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PREFACE

Integer programming (IP) is a class of constrained optimization problems in which some or all variables are integers and all mathematical functions in the objective and constraints are conventionally linear. In the professional community, the acronym MIP (mixed integer programming) is more often used, because many real-world problems involve a mix of continuous and integer-valued decision variables.

PURPOSE, SCOPE, AND AUDIENCE

We set out to write an easy-to-read, applied textbook for students enrolled in multiple academic disciplines and for professionals. In academia, the textbook is intended for graduate- and senior-level students of industrial engineering, operations research, management science, computer science, and applied mathematics. Other disciplines (such as operations management, supply chain management, logistics management, transportation engineering) that need a course in applied optimization would find this text a relevant option. Because of its application emphasis, this textbook can also be used as a reference book by practitioners whose jobs require modeling and solving real-world optimization problems using commercial integer programming software, as well as MIP software developers and analysts.

Instructors who are preparing students for careers in the practice of operations research and management science will find this book appealing. However, because of its application emphasis rather than mathematical rigor, this book is not suitable for instructors who are looking for theoretical underpinnings, such as mathematicians who are selecting a text for a course in discrete or combinatorial optimization.

Instructors of operations research and management science will find this text a natural continuation of and complement to well-known introductory textbooks in operations research and management science. As the subtitle indicates, the major approach of this book is modeling and solution. Modeling is emphasized because the insertion of integer variables in a linear program (LP) enables much more rich and realistic representations of decision situations. Both in the examples and exercises, students develop advanced modeling skills. Integer and linear programming terminology commonly referenced in commercial MIP solution software is covered in the text. This text provides extensive coverage of modeling techniques and solution methods with algorithms that are implemented in today’s commercial software.

TOPIC COVERAGE, LEVEL OF PRESENTATION, AND IMPORTANT FEATURES

This text is organized into three parts—Part I: Modeling, Part II: Review of Linear Programming and Network Flows, and Part III: Solutions. Part I (Chapters 1–6) includes areas of successful integer programming applications, systematic modeling procedure, types of integer programming models, transformation of non-IP models, automatic preprocessing for better formulation, and an introduction to combinatorial optimization. Part II (Chapters 7–10) reviews algebraic-geometric concepts and solution methods related to LP and network flows that are needed for understanding IP. Part III (Chapters 11–15) describes various solution approaches for large-scale IP and combinatorial optimization problems in addition to fundamentals of typical software systems. Solution approaches include classical, branch-and-cut, branch-and-price, primal heuristic, and Lagrangian relaxation. In Chapter 15, three popular modeling languages and one solver are introduced. Answers to selected problems from each chapter appear in an appendix. A more detailed preview of the text may be found in Section 1.5.

As an application-oriented text, we aim to teach students about the art and science of mathematical modeling for the collection of problems that fit the MIP framework and about the algorithms and associated practices that enable those models to be solved most efficiently. To make algorithms easier to comprehend, this book places unique emphasis not only on how the algorithms work but also on why they work. To achieve these goals, reasoning and interpretation are exercised more often than rigorous mathematical proofs of theorems, which may be located in referenced articles. The authors have been very thorough in searching out and synthesizing various modeling and solution approaches that have appeared in disparate publications over the past 40 years. We want the student, who we envision will become a practitioner, to have a well-organized and comprehensive reference that eases the learning hurdles in integer programming and provides suggestions/guidelines for practice, once on the job.

The book makes liberal use of examples and flowcharts. Each new concept or algorithm mentioned is illustrated by a numerical example. The book contains over 100 figures, either flowcharts or simple geometric drawings, to illustrate the concepts in the text. A unique feature is that where possible, we use graphics to draw together diverse problems or approaches into a well-structured whole. Chapters typically have between 10 and 20 exercises; some are simple applications similar to examples, and some are more comprehensive and challenging, such as choosing the appropriate methods from several presented, and applying them collectively to a problem. This again simulates the authors. experiences as practitioners. There are a few problems that require the reader to investigate a topic further or to attempt to prove an assertion or provide a counterexample. In summary, we attempted to write an applied integer programming text that emphasizes modeling and solution, with due attention to fundamentals of theory and algorithms. We believe it meets an unfulfilled need for an IP text that links together problem solving, theory, algorithms, and commercial software.

