved in less time than with a single-core computer resource. Parallel computing is also commonly used to conduct numerical simulations of complex systems  in diverse domains, such as cosmology, weather forecasting, biology and genetics, business operations, material science and so on.




2.1 Parallel Programming 

Parallel programming is based on the division of a processing task among multiple processors or processor cores that operate simultaneously. A parallel program is thus defined  as the specification of a set of processes executing simultaneously, and communicating among themselves to achieve a common objective. The expected result is a faster computation compared to execution on a single-processor/core system. The main advantage of parallel programming is its ability to handle tasks of a scale that would not be realistic or cost-effective for other systems.

In theory, parallel programming should simply involve applying multiple processes to solve a single problem. In practice, however, parallel programming is often difficult and costly, since it requires greater effort from software designers, who must develop new forms of understanding and programming to suit a parallel execution environment. Moreover, techniques used in single processor/core systems for reviewing and correcting defects, as well as for improving the performance, are not directly applicable to parallel programming. Parallel execution environments, such as a multi-core processor, a network of workstations, a grid of personal computers or a high-performance parallel processing system, can be unstable and unpredictable, or simply non-deterministic. It is not uncommon for parallel programs to yield incorrect results or execute more slowly that their sequential counterparts even after months of programming.

Optimizing performance has historically been considered the driving factor for parallel programs. Performance refers to the response capability of a parallel system - that is, the time required to respond to stimuli (events) or the number of events processed in a specific interval [Smi90]. Ultimately, performance is the main reason for using parallel systems [PB90] [Pan96].




2.2 Factors that Influence the Performance of a Parallel Program 

Parallel programming is a complex activity that is aimed at developing the specifications of parallel processes that execute simultaneously and non-deterministically to obtain gains in execution time. The performance obtained when applying parallel programming is affected by the hardware platform, the programming language and the problem to be solved [Pan96]. Some important features of these factors are described below

 

The Hardware Platform

A parallel computer is generally considered as any collection of processing elements connected through some type of communication network, where a ‘processing element’ is composed of hardware devices such as a processor and its associated memory Contemporary parallel computers range in price and size from a single multi-core chip, through a group of workstations connected through a LAN, to a high-performance (and cost) computer involving hundreds or thousands of processors connected via a high-speed network. The performance of any parallel application is ultimately bounded by the speed, capacity and interfaces of each processing element.

Programming a parallel computer depends on how the memory of the hardware platform is organized or divided among the processors. There are two commonly used memory organizations: shared memory and distributed memory Depending on which is used for a parallel computer, different mechanisms for process communication are selected for programming, as we discuss below

 

Shared Memory

In a shared memory parallel computer, all processors have access to all memory in the form of a global address space. A shared memory multiprocessor system therefore allows access from any processor to any location within a common memory via an interconnection network (Figure 2.1).

Figure 2.1: Structure of shared memory multiprocessors
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Multiple processors normally operate independently, sharing the same memory resources. Changes in a memory location produced by a processor are (eventually) visible to all other processors. In most cases, the interconnection network is completely hardware controlled, independent of the activity of the programmer, who only perceives a  shared, central and continuous memory. Each memory location or address is unique and identical for any processor of the system.

In shared memory computers and at the programming level, communication between processes is normally performed by reading or writing shared variables. When a processor reads from or writes to a specific memory address, the interconnection network automatically selects the appropriate memory device. To ensure data integrity, programming mechanisms have been devised to support communication between processes, providing planning, synchronization and coordination between communicating processes. Common programming mechanisms for shared memory computers include mutexes [And91] [And00], semaphores [Dij68] and monitors [Hoa74].

Shared memory multiprocessors have two main advantages:•  The concept of a global address space simplifies programming, since memory can be read from and written to in a manner that is similar to non-parallel programs.
•  Sharing data between processes is fast and uniform, given the proximity of memory to processors.



Nevertheless, shared memory systems also have some disadvantages:•  It is hard to scale the amount of memory and processors in shared memory computers. Adding more processors tends to increase the traffic between memory and processors geometrically, which complicates cache coherency management[And00] [HX98].
•  In shared memory systems, programmers are responsible for providing adequate synchronization constructs to ensure ‘correct’ access to shared variables within the global address space.
•  Shared memory systems are often expensive. It is particularly costly to design and produce shared memory computers with a large number of processors.



Examples of shared memory parallel computers are the parallel vector processor (PVP) computers, such as NEC SX-4, Cray C-90 and Cray T-90 [HX98], symmetric multiprocessor (SMP) computers such as the DEC Alpha server 8400, the SGI Power Challenge and the IBM R50 [HX98], and, in the area of personal computers nowadays, platforms based on multi-core processors such as the Xeon and Core 2 Duo and Quad processors from Intel [Inte108]. The Opteron and Phenom II processors from AMD [AMD08] are also considered SMP computers.

 

Distributed Memory

A distributed memory multiprocessor system only allows each processor direct access to its own local memory Communication with the memory of other processors is performed using explicit I/O operations via interprocess communication (IPC) mechanisms provided by an interconnection network (Figure 2.2).

Since each processor has its own local memory, memory addresses of a specific processor do not map to another processor’s address space, so there is no global address space shared between processors. Changes in a processor’s local memory have no effect on the memory of other processors, and thus the concept of cache coherency has no meaning, since processors operate independently. When a processor needs data from the memory of another processor, programmers must explicitly define how and when to communicate the data. Programmers must also explicitly synchronize processes.

Figure 2.2: Structure of distributed memory systems
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The interconnection network is composed of a set of links between processors or nodes, based on a specific topology such as linear, ring, star, mesh, tree, hypercube and so on. The network is the media used for data exchange. During the execution of a parallel program, the network may remain the same (static) or change (dynamic), in accordance with the program’s needs.

Communication between processes in a distributed memory system is performed through message passing, which implies explicit I/O operations to send and receive IPC messages. Each processor ‘recognizes’ the difference between its local address space and the address space of other processors, so is able to read and write data freely from its local address space. Nevertheless, when a processor must read or write data from another processor’s address space, it does so via an explicit request by a message passing operation.

Message passing is defined as a communication model for distributed memory systems. Common IPC mechanisms used for message passing include input/output operations [Hoa78] [Hoa85], channels [PM87] and remote procedure calls [Bri78].

Distributed memory systems have several advantages:•  Memory normally scales with the number of processors. Increasing the number of processors implies that the size of the memory also increases.
•  Each processor can access its own memory rapidly and without any interference or overhead due to cache coherency being preserved.
•  Distributed systems are cost-effective. They may use commodity off-the-shelf processors and networking, or even high-performance processors and networks. 



Distributed memory systems have some disadvantages, however:•  Data communication between processors is the responsibility of programmers, who must consider many details of data exchange.
•  It is hard to map common data structures (based on global memory) to a distributed memory organization.
•  Distributed systems provide access times comparable with shared-memory times. Examples of distributed memory parallel platforms are the ‘massively parallel processor’ (MPP) computers such as the Intel Paragon TFLOP [HX98], ‘clusters of workstations’ (COW) such as the Berkeley NOW, the IBM SP2 and the Beowulf clusters [HX98], and distributed shared memory (DSM) systems such as the Stanford DASH computer [HX98].



Programming Languages

The programming language obviously affects the performance of a parallel system as well as the effort required to parallelize an application. Moreover, extreme variation in compiler capabilities and runtime support environments means that the language also constrains the attainable performance. The type of programming libraries that can be used by parallel programs is often a key indicator of both the effort and the performance that can be achieved by using a particular programming language.

In general, a parallel language can be evaluated by its capacity to express basic characteristics of parallelism, sequencing, communication and synchronization, and control of non-determinism between processes [Hoa78], as described below.

 

Parallelism

A parallel language should be able to describe the parallel execution of processes, using a construct for parallel composition. This construct is required because sequential programming languages normally do not have a programming construction to express parallelism. The need for such an construct has been common since the beginning of parallel programming [Dij68] [Hoa78].

Examples of such a parallel construct are provided by several authors. For example, Dijkstra [Dij68] proposes an extension to ALGOL60, using a structure based on the delimiters parbegin ... parend., as shown in Figure 2.3.

Figure 2.3: Example of two concurrent open file operations
using Dijkstra’s parbegin...parend delimiters
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This code defines two openFile statements that execute simultaneously. The target files InputA and InputB are two separate files, so the execution of both statements is disjoint. Constructs like this are considered a parallel composition. Dijkstra’s work has resulted in what constitutes the parallel construction in several programming languages, which represents the simultaneous activation of disjoint processes with independent execution speeds among themselves. The parallel parbegin...parend construct completes successfully only when all the processes it generated finish successfully

There are various derivations of the parallel construction, depending on the language. Other examples of parallel instructions are the construction P1 II I P2 I I ... I PN of CSP [Hoa78] [Hoa85] and the instruction PAR from the Occam programming language [PM87]. Figure 2.4 shows an example of the use of the PAR instruction.

Figure 2.4: Example of use of the PAR instruction in Occam
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This expresses the parallel execution of two sequential processes, which allow simultaneously reading from the keyboard and writing to screen. Both processes communicate through a channel c. These instructions represent what is considered as interprocess parallelism.

There are other examples of mechanisms that represent intraprocess parallelism, as is the case with Java threads [Smi00]. Figure 2.5 shows the two ways of spawning Java threads.

Figure 2.5: Two ways of creating threads in Java: (a) extending the class Thread
and (b) implementing the interface Runnable
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The first way to spawn a thread in Java extends the class Thread and overrides the run( ) method with the code for the new thread subclass. It is thus possible to create an instance of the subclass and invoke the method start ( ), which in turn spawns a thread and calls the run ( ) method. The second way to spawn a Java thread is to implement the interface Runnable in a class with a public run( ) method. This approach makes it possible to create an instance of the class, passing a reference to this instance to the Thread constructor, which calls the start ( ) method to spawn a thread and invoke the run ( ) method.

 

Sequencing

The expression of sequential constructs is present as the basic feature of many programming languages. In a parallel programming language, however, it is necessary explicitly to represent a sequential composition (or sequential construct) to contrast its action with parallel composition.

The sequential construct expresses a set of disjoint processes that activate in sequence as they appear within the instruction. It successfully finalizes if every process in the sequence finalizes: if it is interrupted, its execution fails [Hoa78].

In general, several programming languages express the sequential construct explicitly through the inclusion of the symbol ‘;’ between the instructions of the sequence. Languages such as ALGOL60, Pascal, C and others present such an expression, which has also been considered by several parallel languages. Examples are the construction P1; P2; ...; PN in CSP [Hoa78] [Hoa85], Concurrent Pascal [Bri78] and SuperPascal [Bri95]. Figure 2.6 shows some examples of sequential constructions in SuperPascal.

Figure 2.6: Examples of some sequential functions in SuperPascal that implement common
operations on complex numbers. Notice the use of‘;’ between operations.
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Other parallel languages such as Occam introduce the SEQ construct explicitly [PM87], as shown by the example in Figure 2.7. This expresses sequential reading from the keyboard and writing to screen: a process is defined in which characters are repeatedly read from a keyboard process and sequentially sent to a screen process. Note the use of the SEQ construction.

Figure 2.7: Example of use of the SEQ instruction in Occam
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Communication and Synchronization

A parallel language should provide expressions for communicating between, and synchronization of, processes. There are several mechanisms for communicating between and synchronization of parallel processes. Normally, their use depends on the organization of memory: shared memory or distributed. A parallel language for a shared memory system expresses communication through shared variables by primitives for reading or writing (or simply assigning) such variables. The synchronization of such actions is based on the use of mechanisms such as semaphores [Dij68] or monitors [Hoa74]. A parallel language for a distributed memory system expresses communication through message passing by IPC primitives for sending and receiving messages [Hoa78] [Bri78].

For message passing in distributed memory systems in particular, synchronization is based on blocking the processes during communication. For example, message passing is represented in CSP by the send (!) and receive (?) instructions [Hoa78] [Hoa85], as shown in Figure 2.8.

Figure 2.8: Example of use of ! and? communication instructions
for send and receive respectively in CSP
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This example copies a characters from the input process to the output process.

In Occam, the send (!) and receive (?) instructions [PM87] use channels for message passing purposes, as shown in Figure 2.9.

Figure 2.9: Example of use of! and? communication instructions
for send and receive respectively in Occam
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Finally, Java includes the synchronized keyword [Smi00] to serialize access to shared variables, as shown in Figure 2.10. Both read ( ) and write ( ) methods are made atomic.

Figure 2.10: Example of Java communication over a shared variable (data)
using the synchronized keyword
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Non-Determinism

A parallel language should provide expressions for controlling non-determinism. Non-determinism is a characteristic of concurrent and parallel programming in which the order of simultaneous operations performed by a set of parallel processes (each one executing at different speed) is arbitrary. If such operations are, for example, send or receive operations, the characteristic of non-determinism establishes that the order of those send and receive operations cannot be known beforehand. Each execution of the program can thus produce a (probabilistically) different order of instructions performed through time. Nevertheless, the simultaneous sequential processes involved in the parallel program are still expected to execute their operations in the order defined for each of them.

Although non-determinism is generally considered a consequence of parallel execution, it may not be convenient to allow completely random parallel execution. Non-determinism can be controlled using a Boolean expression, known as guard, that conditionally executes particular instructions. The set of guards and instructions are known as guarded commands, and is the basis of another kind of instructions used for dealing with non-determinism: the alternative instruction [Hoa78].

In an alternative instruction, all guards are simultaneously evaluated, executing only the guarded command associated with the successful guard - that is, the Boolean expression which evaluates to true. If more than one guard evaluates to true, the instruction arbitrarily selects a guarded command associated with one of the successful guards. The alternative instruction is executed, expecting that at least one guard is verified. If no guard is verified, the instruction fails.

An example of an alternative instruction is the instruction [C1P1 []...[ ]CNPN], previously shown in Figure 2.8 for the Copy process in CSP [Hoa78] [Hoa85]. Another example of the use an alternative instruction is the ALT instruction shown in Figure 2.9 for the Copy process in Occam [PM87].

Various parallel languages, such as C, C++, Java, FortranM, Occam, Linda and so on are now available that represent several ways of introducing parallel programming features. These languages enable programmers to focus not only on data and operations, but also on coordination of the independent processes that compose parallel programs. Parallel languages should thus define the activities that can be performed simultaneously, the mechanisms for communicating between these activities, as well as other features such as non-determinism. Moreover, effective parallelization must address other concerns, such as how processor (or process) activities can be coordinated and how to ensure data correctness when the order of operations is unpredictable.

 

The Problem of Parallelization

A key to the success or failure of a parallel program is how a problem, expressed as an algorithm and/or a set of data, can be parallelized or divided into parts that can run in parallel. In particular, the patterns for data access and the algorithmic order indicate the way in which processing is performed, which in turn is related to performance. Moreover, if partitioning of an algorithm and/or data is the basis for parallel execution, then parallel programming is strongly affected by the order and dependence among instructions (as elementary parts of the algorithm) and/or datum (as basic part of the data), independently of the nature of the actual problem to solve. This is due to the ‘orthogonal dimension’ [Weg87] that characterizes concurrent execution. This means that a parallel software system is composed not only of a correct solution to the problem, but also by a coordination that organizes its execution.

Even though some simple well-structured problems have been solved successfully by improvements in compilers (for example, the automatic parallelization in Fortran, as developed by Burke et al. [BCF+88], Kuck et al. [KDL+98] and many others), other problems remain a challenge for efficient parallel solution.

Parallel software design has been developed as a way to organize software that contains relatively independent parts and yet also uses multiple processors efficiently The goal of parallel software design is to solve a given problem faster, or equivalently to solve a larger problem in the same amount of time. Although there are many parallel programming applications, such applications employ only a small number of ‘programming organizations’ as solutions. Examples are outlines of the program [CT92], parallel programming paradigms [Bri95], programming paradigms [KSS96], parallel algorithms [Har98], architectural patterns for parallel programming [OR98], parallel algorithmic paradigms [HX98], high-level design strategies [LB00] and paradigms for process interaction [and00] .




2.3 Advantages and Disadvantages of Parallel Programming 

Parallel programming has some advantages that make it attractive as a solution approach for certain types of computing problems that are best suited to the use of multiprocessors. Conversely, parallel programming also has some disadvantages that must be considered before embarking on this challenging activity.

 

Advantages

The following are key advantages of parallel programming that motivate its use for developing computing solutions:•  The main reason for parallel programming is to execute code efficiently, since parallel programming saves time, allowing the execution of applications in a shorter wall-clock time. As a consequence of executing code efficiently, parallel programming often scales with the problem size, and thus can solve larger problems. In general, parallel programming is a means of providing concurrency, particularly performing simultaneously multiple actions at the same time.
•  Parallel programming goes beyond the limits imposed by sequential computing, which is often constrained by physical and practical factors that limit the ability to construct faster sequential computers. For example, the speed of a sequential computer depends on how fast data moves through its hardware. Transmission through a physical medium is restricted by the respective bandwidth of such a medium (for example, the speed of light or the transmission limit of copper wire). Although advances in semiconductor technology allow a larger number of transistors on a single chip, a limit will be reached for how small transistors can be, even when considering molecular or atomic-level components. Moreover, the amount of power per unit of space makes it hard to develop processors whose heat can be dissipated by conventional ways. It is also increasingly expensive to produce faster processors, so using a large number of off-the-shelf processors to solve a single computational problem is often less expensive. One approach used nowadays for overcoming all these problems is the development of multi-core technology, which is a type of parallel system.
•  Other reasons for developing parallel programs involve managing resources better. For example, since a single computer has limited memory resources, using several computers can overcome this problem for large problems. Likewise, using remote computing resources that are available through a network can be an advantage when local resources are scarce or too costly to manage.
•  Future trends indicate that every improvement in multiprocessor computer architectures, faster networks, and distributed systems allow for obtaining  continual gains when using parallel programming. Parallel programming is thus the base of future computing systems.



Disadvantages

In its current state, parallel programming has the following disadvantages, which should be considered when starting to develop a parallel application:•  Parallel programming has lagged behind sequential programming, since it presents a more complex intellectual challenge. Parallel programming is a superset of sequential programming that incurs all difficulties of sequential programming plus many others that add complexity and are more challenging. Examples of these difficulties include the possibility of deadlock [Dij68] [Hyd94] [KSS96] and the control of non-determinism of parallel systems [Hoa78] [Hoa85] [PM87] [BW97].
•  Sequential programming is based on the von Neumann programming model, which simplifies many considerations needed for program development, such as dealing with non-determinism and deadlock. In contrast, parallel programming is based on many different programming models that depend on many different characteristics of parallel systems, such as the parallel hardware platform or the features of a parallel language. It is therefore hard to develop a parallel program that will port easily to existing and future parallel computers.
•  Sequential program development is supported by many software environment tools, such as compilers, debuggers, profilers and so on. In contrast, parallel programming has fewer general, mature and stable tools. Moreover, since parallel programming has many programming models and languages, the available tools are often specific to each of them, which impedes reuse and increases the learning curve.
•  Sequential programming has been considered the basic approach for software development for years, and thus the practical experience, accumulated knowledge, lessons learned and patterns are much broader and deeper. In contrast, parallel programming has been practised for much less time, so is less mature, has less accumulated knowledge, fewer lessons learned and a general dearth of patterns.



It is likely that some of these disadvantages will be mitigated by advances in parallel software design. One such advance is presented in this book, making use of software patterns for designing a parallel program. Taking the major sections of the book in turn, architectural patterns for parallel programming are used for designing the coordination of the parallel program, design patterns for communication components are used for the design of communications, and idioms for synchronization mechanisms are used for making use of the synchronization mechanisms of the parallel programming language used.




2.4 Summary 

This chapter has presented a very brief introduction to parallel programming, describing the concepts and language features associated with developing parallel programs. The chapter also described the factors that influence parallel program performance, including the basic models of parallel programming and the main advantages and disadvantages of parallel programming.

A parallel program executing on parallel (and/or distributed) hardware specifies a system of communicating processes. Parallel programming is used to solve problems of a scale that would not be realistic or cost effective to solve using sequential programming. The hardware platform, programming language and the order and dependencies between instructions and/or data impose a limit on the performance that each sequential instruction stream within the parallel program can achieve. The processes execute non-deterministically, probabilistically generating different interactions for each parallel program execution.




CHAPTER  3
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Architectural Patterns for Parallel Programming

‘How does one invent program structure? I do it by drawing pictures of it from different viewpoints over and over again until a simple and convincing pattern emerges. Perhaps, there are more systematic ways of inventing structure — I don’t know. But I do recognize a good program when I find one’.

Per Brinch-Hansen, The Architecture of Concurrent Programs (1977), p. 192.

 

 

This chapter introduces the concept of architectural patterns for parallel programming, as the basic organizational structures commonly used in parallel programming to compose parallel software systems. Selection of architectural patterns for parallel programming is based on the partitioning proposed for algorithms and/or data. The architectural patterns for parallel programming describe the coordination of an overall parallel software system. The patterns presented here that are commonly used in parallel programming are Parallel Pipes and Filters, Parallel Layers, Communicating Sequential Elements, Manager — Workers and Shared Resource.




3.1 Parallel Pipes and Filters 

The Parallel Pipes and Filters pattern extends the original Pipes and Filters pattern [POSA1] [Sha95] [SG96] with aspects of functional parallelism. Each parallel component simultaneously performs a different step of the computation, following a precise order of operations on ordered data that is passed from one computation stage to another as a flow through the whole structure [OR98]. Functional parallelism is the form of parallelism that involves problems whose computation can be described in terms of a series of simultaneous time-step ordered operations, on a series of ordered values or data, with predictable organization and interdependencies. As each step represents a change of the input value or effect over time, a high amount of communication between components in the solution (in the form of a flow) should be considered. Conceptually, a single data value or transformation is performed repeatedly [CG88] [Fos94] [Pan96] [OR98].

 

Example: Graphics Rendering

In image processing, graphics rendering is a jargon phrase that has come to mean ‘the collection of operations necessary to project a view of an object or a scene onto a view surface’. In common applications for the film and video industry, rendering a special effect scene of ten seconds using a standard resolution of 2048 x 1536 pixels takes up to 130 hours of processing time when using the C programming language on a single high-end Macintosh or PC platform [HPCN98]. The input to a polygonal rendering application is a geometry, presented as a list of polygons, and the output is an image in which a color for each pixel on the screen is obtained. The problem, therefore, is to transform the list of polygons into an image. For example, in order to build up a 3D scene, five general tasks must be performed (Figure 3.1) [KSS96].

Such stages are specialized in order to (a) establish the objects in the scene and produce geometric descriptions for each one, (b) apply a transformation to the geometry to take into consideration the camera’s position, direction and focus, (c) clip the geometric descriptions, so that the result excludes those objects outside the view of the camera, (d) apply lighting to shade each objects, and (e) scan-convert each surface of the objects, drawing them in a frame buffer to obtain the final image. Creating shaded renderings of 3D geometric objects can therefore be described as a series of independent processing stages on ordered data.

The time required to render a scene can usually be decreased using a parallel pipes and filters approach. This computation can potentially be carried out more efficiently by overlapping each of the tasks in time:•  Each component is able to process different pieces of data independently through time until completion, so each component represents a processing unit or stage that can potentially execute simultaneously with the rest of the components.
•  Simultaneous flow of data is allowed from one stage to the next, receiving ordered data from the previous stage and sending results to the next one.



Figure 3.1: 3D rendering
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Using a parallel approach with a 16-node CYCORE (a Parsytec parallel machine) programmed in C, this process is reduced from 130 to 10.5 hours [HPCN98].

Notice that this example is composed of heterogeneous stages, in which each stage performs a different kind of activity, producing different types of data between stages. Moreover, the number of stages is fixed by the problem description and cannot necessarily be increased. Furthermore, the different activities carried out by each stage are likely to require different amounts of time, so if each stage is considered to be executed in parallel, the execution of the resulting program will not be balanced: one stage normally is a bottleneck, while the rest are partially idle. It is therefore very helpful to try to balance the amount of work that each stage does.

A contrasting approach is composed of homogeneous stages in which each stage carries out the same activity. The pipes and filters structure, then, has n stages, dividing work into n pieces. This situation seems to relieve some of the difficulties of the heterogeneous pipeline, but synchronization between stages is still a difficult problem. Notice that it is often necessary to think carefully about the problem to be able to view the decomposition of the algorithm as potentially simultaneous activities. Occasionally it is necessary to  completely restate the problem, or to restructure the way in which it is described, to obtain a suitable solution.

 

Context

To start the design of a software program for a parallel software system using a particular programming language for specific parallel hardware, we need to consider the following constraints:•  The parallel platform and programming environment to be used are known, offering a reasonably level of parallelism in terms of number of processors or parallel cycles available. For the graphics rendering example, we propose to execute a parallel solution using a specific 16 node CYCORE parallel computer.
•  The programming language to be used, based on a specific paradigm such as object orientation, is determined, and a compiler is available for the parallel platform. Today, many programming languages have parallel extensions for many parallel platforms [Pan96], as is the case of C, which can be extended for a particular parallel computer or use libraries (such as PVM or MPI) to achieve communication between parallel processes.
•  The problem to solve, expressed as an algorithm and data, is found to be an open-ended one: that is, one involving tasks of a scale that would be unrealistic or not cost-effective for other systems to handle. Consider our graphics rendering example, taking 130 hours to render a ten-second scene on a single high-end Macintosh or PC platform. A complete feature film, or even a short film, would require several thousands hours merely for rendering each scene. The main objective is to execute the task in the most time-efficient way. In the graphics rendering problem, the time is reduced from 130 hours to 10.5 hours.



 

Problem

An algorithm, composed of ordered and independent computations, is required to operate on regular and ordered data. The computations are ordered but independent of each other, in the sense that, if data is available, each computation can be carried out until completion without interference (so there is an opportunity to overlap successive computations). If the computations are carried out serially, the output data set of the first operation would serve as input to the operations of the next step, whose output would in turn serve as input to the subsequent operations. So the focus of problem analysis should be on potential division of the algorithm into independent computations that have to be executed in the order prescribed by the algorithm itself.

If on the other hand the data is regular and ordered, it means that, at first, it may not be a candidate for division. The only criterion for data division is based on the independence between successive computations: an adequate amount of data should be available for each computation, so that each computation can be carried out without interference.  Notice that throughout the whole set of computations, data can be transformed, even producing new data of a different type. Hence the amount of data passed from one computation to the next also may influence the entire process, as a group of simultaneous computations.

In the graphics rendering example, for each polygon of the list, it is necessary to (a)  generate its geometric description, (b) apply a transformation to account for the camera,  (c) clip the geometry, (d) shade, and (e) scan-convert, drawing the faces to obtain the final image. When this rendering process is executed serially, it requires all data in a particular stage to be processed before the following stage starts processing. Notice as well that the data input of each stage is used to produce a different type of output data, which is passed to the next stage throughout the rendering process.

 

Forces

Considering the problem description, granularity and load balancing as elements of parallel design [Fos94] [CT92], the following forces should be considered:•  Preserve the precise order of computations. The filters, as processing stages, represent the order of the algorithm applied to each piece of data. In the graphics rendering example, it is important to control the order of where and when data is operated on, by allowing it to ‘flow’ through each rendering stage. This allows the effect of operation overlapping through time to be obtained.
•  Preserve the order of data among all operations. The result of the whole computation is the effect of applying each algorithmic step to each piece of data, so the order of data is a basic feature that should be preserved on order to obtain ordered results. In the graphics rendering example, each stage receives data from the previous stage, processes it, and produces more data that serves as input to the next stage. Nevertheless, data must be operated on in a strict order, so the result of the whole computation is obtained in an orderly fashion.
•  Consider the independence among operational steps, whose processing can potentially be carried out on different pieces of data. In the graphics rendering example, each rendering stage performs a different computation on different pieces of data autonomously. The objective is to obtain the best possible benefit from functional parallelism.
•  Distribute processing evenly among all operational steps. In the graphics rendering example, a different operation must be performed at each stage to obtain data to be processed by the next stage: all data is incrementally and simultaneously operated on. Nevertheless, if one stage takes more time than others it would represent a bottleneck for data flow.
•  Improve performance by decreasing execution time. Our main objective is to carry out the computation in the most time-efficient way.



 

Solution

Introduce parallelism by allowing the overlap, through time, of ordered but independent computations. The operations represent each stage of the whole computation as incrementally ordered steps that are executed simultaneously: the steps incrementally change the input data, producing the overall result through time. Conceptually, a single data object is transformed. The first set of components begins to compute as soon as initial data is available, during the first processing stage. When its computation is finished, the resulting data is passed to another set of components in the second processing stage, following the order of the algorithm. Then, while this computation takes place on the data, the first set of components is free to accept new data. The results from the second processing stage components can also be passed forward, to be operated on by a set of components in a third step, while the first processing stage can now accept more new data, while the second stage operates on the second group of data, and so forth [POSA1] [CG88] [Sha95] [Pan96].

 

Structure

This pattern is called Parallel Pipes and Filters, since data is passed as a flow from one component (representing a computation stage) to another along a pipeline of different but simultaneous processing software components. The key feature is that result data is passed only one way through the structure. Once data becomes available at each stage, the complete result builds up incrementally. Different components simultaneously exist and process during the execution time (Figure 3.2).