SUGGESTIONS FOR COURSE USE

This book is self-contained, requiring only a background in linear or matrix algebra. The book offers a great deal of flexibility to university course instructors. The entire book can be used for a two-semester sequence in linear and integer programming, at the level of seniors or masters students in engineering, computer science, or business schools. For students already completing a full course in linear programming, Parts I and III can be used as a masters-level course entitled Integer Programming or Integer and Combinatorial Programming. For students with a partial knowledge of linear programming obtained in an undergraduate survey of operations research, a compromise is to cover sections of Part I, II, and III. For instance, one coauthor taught a masters-level course Integer Programming using Chapters 1–4, 7–10, 11, 12, and 15.
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PART I

MODELING





1

INTRODUCTION

1.1 INTEGER PROGRAMMING

A linear programming problem (LP) is a class of the mathematical programming problem, a constrained optimization problem, in which we seek to find a set of values for continuous variables (x1, x2,…, xn) that maximizes or minimizes a linear objective function z, while satisfying a set of linear constraints (a system of simultaneous linear equations and/or inequalities). Mathematically, an LP is expressed as follows:

[image: Equation]

An integer (linear) programming problem (IP) is a linear programming problem in which at least one of the variables is restricted to integer values. In the past two decades, there has been an increasing use of an alternate term—mixed integer programming problem (MIP)—for LPs with integer restrictions on some or all of the variables. In this text, the terms IP and MIP may be used interchangeably unless there is a chance of confusion. For clarity, we shall use the term pure integer programming problem (or pure IP) to emphasize an IP whose variables are all restricted to be integer valued.

The term “programming” in this context means planning activities that consume resources and/or meet requirements, as expressed in the m constraints, not the other meaning—coding computer programs. The resources may include raw materials, machines, equipments, facilities, workforce, money, management, information technology, and so on. In the real world, these resources are usually limited and must be shared with several competing activities. Requirements may be implicitly or explicitly imposed. The objective of the LP/IP is to allocate the shared resources, and responsibility to meet requirements, to all competing activities in an optimal (best possible) manner.

The term “programming problem” is sometimes replaced by program, for short. Thus, an integer programming problem is also called an integer program, and so are mixed integer program, pure integer program, and so on. Mathematically, an MIP is defined as

[image: Equation]

Note that all input parameters (cj, dk, aij, gik, bi) may be positive, negative, or zero. Using matrix notation, a mixed integer program may be expressed as

[image: Equation]

where m = number of constraints

n = number of continuous variables

p = number of integer variables

cT = (cj) is a row vector of n elements

dT = (dk) is a row vector of p elements

A = (aij) is an m × n matrix

G = (gik) is an m × p matrix

b = (bi) is a column vector of m constants (or right-hand-side column, rhs)

x = (xj) is a column vector of n continuous variables

y = (yk) is a column vector of p integer variables


FIGURE 1.1 A simple classification of integer programs.

[image: figure]


When n = 0, no continuous variables x are present and the MIP reduces to a pure IP. When p = 0, no integer-restricted variables y are present and the MIP reduces to a linear program. An LP is also obtained by relaxing (or ignoring) the integer requirements in a given MIP. Thus, the resulting LP is called the LP relaxation (of a given IP). Unlike the above-mentioned LP that contains only variables x, the LP relaxation contains both x and y variables and treats y as a vector of continuous variables.

An integer program in which the integer variables are restricted to be 0 or 1 is called a 0–1 (binary) integer program, or binary IP (BIP). A binary IP with a single ≤ linear constraint, whose objective function and constraint coefficients are all positive, is called a knapsack (or backpack) problem. An IP with a single constraint and all positive constraint coefficients is called an integer knapsack program, in which the values of an integer variable are not restricted to 0–1. In particular, an integer knapsack program is a knapsack program if all integer variables are restricted to be 0 or 1. Figure 1.1 depicts the relationships between various classes of MIPs under certain conditions. A box represents an IP class and an arrow represents the imposed condition(s) leading to a subclass from a class. There are many more subclasses than shown in this simple diagram, but the details of Figure 1.1 are adequate for this introductory chapter.

1.2 STANDARD VERSUS NONSTANDARD FORMS

Throughout this text, a mixed integer program will be said to be in standard form if (1) the objective function is maximized, (2) all the constraints are of ≤ form, (3) each integer variable is defined over consecutive integer numbers whose lower bound is 0 and upper bound infinity, and (4) each continuous variable is nonnegative with no finite upper bound.