 

Participants

•  Filter. The responsibilities of a filter component is to get input data from a pipe, to perform an operation on its local data, and to output result data to one or more pipes. In the graphics rendering example, during each time step a parallel filter is expected to receive data from the previous filter through an input pipe, perform a step of the actual rendering, and send partial results to the next filter through another output pipe.
•  Pipe. The responsibilities of a pipe component are to transfer data between filters, and sometimes to buffer data or to synchronize activity between neighboring filters. To synchronize these activities, pipe components should take into consideration the amount of data that has to be communicated from one filter to the next, so that their operations do not conflict with each other. In the graphics rendering problem, pipes are expected to handle the communication and synchronization of data values between neighboring stages, giving the impression of a flow through the processing structure.
•  Source. The responsibility of a source component is to provide initial data to the first filter. In the graphics rendering example, this may be simply to open a file containing the list of polygons to be rendered and provide it to the Geometry stage (Figure 3.1). Figure 3.2: Object diagram of the Parallel Pipes and Filters pattern
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•  Sink. The responsibility of a sink component is to gather the final result of the whole computation. In the graphics rendering problem, this means preserving the data of the image produced, perhaps saving it into a file after the Scan-Convert stage (Figure 3.1).

Dynamics

Due to the parallel execution of the components of this pattern, the following typical scenario is offered to describe its basic runtime behavior. As all filters and pipes are active simultaneously, they accept data, operate on it in the case of filters, and send it to the next step. Pipes synchronize the activity between filters. This approach is based on the dynamic behavior shown by the Pipes and Filters pattern [POSA1] but adding the simultaneous  execution of software components that parallel programming allows. In this simple scenario, the operation of the source and sink components are avoided to stress the overlapping through time of the following general steps (Figure 3.3):•  Pipe A receives data from a data source or another previous filter, synchronizing and transferring it to the filter N. 
•  Filter N receives the package of data, performs operation Op.n on it, and delivers the results to pipe B. At the same time, new data arrives at pipe A, which delivers it as soon as it can synchronize with filter N. Pipe B synchronizes and transfers the data to filter M. 
•  Filter M receives the data, performs Op.m on it and delivers it to pipe C, which sends it to the next filter or data sink. Simultaneously, filter N has received the new data, performed Op.n on it and synchronized with pipe B to deliver it.
•  The previous steps are repeated until no further data is received from the previous data source or filter.



Figure 3.3: Sequence diagram for the Parallel Pipes and Filters pattern
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Implementation

An architectural approach to design is described below, in which hardware-independent features are considered early and hardware-specific issues are delayed until later in the implementation process. This method structures the implementation process of parallel software based on four stages [Fos94] [OR98]. In the first two stages attention is focused on concurrency and scalability characteristics: in the last two stages, attention is aimed at task allocation and other performance-related issues. It is better to present each stage as general considerations for design, instead of providing details about precise implementation. Implementation details can be found in references to design patterns for concurrent, parallel and distributed systems from several other authors [Sch95] [Sch98a] [Sch98b] [POSA2].

•  Partitioning. In this stage the processing to be performed is decomposed into a sequence of different operational stages in which data is received, operated on and passed to the next stage. Attention focuses on recognizing opportunities for simultaneous execution between subsequent operations, to assign and define potential filter components. Initially, filter components are defined by gathering operational stages while considering granularity and load-balancing. As each stage represents a transformational relation between input and output data, filters can be composed from a single processing element (for example, a process, task, function, object etc.) or a subsystem of processing elements. Design patterns [GHJV95] [POSA1] [PLoP1] [PLoP2] can be useful when implementing subsystems, particularly the Active Object pattern [LS95] [POSA2] [POSA4], the Leader/Followers pattern [POSA2] [POSA4] and the “Ubiquitous Agent” pattern [JP96].
•  Communication. In this stage the communication required for coordinating simultaneous execution of stages is determined, considering communication structures and procedures to define pipe components. Common characteristics that should be carefully considered are the type and size of the data to be passed and whether synchronous or asynchronous coordination is used, while trying to reduce the costs of communication and synchronization. Usually asynchronous coordination is preferred. The implementation of pipe components should conform with features of the programming language used. If the programming language has defined the necessary communication structures for the volume and type of the data, a pipe can be usually defined in terms of a single communicating element (for example, a process, stream, channel etc.). However, if greater complexity in data size and type is required, a pipe component can be implemented as a subsystem of elements, using design patterns such as Broker [POSA1] [POSA4] and Composite Messages [SC95]. In Chapter 4 two design patterns for communication components in parallel programs are proposed for the design and implementation of pipe components: Shared Variable Pipe and Message Passing  Pipe. Both design patterns are related to other patterns developed for communicating software components.
•  Agglomeration. In this stage a structure based on filters and pipes, as defined in the preceding stages, should be evaluated in terms of performance requirements and implementation costs. Once initial filters are defined, pipes are considered simply to allow data flow between filters. If an initial proposed agglomeration does not accomplish the expected performance, the conjecture-test approach can be used to suggest another agglomeration scheme. Recombining the operations by replacing pipes between them modifies the granularity and load balance, aiming to balance the workload and reduce communication costs.
•  Mapping. Each component is now assigned to a processor, attempting to maximize processor utilization and minimize communication costs. Mapping is normally specified as static. As a rule of thumb such systems may have adequate performance when implemented using shared memory machines, but can also be adapted to distributed-memory systems if the communication network is fast enough to pipe data sets from one filter to the next [Pan96].

Example Resolved

The Parallel Pipes and Filters pattern is used to design the coordination of a parallel program that computes a rendering of a scene from a geometric description. Such a coordination can take several forms depending on many factors, including the choice of rendering algorithm. The example here presents five stages [KSS96], as described in Figure 3.4 and outlined below.

Typed tokens are passed between processing elements. For example, a polygon is one kind of token passed down the entire length of the pipes and filters structure, with an attached data structure defining the geometry and color of the polygon.

•  Partitioning. The Parallel Pipes and Filters pattern is used to describe the processing as a cooperation between different sequential filter components that perform calculations simultaneously and communicate partial results with their neighbors via pipes. The main stages of the coordination follow the steps of the algorithm already described, so the filter stages into which the rendering computation is divided are [KSS96]:1. GEN. The initial filter stage determines the viewing parameters of the scene, produces geometric descriptions of objects and so on. These operations are normally contained in a graphics package for rendering. In this example, such a graphics package controls the pipeline structure.
2. TRAN. The next filter stage carries out geometric transformations. For example, the vertex of a polygon is transformed first into a coordinate or position relative to the camera.
Figure 3.4: An object diagram of a Parallel Pipes and Filters system for 3D rendering
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3. CLIP. The next filter stage clips the limits of the viewing polygons relative to the camera. Polygons or their portions outside the view or behind the camera are eliminated.
4. EDGE. This filter stage details a color or shade for each vertex of each polygon. This requires defining the surface properties for each polygon, the normal vector at each vertex and details of lighting of the scene. This filter also builds a data structure of the edges, attaching it to the polygon token.
5. PIXEL. The final filter stage enumerates the pixels covered by each polygon, obtaining its depth and color at each pixel. Thus, for each pixel, its depth is compared to the depth recorded in a buffer to determine whether the polygon’s pixel is closer to the camera than any other object previously recorded in the buffer. If so, the polygon’s color and depth replace those of the previous polygon. In simplified form, the algorithm for this stage is shown in Figure 3.5.

Figure 3.5: The algorithm of the PIXEL stage of the Parallel Pipes
and Filters system for 3D rendering
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•  Communication. Communication between filters, as stages within the graphics rendering algorithm, is carried out by allowing data to flow down the pipes in the form of tokens [KSS96]. To maintain proper synchronization, the state held by a filter is changed only as a consequence of processing a token in such a filter. This strategy avoids any data locking save for that embodied in the pipes between filters: filters refer only to data that they ‘own’. For example, the routine in the graphics package responsible for initialization sends a ‘begin’ token down the whole structure. This token specifies the width and height of the output image in pixels. Each filter that needs to know this information copies these two parameters into static variables accessible only to itself. Of course, the ‘begin’ token also affords each filter the opportunity to do any initialization required. In another example, the ‘light’ token is sent down with information about light used to illuminate the scene: this information is captured in the EDGE filter. Not all tokens flow down the full length of the pipeline structure. Of course, tokens such as ‘begin’, ‘end’ and ‘polygon’ proceed through all filters. Each filter that processes one of these tokens is responsible for forwarding the token by putting it on its output pipe to send it to the next filter. However, the ‘transformation’ token, used to update the current transformation held in the TRAN filter, needs to flow only as far as the TRAN filter. After the token is processed, the filter simply returns the token to free storage rather than placing it on its output pipe. Token flow is also data-dependent. The ‘polygon’ token is abandoned if a filter determines that the polygon described by a token need not be communicated further. There are two cases: (a) ‘back-face culling’, if the TRAN filter determines that the polygon faces away from the camera, and (b) clipping, if the CLIP filter determines that no part of the polygon falls within the viewing region. The design and implementation should follow through design of the pipes as communication components. Pipe components are designed and implemented based on design patterns for communication components, such as Shared Variable Pipe or Message Passing Pipe.


•  Agglomeration and mapping. The uneven processing duties of the filters at different stages of the computation, coupled with the potential for early rejection of polygons, make it difficult to balance the pipeline structure. In most cases, the PIXEL filter performs most of the computation. To balance processor utilization it may be necessary to further divide the PIXEL filter, for example by splitting the main loop illustrated above, so that several threads can compute concurrently Such a hybrid approach is often found in parallel applications, combining several algorithm paradigms. Parallel Pipes and Filters systems present adequate performance when executing on shared memory computers, but they also can be adapted to distributed-memory systems.

Known Uses

•  The butterfly communication structure, used in many parallel systems to obtain the Fast Fourier Transform (FFT), presents a basic Parallel Pipes and Filters pattern. Input values are propagated through intermediate stages, where filters perform calculations on data when it is available. The whole computation can be viewed as a flow through crossing pipes that connect filters [Fos94].
•  Parallel search algorithms mainly present a pipes and filters structure. An example is the parallel implementation of the CYK algorithm (Cocke, Younger and Kasami) used to answer the membership question: ‘Given a string and a grammar, is the string a member of the language generated by the grammar?’ [CG88] [NHST94].
•  Operations for image processing, such as convolution, in which two images are passed as streams of data through several filters to calculate their convolution [Fos94].
•  Video decompression. A three-stage pipes and filters organization is used to read compressed data from a disk file, decompress the data into a raster image format and copy the raster image to the display, perhaps reformatting the pixel data to conform to the display’s hardware requirements. Some implementations might divide the decompression stage into a stage that does the detailed bit manipulation to decode the video stream and a stage to do image processing, such as an inverse discrete cosine transform (IDCT) [KSS96].

Consequences

 

Benefits

•  The use of the Parallel Pipes and Filters pattern allows the description of a parallel computation in terms of the composition of ordered and simultaneous operations of its filter components. It is a simple solution in which every operation can be understood in terms of input/output relations of ordered data [SG96].
•  If the computation can be divided into stages of similar execution time, pipes and filters systems are relatively easy to enhance and maintain by filter exchange and recombination. For parallel systems, reuse is enhanced, as filters and pipes are composed as active components. Flexibility is introduced by the addition of new filters and replacement of old filters by improved ones. As filters and pipes present a simple interface, it is relatively easy to exchange and recombine them within the same architecture [POSA1] [SG96].
•  The performance of pipes and filters architectures depends mostly on the number of steps to be computed. Once all components are active, the processing efficiency is expected to be constant [POSA1] [NHST94].
•  Pipes and filters structures permit specific specialized analysis methods relevant to parallel systems, such as throughput and deadlock analysis [SG96].

Liabilities

•  The use of pipes and filters introduces potential execution and performance problems if they are not properly load-balanced: that is, if the stages do not all present a similar execution speed. As faster stages will finish processing before slower ones, the parallel system will only be as fast as its slowest stage. A common solution to this problem is to execute slow stages on faster processors, but load balancing can still be quite difficult. Another solution is to modify the mapping of software components to hardware processors and test each stage to get a similar speed. If it is not possible to balance the workload, performance that could potentially be obtained from a pipes and filters system may not be worth the programming effort [Pan96] [NHST94].
•  Synchronization is a potential problem of pipes and filters systems that is related to load balancing. If each stage causes delay during execution, this delay is spread through the following filters. Furthermore, if feedback to previous stages is used, there is a potential danger of deadlock [KSS96] which is noticed as the whole system slowing down after each operation.
•  Granularity (the ratio between processing time and communication time) of pipes and filters parallel systems is usually set medium or coarse. The main reason for setting the granularity of the pipes and filters system as medium to coarse is that the time consumed by a pipe component is less than the time consumed by a filter  component. If the time spent communicating tends to be greater than the time required to operate on the flow of data, the performance of the system decreases.
•  Pipes and filters systems can degenerate to the point where they become a batch sequential system: that is, each step processes all data as a single entity In this case, each stage does not incrementally process a stream of data. To avoid this situation, each filter must be designed to provide a complete incremental parallel transformation of input to output [SG96].
•  The most difficult aspect of pipes and filters systems in general is error handling. An error-reporting strategy should at least be defined throughout the system. However, concrete strategies for error recovery or handling depend directly on the problem to be solved. Most applications consider that if an error occurs, the system either restarts the pipe or ignores it. If none of these are possible, the use of alternative patterns, such as the Parallel Layers pattern, is advised.

 

Related Patterns

The Parallel Pipes and Filters pattern for parallel programming is presented in [OR98] and [Ort05] as an extension of the original Pipes and Filters pattern [POSA1] [POSA4] and the Pipes and Filters architectural style [Sha95] [SG96]. Other patterns that share a similar ordered transformation approach can be found in [PLoP1], especially the Pipes and Filters pattern and the Streams pattern. A similar approach to this type of parallel systems is the Pipeline pattern [MSM04]. Finally, a pattern that can be consulted for implementation issues using C++ is Pipeline Design [VBT95].




3.2 Parallel Layers 

The Parallel Layers pattern is an extension of the original Layers pattern [POSA1] [POSA4] [Sha95] [SG96] with elements of functional parallelism. In this type of parallelism, two or more components of a layer are able to exist simultaneously, normally performing the same operation. Components can be created statically, waiting for calls from higher layers, or dynamically, when a call triggers their creation.

 

Example: Single-Source Shortest Path Algorithm

Searching is defined as a systematic examination of a problem space from an initial state and finishing at a particular final state or states. Each of the intermediate states, between the initial and the final states, are reached by operating on a given state. Such an operation is determined by an objective function that assures iteration to the final state. Any search problem can be conveniently represented using a graph composed of a set of vertices and edges. Each edge has a positive integer weight that represents the distance between the  vertices it connects (Figure 3.6). The objective, therefore, is to search for the shortest path between the source vertex and the rest of the vertices.

Figure 3.6: An example of a typical graph
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The Single-Source Shortest Path (SSSP) algorithm was originally proposed by Dijkstra, and described later by Chandy and Misra [CM88]. It is an efficient algorithm for exhaustively searching in this kind of graph representation. The SSSP algorithm is applied in cycles. In a cycle, the algorithm selects the vertex with the minimum distance, marking it as having its minimum distance determined. On the next cycle, all unknown vertices (those vertices whose minimum distance to the others has not been determined) are examined to see if there is a shorter path to them via the most recently marked vertex. Algorithmically, the SSSP algorithm reduces the search time to O(N2), because N-1 vertices are examined on each cycle. Hence, N cycles are still required to determine the minimum distances.

A sequential approach considers that the graph is represented by an adjacency matrix A, whose elements represent the weight of the edges between vertices. In this approach, two additional data structures are used: a Boolean array knownVertices, to determine those vertices whose distance has been established, and an array recentVertices, which records recently established distances between source and vertices. The function minimumVertex ( ) returns the vertex with the shortest distance between two vertices. If one vertex is known, the other vertex is returned. It is assumed that minimumVertex ( ) cannot be used with two known vertices. The sequential pseudocode is shown in Figure 3.7.

Figure 3.7: Pseudocode of the sequential SSSP algorithm
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However, this algorithm can potentially be carried out more efficiently by:•  Using a group of parallel components that exploit the tree structure representing the search.
•  Simultaneously calculating the value minimum distance for each vertex, and only then computing and marking the overall minimum distance vertex.



Context

To start the design of a software program for a parallel software system using a particular programming language for specific parallel hardware, we need to consider the following constraints:•  The problem to be solved, expressed as an algorithm and data, is found to be an open-ended one, that is, involving tasks of a scale that would be unrealistic or not cost-effective for other systems to handle. Consider the SSSP algorithm example: since its execution time is O(N2), if the number of vertices is large enough, the whole computation grows enormously.
•  The parallel platform and programming environment to be used are known, offering a reasonably level of parallelism in terms of number of processors or parallel cycles available.
•  The programming language to be used, based on a specific paradigm such as object orientation, is determined, and a compiler is available for the parallel platform. Many programming languages have parallel extensions for many parallel platforms [Pan96], as in the case of C, which can be extended for a specific parallel computer or use libraries to achieve process communication [ST96]. The main objective is to execute the tasks in the most time-efficient way.



Problem

An algorithm is composed of two or more simpler sub-algorithms, which can be divided into further sub-algorithms, and so on, recursively growing as an ordered tree-like structure until a level is reached in which the sub-parts of the algorithm are the simplest possible. The  order of the tree structure (algorithm, sub-algorithms, sub-sub-algorithms etc.) is a strict one. Nevertheless, data can be divided into pieces that are not strictly dependent, and thus can be operated on at the same level in a more relaxed order. If the whole algorithm is performed serially, it could be viewed as a chain of calls to the sub-algorithms, evaluated one level after another. Generally, performance in terms of execution time is the feature of interest. Thus, how do we solve the problem (expressed as algorithm and data) in a cost-effective and realistic manner?

 

Forces

Considering the problem description, granularity and load balancing as elements of parallel design [Fos94] [CT92], the following forces should be considered:

•  The computation can be expressed as a tree structure of ordered sub-computations. For example, in the SSSP each minimum distance for each vertex is calculated using the same operation several times, but using different information per layer.
•  Data can be only shared among layers vertically. In the SSSP example, data is distributed throughout the sub-computations that compose the tree structure, which are able to perform their operation independently.
•  The same group of operations can be performed independently on different pieces of data. In the SSSP example, the same operation is performed on each subgroup of data to obtain its minimum distance from the lower layers. So, several distances can be obtained simultaneously.
•  Operations may be different in size and level of complexity. In the SSSP example, operations are similar from one layer to the next, but the amount of data processed tends to diminish.
•  Dynamic creation and destruction of components is preferred over static, to achieve load balancing. In the SSSP example, the creation of new components in lower layers can be used to extend the solution to larger problems.
•  Improvement in performance is achieved when execution time decreases. Our main objective is to carry out the computation in the most time-efficient way. The question is: how can the problem be broken down to optimize performance?

Solution

Use functional parallelism to execute the sub-algorithms, allowing simultaneous existence and execution of more than one instance of a layer component through time. Each of these instances can be composed of the simplest sub-algorithms. In a layered system, an operation involves the execution of operations in several layers. These operations are usually triggered by a call, and data is shared vertically among layers in the form of arguments for these function calls. During the execution of operations in each layer, the higher layers usually have to wait for a result from lower layers. However, if each layer is represented by  more than one component, they can be executed in parallel and service new requests. Therefore several ordered sets of operations can be carried out by the same system simultaneously. Several computations can be overlapped in time [POSA1] [POSA4] [Sha95].

 

Structure

In this architectural pattern different operations are carried out by conceptually independent entities ordered in the form of layers. Each layer, as an implicit level of abstraction, is composed of several components that perform the same operation. To communicate, layers use calls, referring to each other as components of some composed structure. The same computation is performed by different groups of functionally related components. Components simultaneously exist and process during execution time. An object diagram representing the network of components that follows the parallel layers structure is shown in Figure 3.7.

Figure 3.8: Object diagram of the Parallel Layers pattern
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Participants

Layer component. The responsibilities of a layer component are to allow the creation of an algorithmic tree structure. Hence, it has to provide a level of operation or functionality to the layer component above, while delegating operations or functionalities to the two or more layer components below It also has to allow the flow of data and results, by receiving data from the layer component above, distributing it to the layer components below, receiving partial results from these components and making a result available to the  layer component above. Each component is independent of the activity of other components. This makes it easy to execute them in parallel.

 

Dynamics

As parallel execution of layer components is allowed, a typical scenario can describe its basic runtime behavior. All layer components are active at the same time, accepting function calls, operating and returning or sending another function call to other components in lower-level layers. If a new function call arrives from the top layer component (Layer0), a free element from the first layer takes it and starts a new computation. The Parallel Layers pattern is used when it is necessary to perform a computation repeatedly as series of ordered operations.

The scenario presented here takes the simple case in which two computations, Computation 1 and computation 2, have to be performed. Computation 1 requires the operations Op.A, which requires the evaluation of Op.B, which in turn needs the evaluation of Op.C. Computation 2 is less complex than computation 1, but needs to perform the same operations Op.A and Op.B. Parallel execution is as follows (Figure 3.9):Figure 3.9: Sequence diagram for the Parallel Layers pattern
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•  Layer 0 calls a layer component A1 to perform computation 1. This component calls to a layer component B1, which similarly calls another layer component C1.  Both layer components A1 and B1 remain blocked, waiting to receive a return message from their respective sub-layers. This is the same behavior as the sequential version of the Layers pattern [POSA1] [POSA4].
•  Parallelism is introduced when layer 0 issues another call for computation 2. This cannot be serviced by A1, B1 and C1, since they are busy or blocked carrying out computation 1. Hence, another instance of the layer component, A2 - which can either be created dynamically or be waiting statically for requests - receives the call and calls another instance of layer component, B2, to service this call. Due to the homogeneous nature of the components of each layer, every component in a layer can perform exactly the same operation. That is precisely the advantage of allowing them to operate in parallel. Therefore, any component in layer B is capable of serving calls from components in layer A. As the components of a layer are not exclusive resources, it is in general possible to have more than one instance to serve calls. Coordination between components of different layers is based on a kind of client/server schema. Finally, each component operates with the result of the return message. The main purpose is that all computations are performed in a shorter time.



Implementation

This section describes an architectural approach to design in which hardware independent features are considered early and hardware-specific issues are delayed until later in the implementation process. This method structures the implementation process of parallel software based on four stages [Fos94] [CSG97]. During the first two stages, attention is focused on concurrency and scalability characteristics. In the last two stages, attention is aimed at task allocation and other performance-related issues. It is preferable to present each stage in the form of general considerations for design, instead of providing details about precise implementation. Implementation details are illustrated more precisely in the form of references to design patterns for concurrent, parallel and distributed systems of several other authors [Sch95] [Sch98a] [Sch98b] [POSA2].

•  Partitioning. Initially it is necessary to define the basic Layer pattern system which will be used with parallel instances: the processing to be performed is decomposed into a set of ordered operations that are hierarchically defined and related, which determines the number of layers. Following this decomposition, the component that is representative of each layer can be defined. For concurrent execution, the number of components per layer depends on the number of requests. Several design patterns have been proposed to deal with layered systems. Advice and guidelines for recognizing and implementing these systems can be found in [POSA1], [POSA4], [PLoP1] and [PLoP2]. Also consider the patterns used to generate layers, such as Active Object, Leader/Followers, Reactor, Proactor and Acceptor-Connector  [POSA2] [POSA4]. Other related patterns for developing the layer components are A Hierarchy of Control Layers [AEM95] and Layered Agent [KMJ96].
•  Communication. In this stage the communication required to coordinate parallel execution of layer components is determined by the services that each layer provides. Characteristics that should be considered carefully are the type and size of the shared data to be passed as arguments and return values, the interface for layer components and the synchronous or asynchronous coordination scheme. The implementation of communication structures between components depends on the features of the programming language used. Usually, if the programming language has defined the communication structures (for example, function calls or remote procedure calls), the implementation is very simple. However, if the language does not support communication between remote components, construction of an extension in the form of a communication subsystem may be needed. Design patterns can be used for this, particularly patterns like Broker [POSA1], Composite Messages [SC95], Service Configurator [JS96] [POSA2], Visibility and Communication between Control Modules, and Actions Triggered by Events [AEM95], which can help to define and implement the required communication structures. Chapter 4 includes two design patterns for communication components suitable for the design and implementation of communication between layer components: Multiple Local Call and Multiple Remote Call. These design patterns relate to several other patterns developed for designing and implementing communicating components.
•  Agglomeration. In this stage the hierarchical structure is evaluated with terms of its expected performance. Systems based on identical layer components usually present an adequate load balance. However, layer components can be refined by combination or decomposition of operations using the conjecture-test approach, if necessary, modifying their granularity to improve performance or to reduce development costs.
•  Mapping. In the best case, each layer component executes simultaneously on a different processor if enough processors are available, but usually this is not the case. One approach is to execute each hierarchy of layers on a processor, but if the number of requests is large, some layers would have to block, keeping the client(s) waiting. Another mapping approach attempts to place every layer on a processor. This simplifies the restriction about the number of requests, but if not all operations require all layers this may overload some processors, introducing load-balance problems. The most realistic approach seems to be a combination of both, trying to maximize processor utilization and minimize communication costs. In general, mapping of layers to processors is specified statically, allowing an internal dynamic creation of new components to serve new requests. As a rule of thumb, a system using Parallel Layers will perform best on a shared-memory machine, but good performance can be achieved if it can be adapted to a distributed memory system with a fast communication network [Pan96] [Pfi95].

Example Resolved

The potential parallelism for the SSSP algorithm is explained as follows. On each cycle, the distance to the current vertex is compared with the distance between the vertex and the last known vertex, and the minimum is established as the new distance. This depends only on the graph array A. The minimum distance for each vertex, hence, is obtained and marked. Having N processing components, this algorithm would run in O(Nlog2N). N- 1 cycles are required to obtain the minimum of all vertices. However, each cycle requires only one step to update the minimum for each vertex and O(log2N) steps to get the overall minimum vertex. To move to a parallel solution, we must determine two things: (a) the communications network topology that will be used, and (b) what information will be stored on the processors and what will be passed as messages.

•  Partitioning. Both communication and processing of a minimum can be done in  O(log2N) steps by using a cubic array of processing components. In such an arrangement, each component obtains its minimum distance, then half of the components select the minimum distance between a neighbor and itself in one dimension (Figure 3.10). Half of these components then select a minimum, until the root component selects the global minimum distance vertex. Communication and selecting the minimum can be done in O(log2N) time, assuring an overall  O(Nlog2N) performance.
Figure 3.10: Object diagram of the tree representation for the SSSP algorithm
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•  Communication. The communication for N processing components has to consider how to distribute data over the network of processing components. This is done by reviewing the processing of a root and its child components, and determining what data must be available for such processing. The root component PO chooses which of the two vertices has the shorter unknown distance. So, it must know which vertices have their distances marked (the array knownVertices), and the distance and identity of the vertices being compared. The child components  must compare their current vertex distance to the distance between the last known vertex and themselves. Thus, they must know the original graph A and the distance and identity of the last known vertex. Moreover, some child components obtain the minimum between two vertices, so they also need to know which of the vertices are known. The basic data exchanged between components is, then, the identifier of the vertex and its most recent distance. This data is used to calculate the minimum distance vertex and to determine which vertex has been marked as a known vertex. Thus, messages are two-element arrays: the vertex identifier and a distance. Since each message is distributed to all vertices, each process can keep track of which vertices are known. Thus, they should store and update the array knownVertices locally. Notice that the graph A is not changed during the operation, but it must be distributed to all processing components and stored locally before any operation starts.Figure 3.11: A 3D-cube of processors
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Finally, the function minimumVertex () no longer has access to the array recentVertices to search for the distances of the vertices being compared. The parameters must be modified so that the distances of the vertices being compared are passed as well as the vertex identifiers. Communications can be designed and implemented using the Multiple Local Call pattern and the Multiple Remote Call pattern. These design patterns have been developed for communication components between layer components.


•  Agglomeration and mapping. Using a 3D-cube of processes for the parallel program (Figure 3.11), the pseudocode for synchronizing and communicating  between the root processing component and the remaining processing components would be as those shown in Figure 3.12 and Figure 3.13 respectively.

Figure 3.12: Pseudocode for the root processing component (processing component 0)
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Figure 3.13: Pseudocode for the child processing components
(processing components k)
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Synchronization is achieved by the links between processing components. Thus processing component 3 cannot obtain the minimum distance vertex between processing component 7 and itself until processing component 7 has sent its distance. Once this is done, it sends the distance to processing component 1, which in turn waits until this message is received to obtain the minimum between processing components 3 and 1.

 

Known Uses

•  The homomorphic skeletons approach, developed from the Bird — Meertens formalism and based on data types, can be considered as an example of the Parallel Layers pattern: individual computations and communications are executed by replacing functions at different levels of abstraction [ST96].
•  Tree structure operations like search trees, in which a search process is created for each node. Starting from the root node of the tree, each process evaluates its associated node, and if it does not represent a solution, recursively creates a new search layer composed of processes that evaluate each node of the tree. Processes are active simultaneously, expanding the search until they find a solution in a node, report it and terminate [Fos94] [NHST94].
•  The Gaussian elimination method, used to solve systems of linear equations, is a numerical problem that is solved using a Parallel Layers structure. The original system of equations, expressed as a matrix, is reduced to a triangular form by performing linear operations on the elements of each row as a layer. Once the triangular equivalent of the matrix is available, other arithmetic operations must be performed by each layer to obtain the solution of each linear equation [Fos94].

Consequences

 

Benefits

•  The Parallel Layers pattern, like the original Layers pattern, is based on increasing levels of complexity. This allows the partitioning of the processing of a complex problem into a sequence of incremental, simple operations [SG96].
•  Allowing each layer to be presented as multiple components executing in parallel allows the computation to be performed several times, enhancing performance.
•  Changes in one layer do not propagate across the whole system, as each layer interacts at most with only the layers above and below. Furthermore, standardizing the interfaces between layers usually confines the effect of changes exclusively to the layer that is changed [POSA1] [POSA4] [SG96].
•  Layers support reuse. If a layer represents a well-defined operation and communicates via a standardized interface, it can be used interchangeably in multiple contexts.
•  A layer can be replaced by a semantically equivalent layer without great programming effort [POSA1] [POSA4] [SG96].
•  Granularity depends on the level of complexity of the operation that the layer performs. As the level of complexity decreases, the size of the components diminishes as well.
•  Because several instances of the same computation are executed independently on different data, synchronization issues are restricted to the communications within a single computation.
•  Relative performance depends only on the level of complexity of the operations to be computed, since all components are active [Pan96].

Liabilities

•  Not every system computation can be efficiently structured as layers. Considerations of performance may require strong coupling between high-level functions and their lower-level implementations. Load balance among layers is also a difficult issue for performance [SG96] [Pan96].
•  In many cases a layered system is not as efficient as a structure of communicating components. If services in the upper layers rely heavily on the lowest layers, all data must be transferred through the system. Also, if lower layers perform excessive or duplicate work, there is a negative influence on performance. In some cases it is possible to consider a Pipe and Filter architecture instead [POSA1].
•  If an application is developed using layers, a lot of effort must be expended in trying to establish the right levels of complexity, and thus the correct granularity of different layers. Too few layers do not exploit the potential parallelism, but too many introduce unnecessary communications overheads. Determining the  granularity and operation of layers is difficult, but is important for the performance quality of the system [POSA1] [POSA4] [SG96] [NHST94].
•  If the level of complexity of the layers is not optimal, problems can arise when the behavior of a layer is modified. If substantial work is required on many layers to incorporate an apparently local modification, the use of a layered model can be a disadvantage [POSA1].

 

Related Patterns

The Parallel Layers pattern is presented in [OR98] and [Ort07a] extending the original Layers pattern [POSA1] [POSA4] and the Layers style [Sha95] [SG96] for parallel systems. Several other related patterns are found in [PLoP1], specifically A Hierarchy of Control Layers, Actions Triggered by Events and those under the generic name of Layered Service Composition. The Divide and Conquer pattern [MSM04] describes a very similar structural solution to the Parallel Layers pattern. However, its context and problem descriptions do not cope with the basic idea that, to guide the use of parallel programming, it is necessary to analyze how best to divide the algorithm and/or the data to find a suitable partitioning and link it with a programming structure that allows for such a division.




3.3 Communicating Sequential Elements 

The Communicating Sequential Elements pattern is a domain parallelism pattern in which each component performs the same operations on different pieces of data. Operations in each component depend on partial results in neighbor components. This pattern is normally conceived as a logical structure that reflects the particular order of the data present in the problem [OR98] [Ort00].

 

Example: Heat Equation

Heat is a level of energy present in any physical body, perceptible by its temperature. However, even though an average temperature can be measured, in general heat is not evenly distributed throughout the body. Observing more carefully, it is noticeable that in different parts of the body it is possible to find different temperatures, and hence different levels of heat. Moreover, these different temperatures vary through time, tending to increase or decrease depending on the interchange of heat between parts of the body. Thus different parts of the body show different temperatures, determining a particular heat distribution at different times.

In physical and engineering areas, this distribution of heat is particularly important in determining particular thermal properties of materials. The main objective is to obtain a proper representation of the values of the variables as they change through time, to allow scientists and engineers to analyze such thermal properties efficiently. The difficulty of  this problem lies in the time required to operate on a large number of data items and the number of operations per data item.

For example, consider the simplest case, in which the heat equation is used to model the heat distribution in a one-dimensional body, a thin substrate such as a wire, divided into n segments representing different temperatures (Figure 3.14).

Figure 3.14: An example of a wire divided into n segments with different temperatures
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Heat diffusion is modeled using a function representing temperature variations that depends on time and position in the body. This function is obtained as the solution of a differential equation, known as the Heat Equation [GBD+94]. For this example, a function A(t,x) represents the heat diffusion through the wire.

A simple method developed for deriving a numerical solution to the Heat Equation is the method of finite differences. The finite differences method cuts the length of the wire into equal parts of length Δx, and divides the time in discrete segments of length Δt. Approximating the continuous Heat Equation by its values at the endpoints of the segments at the discrete time points 0, Δt, 2Δt ..., the discrete form for obtaining the heat distribution at the following time step is:[image: 036]



where i represents time steps and j represents the position of segments in the wire. The initial and boundary conditions needed to solve the difference equation numerically are:A(t,0) = 0,A(t,1) = 0 ∀t
 A(0,x) = sin(πx) for 0 ≤ x ≤ 1





The numerical solution is now computed simply by calculating the value for each segment  j at a given time step i, considering the temperature from both its previous and its next segments. The total time required to execute this numerical solution sequentially depends directly on the number of segments and the number of time steps needed to describe the heat distribution through time. The larger number of segments and number of time steps, the longer it takes to compute the solution. A sequential approach that obtains a single temperature value for each segment at each time step is not the most time-efficient  way to compute the heat diffusion. However, we can potentially carry out this computation more efficiently by (a) using a group of parallel components that exploit a one-dimensional logical structure representing the wire, and (b) calculating simultaneously at a given time step the value of A(i+1, j) for all segments.

 

Context

To start the design of a software program for a parallel software system using a particular programming language for specific parallel hardware, we need to consider the following constraints:•  The problem involves tasks of a scale that would be unrealistic or not cost-effective for other systems to handle and lends itself to a solution using parallelism. Consider the Heat Equation example: suppose it is necessary to obtain the temperature values for a wire divided into 1000 segments, considering time steps of 5 milliseconds, during a time frame of 10 seconds. The total number of operations required is 2000000.
•  The parallel platform and programming environment to be used are known, offering a reasonable match for the problem at hand and a level of parallelism in terms of number of processors or parallel cycles available.
•  The programming language is determined, and a compiler is available for the parallel platform. Many programming languages have parallel extensions or libraries for many parallel platforms [Pan96], as is the case of C, which has been extended for a particular parallel computer, using libraries for communication [ST96]. The main objective is to execute the tasks in the most time-efficient way.



Problem

A parallel computation is required that can be performed as a set of operations on regular data. Results cannot be constrained to a one-way flow among processing stages: each component executes its operations influenced by data values from its neighboring components. Because of this, components are expected to exchange data intermittently. Communications between components follows fixed and predictable paths.

In the Heat Equation example a one-dimensional body, a wire, can be represented as a data structure in which the temperature of a segment influences the temperature on adjacent segments and, to a different extent, those on either side. Over time, the effects propagate to other segments extending in both directions: even the source segment may experience fluctuations due to temperature changes from neighboring segments. If this example were executed serially it would require the whole computation to be performed across every piece of the entire data structure to obtain some intermediate state, when a new iteration would begin.

 

Forces

Considering the problem description, granularity and load balancing as elements of parallel design [Fos94] [CT92], the following forces should be considered:•  The precise order of data distributed among processing elements must be preserved. This order provides the basis for result interpretation. In the Heat Equation, for example, it is important to control where and when temperature changes happen by locating them by segment and time step. This allows the expected change in values over time to be observed.
•  Computations must be performed semi-autonomously on local pieces of data. The objective is to obtain the best possible benefit from domain parallelism. In the Heat Equation example, the wire is divided into segments so that they can be operated on as autonomous ‘sub-wires’: with similar properties to the original wire, but on a smaller scale.
•  Every element performs the same operations in number and complexity. In the Heat Equation example, the same operation must be performed on each segment to obtain its temperature at the next time step. All segments are operated on simultaneously.
•  Partial results must be communicated among neighbor processing elements. The reason is that operations on each element are influenced by partial results from its neighboring elements. In the Heat Equation example, the temperature of a segment at the next time step (A(i+1,j)) results from calculating the temperature of the segment at a present time (A(i,j)) with the temperatures from its previous and next segments (A(i,j-1) and A(i,j+1) respectively.
•  Improvement in performance is achieved when execution time decreases. Our main objective is to carry out the computation in the most time-efficient way.



Solution

Parallelism is introduced as multiple participating concurrent components, each one applying the same operations on a data subset. Components communicate partial results by exchanging data, usually through communication channels. No data objects are directly shared among components, but each one may access only its own private data subset.

A component communicates by sending data objects from its local space to another. This communication is normally asynchronous, considering the exchange of a single data object or a stream of data objects in a one-to-one, one-to-many, many-to-one or many-to-many fashion. Often the data of the problem can be conceived in terms of a regular logical structure. The solution is presented as a network that may reflect this logical structure in a natural form that mimics the domain of the problem [CG88] [Sha95] [Pan96].

 

Structure

In this architectural pattern the same operation is applied simultaneously to different pieces of data. However, operations within each element depend on the partial results of operations in other components. The structure of the solution involves a regular logical structure, conceived from the data structure of the problem. The solution is therefore presented as a network of elements that follows the shape imposed by this structure. Identical components simultaneously exist and process during the execution time. Consider our Heat Equation example. An object diagram, representing the network of elements that follows the one-dimensional shape of the wire and its division into segments, is shown in Figure 3.15, along with an array of processing components that can be used for a two-dimensional case.

Figure 3.15: Object diagram of communicating sequential elements for
(a) the one-dimensional case, and (b) the two-dimensional case
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Participants

•  Sequential element. The responsibilities of a processing element are to perform a set of operations on its local data and to provide a general interface for sending and receiving messages to and from other elements. In the Heat Equation example, identical sequential elements are expected to perform the actual heat calculations and to communicate partial results, exchanging values with their neighbors.
•  Communication channels. The responsibilities of a communication channel are to provide a medium for sending and receiving data between elements and to synchronize communication activity between them. In the Heat Equation problem, channels are expected to handle the communication and synchronization of temperature values through neighboring elements.

Dynamics

This section presents a typical scenario that describes the basic runtime behavior of this pattern, in which all the sequential elements are active at the same time. Every sequential element performs the same operations as a piece of a processing network. In the most simple case (a one-dimensional structure), each one communicates only with its previous and next element (Figure 3.16).

The processing and communicating scenario is as follows:•  Initially, all components Element E[N-1], Element E[N], Element E[N+1] etc. read different sub-sets of data. Then, every component communicates its edge data through the available communication channels (here Channel A and Channel B). Then all components synchronize and receive the edge data from their previous and next neighbors.
•  The computation is started when all components Element E[N-1], Element E[N], Element E[N+1] etc. perform Op.1 at the same time.
•  To continue the computation, all components send their partial results through the available communication channels (here Channel A and Channel B). Then all components synchronize again and receive the partial results from their previous and next neighbors.
•  Once synchronization and communications are finished, each component continues computing the next operation (in this case Op.2). The process repeats until each component has finished its computations.



Implementation

An architectural approach to design is described below, in which hardware independent features are considered early and hardware-specific issues are delayed until later in the implementation process. This method structures the implementation process of parallel software based on four stages [Fos94] [CSG97]. In the first two stages attention is focused on concurrency and scalability characteristics: in the last two stages, attention is aimed at task allocation and other performance-related issues. It is better to present each stage as general considerations for design instead of providing details about precise implementation. Implementation details can be found in references to design patterns for concurrent, parallel and distributed systems from several other authors [Sch95] [Sch98a] [Sch98b] [POSA2].

 Figure 3.16: Sequence diagram for the communicating sequential elements
for the one-dimensional case
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•  Partitioning. In general, partitioning is concerned with analyzing the data structure and algorithm used, searching for a potential parallelism. However, because the Communicating Sequential Elements pattern deals with domain parallelism, the regular logical structure of data is a natural candidate for straightforward decomposition into a network of data substructures or pieces. In general, we can initially consider dividing the data structure into a set of data pieces in an arbitrary way, as the regular logical structure is usually considered ‘homogeneous’ (that is, all its parts expose the same properties), and its importance relies only on its order.  Data pieces may therefore have different sizes and shapes. However, as we are aiming for efficient computation, we normally divide the regular data structure into a set of data pieces with similar size and shape. The objective is to balance the processing load among all the sequential elements. Trying to expose the maximum concurrency, we define a basic sequential element that processes a unique sequence of operations on its assigned piece of data. We devise this basic sequential element to perform the same operations on different data pieces, so that all sequential elements share the same processing nature and structure. Hence, computations on each sequential element present the same complexity per time step, and the total number of sequential elements is equal to the number of data pieces. Therefore, a sequential element is represented as a single processing element (for instance, a process, task, function, object etc.) or a subsystem of processing elements, which may be designed using design patterns [GHJV95] [POSA1] [POSA4] [PLoP1] [PLoP2]. Some design patterns that can be considered for implementing sequential elements are Active Object [LS95] [POSA1] [POSA4], Leader/Followers, Reactor, Proactor, Acceptor-Connector [POSA2] [POSA4] and “Ubiquitous Agent” [JP96].
•  Communication. Communication issues are related to the way in which processing components exchange messages. In the particular case of the Communicating Sequential Elements pattern, the sequential elements are connected using communication channels to form a network that follows the shape of the data structure. Each sequential element is expected to exchange partial results with its neighbors through channels. Thus channels must perform data exchange and coordinate the operation of the element’s execution appropriately. Efficient communication depends on the amount and format of the data to be exchanged and the synchronization scheme used. Both synchronous and asynchronous schemes can be found in several domain-parallel systems. However, an asynchronous scheme is commonly preferred for this pattern: this is because all sequential elements are designed to perform the same operation on the same amount of data during a time step, but during data exchange they should communicate it asynchronously.An important issue to consider here is how communication channels are defined. In general, this decision is linked with the programming language used. Some languages define a data type of ‘channel’ through which it is possible to send and receive values. Any sequential element is defined to write on the channel and to read from it, and no further implementation is necessary. Other languages do not define a channel type or precise ways of data exchange, so we must design and implement channels in a way that allows data exchange between elements. As the use of channels depends on the language, refinement of their implementation can be delayed to later design stages. From an architectural point of view channels are defined, whether they are implicit in the language or whether they must be explicitly created. Design patterns that can help with the implementation of channels are Composite Messages [SC95] and Service Configurator [JS96].  Chapter 4 presents two design patterns for the design and implementation of channel components: Shared Variable Channel and Message Passing Channel, which are also related to other patterns developed for bidirectional communicating software components.


•  Agglomeration. In this stage the structure of sequential elements and channels defined in previous stages are evaluated in terms of their performance. In this kind of structure, agglomeration often is directly related to the way in which data is divided between the sequential elements — that is, the data granularity. As each sequential element performs the same operations, changes in the granularity involve only the number of data pieces in the network that are processed by each component. In the case of this pattern, performance is impacted due to redundant communications and the amount of communications in a dimension or direction.
•  Mapping. In this stage components are assigned to real processors. Mapping can be done statically or dynamically, depending directly on hardware availability and characteristics. In the most optimistic case, each sequential element is assigned to a single processor. However, the number of processors is usually less than the number of processing elements, so a number of processing elements must be assigned to a processor. To maximize processor utilization and minimize communication costs, the important feature to consider is load balance. In domain parallelism, computational efficiency decreases due to load imbalances. If the design is to be used extensively, it is worth trying to improve its load balance. Approaches to this include cyclic mapping and dynamic mapping. As a rule of thumb, systems based on the Communicating Sequential Elements pattern normally performs best on an SIMD (single-instruction, multiple-data) computer, if array operations are available. However, if the computations are relatively independent, respectable performance can be achieved using a shared-memory system [Pan96].

Example Resolved

In this section the Heat Equation example is developed as a numerical solution by using a representation of parallel components that reflects the one-dimensional logical structure of the wire, simultaneously calculating the value of A(i+1,j) for all segments in a given time frame. The main idea is that data representing the heat (temperature) in the wire is divided and assigned to a group of communicating elements. In general, elements carry out computations on pieces of data, and channels only allow exchange of data from the boundaries (Figure 3.17).

The channels at both extremes just keep track of the values at the extremes: every communicating element has two channels for simplicity.

For this example the C programming language has been used to implement the participants, extending it with PVM libraries that allow the creation of processing software components and different methods of communication and synchronization [GBD+94].

Figure 3.17: Object diagram for the Heat Equation problem,
dividing the wire into n segments and assigning them to n sequential elements
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•  Partitioning. The Communicating Sequential Elements pattern is used to obtain a coordination structure that deals with the Heat Equation problem, describing the actual processing as a cooperation between identical sequential elements that perform calculations and communicate partial results, exchanging values through channels with their neighbors. As the actual heat calculations are done in the sequential elements, their pseudocode is described first. The prototype of an element for the Heat Equation example is shown in Figure 3.18.
Figure 3.18: Pseudocode for the sequential element processing components
(processing components k) for the Heat Equation problem
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•  Communication. During initialization, on invocation of the constructor for the class, each element establishes connection with its neighbors through the channels  previous and next, which refer to the previous and next sequential element. Channels handle the communication and synchronization of temperature values through neighboring elements. So the pseudocode presents the key functions send  and receive, which provide and retrieve temperature values to and from neighboring sequential elements, reading and writing them to their neighbors (Figure 3.19). Design patterns suitable for designing and implementing the communication components of a Communicating Sequential Elements parallel program are Shared Variable Channel and Message Passing Channel.
Figure 3.19: Pseudocode for the channel processing components
(channel components k) for the Heat Equation problem
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•  Agglomeration and mapping. Figure 3.20 shows the pseudocode of the main function for a Communicating Sequential Elements system. This function initiates and manages synchronization of the software components. Each element is given two pointers to channels for exchanging partial results with its neighbors. A non-blocking function call to startWork is then made to each software component, which starts them. Once all elements are active, a blocking function call to blockWait is sent to each of them after the loop for startWork calls is finished,  allowing all elements to complete their computations. The final loop requests all elements to print their results. The actual program is developed in C and executed on a PVM environment [GBD+94] using a cluster of computers.

Figure 3.20: Pseudocode for the main function of a one-dimensional Heat Equation
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Known Uses

•  The one-dimensional wave equation, used to numerically model the motion of vibrating systems, is another example of an application suitable for the Communicating Sequential Elements pattern. The vibrating system is divided into sections in which each processing element is responsible for the computation of the position of a section at any moment. Each computation depends only on partial results of the computation of neighboring sections. Thus each computation can be done independently, except when data is required from the previous or next sections [NHST94].
•  Simulation of dynamic systems, such as an atmosphere model, is another use of Communicating Sequential Elements. The model usually is divided into a rectangular grid of blocks that represent a cubic section of atmosphere. The simulation proceeds in a series of time steps in which each processing element computes and updates the temporal state of a block with data from the previous state and updates from the state of neighboring blocks. Integrating the time steps and the blocks makes it possible to determine the state of the dynamic system at some future time based on an initial state [Fos94].
•  Image processing problems, such as the component labeling problem. An image is given as a matrix of pixels, and each pixel must be labeled according to a specific property, such as its connection to other pixels. The image is divided in sub-images and mapped to a network of processing elements. Each processing element tests for connection, labeling all the non-edge pixels of its sub-image. Edge pixels between sub-images are labeled by cooperation between the two respective processing elements [Fos94].

Consequences

 

Benefits

•  Data order and integrity is guaranteed because each sequential element only accesses its own local data subset and no data is shared among components [SG96] [ST96].
•  As all sequential elements share the same functional structure, their behavior can be modified or changed without excessive effort [SG96] [ST96].
•  It is relatively easy to structure the solution in a transparent and natural form as a network of elements, reflecting the logical structure of data in the problem [CG88] [Sha95] [Pan96].
•  As all components perform the same computation, granularity is independent of functionality, depending only on the size and number of the elements into which the data is divided. This is easily to change if better resolution or precision is required.
•  This pattern can be used on most hardware systems, considering the synchronization between elements as the main restriction (see Liabilities below) [Pan96].

Liabilities

•  The performance of systems based on communicating elements is significantly impacted by the global or local communication strategy used. Usually there are not enough processors available to support all elements. To calculate an overall final result, each processor operates on a subset of the data. Dependencies between data, expressed as communications, can therefore slow down program execution [Fos94] [Pan96].
•  Load balancing is hard when using this pattern. Often data is not easily divided into same-size subsets, so that processing load varies between different processors. To maintain synchronization, fast processors must wait until slower ones catch up before computation can proceed to the next set of operations. Inadequate load balancing impacts strongly on performance, and theoretically identical processors can vary in speed, so the decision to use this pattern should be based on how uniform in every aspect the system can be [Pan96]. 
•  The synchronous characteristic of a parallel software system determines its efficiency. If the system is synchronous, a significant amount of effort is required to achieve a minimal increment in performance. If it is asynchronous, it is more difficult to parallelize, and the effort probably will not be worthwhile unless communications between processors are very infrequent [Pan96].

Related Patterns

The Communicating Sequential Elements pattern was originally proposed in [OR98] and [Ort00] based on the original concept of Communicating Sequential Processes (CSP) [Hoa78] [Hoa85]. Patterns related to this processing approach are the “Ubiquitous Agent” design pattern [JP96] and Visibility and Communication Between Agents [ABM95]. A similar approach to this type of parallel system is the Geometric Decomposition pattern [MSM04], which describes a structural solution very similar to Communicating Sequential Elements. However, the context and problem descriptions of the Geometric Decomposition pattern do not provide an analysis of how to partition the data and thus link it with a programming structure that allows for such a division.




3.4 Manager-Workers 

Manager-Workers is a variant of Master-Slave [POSA1] [POSA4] for parallel systems, considering an activity parallelism approach in which both algorithm and date are divided and the same operations are performed on ordered data. The variation is based on the fact that components of this pattern are proactive rather than reactive [CT92]: each processing component performs the same operations simultaneously and independently of the processing activity of other components. However, it is important for the order of data to be preserved [Ort04] [OR98].

 

Example: the Polygon Overlay Problem

In the polygon overlay problem the objective is to obtain the overlay of two rectangular maps, A and B, each covering the same area that is decomposed into a set of non-overlapping rectangular polygons. This kind of problem frequently arises in geographical information systems, in which the first map might represent, for example, soil type, and the second vegetation. Their overlay shows how combinations of soil type and vegetation are distributed. Overlaying both maps creates a new map consisting of the non-empty polygons in the geometric intersection of A and B. To simplify this problem, all polygons are non-empty rectangles with vertices on a rectangular integer grid of N x M (Figure 3.21). Input maps also have identical extents, so that each be covered completely by its rectangular decomposition, and the data structures representing the maps is small enough to fit  into physical memory. The output map is not required to be sorted, although all of the input maps used in this example are usually sorted by lower-left corner [WL96].

Figure 3.21: The polygon overlay problem for two maps, A and B
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Normally the sequential solution goes through all the polygons belonging to A, and for each of them finds all the intersections with any polygon in B. This is an effective solution, although it is a rather slow one. However, since the overlay of a pair of polygons can be performed independently of the overlay of other polygons, it is possible to take advantage by obtaining intersections simultaneously.

 

Context

 

To start the design of a software program for a parallel software system using a particular programming language for specific parallel hardware, we need to consider the following constraints:•  The problem involves tasks of a scale that would be unrealistic or not cost-effective for other systems to handle and lends itself to a solution that uses parallelism. In the polygon overlay problem, for example, the time required to carry out the complete operation depends directly on the number, size and position of all the polygons, and so their overlay may take a long time to calculate.
•  The parallel platform and programming environment to be used offers a reasonable fit for the problem and a suitable level of parallelism in terms of number of processors or parallel cycles available.
•  The programming language is determined and a compiler is available for the parallel platform. Many programming languages have parallel extensions or libraries for many parallel platforms. The main objective is to execute the tasks in the most time-efficient way.



Problem

The same operation needs to be performed repeatedly on all the elements of an ordered data set. Nevertheless, data can be operated on without specific order. It is important, however, to preserve the order of data. If the operation is carried out serially, it should be  executed as a sequence of serial jobs, applying the same operation to each datum one after another. Generally, performance, in terms of execution time, is the feature of interest, so the goal is to take advantage of potential simultaneity to carry out the whole computation as efficiently as possible.

 

Forces

The following forces should be considered:•  The order of data should be preserved. However, the specific order of operation on each piece of data is not fixed. In the polygon overlay problem all the polygons within each map have to be considered during calculation of the overlay. However, the order on which the polygons are to be operated is not restricted.
•  The operation can be performed independently on different pieces of data. In the polygon overlay problem, a polygon from map A can be overlaid with any polygon from map B without conflicting with another possible overlay operation between polygons from both maps.
•  Data pieces may have different sizes. This means that the independent computations on the pieces of data should adapt to the data size to be processed, to obtain automatic load balancing. The polygons of map A and map B in the polygon overlay problem have different sizes, yet they must be overlaid. The overlay operation should therefore be such that it accepts any two polygons regardless of their size.
•  The solution must scale over the number of processing elements. Changes in the number of processing elements should be reflected in the execution time. In the polygon overlay problem, the more simultaneous overlays are performed, the faster execution becomes.
•  Mapping the processing elements to processors must take the interconnection among the processors of the hardware platform into account. A cluster of computers will be used for the polygon overlay example.



Solution

Introduce activity parallelism by processing multiple data sets at the same time. The most flexible representation of this is the Manager-Workers pattern. This structure is composed of a manager component and a group of identical worker components. The manager is responsible for preserving the order of data. Each worker is capable of performing the same processing on different pieces of data independently They repeatedly seek a task to perform, perform it and repeat: when no tasks remain, the program is finished. The execution model is the same irrespective of the number of workers, of which there must of course be at least one. If tasks are distributed at runtime, the structure is naturally load balanced: while a worker is busy with a long task, another may perform several shorter  tasks. This distribution of tasks at runtime copes with the fact that data pieces may exhibit different size.

To preserve data integrity, the manager monitors what parts of the data have been operated on and what remain to be computed by the workers [POSA1] [POSA4] [CG88] [Pan96] [CT92]. The manager component can optionally be an active software component, to deal with data partitioning and gathering, enabling such tasks to be done concurrently while receiving data requests from the workers. Manager operations therefore need capabilities for synchronization and blocking. Moreover, the manager could be also responsible for hardware mapping as well, in addition to starting the appropriate number of workers. Mapping requires both experience and experimentation at execution time, but performing the mapping to a predetermined policy can be considered as another responsibility of the manager.

 

Structure

The Manager-Workers pattern is composed of a manager and one or several workers. Workers act as processing components: usually only one manager and several identical worker components exist and process simultaneously during execution time. In this pattern the same operation is applied simultaneously to different pieces of data by worker components. Conceptually, workers have access to different pieces of data and operations in each worker component are independent of operations in other components. The solution is structured as a central manager which distributes data among the workers, controlling them, while preserving the order of data and results. Therefore, the solution is presented as a centralized network, the manager being the central common component.  Figure 3.22 shows an object diagram that represents the network of elements in a Manager-Workers structure.

Figure 3.22: Object diagram of the Manager-Workers pattern
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Participants

•  Manager. The responsibilities of a manager are to create a number of workers, to partition work among them, to start up their execution and to compute the overall result from the sub-results obtained from the workers. 
•  Worker. The responsibility of a worker is to seek a task and to perform its processing in the form of the set of operations required.

Dynamics

This section presents a typical scenario to describe the runtime behavior of the Manager-Worker pattern in which all participants are active simultaneously. Every worker performs the same operation on its available piece of data. As soon as it has finished processing it returns a result to the manager and asks for more data. Communication is restricted to that between the manager and each worker: no communication between workers is allowed (Figure 3.23).

Figure 3.23: Sequence diagram for the Manager-Workers pattern
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In this scenario, the steps to perform a set of computations is as follows:•  All participants are created and wait until a computation is required of manager M. When data is available, manager M divides it, sending data pieces by request to each waiting worker Wi. 
•  Each worker Wi receives the data and starts processing an operation Op. on it. This operation is independent of the operations of other workers. When worker Wi  finishes processing, it returns a result to manager M, then requests more data. If there is still data to be operated on, the process repeats.
•  Manager M is usually replying to requests for data from the workers or receiving their partial results. Once all data pieces have been processed, manager M  assembles a total result from the partial results and the program finishes. Any unserviced requests for data from workers are ignored.



Implementation

An architectural approach to design is described below in which hardware-independent features are considered early and hardware-specific issues are delayed until later in the implementation process. This method structures the implementation process of parallel software based on four stages [Fos94] [CSG97]. In the first two stages attention is focused on concurrency and scalability characteristics: in the last two stages, attention is focused on task allocation and other performance-related issues. It is better to present each stage as general considerations for design instead of providing details about precise implementation. Implementation details can be found in references to design patterns for concurrent, parallel and distributed systems from several other authors [Sch95] [Sch98a] [Sch98b] [POSA2].