Any MIP that does not conform to the conditions (1)–(4) is considered to be in nonstandard form, but may be converted to a standard one through simple mathematical manipulations. For ease of presentation, we shall use the standard form for the remainder of the text, except for special purposes. The following are various nonstandard forms that need to be converted:


	Minimization problem

	Inequality of ≥ form

	Equation (equality constraint)

	Unrestricted variable (continuous or integer)

	Variable with a positive or a negative lower bound

	Variable with a finite upper bound



If a given problem is a minimization problem, then it may be converted to an “equivalent” maximization problem. Two problems are considered equivalent if their optimal solutions are the same. Consider the given problem,

[image: Equation]

To convert to a standard form, we multiply the given objective function by –1 and change the minimization to the maximization as follows:

[image: Equation]

For example, we convert min z′ = 3x1 − 2x2 + 4x3 to max z = −3x1 + 2x2 − 4x3, and the new objective value becomes z = −z′.

If a given inequality is in ≥ form, we then convert it to the standard ≤ form by multiplying the inequality by −1 and reversing the direction of the inequality sign. For example, the inequality 6x1 − 5x2 + 3x3 ≥ 10 may be converted to − 6x1 + 5x2 − 3x3≤ − 10.

Converting an equation to the standard ≤ form requires two steps: (1) replace the equation by a pair of inequalities of opposite sense, and as before, (2) convert the inequality of ≥ form to the standard ≤ form. For example, we first convert −2x1 + 5x2 − 3x3 = 15 to the following two inequalities: −2x1 + 5x2 − 3x3 ≤ 15 and −2x1 + 5x2 − 3x3 ≥ 15. We then convert the nonstandard inequality by multiplying it by −1 and reversing the sign of the inequality to get the second standard inequality: 2x1 − 5x2 + 3x3≤ − 15.

If a continuous or an integer variable is unrestricted in sign (i.e., it can be negative, positive, or zero), then we may replace an unrestricted variable by the difference of two new variables, [image: Inline-Equation] and [image: Inline-Equation], as follows:

[image: Equation]

[image: Equation]

Note that the same variable t may be used for other unrestricted variables. Thus, only one variable is increased regardless of the number of unrestricted variables.

If a continuous or an integer variable, respectively, has a positive or negative lower bound, say, lj or lk, respectively, then it can be transformed to a new variable (say, [image: Inline-Equation] or [image: Inline-Equation] by substituting

[image: Equation]

The transformed problem is equivalent to the original problem with a set of new variables. After solving the transformed problem, the optimum solution in terms of the original variables is recoverable from the above equations.

Recall that the upper bound of a continuous or an integer variable in the standard form of IP is infinite. Thus, a continuous or an integer variable having a finite (value of) upper bound needs to be transformed. However, the above substituting equation cannot be used to get a standard (an infinite) upper bound because the new transformed variable will still have a finite upper bound (why?). In this case, an upper bound constraint, xj ≤ uj or yk ≤ uk, must be adjoined to the program. Basically, we treat a lower or an upper bound as a simple constraint consisting of a single variable.

1.3 COMBINATORIAL OPTIMIZATION PROBLEMS

A combinatorial optimization problem (COP) is a discrete optimization problem in which we seek to find a solution in a finite set of solutions that maximizes or minimizes an objective function. This type of problem usually arises in the selection of a finite set of mutually exclusive alternatives. These qualitative alternatives may be quantified by the use of discrete variables. Usually, the set of all possible solutions can be enumerated and their associated objective values can be evaluated to determine an optimum solution. But unfortunately, the number of solutions by complete enumeration is usually too huge even for a moderate-sized problem.

The COP is closely related to the IP in that most, if not all, COPs can be formulated as 0–1 integer programs. Well-known examples of COP include the classical assignment problem and traveling salesman problem (TSP). The assignment problem may be applied, for example, to assign n jobs to n workers in a most efficient manner so that each job is assigned to one and only one worker, and vice versa. The TSP originates from a salesman who starts from a home city to visit n − 1 cities so that each city is visited once and only once and then returns to the home city with a minimum travel distance. The assignment problem is “well solved” because any optimum solution to its LP relaxation is naturally integer. Moreover, there are special assignment algorithms such as Hungarian algorithm that are available to solve the problem much faster than the standard simplex method. This class of “well-solved (easy)” integer programs will be discussed in more detail in Chapter 10.