•  Partitioning. The data to be operated on is decomposed into a set of data pieces. This partitioning of ordered data is a clear opportunity for parallel execution and is used to define the data partitioning and gathering activity of the manager component. The common processing to be performed on different data pieces is used to define the structure of each of the worker components. Sometimes the manager is also implemented so that it can perform computation on data pieces as well. The structure of the manager can usually be reused if it is designed to deal with different data types and sizes, restricting its behavior to division, delivery and gathering of data pieces to and from the worker components. It is possible to implement either manager or workers using a single sequential component approach (for example a process, task, function, object, etc.), or to define a set of components that perform manager or worker activities. Concurrency among these components can usually be used, defining different interfaces for different actions. Design patterns [GHJV95] [POSA1] [POSA4] [PLoP1] [PLoP2] can help with the definition and implementation of such interfaces. Patterns that can help particularly with the design and implementation of the manager and worker components are Active Object [LS95] [POSA1] [POSA4], which allows the creation of manager and workers able to execute concurrent operations on data, Leader/Followers, Reactor and Component Configurator [POSA2] [POSA4], also known as Service Configurator [JS96], which allows linking and unlinking of worker implementations at runtime where they are allowed to be created or  destroyed dynamically in a particular application. Other design patterns that may provide information about the implementation of worker components are Proactor, Acceptor-Connector [POSA2] [POSA4], “Ubiquitous Agent” [JP96] and Object Group [Maf96].
•  Communication. The communication structure that coordinates the execution of the manager and worker should be defined. As workers are allowed to communicate only with the manager to obtain more work, defining an appropriate communication structure between manager and worker components is a key task. The communication structure should allow interactions between the manager and each worker to request data and, once processed, deliver it to the manager. Important parameters to consider are the size and format of data, the interface to service a request for data and the synchronization criteria. In general synchronous coordination is commonly used in Manager-Worker pattern systems, although the implementation of communication structures depends on the programming language used.In general, if the language contains basic communication and synchronization instructions, communication structures can be implemented relatively easily following the single element approach in which a single file provides the implementation for the whole communication component. However, if it is possible to reuse the design in more than one application, it may be convenient to consider a more flexible approach using configurable communication subsystems for the exchange of different types and sizes of data. Design patterns can help to support the implementation of these structures, in particular Composite Messages [SC95], Service Configurator [JS96] [POSA2] and Visibility and Communication Between Control Modules and Client/Server/Service [AEM95] [ABM95]. Chapter 4 includes a couple of design patterns for communication components that are used to design and implement the communication components between manager and workers, Local Rendezvous and Remote Rendezvous.


•  Agglomeration. The data division and communication structure defined previously are evaluated in terms of performance requirements. If necessary, the size of data pieces is changed, modifying the granularity of the system. Data pieces are combined into larger or divided into smaller pieces to improve performance or to reduce communication costs. Due to the inherent characteristics of this pattern, processing is automatically balanced among the worker components, but granularity is modified to balance processing between manager and workers. If the operations performed by the workers are simple enough and workers receive relatively small amount of data, they may remain idle while the manager is busy trying to serve their requests. On the other hand, if worker operations are too complex, the manager will have to use a buffer for pending data to be processed. Load balance between manager and workers can be achieved by modifying the granularity of data division. 
•  Mapping. In the optimum case the hardware allows each component to be assigned to a processor with enough communication links for efficient operation. Generally, however, the number of components is defined to be greater than the number of available processors. In this case, it is usual to place a similar number of worker components on each processor. To keep the structure as balanced as possible, the manager can be executed on a dedicated processor, or at least on a processor with a reduced number of working components. The competing forces of maximizing processor utilization and minimizing communication costs are almost totally achieved by this pattern. Mapping can be specified statically or determined at runtime, allowing better load balancing. As a rule of thumb, parallel systems based on the Manager-Workers pattern will perform reasonably well on an MIMD (multiple-instruction, multiple-data) processor, although it may be difficult to adapt it to an SIMD (single-instruction, multiple-data) machine [Pan96].

Example Resolved

For the polygon overlay problem the Manager-Workers pattern is used to create a parallel solution. This operates as follows: for the two input maps A and B, divide all the polygons belonging to A into sub-maps, and for each one of them find all the intersections with a sub-map of B. The key to the parallel solution is to limit the part of both maps A and B that must be examined to find the overlaps. Using the Manager-Workers pattern, a set of workers do the actual polygon overlaying by finding intersections for each sub-map Aij with each sub-map Bij simultaneously (Figure 3.24). The manager provides a sub-map to each of the workers on request. Once processing is finished, the manager is sent the results by the workers. In the parallel implementation, the manager and workers are all made active objects in UC++, a parallel version of C++ based on PVM [WL96].

•  Partitioning. In the Manager-Worker pattern the manager divides the data to be operated on into a set of data pieces and gathers partial results to obtain a global result. For the current problem the manager is assumed to perform such operations exclusively and does not perform any other computation on the data. Figure 3.25  shows a partial implementation of the class Manager, which follows these considerations for partitioning the data structure map (map A) but does not deal with communication issues (these are dealt with during the communication step). Notice that it defines an attribute workSize, which allows data to be partitioned into different sizes. It also has other private attributes, such as lastPolySent, which keeps a record of the polygons operated on, and results, where the list of polygons are gathered once processed. The manager here acts as a single active object programmed in UC++ [WL96] as a subclass of the class Activatable. As part of this step the same computation to be performed on each sub-map is used to define the structure of the worker components. Figure 3.26 shows the class Worker, including the essential elements to operate on a local map (actually a sub-map of A provided by the manager). Figure 3.24: Object diagram for the Polygon Overlay problem,
dividing map A in four sub-maps and assigning them to four workers
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Notice that each worker is created using a constructor with mapfile and m as arguments. These refer to the file in which the second map (map B) is stored and a reference to the manager object. These arguments are assigned to the private attributes map and manager, references that are used during communication.

Figure 3.25: UC++ class Manager for partitioning the Polygon Overlay problem
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Figure 3.26: UC++ class Worker for partitioning the Polygon Overlay problem
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•  Communication. During initialization each worker establishes connection with the manager. Immediately after construction each worker requests data from the manager. It is here that the parallelism of the algorithm occurs, as this function is executed on each worker in parallel. During operation, when the data provided has been operated on, each worker returns a partial result to the results data structure, repeating this until the whole process has been carried out on all polygons. It is then that the function printResults ( ) is called, sorting the result and writing it to a file. Figure 3.27 expands the class Manager, which handles communication and synchronization with the workers. The code for the constructor is not shown: it just initializes the buffer values to store the maps exchanged with the workers temporarily Notice the key functions getWork ( ), which requests a data piece to operate on from the manager, and send ( ), which allows results to be retrieved from workers. The design and implementation of communications between manager and workers can be achieved by using the Local Rendezvous and Remote Rendezvous patterns. These are two design patterns for communication components used in the areas of distributed and concurrent programming.Figure 3.27: UC++ class Manager, including the communication
for partitioning the Polygon Overlay problem

[image: 050]

[image: 051]


•  Agglomeration and mapping. Figure 3.28 shows the main ( ) function for the program. This function initiates and manages synchronization of the manager and workers as active objects. Each worker is given a pointer to the manager to request and receive data from it. Active objects are instantiated from the classes Manager and Worker by activenew_Manager and activenew_Worker respectively, as defined by UC++ [WL96]. A non-blocking function call to startWork ( ) is then made on each active object which starts each of them. Once all elements are active, a blocking function call to blockWait ( ) is made on each of them after the loop for startWork ( ) calls is finished, allowing all workers to complete their operations. The final statement requests all elements to print their results.Figure 3.28: UC++ main ( ) function for the Polygon Overlay problem
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Known Uses

•  Connectivity and Bridge algorithms are an application of the Manager-Workers pattern. The problem is to determine if a connected graph has a bridge. A bridge is an edge whose removal disconnects the graph. A simple algorithm attempts to verify if an edge is a bridge by removing it and testing the connectivity of the graph. However, the computation required is very complex if the number of edges in the graph is large. In a parallel version using a Manager-Worker pattern approach, each worker, using the algorithm proposed, is responsible for verifying whether an  edge is a bridge. Different workers check for different edges, the manager distributes the graph information to the workers, builds the final solution and produces results [NHST94].
•  Matrix multiplication is the classical parallel application of the Manager-Workers pattern. Matrices are distributed among the workers by the manager. Each worker calculates products and returns the result to the manager. Finally, with all the results available, the manager can build the final result matrix [POSA1] [Fos94].
•  In image processing the Manager-Worker pattern is used for transformations on an image that involve an operation on each part of the image independently For example, in computing a discrete cosine transform (DCT) the manager divides the image into sub-images and distributes them among the workers. Each separate worker obtains the DCT of its sub-image or pixel block and returns the result to the manager. The final image is then composed by the manager using all the partial results provided by the workers [POSA1] [Fos94].

Consequences

 

Benefits

•  The order and integrity of data is guaranteed due to the behavior defined for the manager component: the manager takes care of what part of the data has been operated on and what remains to be computed by the workers.
•  An important characteristic of the Manager-Workers pattern is due to the independent nature of the operations that each worker performs. Each worker requests a different piece of data during execution, which forms a structure that exhibits natural load balancing [POSA1] [CT92].
•  As every worker component performs the same computation, granularity can be modified easily because it depends only on the size of the pieces into which the manager divides the data. Furthermore, if an abstract description of the worker is provided, it is possible to exchange worker components or add new ones without significant changes to the manager [POSA1].
•  Synchronization is achieved easily because communications are restricted to only those between manager and each worker. The manager is the component in which synchronization is controlled.
•  Using the Manager-Worker pattern makes the parallelizing task relatively straightforward, and it is possible to achieve respectable performance if the application fits this pattern. If designed carefully, a Manager-Worker pattern implementation enables performance to be increased without significant changes to the implementation [POSA1] [Pan96].

Liabilities

•  Manager — Workers systems may present poor performance if the number of workers is large, the operations performed by the workers are too simple, or if workers receive small amounts of data. In all these cases workers may remain idle while the manager is busy trying to serve all their requests.
•  Granularity should be modified to balance the amount of work. Manager-Worker architectures may also have poor performance if the manager’s activities - data partition, receiving worker requests, sending data, receiving partial results and computing the final result - take longer compared to the processing time of the workers.
•  Overall performance depends mainly on the manager, so programming the manager should be done giving special consideration to the time it takes to perform its activities. Poor performance of the manager impacts heavily on the performance of the whole system [POSA1] [CT92].
•  Strategies for work subdivision, manager and worker collaboration and the computation of the final result should all be carefully considered. The key is to find the right combination of worker number, active or passive manager and data size that gives optimum performance: experience shows that this still remains a research issue. Moreover, it is necessary to provide error-handling strategies to allow for failure of worker execution, failure of communication between the manager and workers or failure to start up parallel workers [POSA1].

Related Patterns

The Manager-Workers pattern is presented in [OR98] and [Ort04] as a variant of the Master-Slave pattern [POSA1] [POSA2] [POSA4] for parallel systems. Many parallel programming authors consider it a basic organization for parallel computation [CT92] [KSS96] [Har98] [LBOO] [AndOO]. Other related patterns with similar approaches are Object Group [Maf96] and Client/Server/Service [ABM95]. Another version of this pattern for parallel systems is Master-Slave [MSM04], which describes a similar structural solution to the Manager-Workers pattern. However, Master-Slave is not considered an architectural pattern, and hence does not provide a context and a problem description that enables linking the context and the problem with a coordination structure that performs the required division of data and/or algorithm.




3.5 Shared Resource 

The Shared Resource pattern is a specialization of Blackboard [POSA1] [POSA4] that lacks a control component and introducing aspects of activity parallelism. In the Shared Resource pattern, computations can be performed on ordered data without themselves  having a prescribed order. Commonly, components perform different computations on different data pieces simultaneously [OR98] [Ort03].

 

Example: Token Space

Consider the case of a token space [Gra99]. In its simplest form, a token space is merely a passive storage structure for tokens placed there by active processes called clients. A token may be a specialized data structure, a list, a data tuple or any data type defined via inheritance from some base token class.

In this example a token is considered as a data tuple whose first element is a typed field and whose other elements are name-value pairs, each referred to as a token item. A token may have one or more token items that contain identification information. One or more token items contain data that is being transferred between parallel clients. The token space supports two operations: ‘put’ and ‘request’ [Gra99]. A ‘put’ operation places a token in the token space and is capable of blocking for flow control. If a ‘put’ operation cannot be blocked, every data source has the potential to saturate the token space. A ‘request’ operation can only succeed if its tokens are matched. The matching of a token in a request requires matching of each of the token items that it includes. If a request does not match, it is blocked. Requests from different processes are handled by separate threads operating on the token space: the blocking of any one request does not affect request or put operations from other processes. A simple token space with such characteristics is illustrated in Figure 3.29.

Figure 3.29: Overview of a simple token space
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Notice that the token space problem is more likely to be considered as an example for concurrent programming, in which processes simulate concurrency on a single processor, rather than for parallel programming, in which processes execute simultaneously on a group of processors. It is simple to explain, however, and can serve as an example of activity parallelism if the clients execute in parallel.

Considering the token space as a parallel computation, it should be divided and distributed among a set of processors. Clients send messages to a server running the token  space, the server receives messages from the clients, organizes and maintains the token space, keeping its order and integrity, and sends its contents back to the clients.

 

Context

To start the design of a software program for a parallel software system using a particular programming language for specific parallel hardware, we need to consider the following constraints:•  Such a computation involves tasks of a scale that would be unrealistic or not cost-effective for single-processor systems to handle. Consider the token space example: if all the tokens within the token space must be processed sequentially and the number of tokens in the token space is large, the computation would require a long time.
•  The parallel platform and programming environment to be used offers a reasonably fit for the problem and a suitable level of parallelism in terms of number of processors or parallel cycles available.
•  The programming language is determined and a compiler is available for the parallel platform. Many programming languages have parallel extensions or libraries for many parallel platforms. The main objective is to execute the tasks in the most time-efficient way



Problem

It is necessary to perform a computation on elements of a data structure. Such a computation is carried out by several sequential processes executing simultaneously The data structure is concurrently shared among the processes. The details of how the data structure is constructed and maintained are irrelevant to the processes - all the processes know is that they can send and receive data through the data structure. The integrity of its internal representation - that is, the consistency and preservation of the data structure - is important. However, the order of operations on the data is not a central issue: generally, performance in terms of execution time is the feature of interest.

Consider the token space example. The process is based on allowing clients to operate simultaneously, putting or requesting tokens to or from the token space as needed. Parallelism results from the fact that client processes that have satisfied their need for data can then continue concurrently. The processes synchronize activities as necessary by waiting for others to place tokens in the token space. The integrity of the internal representation of the tokens and the token items is important for obtaining a final result after the computation is carried out, but the order of operations on the tokens or token items is not predetermined.

 

Forces

Considering the problem description, granularity and load balancing as elements of parallel design [Fos94] [CT92], the following forces should be considered:•  The integrity of the data structure must be preserved, as it provides the basis for result interpretation. In the token space example it is important to control where and when a token is requested or put by synchronizing these operations for the token. This preserves the overall order and integrity of the token space, so that its final state is the result of the whole computation.
•  Each process performs a computation on different pieces of data simultaneously and independently. The objective is to obtain the best possible benefit from activity parallelism. In the token space example, clients indicate their interest in a token. This is the only occasion on which they may interact with other clients via the token space. During the rest of execution time clients are able to operate independently of each other, using the data from the token.
•  Every process may perform different operations, in both number and complexity However, no specific order of data access by processing elements is defined. In the token space example, clients are not restricted to performing the same operation (in fact, clients performing the same operation is a variation of this pattern). Normally, clients operate or use the information contained in the tokens in different ways. Moreover, as clients execute independently of each other, there is no precise or defined order in which they request tokens from or put tokens in the token space.
•  Improvement in performance is achieved when execution time decreases. The main objective is to carry out the computation in the most time-efficient way



Solution

Introduce parallelism in the form of multiple participating sequential processing components. Each processing component executes simultaneously and is capable of performing different and independent operations. They also access the data structure when required via a shared resource component, which preserves the integrity of the data structure by defining the synchronizing operations that the sequential processing components can use. Parallelism is almost complete among processing components, because any processing component can be performing different operations on a different piece of data at the same time, without a prescribed order. Communication can be achieved only as function calls to request data from the shared resource. Processing components communicate exclusively through the shared resource by each indicating its interest in specific data. The shared resource should provide such data immediately if no other component is accessing it.

Data consistency and preservation are tasks of the shared resource. The integrity of the internal representation of data is important, but the order of operations on it is not a central issue. The main restriction is that no piece of data is accessed at the same time by  different processing components. The goal is to ensure that an operation by one processing component is carried out without interference from other processing components.

The Shared Resource pattern is an activity parallel variation of the Blackboard pattern [POSA1] [POSA2] [POSA4] without a control instance that triggers the execution of sources (the concurrent components of the Blackboard pattern). An important feature is that execution does not follow a precise order of computation [Sha95] [Pan96].

 

Structure

In this architectural pattern different operations are applied simultaneously to different pieces of data by sequential processing components called sharers. Operations in each sharer are independent of operations in other sharers. The structure of the solution involves a shared resource that controls the access of different sharers to the central data structure. The shared resource component and several different sharers normally exist and operate simultaneously during execution time. The solution is therefore presented as a centralized network with the shared resource as the central common component. Figure 3.30 shows an object diagram that represents the network of elements that follows the shared resource structure.

Figure 3.30: Object diagram of the Shared Resource pattern
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Participants

•  Shared resource. The responsibility of a shared resource is to coordinate the access of sharer components while preserving the integrity of data. In the token space example, the token space acts as a shared resource, containing the data structure and defining the operations needed for maintaining and preserving its integrity. Operations are defined to control the request and put operations performed on the token space by clients.
•  Sharer components. The responsibilities of a sharer component are to perform its independent computation until it requires data from the shared resource. The sharer component then has to cope with any access restriction imposed by the shared resource. Since their computations are independent, all sharer components  are able to execute in parallel. In the token space problem, clients act as sharer elements that execute in parallel until they request tokens from or put tokens into the token space. Once this is done, clients continue their computations independently.

Dynamics

This section describes a typical scenario for the runtime behavior of this pattern, in which all participants (shared resource and sharer components) are active simultaneously, based on the token space example. The example program includes data generation, sorting of subsets of the data, merging of sorted subsets of data and a reporting element that uses the sorted data: this is described in the Implementation section. The classes Source, Sorter, Merger and Reporter respectively provide each of these functionalities. The scenario presented here only considers an instance of each of these classes: a detailed description of how they really interact to perform a merge-sort is given in the Example Resolved section.

Note that an instance of the Source, Sorter, Merger and Reporter classes behaves as a sharer, performing different operations and requiring access to the token space (as a shared resource) for data tokens. If a data token is not available, the sharer can request another data token. As soon as a data token is made available from the token space, the requesting sharer continues its computations. Communications between sharers are normally not allowed: the token space is the only common component among sharers. The processing and communicating scenario is as follows (Figure 3.31):•  For this scenario, consider a simple token space TS that is able to perform a couple of actions, Read and Write, to respectively allow reading or writing data tokens. Each sharer starts processing, performing different and independent operations, and requesting token space TS to execute read or write operations.
•  Consider the most basic operation: a source object A generates a data token by performing the Generate operation, requesting a Write operation of the data token to token space TS. If no other sharer component interferes, token space TS is able to serve the request from the source A immediately, writing the new data token.
•  Things become more complex when one sharer component is reading a data token from or writing one to token space TS and another sharer component needs to read or write the same data token. Suppose for example that sorter S is performing a Request operation that requires a Read operation of a particular data token to token space TS. If while token space TS is serving this operation, one or more other sharer components (in this scenario, merger M or reporter R) issue calls to token space TS for a Read or Write operation of the same data token, TS should be able to continue until completion of its actual operation, deferring the calls for later execution, or even ignoring them. If this is the case, any sharer component should be able to reissue its call, requesting an operation on the same or another data token until it is carried out. Figure 3.31: Sequence diagram for the Shared Resource pattern
based on the token space example
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Another complex situation that may arise is if two or more sharer components issue requests to TS for the same token at precisely the same time. Consider the previous situation in this scenario: as merger M’s and reporter R’s calls could not be serviced by TS, they have to reissue their calls, doing so at the same time. In this particular case, token space TS should be able to resolve the situation by servicing one call (in this scenario, the Write request from merger M), and deferring or ignoring all other requests for the token until later (as is the case for the Read operation from reporter R). As before, the sharer components whose calls were deferred or ignored should be able to reissue them, contesting again for the token serviced by token space TS.





Implementation

An architectural approach to design is described below, in which hardware independent features are considered early and hardware-specific issues are delayed until later in the implementation process. This method structures the implementation process of parallel software based on four stages [Fos94] [CSG97]. In the first two stages attention is focused on concurrency and scalability characteristics: in the last two stages, attention is focused on task allocation and other performance-related issues. It is better to present each stage as general considerations for design instead of providing details about precise implementation. Implementation details can be found in references to design patterns for concurrent,  parallel and distributed systems from several other authors [Sch95] [Sch98a] [Sch98b] [POSA2]•  Partitioning. The computation to be performed can be viewed as the effect of different independent operations on the data structure. Each sharer component is defined to perform one such independent operation on the data from the shared resource. Sharer components can be executed simultaneously, due to their independent processing nature. However, the shared resource implementation should preserve the integrity of the data structure, following the basic assumption that no piece of data is operated at the same time by two or more different sharer components. Sharer components may therefore be implemented with a single entity (for example a process, a task an object, etc.) that performs a defined computation, or a subsystem of entities. Design patterns [GHJV95] [POSA1] [POSA2] [POSA4] [PLoP1] [PLoP2] can help to define and implement the sharer components as subsystem entities. Patterns used in concurrent programming, such as Object Group [Maf96] and Categorize Objects for Concurrency [AEM95], can help with the definition and implementation of sharer components. Patterns that specifically help with the design and implementation of sharer components are Active Object [LS95] [POSA1] [POSA4], Leader/Followers, Reactor and Component Configurator [POSA2] [POSA4] (also known as Service Configurator [JS96]). Other design patterns that can provide information about the implementation of sharers are Proactor, Acceptor-Connector [POSA2] [POSA4], “Ubiquitous Agent” [JP96] and Object Group [Maf96].
•  Communication. The communication required to coordinate the interaction of sharer components and shared resource is represented by an appropriate communication interface that allows access to the shared resource. This interface should reflect the form in which requests are issued to the shared resource, and the format and size of the data as an argument or return value. In general, an asynchronous coordination scheme is used, due to the heterogeneous behavior of sharer components, whose requests can be deferred or ignored by the shared resource. The implementation of a flexible interface between sharer components and shared resource can be done using design patterns for communication such as Component Configurator [POSA2] [POSA4] (also known as Service Configurator [JS96]), Composite Messages [SC95], Compatible Heterogeneous Agents and Communication Between Agents [ABM95]. Other design patterns, such as Double-Checked Locking [SH96] [POSA2] [POSA4], Thread-Specific Storage [HS97] [POSA2] [POSA4] and patterns that deal with issues about the safe use of threads, synchronization and locks [McK96] [POSA2] [POSA4] can provide help with the implementation of the expected behavior of the shared resource component. Chapter 4 describes a couple of design patterns for communication components suggested for the design and implementation of the communication between shared resource and sharer components, Local Rendezvous and Remote  Rendezvous. These patterns are related to other patterns that are used to define communication components in distributed and concurrent programming.
•  Agglomeration. The components and communication structures defined in the first two stages of the design are evaluated and compared with the performance requirements. If necessary, operations can be recombined and reassigned to create different sets of sharer components with different granularity and load balancing. Due to the independent nature of the sharer components, it is usually difficult to achieve good performance initially, but equally it is easy to make changes to sharer components without affecting the whole structure. A conjecture-test approach can be used intensively, modifying both granularity and load balance among sharer components to observe which combinations improve performance. Special care should be taken with the load balance between sharer components and the shared resource: the operational load of the shared resource should be lighter then those of any sharers, to allow fast response of the shared resource to requests. Most of the computational activity should be performed by the sharer components.
•  Mapping. In the optimal case, to maximize processor utilization and minimize communication costs each component should be assigned to a different processor. As the number of components is not usually expected to be large, sufficient parallel processors can often be available. In addition, the independent nature of sharers allows for each sharer to be executed on a different processor. The shared resource also is expected to be executed on a single processor, and all sharers should have communication access to it. However, if the number of processors is limited and less than the number of components, it can be difficult and complex to load balance the whole structure. To solve this, mapping can be determined at runtime by load balancing algorithms. As a rule of thumb, systems based on the Shared Resource pattern are very difficult to implement for a SIMD (single-instruction, multiple-data) computer. However, when executed on an MIMD (multiple-instruction, multiple-data) computer, systems based on the Shared Resource pattern tend to have acceptable performance [Pan96] [Pfi95].



Example Resolved

A version of the token space that incorporates mechanisms for component creation has been implemented as a Java class, TokenSpace [Gra99] [CN01], which uses threads rather than parallel processes. At the time when this class was developed in most standard Java runtime systems the thread packages were unable to use multiple processors, so the token space system of this class is simply a demonstration in which concurrency is simulated. In a threaded example such as this, there is a further simplification: there is no need for a thread for the shared resource itself: the put ( ) and request ( ) functions are executed by the threads that simulate quasi-parallel processes [Gra99].

An instance of the class Token contains a name string and a collection of token items. Client processes use instances of a class Request to retrieve required tokens. A Request  instance contains vectors specifying the required tokens and their dispositions. A Request instance may also specify a ‘termination token’. After a failed attempt to match a request for tokens, the matching checks for any specified termination token. Such a token is normally left in the TokenSpace. Its presence may affect the operation of many other processes, allowing a process (for example a data source) to mark the end of data with a token.

A simple concurrent sorting program is used to test the TokenSpace implementation, which controls the instantiation of processes (or more likely, threads) and sequences the phases of a computation. The program includes data generation (a single instance of a class Source), sorting of subsets of the data (one or more instances of a class Sorter), merging of sorted subsets of data (one or more instances of a class Merger) and a final reporting element that uses the sorted data (an instance of a class Reporter). Note that the computation is comparable to pipeline processing. Nevertheless, it is felt that decomposing a sorting task into several smaller sorting and merging tasks offers a major enhancement for an O(N2) sort, and a slight enhancement for a more realistic O(NlogN)  sort [Gra99]. Distributing subtasks does add to the computational cost, but if multiprocessors are available many of the separate sort and merge steps can proceed in parallel, resulting in a shorter elapsed time, which is the main interest here.

•  Partitioning. Partitioning consists of defining the computations to be performed on the data contained in the shared resource. In the TokenSpace example, a typical client (as a thread) has a run ( ) function that initially may submit a number of requests for special initialization tokens. It then loops, processing further data tokens, until some termination condition is met. The run () function must end with a call to the TokenSpace notifying it of the termination of its thread. This allows the record of threads to be maintained correctly. The data identifying a class includes information on any token that should be added to the TokenSpace when the last instance of a client class is removed. Such tokens mark the completion of particular phases in a computation, and also trigger the instantiation of objects that perform a subsequent phase. The concurrent sorting example above considers four types of clients: a class Source for data generation, a class Sorter for sorting subsets of the data, a class Merger for merging sorted subsets of data and a class Reporter as a reporting element.
•  Communication. Communication is represented by a communication interface that allows access to the shared resource. In the TokenSpace implementation in Java, the access to the token space is based on the modifier synchronized. When applied to a method, this modifier ensures that such a method can only be invoked when no lock is held on TokenSpace. If TokenSpace is locked, the client is temporary halted until TokenSpace is unlocked. So, TokenSpace is locked by the invocation of a synchronized method and unlocked when the method is exited. In this implementation, additionally, the placement of a token in TokenSpace triggers a check against a table of data that relates token names to the Java classes that may need to be instantiated. Local Rendezvous and Remote Rendezvous are two design  patterns for communication components that are helpful for the design and implementation of communication between shared resource and sharer components.
•  Agglomeration and mapping. The main process starts and initiates processing. After creating the TokenSpace object, it declares data structures that must be instantiated to handle them. In the current example, the class Source (only a single instance of which can be created) handles a StartToken, the class Sorter handles sort tokens (there can be as many instances of this class as required), the class Merger handles merge tokens (again, there can be more than one instance of this class) and the class Reporter responds to the token marking the end of the merging process. An endData token should be included to mark the end of data processing in TokenSpace. Figure 3.32 shows a test program for the token space example [Gra99].

Figure 3.32: Class Test for testing the token space example
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The detailed operation of this program is as follows:1. The action of placing a StartToken in the TokenSpace triggers the creation of a Source object with an associated thread (or Source process). The main thread can now terminate, leaving the TokenSpace object in existence with running Source objects.
2. Each Source takes a very large array of randomly ordered doubles and partitions it into sub-arrays; each sub-array forms the token_item of a separate sort token placed into the TokenSpace. Flow control limits each Source from leaving more than ten unprocessed sort tokens in the TokenSpace. Each put ( ) action on the TokenSpace results in a re-evaluation of the state of known processes against the data provided in the TokenHandlerIdentifiers. The first appearance of a sort token in the TokenSpace triggers the creation of a Sorter: as this class is marked as a VAR_LOAD_HANDLER (‘variable load handler’), further instances of the class Sorter may get created in response to subsequent put (sort) actions.
3. The function Sorter. run ( ) builds a Request object that specifies the need for a sort token (this requires no identification or other token_items) or the alternative of an endData termination token. This request is repeatedly reissued from a loop: if a sort token is returned, its sub-array is sorted and placed back in the TokenSpace as a merge token. The loop ends if this termination token is matched.
4. The placement of a merge token triggers the creation of a Merger. The Merge . run ( ) function is similar to that of the Sorter, save that its Request object involves two merge tokens or an endSort termination token. The Merger combines the data in the two merge tokens that it removes from the TokenSpace and puts back another merge token containing an array with their combined data.
5. A Reporter object is created when an endMerge token appears in the TokenSpace. It removes the last remaining merge token from the TokenSpace. This token contains all the elements of the original array (partitioned by the Source) and outputs the sorted array, or performs any other processing required.


Testing this program on a single-processor computer for a specific size of the data set employed one or two Sorters and a Merger as parallel (concurrent) objects. In general, measured computation times were a little longer than using a simple Quicksort of the entire data set. These increased times reflect the cost of the more elaborated data ordering  (the creation of the various dynamically allocated tokens and sub-arrays) and the overheads of switching amongst threads.

 

Known Uses

•  A tuple space, used to contain data, presents the parallel programming structure of the Shared Resource pattern. Sharers generate asynchronous requests to read, remove and add tuples. The tuple space is encapsulated in a single shared resource component that maintains the set of tuples, preventing two parallel sharers from acting simultaneously on the same tuple [Fos94].
•  JavaSpaces is a distributed object-sharing structure, constituted as a set of abstractions for distributed programming, which together compose a shared resource structure. In a distributed application, the JavaSpaces structure acts as a virtual space between providers and requesters of network resources or objects, allowing participants in a distributed solution to exchange tasks, requests and information in the form of Java technology-based objects. A JavaSpace is an environment that provides object persistence and facilitates the design of distributed algorithms. JavaSpaces are client/server systems, with clients calling one set of interfaces, those of the JavaSpace. Clients are encapsulated from details of object-transfer and distributed-function calls. Clients may write and read objects to JavaSpaces and look up the JavaSpace for objects that match some template. JavaSpaces provide developers with the ability to create and store objects with persistence, which allows for process integrity. For a more detailed technical overview of JavaSpaces, refer to [FHA99].
•  Mobile robotics. Control software functions for a mobile robotics system have to deal with external sensors for acquiring input and actuators for controlling motion and planning the robot’s future path in real time. Unpredictable events may demand a rapid response: for example imperfect sensor input, power failures and mechanical limitations in motion. As an example, the CODGER system uses the Shared Resource pattern to model the cooperation of tasks for coordination and resolution of uncertain situations in a flexible form. CODGER is composed of a ‘captain’, a ‘map navigator’, a ‘lookout’, a ‘pilot’ and a perception system, each one sharing information through a common shared resource [SG96].
•  Real-time scheduler. One example is a process control system, in which a number of independent processes are executed, each having its own real-time requirements, so that no process can make assumptions about the relative speed of other processes. Conceptually, they are regarded as different concurrent processes coordinated by a real-time scheduler, accessing, for example, shared computer resources (consoles, printers, I/O devices etc.). The real-time scheduler is implemented as a shared resource component to give processes exclusive access to a computer resource, but does not perform any operation on the resource itself. Each individual process performs its activities, requiring the use of computer  resources from time to time. The shared resource grants the use of resources, preserving the integrity of the data read from or written to a resource by each process [Bri77].

Consequences

 

Benefits

•  The integrity of the data structure within the shared resource is preserved. From the perspective of a parallel software designer, this pattern is relatively the simplest to design and execute, due to the minimal dependence between sharer components. The operations on each data element are completely independent - that is, each piece of data can be operated on in different machines running independently, as long as the appropriate input data are available to each. It is relatively easy to achieve significant performance gains in an application that is suitable for implementation using this pattern [Pan96].
•  As the pattern’s components (the shared resource and the sharers) are strictly separated, the Shared Resource pattern supports changeability and maintainability [POSA1] [POSA4] [Pan96].
•  The Shared Resource pattern supports several levels of granularity. If required, the shared resource can provide operations for different data sizes.
•  As sharer components perform different and independent operations, they can be reused in different structures. The only requirement for reuse is that the sharer to be reused is able to perform the required operations on the data type in the new shared resource [POSA1] [POSA4] [Pan96].
•  A shared resource can provide tolerance for noise in data [POSA1] [POSA4] [SG96].

Liabilities

•  Due to the differing processing performed by the sharer components, load balancing is difficult to achieve, even when executing each component on a separate processor. This difficulty increases if several components run together on a single processor [Pan96].
•  Tracing the stages that produce a result in a shared resource application is difficult, as computation sequence does not necessarily follow a deterministic algorithm [POSA1] [POSA4].
•  Further, the parallelism of the pattern’s components introduces non-determinism in execution [Pan96].
•  Even when parallelism is straightforward, the shared resource often does not use control strategies to exploit the parallelism of sharers and to synchronize their  actions. To preserve data integrity, the design of the shared resource must consider extra mechanisms or synchronization constraints to access its data. Blackboard [POSA1] [POSA4] is an alternative pattern.

Related Patterns

The Shared Resource pattern is presented in [OR98] and [Ort03] as a specialization of the Blackboard pattern [POSA1] [POSA4], without a control component and introducing aspects of activity parallelism. It is related to the Repository architectural style [Sha95] [SG96] and the Shared Repository pattern [POSA4]. Other patterns that are related to this pattern are Compatible Heterogeneous Agents [ABM95] and Object Group [Maf96].




3.6 Summary 

This chapter introduced the concept of architectural patterns for parallel programming as common coordination organizations found in many parallel software systems. Selection amongst these patterns constitutes the coordination design step, the initial step of the pattern-based parallel software design method.

Architectural patterns for parallel programming have the common objective of solving the parallelization problem, the description of an algorithmic solution to a software problem as the simultaneous execution of communicating sequential processes. Once a solution is found and described as an algorithm and its associated data, the objective becomes that of ensuring more efficient execution of the solution as a parallel program.

Architectural patterns for parallel programming have been presented here together with guidelines on their classification and selection to help software designers decide which coordination organization is potentially useful for solving a given problem. The patterns described here are [OR98]: Parallel Pipes and Filters [Ort05], Parallel Layers [Ort07a], Communicating Sequential Elements [Ort00], Manager-Workers [Ort04] and Shared Resource [Ort03].




End of sample
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)
Glass SendingFilter inplenents Runnable(
lonitor. nonitor; /' reference to the sonding nonitor
double data; 1/ data to be sent
pibLic void run()(
11 operations on local data
Ronitor. send (data) ;

)
)





OEBPS/orte_9780470970874_oeb_217_r1.gif
inport java.io.*;
inport java.util.*;
anport java.net.*;

class yguazujr(
PubLic static void SharedResource (int port,int nunThreads)(
int nx = 92;
int ny - 2]
double gamna = 1.4;
1/ Initial conditions
double (][] tho = now double[nx][nyl;

double [1{] E = now doublo[nx][ny];
double [1[] P = new double(nx][ny] ;
double []{] vx = new double[nx][ny];
double ][] vy = new double[nx](ny]
double dx;
double dy}

1/ Create initial conditions
dx = 1.0/ (nx*1.0);

dy = 1.0/(ny*1.0);
for (int i=0ji<nxjitt )
for(int §=033<ny; 4

PLL](}] < 0.00001; // Snall pressure
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class MultithreadServer inploents Runnable(

privato synchronizationlechanisn sa; // reference to sn

private Object data; // Data to be processed.

privato Object subbata; // Data to be distributed

private Object reply(]; // Results fron client threads

private Object result; // Overall result

private int nunCLients; // Number of child thread clients

private ClientThread clientThread(]; // Array of child thread
1] clients

private Boolean request = false; // is there a request?

private void perforaRequest (Object d)(
data = d; ] Data pass by sn
synchronized (this) {

roquest = truo;
this.notify()

)
)

public void run()(
/1 Vait until soneone nake a request
while(true)(
synchroni zed (this) (
while(trequest) (
try{vait();)
cateh (InterruptedException ) (}
)
»
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/1 REGION GROWING PROGEDURE
//Again, nanager and workers have directly access to the files generated in the
I/previous stage to get the feature extraction data.
nask->Update();
GharRoaderTypo :Pointar eigen = GharRoaderTypi
GharReaderType: :Pointer grad = CharReaderType:
sprint( filenane, *4s*, argv(s]);
sprintf( outfilegrad, “isks’, filenano, “Grad.tif* );
SPrintf( outfileeigen, "sts’, filenane, ‘Eigen.tif' )
eigen->SetFileNane (out fileeigen) ;
grad->SetF ileNane outfilegrad) ;
eigen >Update();
grad->Update();
GonstIteratorType kiterator(eigen->Getutput (),
igen->GotOutput () -»GetRequestediegion() )
ConstIteratorType giterator (grad->Getoutput (},
grad->Gotoutput () ->Gethequestedhagion());
InputGonstteratorType niterator (nask ->Getoutput (),
nask->GetOutput () ->GetRequestedRegion());
sizo(1] = nclassify.rows = nkappa.rows
ngradient.rows = eigen->GetOutput () >GetRequestediegion() Getsize() (115
sizef0] = mclassify.cols = nkappa.cols =
ngradient..cols = eigen->GetOutput () ->GetRequestediegion() .GetSize() (015
1/ The region growing is nade inside of a region delinited by a nask
nkappa. unsigned char **)nalloc (sizeof (unsigned char *)*size(1]);
for(1=0;i<size(1]31++)
nkappa ptr(i] = (unsigned char *)nalloc(sizeof (unsigned char)*size[0]);
ngradient [ptr = (unsigned char **)nalloc(sizeof (unsigned char *)*size(1]);
for(1-0;i<size[1]3i++)
ngradiont.ptr(1] = (unsigned char *)nalloc sizeof (unsigned char)size[0]);

: Now() 5
Now() 5

for(1-0,)-0, Kiterator .GoToBegin ()  niterator.GoToBegin() ;
fkitorator IsAtENd() || miterator. ISAtENd{); ++kitorator, +sitorator,j++){
if (3 >=nkappa. cols) {

§=0

)
if (niterator Get()
else nkappa.ptr(i](}]

0) nkappa.ptriil(j]
iterator.Got();

)
for(i=0,1=0, giterator..GoToBegin() , niterator.GoToBegin () ;
itorator  TSAtEnd() || Initerator.IsAtEnd(); ++giterator, ++nitorator, j++)

if (niterator.Get() == 0) ngradient.ptr(i](j]
else ngradient.ptr(i](j] = giterator.Get();

1/ Find out the histogran and the related statistics
conpute_stat (&nkappa, &ngradient st) ;

/] Managor and worker's doternin the regions (horizontal and vertical)
11 which has to process
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Granularity

ward

Guarded statement

Heterogencous

ristic

Homogeneous

Host

Idiom

The qualitative measure of the ratio of computation to
communication in a parallel application. Coarse
‘eranularity means that relatively large amounts of
‘computational work are done between communication
events, whereas fine granularity means that relatively small
‘amounts of computational work are done becween
communication events.

Boolean condition in a statement. When a set of guardsis
included in an alternative statement, all the Boolean
nditions are simultaneously evaluated.

A sequence of instructions which execute only if its related

guard is evaluated as true.

ialized
esand relations. The operation of the syster
relies on the differences between components, so no
component can be swapped with another. In general,
heterogencoussystems are composed of fewer components
than homogencous systems, and communicate using
function calls.

Syscems based on different components with sp
behavioral ru

A guideline for designing a system, a subsystem or a
component. A natural language abstraction of experience,
expressed as a guideline.

Systems based on identical components interacting in
accordance with simple scts of behavioral rules,
representing instances with the same behavior.
Individually, any component can be swapped with another
without noticeable change in the operation of the system.
Usually, homogencous systems have a large number of
‘components that communicate using data exchange
operations.

network.

A node or computer that has an address with

“Anidiom is a low-level pattern specific to a programming
language. Anidiom describes how to implement particular
aspects of components or the relationships betweg
using the features of the given language’ [POSA1]
[POSA2.

them
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class Tokenspace {

private Object data; // Data to be read or written
private DataStructure ds; // Local data structure.
private Boolean ack; // Acknowledgenent

public Object read()(
ds.gotbata éata)

Foturn data;

)

pubLic Boolean write(data) {
s addbata (data)

Feturn true;

)
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Parallel virtual machine
VM)

Parameter

Passive object

Patern

Pactern language

Pipeline

Placform

Port
Port number
Process

Protocol

Race condition

Remote method
invocation (RMI)

Standard libraries that allow the creation and
administration of processes and communications by
message passing (in C, G4+, or Fortran) on a cluster or
network system.

Instance of a data type that is passed to a function or
method.

An object that depends on or requires the thread of its
aaller to exccute its methods.

A three-part rule that expresses a relation between a
specific context, a problem and a solution’ [Ale79).

A collection of interrelated patcerns that can be used to
describe or design a concrete system in a domain [PLoP1].

A form of interaction in which a set of software
components are connected in a sries such that the output
produced by one s the input of the nest.

Hardware/software combination that serves as the
foundation for the implementation of a software system.

‘Communication endpoint of a computer system.
A16-bit number used toidenify a port when using TCP/P:

Interaction between the processor and memory, in which
the processor i instructed which operations to perform on
what data by a sequence of instructions.

Rules that describe how messages are communicated
between peers.

A situation in a shared variable program in which a
software component writes a variable that another
software component reads, but the fist componenc

n (races ahead), changing the variable
ore before the second is able to read it. This

on normally leads to incorrect results.

An implementation in Java of an interprocess,
synchronous, bidirectional distributed communication
and synchronization mechanism similar to remote
procedure calls.
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class SharedResource inplenents HandleSocket,Aunnable(

pos = d.pos;
hasbata = true;
hasResults = false;
values = valuos;

)
else { /1 Finish

sigend = 127;
cnd = sigond;
values = null;
ine = nu1l;

hasbata = fals
hasResults = faise;
pos = null;

)
channel.send(n) ;
break;

case 127
n.cnd = sigend;
channel.send(n} ;
break;

default: // Something is wrong
break;

)
Channel..disconnect () ;

)
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Token = new Token();
. fTokontiane
+.fItens.

)
tspace.put(t,false);
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Systen.arraycopy(n.values,0,d.U,0,d.U.length) ;
Synchronizad (lock) {

CountTotal++:

if (countTotal

)

)
11 Next value to process. Synchronization to access the grid data
synchronized (autexIterator) (

if (itDato.hashext()) d = (Data)itDato.next();

si20) Lock.notifyALL();

else d = null;
)

7/ Borders are not processed

While (¢ I= null & (d.pos.indexOf (inBor) i= -1

0.pos. indox0f (inxBor) 1= -1 || d.pos.indexof (inyBor) = -1)){
synchronized (nutexterator) {

if (itDato.hasext()) d = (Data)itDato.next();

else d = null;

)
)
11 Tf there is data, data is sent

Ghannel.send(m) ;
break;

case 2: // Flow corrector
if (0 hasResuLts) {
4= (Data)grid.get (n.pos) ;
Systen.arraycopy (n.values, 0,d.Ub,0,d.Ub. Length) ;
synchronized(Lock) {
CountTotal++;
if (countTotal

size) lock.notifyAlL();
)

)
71 Next value to process. Synchronization for accessing grid data
synchronized (autexIterator) {

if (itDato.hasNext()) d = (Data)itDato.next();

else d = null;

)
71 Borders are not processed
While (d 1= null & (d.pos. indexOf (inBor) i= -1
d.pos. indoxOf (1nxBor) 1= -1 || d.pos.indexof (inyBor) 1= -1)){
synchronized (nutexIterator) {
if (itDato.hasNext()) d = (Data)itbato.noxt();
else d = null;

)
11 If there is data, data is sent
channel. send (a) ;

break;

“Main thread
public void run(){
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As a square containing the object name and

objectName:class the class of which the object s an instance.
abjectName As a square containing only the object name

As a square containing the class of which the
objectis an instance.
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class Worker inplenents Runnable {
private RemoteProcedureCall rpc; // reference to rpo.
private Map napA, napd; // Waps o be overlaid
private Map napc} 1] Resulting Map fron overlaying
private Boolean ack;  // Acknowledge

pibLic void run()(
hilo(truo)(

nap

po.nakeRoquestiaitReply(); // read napA

" over1ay naps maph and meps, resulting napc

rpe.nakeRequestiaitReply (napc); // write nape
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class SharedVariablePipo(
static final int WAXSIZE = ...;
private List buffer = new ArrayList();

pilbLic syncronized void send(doublo data) {
Whilo. (buffar size() o= WAXSIZE)
try (rit();)
cateh (IntortuptodException o) ()

)
buffer.add(data) ;
notify();

)

pubLic synchronized double receive(){
whilo(buffor. size() == 0)(
ry(rait(};)
catoh (Intetruptedexception o) ()

)
double data = ((Double) buffer..renove(0)) . doubleValue() ;

notify();
roturn data;
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class SharedResource inplenents HandleSocket,Runnable(

)
Systen.arraycopy (d.U,0,values,3%d.U. Length,d.U.
n.inc = now double[3];
dx;

true;
“hashesults = false;
-values = valuos;

)

else( // Finish
sigend = 127;
n.cud = sigond;
nivalues
nlinc = null;
n.hasbata = false;

n

n

hasResults = faise;
1pos = null;

)
channel..send(n) ;
broak;

i (n.hasRosults) {
d'= (Data)grid.get(n.pos) ;
Systen.arraycopy (n.values,0,d.Ub,0,d.Ub. Length) ;
synchronized(Lock) {
CountTotal s+
if (countTotal

= size) Lock.notifyAlL();
)

)
synchronized (nutexIterator) {
1f (1tDato-hasNext ()) d = (Data) itDato.next();
else d = null;

}
While (4 1= null &8 (d.pos. indexOf (inbor) t= -1 ||
.pos. indexOf (inxBor) 1= -1 || d.pos.indexof (inyBor) !
synchronized (nutexIterator) {
if(itDato.hashext () d = (bata)itDato.next();
else d = nul;

RN

)

)
S6(d 1= null)(
double values|] = new double[7d.U.length] ;
Systen.arraycopy (d.U,0,values,0,d.U. Length) ;
Systen.arraycopy (d.vec(0].U,0,values,d.U.length,d.U. Length) ;
Systen.arraycopy (d.vec( 1].U,0;values,2+d.U. Length,d.U.length) ;
Systen.arraycopy (d.vec(2] .U,0, values,3%d.U. Length,d.u.length) ;
Systonarraycopy(d:ves(3].U;0,values;4*d.U- Longth, U Longth)
n.dir = dif;
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private int nunClients;
private Boolean request = false; // is there a request?

1] Function called by the rpc
private void perforaRequest(Object d){
data
Synchronized(this) {
roquest = true;
this.notify();

)
)

piLic void run()(
/1 Vit until soseons nake a request
while(true)
synchronized this) {
while irequost)
trytait();)
catoh (InterruptedExcoption o) ()
)

11 Creato child threads
For(int i=0;i<nunClients;its)
subdata = getlextSubData (data, i) ;
clientThread(i] = new GlientThread (subbata) ;

1/ Wait for all child ternination
for(int i=0;i<nunClients;ise)(
reply[i] = clientThread[1].returnfesult();
try(
CliontThread( 1] .join();

)
cateh(IntorruptedException o) ()

)
result = gatherReplies();
rpc.nakeReply (result) ;
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public Object makeRequestiiaitReply(Object n)
throws RenoteException(
1/ Keep data for the call
data

)

pubLic Object gotRequest ()
throws RenoteExcept ion
1/ call renote method
reply = ns.doRequest (n) ;
roturn repiy;

)

PUBLiC Void makeReply(Object m)

throws RenoteException(

1/ Keep result for the reply
reply = n;
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class Sharedvariablechannel{

private

private
private
private

private
private
private

public SharedVariablechannel (.

static final int MAXSIZE

double buffert(] = new double[MAXSIZE];
Senaphore spaces1 = now Seaphoro (WAXSIZE) ;
Senaphore elenents! = new Senaphore (WAXSIZE) ;

doublo buffer2(] = new double[WAXSIZE];
Senaphore spaces2 = new Senaphore (WAXSIZE) ;
Senaphore elenents2 = new Senaphore (WAXSIZE) ;

i

spacest . fi11();
elenontst .cnpty();

Spaces2.f111();

¥

onts2.ompty ();

pilblic void sendToPrevious (double data){
P(spaces1) ;
buffert[putint] = data;
putint = (putIni + 1) % MAXSIZE;
V(elenents1) ;

)
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MultiThreadServer aTServer = new MuLtiThreadServer (port, nunThreads, this) ;
TServer. init();
Data actual = null;
Data sig = null;

Data d = null;
int p;
for (p=1;p<enunDt;ps+)  // First stage, predictors conputation

synchronized(Lock)
try{ lock.wait(); }
cateh(Interruptedexception e) ()

)

/] Tterator initialization
Synchronized (nutexItorator) {
§1Dato = grid.get. iterator();

)
/] Updating the rest of variables
synchronized(Lock) {

countTotal = 0;

sigend = 1;

11 Second stage of conputation

synchroni zed (lock)
‘try(lock.wait() ;)
cateh(InterruptedException e) ()

)

synchronized (nutexlterator) {
itDato = grid.get_iterator ();

)

Synchronized (Lock)
countTotal = 0;
sigend = 2;

)

11 Gorrectors computation

synchroni zed (1ock)
try(lock.wait() ;)
catch(InterruptedException ) {}

/] Restart the iterator
synchronized (nutexIterator) {
itDato = grid.get_iterator();

)
1/ Updating the rest of variables
synchronized (Lock) {
countTotal = 0;
dir = (byte) (p4);
Size = grid.size() - sizeBorde;
/1 Final round
if(p == nunbt) sigend = 4;
else sigend = 0;
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class Manager inplenents Rumnable {

private RonoteProcedurecall rpc; // reference to rpc
private liap subllap; // Map to be read

private Map subResult; // Resulting nap

private Boolean ac

pubLic void run()(
while(true) {

if (datanequests == true) (
pc . gotRoquest();
FPe_nakeRepLy (subliap); // send subliap to worker

)
else(
SubResult = rpe.getRequest (); // receive a result
rpc.nakeReply (ack); // send acknowledgement
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for (1 = polygonTop; 1 > = polyganBotton; i--) (
for (gach two edgos crossing 1) {
for (] = loftEdge; ] < = rightEdge; §+4)
i (> = buffor(s, 1) {
butfer(3,3] = ki
inagol3,]1 = polygoncotour;
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Task

Task parallelism

Thread

Token passing

Virtual machine

lly discrete picce of computational work. A task is
a set of instructions executed by a processor,

A scheme in which every software component executes a
separate task, so that each software component is a
different sequential process.

A sequential set of instructions or operations that are
performed by a single control or context, and thus, is able
t0 execute concurrently with other threads. Threads
normally exceute on a single processor, competing for
time, or may execute in parallel on separate processors.

Aform of interaction of distributed programmingin which
tokens are used to convey permission or gather
information about the state of the whole system.

Abstraction layer offering services to application i higher

levels or other virtual machins.
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Application
programming interface
(APD)

Architecting

Architecture

Architectural pattern

Architectural style

Asynchronous 1O

Atomic action

Bandwideh

Barrier

Broadcast

Bus

Aninterface of a particular software subsystem that can be
used as a software service by other software systems or
applications.

The activity that describes the architecture of systems. The
process of designing and constructing architectures, based
on conceptualization, objective definition and certification
[RM97).

The discipline or study of describing systems as an
assembly of components.

Fundamental organizational descriptions of common top-
level structures observed in a group of software systems.
They specify properties and responsibilities of their
subsystems, and the particular form in which they are
organized, by expressing the relationships between them.

A form of design that represents a known solution and
rules for its construction and use.

Mechanism for sending and receiving data using 1/0
operations in which the sender does nor block waiting to
complete the sending operation.

A sequence of one or more instructions which seem to
exccute as a single, indivisible action. A coarse-grained
atomic action is implemented using eriical section
protocols, whereas a fine-grained atomic action
implemented by a single machine instruction.

The capacity of a particular communication media, such

as a network or bus.

A point of synchronization at which every process must
arrive before any of them is allowed to continue.

A method for disseminating information from a sender to
several receivers in a distributed environment.

Set or array of physical communication links between
devices, such as processors, memory 1O devices, etc.





OEBPS/orte_9780470970874_oeb_211_r1.gif
inport java.net.Socket;
inport java.net.ServerSocket;
Anport java.io. I0Exception;

Class MultiThreadServer(
private ServerSocket server;
private int port;
private short nunThreads;
private HandleSocket Handle;

pubLic MuLtiThreadServer(int port,short nunThreads,HandleSocket Handle) {
this.port = port;
this.nunThroads * nuaThreads;
this.Handle = Handle;

)

public void init(){
try(server = new ServerSocket (port) ;)
cateh (IOException e) {
Systen.out.printin(*Error creating socket in port* + port);
Systen.exit(-1);

)
MyThread. finish = false;

for(int i

0;i < nuaThreads; i++) new MyThread (Handle,server) ;

)

public void stop()(
yThread. fanish = truo;
try{server. close() ;)
cateh (10Exception'e) ()
)
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class FiloRoaderAccess(
private int data = 0;

pubLic synchronized int read()(
roturn data;

)
PubLic synchronized void writ(int d)(
data = d;

)
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1/ FEATURE EXTRACTION
//Manager and workers have directly access to the original inage filo through
IINFS." However each one only reads and processes its associate area

reader >SotFileNane( argvl1] );
nask->SetFileNane (argv[2]) ;

/1 Tnit filter features

"/Bach node, including the master, obtain the featurs extraction of its region

// Finally the master node collect the results
for (solrce=1 jsourcestotal_p;source++)
WPT_Recy (&rsize(0] ,2,MP1 INT, source, 1, MP1_GO WORLD, status) ;
WPT_Recv(it, rsize[0] *rsize[1],WPI_FLOAT,s0urce,2,WPI_COIN_WORLD, &status) ;

WPI_Rocy (i£2,rsiz0[0] “rsizo 1], MPI_FLOAT, sourca, 2,PI_GOMI_WORLD, Astatus) ;
it o= rsizo0) rsizel 1]
it2 1= rsizo[0]rsizel 1];
)

1] Transaission for all the workers

WPL_Send (srsize(0] ,2,MPI_INT,0,1,HPT_COWM WORLD);

ConstIteratorFloat  in(WakFilierGradint >Get0utput () ,
MaxFilterGradient >GetOutput () ->GotRequestedRegion()) ;

PixelTypo it = buffer;

For (in.GoToBegin ();14n. TSAtENG () ;++in) *it++ = in.Got();

WPI_Send (8buffer(rsize[0] *traslape] ,rsize[0] *rsizel 1], MPI_FLOAT,
5,2,P1_COMI VORLD)

ConstIteratorFloat ino (MaxFilterEigen->Getoutput(),
WaxFi1torigen->GetOutput ) ->GetRoquostedRogion()) ;

it = buffor;

for (ine.GoToBegin () ; ! ine . ISALENd();++ine) *it++ = ine.Get();

WPL_Send (sbuffer(rsize[0] *traslape]  rsize[0] *rsize[ 1] MPI_FLOAT,
0,2,HPL_COM_WORLD) ;.