It is “hard” to find an exact optimum solution to a traveling salesman problem because of its combinatorial nature. Although there are many algorithms available for finding an approximate solution, the state of the art for finding an exact solution is to formulate and solve it as a 0–1 (binary) integer program. Unfortunately, the formulated model requires an enormous number of binary variables and constraints even for a moderate-sized problem. Modeling combinatorial optimization problems will be discussed in Chapters 5 and 6, and the solution methods to these problems will be a main theme of Chapters 11–13.

1.4 SUCCESSFUL INTEGER PROGRAMMING APPLICATIONS

The authors believe that integer programming plays a key role in operations research, an observation supported by analysis below. This textbook is grounded in theoretical developments in IP over the past five decades, but is written in hope of bridging the gap between academic developments in IP and modern OR practice.

Interfaces, a bimonthly journal publication of INFORMS, had published over 500 OR/MS application articles from 1979 to 2006, when we started writing this book. We reviewed all these articles and surprisingly found that about 23% of them used integer programming and that many of them were finalists of the annual Franz Edelman Award competitions over the years.

We further identified 44 IP application articles in Interfaces that claimed enormous savings in cost or increase in profit. Financial benefits cited were of a magnitude of tens or hundreds of million dollars per year. In Table 1.1, these 44 applications are classified by industry sector. They are transportation and distribution, manufacturing, communication, military and government, finance, energy, and others. In this count, the sectors of manufacturing and transportation and distribution tie for first place in terms of most IP application papers (13 each), followed by the communication, military and government, and finance sectors (4 articles each of three sectors). Within the sectors, the airline industry had the most application papers (9 articles).

These 44 articles also are classified in Table 1.1 by problem/model type: workforce/staff scheduling, transportation and distribution, supply chain management, production planning, government services, financial services, project management, and others. In this count, workforce/staff scheduling problem has the most papers (11 articles), followed by the transportation and distribution (10 articles), and the supply chain management (5 articles).

1.5 TEXT ORGANIZATION AND CHAPTER PREVIEW

This text is organized into three parts: Part I Modeling, Part II Review of Linear Programming and Network Flows, and Part III Solutions. Part I (Chapters 1–6) includes areas of successful integer programming applications, systematic modeling procedure, types of integer programming models, transformation of non-IP models, automatic preprocessing for better formulation, and an introduction to combinatorial optimization. Part II (Chapters 7–10) reviews algebraic–geometric concepts and solution methods relating to LP and network flows that are needed for understanding IP. Part III (Chapters 11–15) describes various solution approaches for large-scale IP and combinatorial optimization problems in addition to fundamentals of typical software systems. Solution approaches include classical, branch-and-cut, branch-and-price, primal heuristics, and Lagrangian relaxation. In Chapter 15, three popular modeling languages and one solver are introduced. Answers to selected exercises from each chapter appear in an appendix.

TABLE 1.1 Classification of IP Application Papers in Interfaces by Industry

[image: table]

[image: table]
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[image: table]
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a Franz Edelman Award finalist of the previous year.
b Franz Edelman Award winner of the previous year.
c Daniel H. Wagner Prize finalist of the previous year.
d Daniel H. Wagner Prize winner of the previous year.

This chapter (a) defines the IP model and associated notation to be used in the text, (b) classifies IP models and describes their relationships to linear and combinatorial optimization models, (c) previews the contents of each chapter, and (d) categorizes numerous successful IP applications arising in diverse industry/business sectors, based on survey data collected from the articles published in Interfaces (a bimonthly journal by INFORMS) 1979–2006, when we started writing this book.

Chapter 2 (a) explores the assumptions underlying the MIP mathematical model and explains their physical interpretations, (b) provides a step-by-step procedure for building a model from a given real-world problem, and (c) introduces fundamental formulations for the most utilized types of MIP models that are identified from the survey of successful applications described in this chapter. Seven assumptions underlying the MIP problem are fully uncovered through a careful examination of its mathematical anatomy. Some of these assumptions do not appear explicitly in other texts of operations research and integer programming.

In Chapter 3, beyond the simple use of 0–1 variables discussed in Chapter 2, the formulation power of 0–1 variables extends their ability to transform a variety of optimization models into integer programs. Transformable optimization models are identified and grouped together according to the types of decision variables, mathematical functions, and constraints. This chapter also describes the relation between logical (Boolean) expressions and 0–1 formulations, in addition to modeling the bundle pricing problem, which is a common business practice. These features appear for the first time in any integer programming text.

Chapter 4 (a) defines and explains what is meant by better formulation of an IP problem, (b) introduces several basic preprocessing techniques, for both general and special problems, that can automatically transform a user-supplied formulation into a better one, and (c) identifies primary preprocessing functions/areas that are covered by most preprocessors of current IP software.

Chapter 5 begins with defining the class of COPs and ends with a discussion of the computational complexity of a problem or an algorithm. Three classes of COPs are discussed: set covering, partitioning, and packing; matching problems; and cutting stock problems.

Chapter 6 is devoted to the best-known combinatorial optimization problem, the TSP, and its many variations. More details on TSP applications are given, expanding the discussion in this chapter. Solution approaches, which generally involve creating constraints that prevent inclusion of subtours in the IP search for the optimal tour, depend on whether the arcs connecting the nodes are one-way (asymmetric TSP) or bidirectional (symmetric TSP).

Chapter 7 reviews the fundamentals of linear programming theory and network flows that are essential to the understanding of the solution space and solution methods to be discussed in Chapters 11–13.

Chapter 8 reviews/introduces basic geometric concepts and terminology that are essential to the understanding of the properties of the solution spaces and cutting planes for both general and special IP problems. These concepts are prerequisites for full understanding of the branch-and-cut method to be discussed in Chapter 12.

The modern methods for solving a large-scale integer program require the optimization and reoptimization of a usually long sequence of LP relaxation problems that in turn are often solved by a variety of simplex-based methods (and/or an interior point method). Chapter 9 reviews four simplex-based methods that serve as building blocks for solving integer programs. The simplex method provides the foundation for optimizing a long sequence of LP relaxations. The simplex method for upper-bounded variables is used for reducing the problem size by implicitly handling the upper and lower bounds on variables (equivalent to single-variable constraints). The dual simplex method is most effective for reoptimizing the current optimum, after addition of constraints, without resolving the augmented LP problem from scratch. The revised simplex method produces the same sequence of bases as the simplex method, but depends on updating the basis inverse (m columns) rather than the entire simplex tableau (n columns) in each iteration.

Chapter 10 (a) identifies a class of easy network optimization problems whose IP formulations are solvable as LPs by simply ignoring the integer requirements, (b) describes the sufficient conditions (or model structure) that characterize this class of problems, and (c) introduces a more efficient algorithm than the ordinary simplex for solving this class of network optimization problem.

Chapter 11 introduces three classical approaches for solving integer programs: branch-and-bound, cutting plane, and group theoretic. Currently, these approaches are not implemented in practice as stand-alone solvers. However, they are integrated parts of a modern solution approach such as the branch-and-cut to be described in Chapter 12.

The recent advances in solving large-scale integer programs have been made possible by great improvements in modeling, preprocessing, solution algorithms, LP software, and computer hardware. We have already discussed modeling and preprocessing. Chapter 12 addresses a modern solution approach known as the branch-and-cut, in which a substantial portion of the discussion centers on the generation of cuts that are useful for solving general and special integer programs.

In the previous chapter, branch-and-bound is generalized to include generation of cuts or rows, hence the name branch-and-cut. In Chapter 13, branch-and-bound is first generalized to include generation of columns by solving pricing problems, hence the name branch-and-price, and then generalized to include columns and rows, hence the name branch-and-price-and-cut. Basically, all these generalizations solve a sequence of LP relaxations of a given IP. Branch-and-cut tightens the LP relaxations (or polyhedra) by adding cuts or constraints (rows). Branch-and-price tightens the LP relaxations by generating a subset of profitable columns associated with variables to join the current basis. These columns are generated iteratively by solving subproblems or pricing problems.

Chapter 14 introduces a variety of primal heuristic algorithms that can be used to obtain a good solution or an approximate solution for an integer program or a combinatorial optimization problem. Both classical and artificial intelligence (AI) heuristic algorithms are provided. The traveling salesman problem is used for the purpose of illustration. This chapter also (a) describes various relaxation methods for solving IP problems, (b) lists examples of IP model types to which the Lagrangian relaxation approach is applied, (c) derives the associated Lagrangian dual problems for both linear and integer programs, (d) provides efficient methods for solving the Lagrangian dual, and (e) develops Benders’ decomposition algorithm for integer programming.