WPT_Barr.ier (MPI_COM_WORLD) ; // END OF FEATURE EXTRACTION

1/ REGION GROWING

//Again, all the nodes have directly access to the files generated in the
I/providus stage to got the featuro extraction data.

nask->Update();

1/ The region growing is made inside of a region delinited by a mask

1/ Each node process its part

1/ The master node collects the result

/] Got the size of the inages
WPI_Recy (&tan, 1, WPI_INT, source, 3, WPI_COMI_WORLD, &status) ;

cbuffer = (unsigned char *)naliod (sizeof (ansigned char) *tan*size(0]);
WPI_Recy (cbuffor., tan*size[0] ,WPI_UNSIGNED_GHAR, source,
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Ghannel conponent K, f<=kete1
/1 The pseudocode for channel conponents
Elenent* previous
Elonent* noxt
Tenperature t
int o= 1

While ¢ <= Net
Tfcst
t=0.0
Else
1/ receive tenperature fron previous elenent
Peceive t fron previous
1/ send tenperature to next elenent
send t to next

Else
1/ receive temperature fron next elenent
Faceive t fron noxt
1/ send tenperature to previous elenent
send t to previous

End ¥hile
End Channel. k
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0is = new ObjectInputStrean(client.getInputStrean());
) cateh (Exception ef) (

try {

Client close();

Jeateh (Exception o) {

| Syston.aut printin(o.gotlessage());

Systen.out.printin (el .gethessage());

return false;

)
roturn true;

)

pubLic boolean connect (Socket client)(
ey
‘this.cLiont = cliont;
ol = new ObjectInputStrean (cliont gotInputStroan()) ;
505 = new ObjectOutputStrean(client .getOutputStrean()) ;
} caten (Exception of) (
y ¢
cliont.close();
Jeatoh (Exception ¢) (
Syston.out.printin(e.gothessage () ;
)

Systen.out.printin(e1 .gethessage()) ;
roturn false;

return true;

)

pubLic boolean disconnect(){

try(
ois.close();
o0s close()
client.close();

} catoh (Excoption o) {
Systen.out.printin(s.getlessage()) ;
return false;

)
roturn true;

public void send(0bject Message)
try(
0s uriteobject (essage) ;

)

cateh (Exception o) {
Systen.out.printin (e.getllessage()) ;

)

)

public Object sendreceive(Object Message) {
Object a = null;
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inport java.io.;
inport java.util.*;
inport java.net.*;

class SharedResource inplements HandleSocket,Runnable{
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class MessagePassing(

1] declarations of local data
private final Object nessage;

17 declarations of procedures
pUbLIc synchronized void send(Object message) ;
public synchronized Object receive();
b
class Sender inplenents Runnable(
private Object data; // data to be sent
private essagePassing np; // reference to message passing

piblic void run()(

5. sond (data);
¥
class Rocoiver inplononts Aumnable(
private Objoct data; /1 data o bo recoived
Private llassagoPassing np; /] reference <o hessage passing
public void run()(
data = mp.receive();
¥
int nain()(
WessagePassing mp;
Sondor 57
Recover ri

Foturn 0;

¥
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#include “mpi.h*
#include *itkrisa.h®

int main( int arge, char * argv(] ){

1/ WY variables

it ny_rank; 11 Node i
int total_p; 71 Mumber of processes.

int source; Node sender 1d

int dest; Node receiver id

int tag; Type of nessages

int ysize; The partition is horizontal so this is

the nuber of row processed by each node
int traslape = 20;// Overlapping size in pixels

WPI_Status status

"]/ The feature extraction is based on ITK filters

ReaderType:
RoaderTypo:

ointer reader = ReaderType:
ointer nask = RoadorType

“'WPL_Init (arge,8argy); // Start WPI
MPI_Conn_rank (IFPI_COMI_HORLD, &ny._rank
MPT_Conn_s.2¢ (MPI_COMI_VORLD, &total_p)

1/ ¥ho an 17
11 Number of processes
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/1 Create child threads
for(int i=0; i<nunClients;i++) (
subdata - getliextSubData data, i) ;
cLiontThroad(1] = now CiontThread (subbata) ;

}/ vase for a1t antad termtnation
for(int i=0; i<nunCLients; i++) (
reply[i] = clientThread(i] .returnResult();
try(
clientThread(i]..join();

)
cateh(IntorruptodException o) ()

)
result = gatherReplies();
sn.nakeReply(result);
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myregion. SetIndex (rstart) ;
FRlegion->SetRegion0fInterést (ayregion) ;
1/ Each node, including the naster, process its region
FRegion->Set fnput (reader—>GetOutput ()) ;
gradient >SetInput (FRegion->GetOutput () );
n_Hx->SetInputnage (FRegion ->GetOutput () ) ;
_Hy->SetInput [nage (FRegion ->GetOutput () )i
for (AScale=HinScale;AScale<-HaxScale;AScale++)
signa = static_cast< float >(AScaio);
gradient->SetSigna( signa );
gradient >Update();
DivFilterGradiont->SetDivisor (signa);
DivFilterGradient ->SetInput (gradient >Getoutput());
DivFilterGradient->Update();
if (FirstScale)
MaxFilterGradient->SetInputi ( DivFilterradient->Getoutput());
else(
MaxFilterGradient->SetInput2( DivFilterGradient->Getoutput());
MaxFilterGradient ->Update() ;
MaxFilterGradient->SetInputi ( MaxFilterGradient->Getoutput())

)
B_tix->SetSigna( signa );
Hy->SetSigna( signa )|
R_Hix->SotSigna( signa | ;
B_Hixy>SetSigna( signa )5
n_ti2x->SetSigna( signa );
n_tizy->SetSigna ( signa )
B_Hix->SetInputInage( n_Hy->GetOutput() )
n_tizx->SetInputInage( n_Hy->GetOutput() )
n_ti2y->SetInputInage( n_Hx->Get0utput() )i
B_HIxy->SetInputInage( fi_H1x->GetOutput() );
Edgon->SetInput! ( n_H2x->Getoutput() );
Eigen->SotTnput2( _Hixy->Getoutput() );
Eigen->SetInputd( m_H2y->Getoutput() );
Eigen->Update();
DivFilterEigen->SotDivisor (signa) ;
DivFilterEigen->SetInput (Esgen->GetaxEigenvalue () ;
DivFiltereigen->Update() ;
if(FirstScale) { MaxFilterEigen->SetInput!( DivFilterEigen->Getoutput());
FirstScale - false;
Jelse(
MaxFilterEigen->Set Input2( DivFilterEigen->Getoutput());
MaxFilterEigen->Update() ;
MaxFilterEigon->Set Input ( MaxFilterEigen->Getoutput());
)

)
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TYPE OF COMMUNICATION  COMMUNICATION MECHANISM

DA FUNCTION MEssAGE
EXCHANGE AL SHAREDVARIABIE  PASSING

Semophore X X

Cricol Rogion X X

Monitor X X

Massage Passing X X

Remote Procedure X X

Call
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parbegin
openFile(InputA) ;
openFile(InputB) i
parend
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int data;

try(
1/ Set the Standard RMI security nanager (optional)
Systen. sotSecurityManager (new RUISecurityManager () ;
11 Got ronote server object
String nane +//ny_host:9999 sorver”;
RenotebataServer rds = (RenotoServer) Nanig.lookup(nane) ;

77 Write data to the server
rds.write(data) ;

71 Read data fron the Server
data = rds.read();
)
cateh(Exception e) {}
)
class RenoteDataServer extends UnicastRenote0bject
inplenents Renoteserver {
protected int data;

pubLic int read() throws RemoteException{
roturn data;

pubLic void write(int d) throws RenoteException{

data = d;

)

public static void nain(String(] args)(
g

1/ Greato a data server object
RenotebataServer rds = now RenoteDataserver () ;
1] Rogister nane and start serving

String nane = “rmi/ /ny_host:9998/server”;
Naning.bind (nane, rds) ;

)
cateh(Exception o) (}
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data = ts.read();

Foturn data;

)
pubLic synchronized Boolean write(data) {

ack = ts.write();

Foturn ack;

)
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class SharedResource inplenents HandleSocket,Runnable(

public void run(){

/] Integration step for grid elenents
serialgetdt();

1/ Tnitial state = 0

itDato = grid.get_iterator();

air = 0;

sigend = 1

size = grid.size() - sizeBorde;

// A WultiThreadServer is created to serve sharers
MultiThreadServer mTServer = new MultiThreadServer (port,nuaThreads, this);
ATServer. init();

1/ Main cycle for the nuaber of steps

Data actual = null;

Data sig = null;

Data d = null;

int p;

For (p=1p<enundt ips+) {

11 First stage of predictors computation
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Process main
11 The pseudocode for main function
int nElonents // Nunber of sequential elonents
int nChannels = nlements + 1// Nuaber of channels.
Elonent* olenents| nELenents]
Ghannel* channels{nohannels]
int i

for (i = 0; i < nChannels; i++)
channelsfi] > starthork

for (1= 0; i < nElenents; i++)
elenents(i] -> startfork

for (i = 0; i< nEloments; iv+)
elenents[i] -> blockWait

for (i = 0; i< nElenents; is+)
elenents(i] -> printhesults

End nain
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try{
00 uriteObject (essage) ;
o0s. flush();
B = ois.readobject();

Laten (Excaption ) foysten-out printins getuessags(1)

)
public Object receive()(
Object a = null;
try(

B = ois.readobject();

el Excortiunte N eyatentustlEr i i Ygotusssats 0111
roturn n;
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interface RenoteProcedurecall {
public abstract Object nakeRequestilaitheply(Object n);
pUDLLC abstract Object getRequest();
public abstract void nakeReply();
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Nam
Manager-Workerspater.

Contexts
St the desgn ofa parallel program, using & partculr prograumni
parallel hardware. Consider the folowing canext consrais:

ingusge for cersin

1. The problem involves asks of a seale that would b nrealisti o no cos-effective for
other sysems o handle, and lends sef to be solved using paralllsm

2. The parallel hardwareplatfonm or machine t be used s given

5. The main objecive i o exceute he tasks n he most ie-offcent way.

Problenn
The same operaion is reqiedt0 be repeatedly performed onal th clmerts o some ordered
data. Datacan b operated without  specifc order. However, a imporant feaure s 0 presrve.
the orde of daa. I the opersion i caried out seialy, it should e exceuted 35 sequence of
serial job, applying the operaton t each daam ane afer anothr, Generally. peformance a5
exceution fime i the esture o intrest, s the goal st ake advantage o te pential
Simultaneous executon in order o cary outthe whole computation s effcintly a possible.

Forces:
“The following forces should b considerds

1. Preserve the onder of data However,the specfic order o operation n cach picce of
datais ot fived.

2. The operation can be peformed independently on differnt piecesof it

5. Datapicces may exhibtdiffeent szes,

4. The coordination o he independent computaions hs 0 take p 4 liited amount of
time in order ot {0 impede performance of other rocessing elemens.

5. Mapping the processing elments o processors has 0 take into account the
tercomnection amang the processors of the hardware platfor.

Sotution:
Iniroduce atiity parlllism by having mullpl dta setsprocessed at the same tme. The most
Rexiblerepresentaton i the Manager-Warkers approach. Tis sctue s composed of
‘manager companent and group ofdentical worker components. The manager i esponsibl of
preserving the order of data. On th athe hand,each worker s capable of performing the same
ndependent computaiion on differentpices o dta. I repeatedly secksa ask t perfor,
performns i, and epeats when o tasks remain, e program is fished.
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class MessagePassingchannol{

private List buffert = now ArrayList();
private List buffer? = now ArrayList()}
private static final int MAXSIZE = ...}
private Socket fuSockef

private Socket biSocket

private void sendToPrevious(double data)
try (//This operation block until data can be Written on the backward socket
buout0by -writeObjact (data) ;
bHoutob) flush();
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class Wanager: Activatable {
pubLic:
Manager ();
private:
Map* nap;
polylist results;
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inport java..util Hashiap;
inport java.util.Iterator;

1/ Grid data container, accessed with a hash tablo
class MultiGrid{
private Hashiap ngrid;
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class SharedResource inplenents HandleSocket, Runnable(

1] Gonstructor
pubLic Server (int nx,int ny,int niveles){
this.nx = nx;
thisiny = ny
this nunThreads = 20; // Nunber of throads by default
this port = 4444; //’Port by dofault
int naxcasillas = (int) ((Math.pow(2.0,niveles) nx)
* (Math. pow(2.0,niveles) ny)) ;
grid = new MuLtiGrid (naxcasillas);
Tock = now Object();
nutexIterator = new Object();
sountTatal = 0;
inor
indBor = “it'+ (nx + 1)}
ingBor = *i* + (ny + 1)}
SizeBorde = 2+(nx + ny)}
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semaphore lock = 1
int main()

Wait (10ck) ;
/] shared variable access
signal (lock) ;
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nonitor monitor_nane
1] declarations of shared variables and local data
private type shared variables;
private type local_data;

1] dectarations of methods
pubLic synchronized type method(type fornal_parameters)(

17 operations on shared variables

int nain()(
onitor n;

B.nethod (actual_paraneters) ;
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1] Groato a pressure difference at the center

double cx = nx/2;
double cy = ny/2;
For(int i=(int) (X - 5.0)ji <= (int)(cX + 5.0)jis+)

For(int J=(int) ey - 5.0)) <= (int) (cy + 5.0))++)

47 (Math. sqr (lath-pow{ (ox-1) ,2.0)slath.pow{ (cy-1),2.0)) < 5))

PLLIL) = (ganaa-1.0)/(PIL](1*(6x"d));
11 Energy values
for(int i-0jicnxjise )
for(int 103 <nyi+4)

E[41(}1-P(11()1/ (gamna - 1.0);// Energy is a function of pressure
1/ Greate Shared Resource server
Sharediesource yserver = now SharedResource(nx,y,0);
yserver.setCondInicialos (P, rho,E,vx, vy,dx, dy,gamia)
yserver.nunThreads = (short)nunThreads; // Number of threads for conns
yserver port = (short)port; 1/ Port
yserver nundt = 5; // Set nunber of steps to conpute
new Thiread (yserver) .start()

)

public static void workers (String server, int port,int nunsharers){
For(int_i=0;i<sharars;it+)
now Sharer (sorver, port) ;

¥

public static void main(String []args){
11 Greato Shared Rosourco
if (args[0] .contentEquals  *SharedResource®) ) {
‘SharedResource((now.
Tnteger (args[1])) .intValue() , (newlnteger (args(2])) .intvalue()) ;

)
11 Create sharers
if (args[0] .contentquals(*sharer*)) {
Sharens (args[ 1], (now
Integer (args[2])) .intValue(), (new Integer (args[3])) .intvalue());
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e procedure call

Relation

Request

Requirement

Response

Responsibilicy

Safety

Scalability

Scheduler

Scheduling policy

Aninterprocess, synchronous, bidirectional distributed
communication and synchronization mechanism berween
two parallel or distributed software components. The
‘components execute simultaneously, non-deterministically
and at different relative speeds, in different address spaces
of different computers within a distributed memory
parallel platform.

Static or dynamic associations between components of a
system.

A message sent by a dlient to a server asking for a service.

An objective considered by the client as an absolute - that
is,itis accomplished by the system or it is nor.

A message sent by a server as reply to a request from a
dien.

Functionality assigned to a process, object or component
within a specific system.

“The property of a program by which it never enters a ‘bad”
seate. Examples of safety properties are partial correctness,
mutual exclusion and absence of deadlock.

The ability of a parallel system (hardware and/or software)
to proportionally increase the parallel specdup by adding
more processors. Factors that contribute to scalability
include hardware bandwideh and necwork
communications, the algorithm of the application, the
parallel overhead, and charactersics of the specific
application and coding.

Mechanism that decides the order in which threads or
events are exceuted by a processor.

Policy that determines which action s the next to be
exccuted - that is, which establishes the order in which
operations execute.
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int lastpolysent;
int worksize;
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Distributed computing

Distributed memory

Distributed program

Distributed shared
memory (DSM)

Engincering

Explicit parallel
language

Fairness

Programming activites related to the design and
implementation of an application that allocates processes,
objects or subsystems to the nodes or computers of a
network.

Network-based memory access for physical memory that
s not common. As a programming model, tasks can only
logically *see’ local computer memory, and must use.
communications (I/0 operations) to access the memory of
other computers where other tasks are exccuting,

The specification of software components that
communicate using message passing, remote procedure
calls or rendezvous. Usually,the software components
execute on different, distributed computers within a
network.

Implementation of a shared memory space executing on a
distributed memory multiprocessor o network of
computers.

“The activity of planning and constructing systems,
developing cost-effective solutions to practical problems by
applying scientific knowledge.

Programming languages in which the programmer dircctly
controls and specifies concurrent activities through
language construcs.

Message that contains the occurrence of a significant
action, along with the data relevant for such an action.

Feature of concurrent systems that guarantees that every
delayed process has a chance to continue.

Asoftware component that receives data from one or more
input channels, performs a computation or function on
such data and sends the results to one or more output
channels. Normally represents the processing software
component of a Pipes and Filters system.
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/1 Server variables
pUbLLC short nuThreads; // Number of threads for comnunications
PubLic short port; // Service port

1/ Gonfiguration variables
pubLic short nuadt; // Number of tine steps
public int nx,ny;

public int nileles; // Number of refinonent lovels
public double ganna;

1/ Internal variables
private MuLtiGrid grid;

private Iterator itbato;

private int countTotal;

private Object Lock;

private Object nutexIterator;

private byte estadoActual; // Actual state for sharers actions
private byte dir; // Direction on which porforn integrals
private byte sigcnd; // Next action

privato String inBor; // Border index

privato String inxBor; // Final indox of x

privato String inyBor: // Final index of y.

private int sizeBordo; // Number of elonents per border
private int size;





OEBPS/orte_9780470970874_oeb_082_r1.gif
PO:Layer

NETWORK. e Ty -

koRep1y ()

Z\WJKEKewestﬂzxtMvAyil $osenty

‘muMuliThreadServer

\n \;\

a0 Clien(Thread | alCl

P \_ tesesseerey
v v t sty

sdhreCall

5.makeRequestiaies: ,Ty B maAan\.asJﬂzl(iI T
6Reply s.Reply

PO:Layer Pl:Layer






OEBPS/orte_9780470970874_oeb_153_r1.gif
EigenFilterType: :Pointer Eigen = EigenFilterType.
WriterTypo: :Pointer writer = WritorType: :New();
InportFiltorType: :Pointor InportFilterc = InportFilterType
InportF ilterType: : IndexType inicio;

InportF ilterTypo: :RegionType bregion;

CharTnageType: :SizeType size;

Now() 5

Now() ;
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Parker, K.H., ‘Segmentation of Blood Vessels from Red-Free and
Fluorescein Retinal Images'. Medical Imiage Analysis, Vol. 11 No. 1,

2007.

Martinez-Perez, M.E., Hughes, A.D., Thom, S.A. and Parker, K.H.,
“Improvement of a retinal blood vessel segmentation method using the
insight seementation and registration toolkit (ITK). Ticenty-Ninth
IEEE EMBS Annual International Conference, Lyon, France, August
2007.

Magee, J.and Kramer, ., Concurrency: State Models and Java
Programs. John Wiley and Sons, 1999,
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Abstraction

Active obi

Address space

Aggregation

Amdahl’s Law

Application

A representation or description of a system based on the
assumed essentials, filtering those features that do not
seem relevan.

An abject capable of executing its methods in a different
thread than the objects which invoke chem.

The collection of addresses in memory in which an obiect
or process exists during is execution.

Theactivity of adding independent componentsto another
component, hence creating a larger, composed component.
The gathering together of related elements with similar
functions or purposes.

Suppose that r s the fraction of a program which is
parallelizable and that s = 1= is the remaining inherently
sequential fraction of such a program. Then, on p
processors, the algorithmic speedup ratio satisfies that
[FP92]:

- 1
5
=i

A software system that provides its functionality for
customer o users.





OEBPS/orte_9780470970874_oeb_102_r1.gif
Client

e

Synchroni i

e

4s.repiy,






OEBPS/orte_9780470970874_oeb_164_r1.gif
11 FEATURE EXTRACTION
/] Wanager and Workers have directly access to the original inage file through
/1 NFS.."However each node only read and process its associate area
Peader >SotFiloNans( arav[1] );
mask->SotF iloNane (argvi2]) ;

MinScalo = atoi(argv(3]);

MaxScale = atoi(argv(4])}

71 Tnit filter featuros

n_Hx->SetDirection( 0 );

Rty >SetDirection( 1)}

RHIX->Setbirection( 0 );

R_Hix->Setorder( GaussianFilterType: :Firstorder );

n_Hixy>SetDirection( 1 );

B_HIxy->SetOrder ( GaussianFilterType: :Firstorder );

n_H2x >Setbirection( 0 );

n_Hay->Sotbirection( 1 )}

n_H2x->SotOrdor  GaussianfiltorType: :Secondorder );

n_H2y->SotOrdor ( GaussianF ilterTypo: :Secondorder );

/7 Wanager and vorkers, based in its id, find outs its region to process.
/1 The manager also got a region

TnageType: :SizeTypo size2;

reader->Update()

51262[0] = reader->GetOutput () ->GetRequestedRegion() .GetSize () (0]
51202(1] = reador->GetOutput () ->GetRequestedRegion() .GetSize() 1]
ysize = sizez[1] / total p;

if(total p == 1)traslape = 0;

InageTypo: : IndexType rstart;

InageType: iSizeType rsize;

rstart[0] = 0;
rsize(0] = size2(0];
i (ny_rank == 0){

rstart[1] = 0;
rsize[1] = ysize + traslape;

)
olse if ((my_rank + 1

total p )(
rstart[1] - (ny ranksysize) - traslapo;
rsize[1] = (size2(1] - (ysize*ny_rank)] + traslape;

3
else(
rstart[1] = (ny_rankeysize) -traslape;
rsize[1] = ysize + 2*traslape;
)
TnageType: :RegionType myregion;
myregion.SotSize(rsize) ;
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pubLic final class Channel {
private Nonitor n0 = null;
private Nonitor m1 = null}

pubLic Channel () {
R0 = now Nonitor();
Bt = now Wonitor()}

)
PUBLLC void sendo(Channel ¢, double tenp) {
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class ClientThread extends Thread(

private RenoteProcedureCall rpc; // reference to rpc
private Object data; // Data to be processed
private Objoct result; // Result fron the call
private Boolean isResult = false; // Is there result

public ClientThread (object data)
this. data = data;

this.starc();
)
pibLic void run()(
Synchronized(resule) (
Result = dorequest (5
SSRosut = tri;
resuLt-notafy()}
)
L

private Object doRequest()(
7p¢ = new RenoteProcedurecall (socket) ;

Foturn rpc.getRequest (data) ;

B

pilblic Object returnResult(){
synehronized (result){
while(!isResult) {
try(vait();} // Wait for result becone available
cateh(InterruptedException e) ()
)
)

Foturn result;
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inport java.rmi.t;
inport java.rmi.sorver.*;

public interface RemotoProcedureCalllnterface extends Renote(
public abstract Object nakeRequest¥aitReply (0bject n)
throws RenoteException;
public abstract Object getRequest ()
throws RemoteException;
public abstract void nakeReply(Object m)
throws ReoteException;

)

class RootLayer extends Layer(

private Object data;

private Object result;

try(
1/ Sot the standard RMI security manager
Systen. setSecuritylanager (new AMISecurityManager () ;
11 Got remote server object
String nane = “rai://my_host:9999/server”;
RenoteProcedurecall rp = (RomoteProcedurcCall)

Nanig. ookup (nane) ;

1/ Generato the request to the Miltithread Server
Fosult = rpc. nakeRoquesthaitReply(data);

)
cateh (Excoption o) (}

)

class RenoteProcedureGall extends UnicastRenote0bject
inplenents RemoteProcedureCallinterface {
protected Object data;
protected Object reply;
private MultithreadedServer ns;
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/1 Wait a second before finishing
try{Thread. sleep(1000) ;}
cateh(Exception e){}
nTServer.stop();
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Abowd, G, Bass, L., Clements, P, Kazman, R., Northrop, L. and
Zaremski, A., Recommended Best Industrial Practice for Software
Architecture Evaluation. Technical Report CMU/SEL-96-TR-025

ESC-TR-96-025, 1997.

Aarsten, A., Brugali, D. and Menga G., “Patterns for Cooperation’.
Pattern Languages of Programming Conference. Alleston Park,
llinois, USA. September 1996.

Aarsten, A., Elia, G. and Menga, G., ‘G+: A Pattern Language for
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Information Systems, with Applications to Computer Integrated
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Wesley, 1995.
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PUbLic double receiveFronPrevious (double data) {
double data;
P(elenents) ;
data = buffert| takeOuti];
takeOut! = (takeOuti + 1) % WAXSIZE;
V(spaces1)
roturn data;

)

PibLic void sondToNext (double data) (
Plspaces?)
Dufors puting] = data;
puting = (puttnz + 1) % WAXSIZE;
Vetonents?);

}

pubLic double receiveFronNext (double data)(
double data;
P(elenents2) ;
data = buffor2| takeoutz]
takeOut2 = (takeut2 + 1) % WAXSIZE;
V(spaces2)
roturn data;
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DESIGN ARCHITECTURAL TYPE OF MEMORY
PATTERN PATTERN SYNCHRONIZATION ~ ORGANIZATION
SYNC  ASYNC  SHARED  DISTRIBUTED
Shored Vorioblo  Porollel Pipes and X X
Pipe Fillrs
Moliple Local  Poralll Layers X X
Call
Massage Passing _ Porallel Pipes and X X
Pipe Fillers
Moliplo Romote Poralll Loyers X X
Call
Shorod Vorioblo  Communicaling X X
Chonnel Sequentiol
Elements
Maszage Passing  Communicoling X X
Chornel Soquentiol
Elements
Local Rendozvous  Manogor-Workers X X
or Shored Resource
Ramole Manager-Workers X X

Rendezvous

or Shored Resource
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Load balance

Load bala

Lock

Manager/vorkers

Massively parallel

Massively parallel
processor (MPP)

Message

Message passing

Message passing
interface (MPI)

Assignment of (approximately) the same amount of work
to each software component in a parallel or distributed
program.

The act of performing load balance on a parallel or
distributed system.

Ava
software component
cleared otherwise.

ble used to protect a critical section. Set when some
utes on the critical section, and

Aform of intera which a sofeware component acts
as a manager by dividing data among workers and
retrieving results, and in which sofeware componentsact as
workers by receiving data, processing it, ecurning results
and requesting more data.

Refers to hardware that comprises a parallel systems with
2 large number of processors. The meaning of ‘large
number” keeps increasing: currently the number s about
siv digits.

Parallel computer system that consists of a umber of
ng nodes, cach containing one or many processors
d bus with local

proces
municating through a high-sp
memory and a network interface.
using a proprietary; high-speed communication network,
50 are considered to be tighly coupled. They can scale up
to hundreds or thousands of processors.

odes communicate

Fundamental unit of communication between threads,

processes, objects, components, subsystems and systems.

Aninterprocess communicaion and synchronization
mechanism between two or more parallel or distributed
software components, executing simultancously, non
deterministically and at different relative speeds, in
different address spaces of different computers within a
distributed memory parallel placform.

Standard libraries that allow the creation and
administration of processes and communications by
message passing (in C, C++ or Fortran) on a dluster or

network system.
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type conplex = record re, i

real end;

function add(x,y: conplex): conplex;

begin
Xure 1= x.re + y.re;
x.in i= x.in + ylin}
sun

end

function diff (x,
begin

conplex) : conplex;;

x.re - y.re;
X.in - y.in}

function prod(x,y: complex): complex;
var c: conplex;

begin
Cure i x.rety.re - x.in'y.in;
cLin i= Xretylin - X.in%y.re;
prod i=

end
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class Layer. inplenents Rumable (
private RenoteProcedureCall rpc; // reference to rpc
private Object data; // Data to'be processed
Private Object result; // Result fron the call
pibLic void run()(
7pC = now RenoteProcedureCall (socket s);
While(true) {

FesuLt = rpe.getRequest (data) ;
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private String server;
private int por:

private ObjectInputStrean ois
private ObjectoutputStrean oos
private Socket client = null;

7]"sond a nossage
pubLic void send(Object Hessage) {
try(
005 .uriteObject (essage) ;
o0s . Flush();

)
cateh (Exception e) {
. SYston.out printin(o.gethessage();

71 Sond a result and recoive nore data
pubLic Object sendreceive(Object Message) (
Object n = mull;
try(
005.uriteObject (Message) ;
oos. flush();
B = ois.readobject();

)
cateh (Excaption ) {Systen.out.printin(e.gotliessage )}
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class SharedResource inplenents HandleSocket,Runnable(

pubLic void handle(Socket c)(
RenoteRendozvous channel = new ReroteRendezvous (“Localhost,port) ;
Data d = null;
channel _connect (c);
Message n = (Hessage)channel.receive();
switch (n.cnd) {
case 0
i (n. hashosults) {
=" (Data)grid.got (n.pos) ;
Systen.arraycopy (n.values,0,d.Ub,0,d.Ub. length);
synchronized(lock) {
‘countTotal+
if (countTotal == size) lock.notifyALL();
)

)
Synchronized (nutexIterator) (

if (itbato.hasNoxt()) d = (Data)itbato.next();
else d = null;

)
While (d 1= null & (d.pos.indexof (inBor) t= -1 ||
.pos . indexOf (inxBor) 1= -1 || d.pos.indexOf (inyBor)
synchronized (autexl terator) {
if (itDato.hasNext()) d = (Data)itDato.next();
else d = null;
)

)
16(d 1= L) (
double values[] = new double[3*d.U. length];
Systan.arrayeopy(40,0,values,0,d.0-Longth)
if(gir == 0)(
Systen.arraycopy(d.vec(2].U,0,values,d.U. longth,d.U. Length) ;
Syston.arraycopy(d.voc 1].0,0, Values,2°d.0. Longth, .. Longth)
} else if (dir == 1){
Systen.arraycopy(d.vec(2].U,0,values,d.U. length,d.U. Length) ;
Systen.arraycopy (d.vec(3]..U,0, values, 2+0.U. Length,d.0. length) ;
) else if (dir == 2)(
Systen.arraycopy(d.vec[0].U,0,values,d.U. length,d.U. Length) ;
Systen.arraycopy(d.vec( 1].0,0,values,2+d.U. Length,d.U. length) ;
) else(
Systen.arraycopy(d.vec(0]..U,0,values,d.U. longth,d.U. Length) ;
Systen.arraycopy(d.vec(3] .U,0, values,2+d.U. Length,d.U. length) ;

“(

)
1/ Wessage with new data to process
n.inc = now double[3];

inc[0] = d.dx;

n_ine(1] = d.d

n.inc(2] = d.dt;
ndir = dir;
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Method

Middleware

Model

Modeling

Module

Monitor

Multithreaded program

Mutex

Mutual exclusion

Network

Network interface

Node

Operation declared and defined within a class that can be

performed by an object as an instance of such a class.

Set of components, normally organized as layers, which
provide common reusable services and nerwork.
programming mechanisms.

An abstract representation of some aspect or aspects of a
system.

ation of a model as an abstract representation of actual
systems.

yntactical and conceptual entity within a system,
commonly used instead of the terms ‘component” or
“subsystem’

Synchronization mechanism based on the concept of
object, which encapsulates shared variables. Inside the
monitor, shared variables are tagged as private resources,
5o the only way to manipulate them is to call on methods
of the interface that operate over the shared variables.

The specification of multiple threads. Similar to
concurrent programs, although here there are more threads
than processors, so that threads take turns to execute on
each processor.

Locking mechanism that allows mutual exclusion,
ensuring that only one concurrent thread is active within a
rtical section, preventing race conditions.

Feature of two or more instructions in different processes
that implies that they cannot execute at the same time,

Communication hardware that allows connection between
computers.

Hardware device that connects a computer to a network.

A computer system that represent the basic unit or
component within a network or distributed system
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Begin

For x:=0 to N-1
knownVertices[x]:

For x:=0 to N-1
recentVertices(x]

(x<0) 1/ source vertex known

AL0,X] /1 initial source to vertex
1] distance
/1 initially, only source is known

Jast

For count := 1 to N-1 [/ count of known vertices
nininun : = 0
For x:= 1 to N-1 // check the shorter distance
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}
Pvn_barrier(“nane”,n); // optional barrier synchronization
11 operations on the data

pvR_Lvgroup(*nane”) ;

pvn_exit();
retirn 0;
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Class MessagePassingPipel
private List buffer = new ArrayList();
private static final int NAXSIZE

private void send(double data){
try(
outobj .writeObject (data) ;
outobj . flush();

)
cateh{I0Exception o) (};
)

frivate doublo recesve() (
oubla data - 0.0;
if (buffer.size() == 0){

Whilo {is0ataAvailable()){
try{wait(100);}
catch(InterruptedException e){}

¥

)

this.refillauffer();

data = ((Double)buffer. renove(0)).doublevalue();
roturn data;

)

private void refillButfer()(
while(buffer.size() <= MAXSIZE && isDataAvailable()){
try(
buffer.add(in0bj . readobject ()

)
cateh(Exception ) (...}
)
)

private boolean isDataAvailable(){
boolean dataAvailable - false;
DatalnputStrean yInputStrean;
try(
nyInputStrean =
new DatalnputStrean(nySocket.getInputStrean()) ;

)
cateh (Excoption e) ()
try(
i (nyInputstroan available()>0)(
datapvailable = true;
)

)
catch(Exception e) {}
roturn dataAvailable;
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class Monitor {
private type shared_variables;

pilblic syncronized type nothod() {
1 oparations on pravate shared variables;
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Processing conponent 0 (root)

For x := 1 to N-1
1 receive distances fron 3 neighbours

FRR) fometr g e
BINIAUD i< RiniRUVErteX (Riniaun,kVertex)
receive vertex id fron j dinension
BiNiAUR i= nininuVertex (niniaun,jVertex)
receive vertex id fron i dinension
Bininun := nininunVortex (nininun, iVertex)

1/ Update known array
Knownvert ices[nininun]
last 1= nininun
11 Tnfora of the result
SendALl last to i, J, and k

End For
End Processing conponent 0

ThUE
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class Grid inplenents Runnable(

private int i

public void run()(
double tenperature, received, total;
for (int 1 = 0; 1 < iterations; i+4) {
1] Were the actual grid elenent exchanges data with
1] its neighboring elenents
total = 0.0;
for (1= 03’1 < 4 is4) {
1] Roceive fron neighboring elements and put it in
11 the variable ‘rocoived’
total += received;

)
tenperature

(total/a.0 — temperature);
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inport. java.util.Vector;

class Wonitor
private int nunllessages = 0;
private final Vector temperatures = now Vector();
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inport java.rmi.*;
inport java.rni.server.*;

public interface RonoteServer extends Remote(
pUbLic int read() throws RemoteException;
PUbLic void write(int data) throws RemoteException;
)

class Client {





OEBPS/orte_9780470970874_oeb_025_tab.gif
[PLoP3]

[PLoP4]

[PLoPS]

[PM87)

[POSAT]

[POSA4]

[POSAS]

[Ram98]

[RM97]

[RNVOO]

Martin, R., Richle, D. and Buschmann, F., Pattern Langiuages of
Program Design 3. Addison-Wesley, Reading, Massachusetts, 1998.

Harrison, N., Foote, B. and Rohnert, H., Pattern Languages of
Program Design 4. Addison-Wesley, Reading, Massachusetts, 2000.

Manolescu, D, Voelter, M. and Noble, )., Pattern Langiages of
Program Design 5. Addison-Wesley, Reading, Massachusetts, 2001.

Pountain, D. and May, D., A Tutorial Introduction to Occant
Prograniming. INMOS, BSP Professional Books, Oxford, 1987.

Buschmann, E, Meunier, R., Rohnert, H., Sommerland, P and Stal,
M., Rattern-Oriented Software Architecture Volume 1: A System of
Ratterns. Wiley Series in Software Design Patterns. John Wiley and

Sons Led, 1996.

Schmid, D.,Stal, M., Rohnert, H. and Buschmann, E, Pattern-
Oriented Softuware Architecture Volume 2 Patterns for Concurrent
and Netuworked Objects. Wley Serics in Software Design Patterns.
John Wiley and Sons Ld, 2000.

Buschmann, E, Henne; K. and Schmide, D.C., Pattern-Oriented
Softuvare Architecture Volume 4: A Pattern Language for Distributed
Computing. Wiley Series in Software Design Patterns. John Wiley and
Sons Led, 2007.

Buschmann, E, Henney; K. and Schmide, D.C., Pattern-Oriented
Sofuware Architecture Volunie 5: On Patterns and Pattern Languages.
Wiley Series in Software Design Patterns. John Wiley and Sons Led,
2007.

Ramirez, R.L, ‘A design patterns experience report.” In the Patterns
Handbook, L. Rising, Cambridge, UK., Cambridge University Press,
1995,

Rechein, E. 2
Press, 1997.

d Maier, M., The Art of Systems Architecting. CRC

Raga, A.C., Navarro Gonzdlez, R. and Villagrin Muniz, M., A New,
3D Adaptive Grid Code for Astrophysical and Geophysical
Gasdynamics’. In Revista Mexicana de Astrofisica, Vol. 36,
Univesidad Nacional Aut6noma de Meéxico, 2000.






OEBPS/orte_9780470970874_oeb_089_r1.gif
SharedVariable

e e

L.send)
< [ SmhmsionNeisn | +—
Flement Flement
o Soncomsionienin
1aena0 Torecasveq)

SharedVariable






OEBPS/orte_9780470970874_oeb_100_r1.gif
)
cateh(10Exception e) (};
)

private void sendToNext (double data) {
y ¢
I /This oporation block until data can be written on the forvard socket
WOUOb Writedbject (data) ;
MoUtOD fLush ()

)
cateh(10Exception e) (};
)

private double receiveFronPrevious() {
double data = 0.0;
if(buffert.size() == 0)(
while( ! isDataAvailable(fuSocket)) {
try(vait(100) ;) catch(InterruptedException e){}

)
FeadData(fwSocket, buffert)

data = ((Double)buffert .renove(0)) . doubleValus() ;
Foturn data;

)

private double receiveFromNext() {
double data = 0.0;
if (buffera.size() == 0)(
while( ! isDataAvailable (buSockot)) {
try(vait(100) ;) catch(InterruptedException e)(}

)
FeadData (bwSocket buffer2) ;

data = ((Double)buffer.renove(0)) . doublevalue() ;
Foturn data;

)

private void readbata(Socket s,List buffer)(

While(buffer.size() <= WAXSIZE && isbataAvailable(s))(
try(butfor.add(in0bject. readobject () }catch(Excoption ) (...}
B

)

private boolean isDataAvailable(Socket nySocket) (
boolean dataAvailable = false;
DatanputStrean nyInputStrean;
‘try (nyInputStrean = new DatalnputStrean (nySocket .getInputstrean());...)
catch (Excoption o) {}
€ry(if (nyInputStrean.available()>0) (dataAvailable = true;}}
catch (Excoption o) (}
return dataAvailable;
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class Data(
/] Internediato values
public double U[]
public double Ub]
11 Paransters to conpute
publLic String pos;
71 Tncrenent valuss
publLic double dx;
publLic double dy}
pubLic double dt;
1] Neighbors vector.
public Data vec(];
71" Up = vecl0] 1 - 1
11 Right = vee[1] § + 1
11 Down = vec[2] i+ 1
11 Loft = voc(a] j - 1

puslie Data()(

new doublo[ 4]
Uy "now doubtol};
vec = now Data[4];

i
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int main( int arge, char * argvl] ){

ReaderType: :Pointer reader = ReaderTypo: :New();

ReaderType: :Pointer nask = ReaderTypo: :New() ;

RescaloFi1terType: :Pointer rescalerGradient - RescaloFilterType: :New();
WriterType: :Pointer writerGradient = WriterTypo: iNew();
RescaloFilterType: :Pointer rescaler€igen = RescaloFilterType
WriterTypo: :Pointer writerEigen = WiriterType: :New();
GradientilagFilterType: :Pointer gradient = GradientMagkilterType::New();

tew();

InputGaussian ilterType: :Pointer n_Hx = InputGaussianFilterTypo: New();
InputGaussianF ilterType: Pointer n Hy = InputGaussianFilterType:iNew();
GaussianFilterTypo: = GaussianFilterType: :New();
GaussianFilterType:

GaussianFilterTypo:

GaussianFilterType:

MaxF iltorTypo: :Pointor MaxFiltorGradiont = MaxFiltorTypo: :Now();

WaxF i1terType: :Pointer MaxFilter€igen = MaxFilterType: New();

DivFilterType: :Pointer DivFilterGradient = DivFilterTypo::New();
DiyFilterType: Pointer DiVEilterEigen = DivFilterTyporitien);
FilterRegionType: :Pointer FRegion = i
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tenperature

(total/a.0 — tenperature) ;
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Winclude <pva3.h>

int main(int argc, char*targy){
int nytid, tigs(n], ne, 1, N, rc, parent;

vn_joingroup (“nane®)
parent = pvn_parent();
if (e == 0)
PYA_spaun(“process_nane”, (char**)0, 0, **,n-1,tids);
puA_initsend (PvaataRaw) ;
pun_pKint(aN,1,1);
pvn_ncast (tids;n-1,5);
)
e1se (

pvn_recv (parent,5)

)i
pvR_upkint (&N, 1,1);
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Cond
synchroni

Connection

Container

cru

Critical section

Data parallel

Deadlock

Design

Design pattern

Device

Synchronization technique that involves delaying a process
untilits state satisfies a particular condition, normally a
Boolean condition.

Relation between two or more components of a system. A
full association used by peer components to exchange
data.

Alogical name given to data structures thar
within an application.

Central processor unit, a st of digital circuits that perform
the operations on data described by instructions. Both data
and instructions are stored in memory.

A sequence of instructions in a process that normal
modify the values of shared variables that must be ecuted
with mutual exclusion with respect to critical sections in
other processes that reference the same shared variables.

A form of parallelism in which each software component
exccutes the same operations, usually at the same time, on
different parts of shared data.

Astate of a process i which the process is blocked waiting
for a condition that will never become true.

Activity and the result of such an activity in which the
objective i finding a form whose properties satisfy a given
function, along with its requirements. The detailed
description or formulation of plans towards the
development of a system, subsystem or compor

e,

A design pattern provides a scheme for refining the
subsystems or components of a software system, or the
relationships between them. It describes a commonly-
recurring structure of communicating components that
solves a general design problem within a particular
context” [POSAL].

Hardware component that provides services for computing
or communication.
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class Managor
pubLic:
Wanager ();
virtual polylist* getlork();
virtual void send(polylista’send_rosult);
private:
Map* nap;

Activatable {
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private int nx
private int ny
private int levels = -1
private MultiGrid grid;
private int sizeBorder;

int maxcasillas = (int) ((Math.pow(2,0,1evels) )" (ath.pow(2.0, evels) "ny) ) ;

grid = now MuLtiGrid (naxcasillas);
sizoBordor = 2+(nx + ny);
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public MultiGrid(){
ngrid = now Hastiap();

3
pubLic MuLtiGrid(int initialGapacity) (
ngrid = new Hashilap (initialCapacity) ;

)

pubLic MuLtiGrid(int initialCapacity, float loadFactor)(
Bgrid = new Hashitap(initialCapacity, LoadFactor)

)

pubLic final void add(String K,Object V){
marid. put (K, V)

public final Boolean has(string K){
return ngrid.containskey (K);

public final Object get (String K){
i (grid.containsKey (K)) {
roturn ngrid.get(K);
)
else(
roturn null;
)
¥

public final void set(String K, Object V)(
ngrid. renove (K) ;
ngrid put(K,v);

)

public final void del(string K){
ngrid. renove(K) ;
i

public Iterator get_iterator()(
roturn. (ngrid.valios ()) .iterator();
)

public final int size()(
return ngrid.size();
)





OEBPS/orte_9780470970874_oeb_077_r1.gif
Moritor

G.xecoive)
>

Monitor

2arize0 §

CLIPFilr

4s.rensn

‘ bufferLiss

a0t Daasizsan|

*

20b:DaaSteam

s.itanaza

M

Socket

“Socket

NETWORK






OEBPS/orte_9780470970874_oeb_220_r1.gif
Ub{o] = n.values{o];

Ub[1] = m_values( 1]}
Ub(2] = n.values2]
Ub(3] = n.values(3];
rho = Ub[O];

Vi = Ub[1]) ] Ubf0];
vy = Ubl2] / Ubl0];

pro = 0. - 0.5%(PhorMath. pow(vx,2.0) srholath .pow(4y,2.0))) ;
Foj(o]

F{O][1] = (rhoNath.pow(v¥,2.0)) + pre;

Fol[2] = rhorvxivy:

FIO][3] = vx*(enespre) ;

S[01[0] = o * vy

G[01[1] = rho * ve'* vy;
Gl0][2] = (hoMatn.pow{vy,2.0)) * pre;
G[01[3] = vy*(enespre);
11 Neighbor values. on direction x (Lines) function F
Fho = n.values(4];
v = nivaluos(5) | n.values(4];
vy = nivalues(s] / nivalues(4];
ene = n.values(7];
Pro = 0.4* (ano - 0.5 (rho*Math. pow(vx,2.0) irho*Hath pow(vy,2.0)));
F11{0] = rhotvi;
FI11] = (hoWiath.pou(vx,2.0)) + pre;
F11[2] = rhomvxevyi
F{1113] = vt (enespre) ;
11 Noighbor values on direction y (coluans) function G
Fho = n.values(];
Values(s] ] n.values(s];
valuos(10] / f.values(s];
. valuos[ 11];

o * vx'* vyi
G[1]{2] = (Pho*Math.pou(vy,2.0)) + pre;
GI11(3] = vy*(enespre);

/] Original values

Ufo] = n.values[12];
U[1] = n.values[13]}
U[2] = n.values[14]}
U[3] = n.values(15]}
if (n.0ir = 3){ /I Corrector computation on each direction

For (int k=0;k<d k++) U[K] = 0.5*((U[K] + Ub[K]) - ((n.incl2]/n. inc(0])
(ECKT - Flo)kD) - ((n.inc[2]/n.inc[1])*(6(T){k] - GlOJ(k]));

)

if (n.dir == 2)(

For (int k=0;K<d k++) U[k] = 0.
“(FHIK] - FlOJTKD)) - ((n.

)

if (m.dir = 1)(

For (int k=0;K<d k++) U[K] = 0.5*((U[K] + Ub[k]) - ((n.incl2]/n. inc(0])
*(FIOJIK] - FI1][K])) - ((n.inc(2]/n.inc[1])*G[1]{k] - GlOI{KI)));

((U[K] + UbIK]) - ((n.inc[2]/n.inc[0])
nc(2)/m.ine[1])* GIO]{k] - GI11(KI)))}






OEBPS/orte_9780470970874_oeb_022_tab.gif
11596]

[KDL+98]

[KMJ9%6)

5596]

[LBOO]

[Leags]

[L595)

[Lyn96]

[Maf96]

[McK96]

[MCs90]

Jain, P and Schmide, D, ‘Service Configurator. A Pattern for Dynamic
Configuration and Reconfiguration of Communication Servi
Third Annual Pattern Langiuages of Programming Conference,
Allerton Park, llinois. September 1996.

Kuck, D.J,, Davidson, E.S., Lawrie, D.HL, Sameh, AH. Zhu, C.Q et
al, The Cedar System and an Initial Performance Study. 25 Years of the
International Symposia on Computer Architecture, 1995.

Kendall, E.A., Malkoun, M.T: and Jiang, C.H., “The Layered Agent
Pattern Language”. Third Annial Pattern Languages of Progranimiing
Conference, Alleston Park, llinois. September 1996.

Keliman, $., Shah, D, and Smaalders, B., Programmiing with Threads.
SunSoft Press, Prentice Hall, 1996.

Lewis, B. and Berg, D.J., Mutithreaded Programming with Java
Technology. Sun Microsystems, Inc., 2000.

Lea, D, Concurrent Programmiing i Java: Design Principles and
Patterns. Addison-Wesley Longman, Inc. Java Series, 1996.

Lavender, R.G. and Schmidt, D.C., ‘Active Object, an Object
Behavioral Pattern for Concurrent Programming’. ISODE
Consortium Inc. and Department of Computer Science, Washington
University. In Pattern Langiages of Program Design 2. Addison-
Wesley Reading, Massachusetts, 199,

Lynch, N., Distributed Algorithms. Morgan Kaufmann Publishers,
1996

Maffeis, 5., “Object Group, an Object Behavioral Pattern for Fault-
Tolerance and Group Communication in Distributed Systems”
Department of Computer Science, Cornell University. Proceedings of
the Second USENIX Conference on Object-Oriented Technologies.
Toronto, Canada, 1996.

McKenney, PE., *Selecting Locking Primitives for Parallel Programs’.
In Pattern Languages of Progranming 2. Addison-Wesley, 1996.

Mett, 2, Crowe, D. and Strain-Clark, 2, Specification and Design of
Concurrent Systens. The McGraw-Hill International Series in
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include <onp.h>

struc(
double data[BSIZE]; // buffer
int n; 11 butfer size
int putin; 17 index
int takeOut; 11 index
int count; 11 nunber of itens
) buflal;

Void sendTolext(double data) {
buf .data[putin] = data; /] Write to shared variable
buf [putin = (buf.putin + 1) % buf.n;
buf count++;

)
double receiveFronPrevious(){
double data;
data = buf .datal takeOut]; // read fron shared variable
buf .takeOut = (buf.takeOut + 1) % buf.n;
buf count--;
Fotirn data;
)

int nain()(
extern void sender(), receiver();

# pragna onp parallel
i

sondor ();
receiver();

)

Feturn 0;

)

Void sender (){
double data;

I o e
sondTotoct (data)
}
b

Void receiver(){
double data;

# pragna onp critical
{

data=roceiveFronPrevious() ;

)
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3

1/ Barrier synchronization

1] REGTON GROWING

1/ hgain, manager and workers have directly access to tho files generated

11in thé previous stage to get the feature extraction data.

"/ The region growing is nade inside of a region delinited by a mask
17 Find out the histogran and the related statistics

1] Wanager and each worker deternine the regions (horizontal and vertical)
71 which has to process

17 Manager and each worker process its part
1] The manager collects the result

if(ny_rank == 0){ // WANAGER ACTIONS
117 Got the size of the inages.

7 Get the vertical inage

71Got the horizontal inage

7 Rosults fron the master nodo

7 The blood vessel inago is nade using the maxinun valuo of
11 the overlapping

17 Wanager conputes the final blood vessel inage

71 Manager writes the blood vessel inage

)
©1se { // WORKER ACTIONS.
/1 Workers transnit their region growing results

)

Poturn EXIT_SUGCESS;
)
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#include <pvas. >

Void sendToext(int receiver, double data)(

pVA_initsend (PyaDataRaw)
pvn_pkdouble(aN, 1,1);
pva_sond (receiver, 1,1);
Fotiirn;

)

double receiveFronPrevious(sender) {
double data;

pvA_recy (sender, 1);
data = pvn_upkdouble (&N, 1,1);
roturn data;

)

double channol(int sender, int receiver, double tenperature){

SendToNext (roceiver, tomporature) ;
tenperature = recoiVeF ronProvious (sendor) ;

return tenperature;
)

int main(int arge, char*argy){
Ant nytid, ti6S(n], ne, 1, N, rc;
doubla tenp(n]; //'array of tenperature data

Joingroup(“nane”) ;
pvn_parent();
0)

PVR_spawn (“process_nane”, (char**)0, 0, “7,n-1,tids) ;

for (1= 1 i <n; i+4) {
P[] = channel (tids[4], tids[i+1], temp(i]);

/1 operations over local data
pun_barrier (“nane” ,n); // optional barrier synchronization
pvn_Lvgroup (“nane”) ;

punexit();
rotirn 0;
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public final synchronized void write(double temp){
3f (tenp == null) throw new NullPointerException();
nulessages++;
tenporatures.addElonent (tenp) ;
if (nunllessages <= 0) notify();

)

PUbLc final synchronized double read()(
double’tonp = 0.04;
nunlossages;
whilo(numlossagos < 0){
tryl
it ();
broak;

}
cateh(IntorruptedException o) (

if (nunllessages >-0) break;
else continue;

o

tonp = temperatures. firstElenent();

temperatures. renoveELenentAt (0);

roturn tonp;
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Semaphore

Serial execu

Serialization

Server
Service

Shared address space

Shared memory

Socket

Software architecture

Definition of the limits or boundaries of a system: what s
included inside the system and what is excluded from i
Allows clarification of the limits of design and
implementation by defining the system inside its
environment.

Synchronization mechanism that allows two or more
concurrent, parallel or distributed software components,

executing on a shared memory parallel platform, to block
(wait)for an event to oceur. Intended to solve the mutual

exclusion problem in which software components should

not be allowed to manipulate a shared variable a the same
time.

Exccution of a process sequentially, one instruction at a
time. In the simplest sense, chis happens on a one-
processor computer. However, virtually all parallel tasks
have sections that must be executed serially

Mechanism that ensures that threads, processes, objects,
components or subsystems exccute withina critical section
one at a time, to prevent race conditions.

Application or computer host that provides services.
Functionality offered by a server to a set of clients.

“The sec of addresses within a shared memory that can be
accessed by two or more concurrent or parallel processes.

Acomputer architecture in which all processors have direct
(usually bus-based) access to common physical memory: In
a programming sense, describes a model in which parallel
tasks all have the same ‘image” of memory and can address
ind access the same logical memory locations directly
regardless of where the physical memory actually exists.

Endpoint for software communication that identifies a
network address and port number in a program.

The discipline or study of describing software systems, as
the result of an assembly of software components.
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inport java.io.*

class Message inplenents Serializable(

pubLic.
pubLic
public.
public.
public.
public.
public.

byte cad; // Sharer actions, depending on the state
String pos=null; // Value of position

double values[]'= null; // Data

double inc{] = null; // Increnents on different directions
boolean hasData = false;

boolean hasResults = faise;

byte dir; // Direction for which data is conputed

1/ Construstor

pubLic Message (byte cd,String pos,boolean hasData,bolean
hasResults,doublé [ 1values){
this.cnd = ond;
this pos = pos;

this hasData = hasbata
this hasResults = hasResults;

this valuos = now double[values.Length];
Systen.arraycopy (values 0, this.values, 0, values. length) ;

}

1/ Gonstructor for sending sharers actions only
public Message (byte cnd){
this.ond = ond;

)
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class ClientThread extends Thread({

private synchronizationliechanisn sn; // reference to sn
privato Object data; // Data to be processed

privato Object resuit; // Result fron the call

privato Boolean isResult = false; // Is there a result?

public ClientThread (Object data)(
‘this.data = data;
this.start();

3

pubLic void run()
synchronized(result) {
result - su.request(data); // Send data child node
isResult = trus;
Pesult.notify();
¥
)

publLic object returnResult()(
synchronized (resul)
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Class Worker: Activatable {
pubLic:
Worker ()5
Worker (char* napfile, Wanager+ m);
virtual void starthork();

privato:
Hiap* nap;
Manager+ nanager;

¥
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class Synchronizationtlechanisn {

private Sorter s; // reference to client
private TokenSpace ts; // reference to server
private Object data; // Data to be processed
private Boolean ack; // Acknowledgenent

pubLic synchronized Object read(){
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Ujo) =
ui1]
uiz]
uia]
rho
v
ene
pre.
F[0] 0]
Flo][1
Flo] 2,
F[0][3;
6{0] [0
sjol(1
siol[2
6{0] (3
1] Noig
rho
v
v
ene =
pre

u
u

0.

n.values[0];
n.values 1]}
n.values(2]}
n.values(3]}
u[o);

1]/ ufo);
(2] / ufo]
ufal;

4% (ene -0.5* (rho*Math . pow(vX, 2.0) +rho*ath. pow(vy,2.0)))

] = rhotvx;
(Fhio*Hath.pow(vx,2.0)) + pre;

Fhotux*uy}

VXt (ene+pre) ;

rho * vy3

rho * vk vy;

(Fho*Math.pow(vy,2.0)) + pre;

vy (enespro) ;

ghbor valos on direction x (lines) function F

B.values(4];

Values(5] | n.values(4];

values(6] / n.values(4];

.values(7]

0.4% (ene - 0.5*(rho*Math.pow(vx,2.0) +rho*Hath.pow(vy,2.0))
Photux;

(FhoMath.pow(vx,2.0)) + pre;

Fho*ux*uy}

VXt (ene+pre) ;

1] Noighbor values on direction y (coluans) function G

n.values(8];

n.values(9] | m.values(s];
n.values(10] / n.values(8];

. values( 11];

4%(ene - 0.5* (rho*Math.pow(vx,2.0) srho*Hath .pow(vy,2.0))) ;

Tho * vy;
rho * vx'* vy
(Fho*Math.pow(vy,2.0)) + pre;
vy (ene+pro);

if (n.dir == 0){ // Obtain the new state on each direction
for(int k=0;k<dik++) Ub[k] = U[K] - ((n.inc[2]/n.inc[0])* (F[1](k]
FIOIKI)) -((n. inc[2) /m.inc[1])*(6[T1[K] - G(OJ[KI));
it (n.dir == 1)
for(int k=03k<askrs) Ub(k] = U[k] - ((n.inc[2]/n.inc(0])* (F1](k]
FIOIIKD)) - ((n.inel2]/n.inc[1])*(G(O(K] - GT1IKI));
if (n.din == 2)(
for(int k=0ik<ask+s) Ub[k] = U[k] - ((n.inc[2]/n.inc(0])* (F0](k]
FUNIKD) - ((n-anc(2]/m.inc[11)* G{11[K] - GIO][KI));
else(
for(int k=0;ked;k++) Ub[K] = U[K] - ((n.inc[2]/n.inc(0])* (FIO] (K]

FUKD) - (. inc(2]/m.inc(11)*(G(0] (K] - GL11[K]));





OEBPS/orte_9780470970874_oeb_123_r1.gif
1_post (&full);
i = (i + )%
} while (n > 0);

)

void receiver()(
int i = 0;
size_t

vait (&full) ;

buf[i].

if (n>0)'(
write(1,buf[i] .data, nbytes);

Sen_post (8empty);

L (i 1425

)
} while (n > 0);
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class Main{
pubLic static void main(String(] args){

Filenoador fr

FileReader ();
fr.start();
-
)
class FiloReader extends ... inplenents Rumnable{

public FileReader(){...};
pubLic void run(){
11" Gode of the now file reador thread
)
L

class Wain(
public static void main(String(] args){

FileRoador fr = FiloReador();
Thread t = new Thread (fr);
tostart();






OEBPS/orte_9780470970874_oeb_066_r1.gif
otLaver]

ol






OEBPS/orte_9780470970874_oeb_168_r1.jpg





OEBPS/orte_9780470970874_oeb_083_r1.gif
interface RenoteProcedurecall {
pUbLic abstract Object nakeRequestaitReply(Object m);
pubLic abstract Object getRequest();
public abstract void nakeReply();
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class SharedResource inplenents HandleSocket, Runnable(

" synchronized (Lock) {
try{lock.wait();)
cateh (Interruptedexception ) ()

)
1/ Updating first column 0
for (int 5

actua

sig =(Data)grid.get (* ;

Systen.arraycopy (sig.Ub,0,actual .Ub,0, sig.Ub. Length) ;

)
1/ Update last column ny + 1

for(int i=tjicenx;is) {
actual=(Bata)grid.got (*0: +i+": "+ (ny+1)) ;
51 =(Data)grid. get(*0: +i+*:*iny);

Systen.arraycopy (sig.Ub,0,actual .Ub,0, sig.Ub. Length) ;

)

11 Update first Line 0

forCint y=1ij<enyijee) ¢
actual=(Data)grid. get "0
50 =(Data)grid.get (*0:1:"+1);
Systen.arraycopy (sig.Ub,0,actual .Ub,0, sig. b Length) ;

)

1/ Update last Line nx + 1

for(int j=1;j<eny;j+) {
actual=(Data)grid.get (*0:"s (nx+1)+*
5ig =(Data)grid.get ("0 4nx+": 4)) ;
Systen.arraycopy (sig.Ub,0,actual.Ub,0, sig.Ub. Length) ;

)i

)

/1 Tnitialize storator
Synchrons zod (mutexl torator) {
Sibato = grid.get aterator();

)
/] Update the rest of variables
synchronized(Lock) {

countTotal = 0;

sigond =

)
11 Second stage of final conputation
synchronized (lock)
‘ery(lock wait() ;)
cateh(InterruptedException e) ()

)
1/ Update frontier conditions
1] Update first coluan 0

For(int i=1;i<enx;ive)
actual=(Data)grid.got (*0: +is* :0°);
Sig =(Data)grid.get(*0:*+i+*:1%);

Systen.arraycopy (s19.U,0, actual..l,0,sig.U. Length) ;

)
71 Update 1ast column ny + 1
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if Not knownvertices(i]
recontVortices(i] := Min(recentVertices(i],
rocentvorticos(last] + Allast, x1)
nininun := nininunertex(nininun, x)