Chapter 15 (a) provides some practical considerations when algorithms are implemented in software, (b) describes the key components and features of a typical software system, (c) introduces three commonly used modeling languages (AMPL®, LINGO®, and MPL®) in more depth than earlier chapters, and (d) briefly describes other modeling languages and systems.

1.6 NOTES

Section 1.1

General IP textbooks that are referenced in this text include Hu (1969), Garfinkel and Nemhauser (1972), Zionts (1974), Taha (1975), Nemhauser and Wolsey (1988), Parker and Rardin (1988), Salkin and Mathur (1989), and Wolsey (1998).

Introductory OR/MS textbooks that are referenced in this text include Wagner (1975), Winston (1994), Hillier and Lieberman (2005), and Taha (2007).

Journals that are referenced include Interfaces, Operations Research, Management Science, European Journal of Operational Research, IIE Transactions, Transportation Science, Naval Research Logistics Quarterly, Journal of the Association for Computing Machinery, Mathematical Programming, Discrete Applied Mathematics, and SIAM Journal on Algebraic and Discrete Methods.

Many textbooks, like this one, use a maximization problem as a standard MIP, while others use a minimization problem. In a minimization MIP, the standard inequality constraint is of ≥ form.

Section 1.2

Conversion from a nonstandard MIP to standard form is similar to that for linear programs. For references of conversion techniques, see any introductory OR/MS textbooks such as Winston (1994) and Hillier and Lieberman (2005).

Section 1.3

Some authors, for example, Parker and Rardin (1988), view discrete optimization problems as a combination of integer programming and combinatorial optimization problems. Literally speaking, a discrete optimization problem is an optimization problem defined over discrete variables. However, a discrete variable is different from an integer variable in that an integer variable may take on any consecutive integral values, while a discrete variable may take on specified discrete values, consecutive or not, integer number or not—essentially what mathematicians call a countable set. Thus, an integer variable is a discrete variable, but a discrete variable may or may not be an integer variable. For example, both solution sets of y5 and y3, defined by Z5 = {3, 4, 5, 6, 7} and Z3 = {4, 6, 7, 10}, respectively, are discrete variables. But y3 is not an integer variable, while variable y5 is both an integer and a discrete variable. In Chapter 2, we shall show how a discrete variable can be converted to a set of binary (0–1) variables.

Section 1.4

INFORMS is a professional society that was founded through the merger of two older societies: the former Operations Research Society of America (ORSA) and The Institute of Management Science (TIMS).

Interfaces, a bimonthly journal publication of INFORMS, has published over 500 OR/MS application articles since 1971. All articles are available in both electronic form and hard copy.

The Franz Edelman Award was founded in 1972 (initially under the name of “the Annual International Management Science Achievement Award”). From 1975 to 1984 (the year in which the award name was changed to Franz Edelman Award), the papers of the finalist and the winners were published in Interfaces in the last issue of that year. From 1985 up to today, the first issue each year is dedicated to the finalist and the winner(s) of the previous year. “The Edelman Award recognizes outstanding implemented operations research that has had a significant, positive impact on the performance of a client organization. The top finalist receives a $10,000 first prize” (OR/MS Today).

The Daniel H. Wagner prize was founded in 1998. It “emphasizes the quality and coherence of the analysis used in practice. Dr.Wagner strove for strong mathematics applied to practical problems, supported by clear and intelligible writing. This prize recognizes those principles by emphasizing good writing, strong analytical content, and verifiable practice successes. The competition is held each year in the fall at the INFORMS Annual Meeting” (see http://www2.informs.org/Prizes/WagnerPrize.xhtml for details). Papers of each year’s finalists are published in the fifth issue of Interfaces of the following year.

1.7 EXERCISES

1.1 Read one of the successful application articles from the category of transportation and distribution published by INFORMS in Interfaces as shown in Table 1.1. Do the following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints, decision variables, and types of variables (continuous or integer, binary or general).

1.2–1.7 Do the same for each of the remaining categories: (1.2) communications, (1.3) manufacturing, (1.4) energy, (1.5) military and government, (1.6) finance, and (1.7) others.