End For

1 solect next vertex

Last = ninuaun

knownVerticos(last]
End For
end

THUE
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break;

caso 4: 1/ Finish executing
work = false;
break;

default:
break;
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pubLic class Test(
pUbLIC static void main(String(] args)(
Tokenspace tspace = now Tokenspace();
TokentandlerTdentifier thi = new
TokenHandlerIdentif ier(

TokenHandierIdent.ifier. SINGLETON HANDLER ) ;
tSpace.addTokenHandler Info(thi) ;
now TokenHandlerTdentifien(
Sorter”,
sort”,
nerge’ ,
*endSort*,
TokenHandlerTdentif ier.VAR_LOAD_HANDLER) ;
tSpace.addTokenHandler Info(thi) ;
now TokenHandlerTdentifier (
Merger”
nerge” ,
nerge* ,
endilerge’ ,
TokenHandlérTdent.if ior . VAR_LOAD_HANDLER) ;
tSpace. addTokenHandLerInfo(thi) ;

m

i

thi = new TokerHandlerIdentifier(
“Reporter®,
“endlerge”
wil,
endheport”
TokenHandlerIdent. ier . SINGLETON_HANDLER) ;

‘tSpace.addTokenHandlerInfo(thi) ;
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Processing conponent i, 1<=i<h
1] The rest of processésing conponents.
For x i= 1 to N-1
/1 find overall unknown mininun distance vertex
LocalMininun
if 1 <4 then
1/ processes 1, 2, and 3 receive and process nininun
Paceive kVertex fron k dinension
Localllininun := mininunVertex (Localiininun, Vertex)
else
1/ processes 4, 5, 6, and 7 send out their vertices
send Locallininun to'k dinension
if 1< 4 then
1/ processes 4, 5, 6, and 7 do nothing
if 1= 1 then
11 process 1 receives and obtains minimun
Feceive jVertex fron j dinension
Localiininun := mininunVertex (ocaliininun, jVertex)
elso
11 processes 2 and 3 send out their vertices
send LocalMininun to
if 1= 1 then
1] process 1 sends its local mininun to process O
send Locallininun to i
1] receive overall mininun vertex last fron Process 0
if 3= 1 then
11 process 1 receives fron 0, broadcast to 3
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include <senaphore.h>

sen_t enpty; // senaphore for enpty buffer.
sen_t full;’ // semaphore for full buffer

struct(
double data[BSIZE]; // buffer
int n; 11 vutfer size
) wuf(2];

int main()(
pthread_t ¢ reader;
extern void sender(), receiver();
int err;

son_init (senpty,0,2) ;
son_init (&ful1,5,0);

err = pthread creato(&t_sender, NULL, (void?(*)(void®))

sender, NULL);
if(ern) exit(1);

receiver();
return 0;
)

Void sender(){
int i = 0;
sizo_t = n;

dof
son_wait (sonpty);
n = road(0,buf(i] .data,BSIZE);
buf(i].n =n;
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public Grid(int i, int §){
sy
this.}
now Thread(this) start();

)

public void run(){

double tenperature, received, total;

tonporature - randon(10)

for (int iter - 0; iter < iterations; iter+s) {
(e ] > e < senaolori
if(i>1 & j >0 & j < N-1) sendi(grid[i-1]
it() <n-2 881> 088 1<ut) senad(griali)l}
G >1 855088 5 < M) sendr (@rialill)

[0], temperature);
(1], temperature)

2] temperature)
3

0
01
1]
“11[3], temperature

total = 0.0;
(1> 088') > 0 8 &< M-18&§ < N-1)(
roceived = receivel (grid(1(31(0]);

total += received;

received = recoiveo(gria(i](31(11);
total += recoived;
roceived = receivet (grid(i](j1(2]);
total += recoived;
received = receiveo(grid(il(31(31);
total += received;

)
11 Tnsert processing here
)
)

public static void nain(String(] args)(
grid = new Channel (W] (N] (4]
Tor(int m = 0; n < W mre)
for(int n = 0; n < Ny nie)(
for(int i = 0; i< 4; ite)(
aridal(n]{i] = new Channel();

)
)

for(int m = 0; m < M ne){
for(int n = 0; n < N; nee)(
now Grid(m,n);
)
)

Systen.oxit(0);
)
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1] First variable

qarr = n.values[0] - n.values(4];
qder = n'values[8] - n.values(0];
qabj = n'values[12] - n.values[0];
qizq = n'values[0] - n.values( 18]}

if((gizq*qder <0) || (qarr*qabj <0))
Ub{0] = n.values(0] + (etha*(n.values(4]+n.
. values[ 8] - 4+n.values(0]));
I/36cond variable

qarr = n.values(1] - n.values(s];
qder = n.values[9] - n.values(i

qabj = n.values(13] - m.values[1;
qi2q = nivalues(1] - n.values[17];

if((gizqtader <0) || (qarr*qab <0))
Ub[1] = n.values(1] + (ethat (n.values(s] .
“n.values(17] - 4n.values(11));
J/Third variabie
qarr = n.values(2] - n.values(];
qder = n_values[ 0] - n.values|2];
Gabj = n.values|14] - n.values(2]}
qizq = n.values(2] - n-values( 18]}
if((gizgrader <0) || (qarr*qabj <0))
Un[2] = n.valuos[2] + (etha (n.values(s] .
“n.values( 18] - 4°n.values(2]));
/1 Fourth variable
qarr = n.values(3] - n.valuesi7];
qder = n_values[11] - n.values[3];
qabj = n.values[15] - n.values[3]}
4izq = n.values(3] - n.values(19]}
£f((aizatader <0) || (qarr*qabj <0))
Ub[3] = n.values(3] + (ethat (n.values(7]+n.
“n.values({9] - 4°n.vaiues(3]));

values(8] +n.values(12]

values[9] +n. values[13]

values[10]+n.values(14]

values(11]+n.values(15]
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int main( int argo, char * argv[] ){

int minscale;
int MaxScale}

int nuberofPixels;
WritePixelType *pbufer, spbuffer2;
double origin(2],spacingl];

/] 1nago stored Buffors
WATRIX nkappa,ngradiont,nclassify;
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publLic void run(){
1] Tnternediate variables
if (In.hasData) broak;
for(int i = 0; i< 4} ir)(
ULi] = n.values(i;

)
Tho = U[O]; vx = U[1] / U[O]; vy = U[2] / U[O]; ene = U[a];

pre = 0.4%(ene - 0.5*(rho*Math.pow(vx,2.0) srhovHath. pow(vy,2.0)))
FI0[0] = Fhotvx;

F[O][1] = (rho*Math.pow(vx,2.0)) + pre;

F[0][2] = rhorvx*vy}

FIO[3] = vx* (ene+pro) ;

GIO[0] = rho * vy

GIOI1] = rho * vx'* vy;

6[0](2] = (rho*Math.pow(vy,2.0)) + pre;

G[0][3] = vy* (enerpre) ;
1] Direction x, Function

o = n.values[4]; vx = n.values(5] / m.values(4];

vy = n.values(6] / m.values(4]; ene = m.values(7]}

pre = 0.4%(ene - 0.5%(rho*Math.pow(vx,2.0) srho*Hath.pow(vy,2.0)))

FI1110] = rhotvx;
FITI(1] = (rho*Math.pow(vx,2.0)) + pre;
FI11(2] = rhorvxvy}

FIT113] = vx* (enespre) ;
1] Direction y Function G

Tho = n.values(8]; vx = n.values(9] / n.values(8];

vy = n.values[10]'/ n.values(8]; eno = n.values[1i];

pre = 0.4%(ene - 0.5"(rho*Math. pow(vx,2.0) srho*Hath.pow(vy,2.0)))
G(11(0] = rho * vy

S{11[1] = rho * vx'* vy;

6[1](2] = (rho*Math.pow(vy,2.0)) + pre;

GI11(3] = vy* (enerpre) ;

770 each direction
for(int K=0;k<Aiki®)
Ublk] = O[k]'- ((n.inc[2]/m.inc[0])*(F(1][K] - FIO][K]))-
((n.incf2]/m.ine(11)*(&[1] (K] - GIO](KI));
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Non-interference

Object

Object request broker

OpenMP

Operating system

Parallclism

Parallel execution

Parallel overhead

Parallel program

Parallel task

The predictable result of the statements of two or more
software components that share (read or write) the same
variables in a prescribed order. Represents the relation
between an atomic action in a software component and a
ritical assertion in another software component.
Executing the atomic action does not change the state of
the critical assertion.

The basic identifiable unit or component of an object-
oriented system.

Middleware layer that allows clients to invoke methods on
distributed objects.

Standard libraries that allow the creation and
administration of processes and communications via
shared variables (in C -+, or Fortran) on a shared
memory computer system.

Collection o services and APls that manages the hardware
and software resources of a computer system.

The characteristic of  process, object, component or
subsystem to execute physically simultaneous operations.

Exceution of a program by more than one software
component, with each software component being able to.
execute the same or different instructions at the same time.

The amount of time required to coordinate parallel
processes, as opposed to doing useful work. Parallel
overheads are due o several reasons: process start-up time,
synchronizations, data communications, software
overhead imposed by parallel compilers, libraries, tools,
operating system, etc., and process termination time.

The specification of a set of concurrent software
components exccuting on their own processor, and hence,
in parallel or simultancously

A task that can be exccuted by mul
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interface synchronizationllachanisn {
public abstract Object nakeRequest(Object m);
pubLic abstract Object request();
public abstract void nakeReply();
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class Grid inplenents Rumnable(

private static int W = 256, N = 256, iterations = 10;
private static Channel(1(]{] gris = null;
private int i = -1, § = -1;
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#include “npi.h®
#include *itkrisa.n*

int main( int arge, char * argv(] ){
/1 Declaration of variables

1] Declaration of WPI variables.

1] Dectaration of Tnage stored Buffers
17'The feature extraction is based on ITK filters, declared hero
17'Road and check the argunents.
/] FEATURE EXTRACTION
//Manager and workers have directly access to the original inage file through
JNFS..However- each one only reads and processes its associate area

77 Init fitter features

17" Each node, including the master, obtain the feature extraction of
11 its region

1] Finally the naster node collect the results
S (ny_rank == 0){ // WANAGER ACTIONS
IlManager sets up the storage area where it will be saved the results

7 Manager get the results fron the workers
7 Manager writes the feature inage

7 Manager writes the Maxinun intensity scaled Eigenvalue

3
©lso{ // WORKER ACTIONS
1] Transnission for all the workers
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interface RenoteProcedureCall {
publLic abstract Object nakeRequest¥aitReply(Object n);
public abstract Object getRequest();
Public abstract void makeReply(:
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/1 Receive a message
public. Objoct recoive(){
Object n = null;
i
' = ois.readobject();

Ratch(Exception! o) [3yston out.printin(s gotbessage());}
roturn n;





OEBPS/orte_9780470970874_oeb_091_r1.gif
«—

bufferl[size]:Double.

3.reaa0) pr=r]
4

1.sendtoprevious ()

Semaphore b

[=]

e

anonexs 1

:Semaphore:

emen(nt1
‘Element

buffer2lsizel:Double

>

Treceiverronerovions ()






OEBPS/orte_9780470970874_msr_cvi_r1.jpg
Jorge Luis Ortega-Arjona

PATTERNS FOR
PARALLEL SOFTWARE
DESIGN

Fi

SOFTWARE DESIGN PATTERNS





OEBPS/orte_9780470970874_oeb_085_r1.gif
class MultithreadServer inplenents Runnable (

private RemoteProcedureCall rpc; // reference to rpc
privato Object data; // Data to be processed

private Object subData; Data to be distributed
privato Object roply(]; // Rosults fron client threads
privato Object result; // Overall result

private ClientThread clientThread(];
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Implementation and Evaluation
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Implicit parallel
language

Inheritance

Instance

Instanciation

Interprocess
communication (IPC)

Java virtual machine
avm)

Kernel

Latency

Layer

Livelock

Programming language in which the compiler s capable of
discriminating between portions of the program that are
potentially concurrent and the sequential portions, and
generarting the required paralll code.

Object-oriented feature that allows the creation of new

classes by derivation from existing ones.

Object created from its definition within a class.

The mechanism that allows creation of an object from the
declaration of a class by invocation, which allocates
‘memory and inicializes the objects variables.

The unpredictable result of the scatements of two or more
software components that share (read or write) the same
variables in an unpredictable order.

Mechanism that allows communication between processes
tha reside i different address spaces.

Abstraction layer offering services to application in higher
levels or other virtual machines when using the Java
ng language.

program

Setof data structures and primitive atomic operations that
‘manages and controls processes, scheduling them on
processors, and implementing high-level communication
and synchronization operations such as semaphores or
message passing.

Delay experienced when invoking operations.

Level of abstraction defined by a st of services in a
hicrarchy:

A state of a process in which the process is ‘busy-waiting”
while waiting for a condition that will never become true.
“This busy-waiting condition is similar to deadlock.

Property of a program that, when executed, eventually
reaches a ‘good” state. Examples of liveness properties are.
termination and eventual entry into a critical section.





OEBPS/orte_9780470970874_oeb_001_r1.jpg
Patterns for Parallel
Software Design

Jorge Luis Ortega-Arjona

$WILEY

A John Wiley and Sons, Ltd, Publication





OEBPS/orte_9780470970874_oeb_248_r1.gif
[T vy [ ey [y vy [y e

ervefabure)

ey

srite capforature)

=3
=l

receive |

seaan
rl
e
[omeonwe]
P g e—
<
cecetven
>
easn
<






OEBPS/orte_9780470970874_oeb_265_r1.gif
Parallel
Software
Architecture

Paralle]
Software
Design

Parallel
Software
Technology





OEBPS/orte_9780470970874_oeb_266_r1.gif
Design
(synthesis)

Analysis

Solution
domain






OEBPS/orte_9780470970874_oeb_111_r1.gif
NETWORK






OEBPS/orte_9780470970874_oeb_243_r1.gif
el

e T
T T T
P Tosmits)
b Topuit)
[Fompemee]
B Tosmdiseh
[T
ey |
Towis)
From g 1)
L« From 1)
[Fompems] rom 1)
s g





OEBPS/orte_9780470970874_oeb_096_r1.gif
ricochly |

yﬁ\kﬁ,_

oot (aaza)

zoadddacan |

ochato
[

NETWORK





OEBPS/orte_9780470970874_oeb_073_r1.gif
while(!isResult)(
ryNa1S0)3). 1/ Wit for rosult bacons availablo
catoh (InterruptedExcoption o) ()
)
)

Poturn result;
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class FiloRoader extends Throad{

pilblic FileReader(){..

pibLic vosd run()(
11 Gode of the new file reader thread

)





OEBPS/orte_9780470970874_oeb_144_r1.gif
class server {
1/ declaration of local variables
type local_data;

17 declaration of exported operations
type procedure(typo fornal_parans) (

1/ operations on argunents

Feturn result;
)
77 other 1ocal procedures and processes
17 initial statenents.

)

class client {
1] declaration of local procedures and variables

type local data;
type actual_paraneters;

1] connection to server
Server s;

17 function call
data = call s.procedurs (actual_paraneters) ;
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class Sorter inplenents Rumnable {

private synchronizationllachanisn syncllech;
/1 reference to sync. mech.
private Object data; // Data to be processed
private Object result; // Result fron the call
private Boolean ack; // Acknowledgenent for writing

public void run(){
while(true){

data = synchilech.read(); // read data
17 process data

synchilech.write(); // write data
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class Grid inplonents Runnablo(
private int i = -1, § = -1;
private Grid(int i, int §) {
this
this. j
now Threadithis) .start();

)
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Objects or software components.

Object activity.

Messages for data exchange or function call
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inport java.net.Socket;
import javai0.0bjectOutputStroan;
inport java. io.0bjectInputstrean;

class RenoteRendezvous(
private String server;
private int port;
private ObjectInputStrean ois = null;
private ObjectoutputStrean oos = null;
private Sockst client = null;

pubLic RemoteRendezvous (String server, int port)
i

this.server = server;

this port = port;
)

public boolean connect(){
try(
CLient = now Socket (server,port) ;
008 = naw ObjectOutputStrean(client.getoutputstrean());
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Processing conponent k, 1<ck<N
11 The pseudocode for processesing conponents

int n'// Number of segnents

int t /] Tinesteps

int dt |/ Tinestep

Ghannel* previous.

Channel* next

Tenperature alt,n]

For i=t; i < ; its
/1 send local tenperature to next elenent
send temperature to next
11 Teceive tenporature fron previous element
Feceive previousTenp fron previous
1] send local temporature to provious elenent
send temperature to previous
1] receive tenporature fron next eloment
Peceive nextTenp fron next

afist, 10
alis1 N0
For j=2; j<N-2; je+

1/ Obtain new local tenperature
a[i+1,]]=ali, ] +(dt/(n°2)) *ali,§+1)-2%l4, 1] 4al 1,3 -1])
End Forj
End For i
End Pracess k
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traslape
ysize = size[1] / total p;
Xaizo - Sizelo] /eotal by
if(total p == 1) traslape
nolassify.ory[0]= 0;
nelassify.cols(0]

20;

nolassify.rows(1] = size(1];

if (ny_rank == 0)(
nclassify.orx(0] = 0;
nclassify.rows(0] = ysize + traslape;
nelassify ory[1] = 0;
nclassify.cols(i] = xsize + traslape;

}
else if ((ay_rank + 1)

total_p){
molassify.orx[0] = (y_rank*ysize) - traslape;
nclassify.rows(0] = (size[1] - (ysize*my_rank}) + traslape;
nclassify.ory[1] = (y_rank’xsize) - traslape;
nolassify.cols(1] = (size[0] - (xsize*my_rank)) + traslape;
)
else(
nclassify.orx[0) = (ny_rank'ysize) -traslape;

nclassify.rows[0] = ysize + 2*traslape;
nclassifyory[1) = (ny_rank'xsize)-traslape;
nclassify.cols(1] = xsize + 2+traslape;

)
1/ Manager and workers process their part
nclassify.ptr = (unsigned char **)nalloc(sizeof (unsigned char *)*size[1]);
for (i=0; 1<size( 1];i++)
nclassify.ptrli] = (unsigned char *)nalloc(sizeof (unsigned char)*size[0]);
for (i=0; i<size[1];1++)
for (j=0;j<size(0];j++) nclassify.ptrii](j] = 0;
// this function perforns the plant seeds part
plant_seeds (&nclassify,ankappa, st);
1/ the region growing is nade inside of this function
grow_classes (8nclassify,ankappa, angradient,st) ;
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class SharedResource inplenents HandleSocket,Runnablo(

try{Thread..sleep(1000) ;}
catoh (Exception o) ()
BServor.stop();





OEBPS/orte_9780470970874_oeb_039_r1.gif
= e






OEBPS/orte_9780470970874_oeb_006_r1.gif





OEBPS/orte_9780470970874_oeb_138_r1.gif
B Camponen

cecetven
eore
sera

seray
e

cozoruncaaen receiven

“ecetve






OEBPS/orte_9780470970874_oeb_209_r1.gif
Class SharedResource inplenents HandleSocket, Runnable(

For(int i=1;i<enx;is) (
actual=(Data)grid.get (103" +3s" s (1y+1)) 5
sig =(Data)grid.get(0: h
Systen.arraycopy (sig .U,0,actual..U,0,sig.U. Length);

)

11 Update first Line 0

for(int j=1;3<eny;je) (
actual=(Data)grid.get ("0
sig =(Data)grid.get(“0:1:"+1);
Systen.arraycopy (sig .U,0,actual..u,0,sig.U. Length);

}

11 Update last Line nx + 1

for(int j=1j<=ny;j++) (
actual=(Data)grid.get(*0: "+ (1x+1)+*:°4j) ;
5ig =(Data)grid.get(“0:"anx+":"4));
Systen.arraycopy (sig .U,0,actual..U,0,sig.U. Length);

)

Synchronized (nutexTterator) {
itato = grid.get_iterator ();

}

Synchronized (lock) {
countTotal = 0;
Sigond =

)

1/ Gorrectors conputation

synchronized(Lock) {
try(lock.vait() ;)
cateh(InterruptedException e) ()

)

71" update Ub to U

for (Iterator i = grid.get_iterator();i.hashext();)(
d = (Data)i.next();
Systen.arraycopy (d.Ub,0,d.U,0,d.U.length) ;

)

1/ Tine for next iteration

serialgetdt();

1/ Initialize iterator

synchronized (nutexTterator) {
itato = grid.get_iterator();

)
1/ Update the rest of variables
synchronized (Lock) {
countTotal = 0;
dir = (byte) (p);
size = grid.size() - sizeBorde;
1/ There is no other round
if(p == nundt) sigond = 4;
else sigond

)
)

/1 Wait one second before finishing
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polylist results;
int lastpolysent’
int worksize;

b
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inport java.net.Socket;

Class Sharer inplenents Runnable(
private String server;
private int port;

pubLic Sharer (String server, int port){
this.server = server
this.port = port;
now Thread (this) start();

3
public void run()(
Messago n = now lossage  (byte)0); // cnt

Roans request data to operate

double []U = new double[4]; 1] Internediate variables
double [](F = new double[2](4];

double [](]G = new doule[2][4];

double []Ub = new double[4]

double dir, rHo, pre, ene, VX, VY, dizd, der, qabj, qarr;
double otha = 0.2;
double [Jvalues = new double[s]; // Obtained results
boolean work = trups
RonoteRendozvous channel
while (Work)
17 50nd' request, waiting until receiving a response
channol.connect () ;
B = (Hossage)chaniol..sendreceive(n) ;
Ghannel. disconnect ()
switch(n.cnd) ( 11 Operate regarding ond
cas 0:
S (in_hasbata) broak;
/1" Prodictors sequential computation HERE
11 once results are obtained, write then on a nessage
n.hasosults - truio;
n’hasData - false;
n.values = Ub;
broak;

\ou RenoteRendozvous (server,port) ;

case 1:
if (in.hasData) break;
11 Gorrectors and final values sequential computation
1] for this round HERE
1] Once results are obtained, write then on a message
n.hasResults = true;
Eihasbata - false;
break;

case 2:
if(1n.hasbata) broak;
1] Flow corrector sequential conputation HERE
1] Once results are obtained, write then on a message
n.hasResults = true;
nihasbata = falso;
nivalues = Ub;
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elsef
Forline keD:k<aske) UK = 0.5%((ULK] + UBIKI) - ((n.tne{2] /. inc{0])
“(FIO)[K] - FI11{KI)) - ((n.inc(2] /m.inc[1])*(G[0){k] - GI1i[k1)));
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Specdup

Subdlass

Subsystem

Superclass
Symmetric

‘multiprocessor (SMP)

Synchronization

Synchronous 110

System

Systems architecting

The observed specdup of parallel code is defined as the
ratio of serial execution time to parallel execution time.
This is one of the most widely used indicators for

measuring the performance of a parallel progra

A class that etends the behavior of another class, known
asa superclass.

A set of cooperating components that cannot be
considered a whole or complete system, but which
performs a defined function independently of the rest of
the system.

A class whose behavior is extended by another class,
known as a subelass.

A shared memory multiprocessor computer in which
processors are identical and in which every one of them
accesses every memory location in the same amount of

time.

Coordination of parallel tasks i real time, often
associated with communications among them. Often
implemented by establishing a synchronization point or
mechanism within an application beyond which a task may.
not proceed until another task(s) reaches the same or
logically equivalent point. Usually requires at least one
task to wait, increasing the wall-clock execution time of a
parallel application.

Mechanism for sending and receiving data using 1/0
operations in which the sender blocks waiting to complete
the sending operation.

The collection of components, their connections (or
relations) and their organization rule or form, which
perform a function as a whole that cannot be achieved by

the individual componcs

The art and science of describing the archiecture of
complex systems, concerned with scoping, structuring and
g the system.

certify

The action of planning and constructing systems.
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receive last to i dinension
send last to ) dinension
else
if 1 <4 then
1] processes 2 and 3 receive fron 0 and 1,
1/ broadcast to 4 and 5
receive last to § dinension
send last to k dinension
elso
11 processes 4, 5, 6, and 7 receive fron 0, 1, 2, and 3
receive last in k dinension

recentVertices(i] i= Min(recentVerticesil,
recentVerticeslast] #A[1ast, i]")
/] Update distances
End For
End Process i
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class SharedResource inplenents HandleSocket,Runnable(

n.pos = d.pos;
nihasbata = true;
n-hasResults = false;
n.values = values;

)
olse // Finish

«

sigend = 127;
n.cnd = sigond;
n.values = nuli;
nLinc = null;
n-hasbata = false;

hashesults = faise;
pos = null;

)
channelsend(n);
break;

caso 1:

if (n.nashosuts) (
4'="(Data)grid.get (n.pos);
Syston.arraycopy(n.values 0,d.,0,d.. length) ;
synchronazed (Lock) {
countTotals+;
i#(GountTotal

)

)

synchronized (nutexterator) {
if (itDato.hasNext()) d = (Data)itDato.next();
else d = null;

size) Lock.notifyALL();

)
Wiile (d = nuLL & (d.pos. indoxOf (inBor) 1= -1
.pos. indexf (imBor) 1= -1 || d.pos. indoxof (inyBor)
synehronized (autoxTtorator) {
if (itDato.hasNext()) d = (Data)itDato.next();
else d = null;

“(

)

)
1f(d 1= null)(
double values(] = new double[4+d.Ub.Lengtn] ;
Systen. arraycopy(d.Ub, 0, values,0,d.Ub. ength) ;
i (dir == 0)(
Systen.arraycopy (d.vec(2] .Ub,0,values, d. Ub. Length,d.Ub. Length) ;
systen.arraycopy(d.vec(1].0b,0, values ,2%d.Ub. Length,d.Ub. longthy ;
) else if (dir == 1){
Systen.arraycopy (d.vec(2] .Ub, 0, values, d.Ub. length,d.Ub. Length) ;
systen.arraycopy (d.vec(3] .Ub, 0, alues, 2*d.Ub. Length,d.Ub. length) ;
) else if (dir == 2){
Systen.arraycopy (d.vec(0] .Ub,0, values, d. Ub. Length,d.Ub. Length) ;
systen.arraycopy(d.vec(11.0b,0, alues ,2%d.Ub. Length,d.Ub. length) ;
) else(
Systen.arraycopy (d.vec(0] .Ub, 0, values, d.Ub. length,d.Ub. Length) ;
Systen.arraycopy (d.vec|3] .Ub,0,values,2*d.Ub. Length,d.Ub. length) ;
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PROC Gopy (CHAN OF BYTE input, buffer, output)
BYTE chart, char2, dusny.
sEQ
input 7 chart
WHILE TRUE
AT
input 7 char2
ska
ouput
chart
buffer 7 dunny
sta
output | chart
input 7 chart

chart
char2
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inport java.io.*;
inport java.util
inport java.net.;

class SharedResource inplenents HandleSocket,Runnable(

private MuLtiGrid grid;
private Object lock;
private Object nutexIterator;

piblic void nandle(socket ©)(
‘Romotanendazvous channel < new RemoteRendezvaus *localhos
Data d < nul;
Chamne1..connect (c);
lossage n = (Hessage)channel.raceive () ;
switch(m.cad) {
Gase 0: 1/ Sending prodictors
Sen.hashesults) {
"= (Data) grid. got (n.pos);
Syston-arraycopy (n.values 0,d.Ub,0,0.Ub. Longth);
synchronized (1ock) {
GountToal +;
S (comtTotal

port

size) lock.notifyALL();
)

)
1/ Next value to process. Synchronization for getting grid data
synchronized (nutexIterator) (
if (itDato.hasllext()) d = (Data)itbato.noxt();
else d = null;
3
7 Borders are not processed
While (d 1= null 8& (d.pos.indexOf (inBor) 1= -1 ||
d.pos. indexOf (inxBor) 1= -1 || d.pos.indexof (inyor)
synchronized (nutexlterator) {
if (itDato.hasNext()) d = (Data)itato.next();
else
@ = nul;

04

)
)
71 1f data roquest, data is sent

channel.send(n) ;
break;

case 1:'// Sending corretors
it (n.hasflesults) (
4= (Data)grid.get (n.pos);
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Basic building block of object-oriented applications. A
class specifies an interface that declares the attributes and
methods of objects as instances of the class, and an
implementation that defines the values and functionalities
of those attributes and methods.

Individual or organization that acquires the system
Oceasionally; it is also the end user of the system.

A process interaction in a distributed system. A server
‘manages a resource and applies operations on such a
resource, whereas dlients make requests to the server by
invoking such operations.

A dluster is composed of nodes in which each node s a
complete workstation except for the common 1O
peripherals (monitor, keyboard, mouse, erc.). Howeser,
nodes normally have a local disk. A node may be a simple
personal computer, along withits processor, local memory,
and network interface, or it could be a full SMP compute
Nodes communicate with cach other through a low-cost
network such as Ethernet or ATM.

To cooperate, parallel tasks need to exchange data. There
are several ways to accomplish this, such as through shared
memory or over a necwork. The event of data exchange is
commonly referred as communications, regardless of the
method employed.

The simplest parts that can be considered as distint unics
within a system.

Ameasure of the number of types of internal relationships
among the components of a system.

A characteristic of a process, an object, a component or a
system to execute operations logically simultaneously -
thatis, with the potentialfor simultancous exccution but
emulating such an execution.

A software component that is allowed to exccute
concurrently with other software components.

The specification of two or more software components
that are allowed to execute concurrently.
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