1.8–1.14 Read one of the application articles from each of the following problem types published in Interfaces, as given in Table 1.1: (1.8) project management, (1.9) production planning, (1.10) workforce scheduling, (1.11) transportation and distribution, (1.12) supply chain management, (1.13) cutting stock, and (1.14) machine scheduling and sequencing. Do the following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints, decision variables, and types of variables (continuous or integer, binary or general).

1.15–1.19 Transform each of the following nonstandard integer programs into a standard form of IP defined in this text.

1.15

[image: Equation]

1.16

[image: Equation]

1.17

[image: Equation]

1.18

[image: Equation]

1.19

[image: Equation]
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MODELING AND MODELS

In Chapter 1, we mathematically defined a mixed integer program (MIP). A mathematical definition in general has the advantages of being precise, concise, and capable of data manipulation. But to most managers and even some practitioners, it may be too abstract to comprehend and difficult to relate to reality. To alleviate this difficulty, we begin this chapter with an explanation of the real-world meanings of the MIP assumptions (or conditions). Section 2.1 describes these assumptions and their physical implications. Having this background, we then introduce a three-step procedure for modeling real-world problems in Section 2.2. This procedure systematically leads the practitioner toward an MIP model. In case the constructed model is not an MIP, the transformation techniques introduced in the next chapter may be used to obtain an equivalent MIP.

Recall in Chapter 1 we tabulated many successful IP application papers published in Interfaces and classified them by problem type. Each problem type will be given one to three examples in Sections 2.3–2.9. These examples may appear to be simpler than the real-world problems described in the application articles. Nevertheless, they do provide primary characteristics of the model types.

2.1 ASSUMPTIONS ON MIXED INTEGER PROGRAMS

Recall the following mixed integer program defined in Chapter 1:

[image: Equation]

The mixed IP comprises two fundamental building blocks: variables (including continuous xj and integer yk) and input parameters (including cj, dk, aij, gik, bi, m, n, p). The objective function is a summation of several functions, each containing a single variable. Likewise, each constraint function (the left-hand side of an inequality) is also a summation of several functions of single variables. Both the objective and the constraint functions in the mixed IP are separable and linear. Figure 2.1 gives an anatomy of all assumptions imposed on a mixed integer program.

The above mathematical definition of an MIP implies the following assumptions:


	Divisibility assumption for each continuous variable (xj ≥ 0)

	Integrality assumption for each integer variable (yk = 0, 1, 2,…)

	Certainty (constant) assumption for each input parameter (cj, dk, aij, gik, bi)

	Proportionality assumption for each term in the constraint and objective function (cjxj, dkyk, aijxj, gikyk)

	Additivity and separability assumption for each combined function in the objective and constraints (Σjcjxj, Σkdkyk, Σjaijxj, Σkgikyk)

	Single-objective assumption(max or min z = Σjcjxj + Σkdkyk)

	Simultaneousness (conjunction) assumption for the system of all constraint equations and inequalities



Now we interpret each of the above assumptions in detail.

The divisibility assumption implies that each continuous variable in a solution is allowed to be any real value, which may carry an arbitrary number of decimal places. For example, a production level of 2534.397 cars per week is an acceptable computed solution because in practice it may be rounded up to 2535 or rounded down to 2534 without making any difference in a practical sense. Continuous commodities such as the quantity of water flowing through a segment of a pipeline obviously satisfy divisibility.

The integrality assumption implies that each integer variable is restricted to be one of the integral values {0, 1, 2,…} or binary values {0 or 1}. A solution carrying a fractional value is unacceptable under this assumption. For example, we are to determine whether plant A or plant B should be built and a computed solution of linear program results in building 0.57 plant A and 0.43 plant B. Obviously, this fractional solution does not make sense in decision making. Even if sometimes a sensible solution were obtained after rounding, chances are this solution might not be optimal.


FIGURE 2.1 Anatomy of MIP assumptions.

[image: figure]


The certainty assumption implies that the values of all input parameters can be estimated or predicted with almost certainty, if not certainty. In other words, under this assumption, each input parameter (data point) is constant or fixed, and any variation about this fixed value is negligible. Consider a counterexample. Suppose a profit of a certain product per unit is $1.2 if the economy is good, a profit of $0.3 if the economy is mediocre, and a loss of $1.1 if the economy is bad. There are three possible values regarding the unit profit or loss depending on the economic conditions.

There is another class of mathematical program in which the unit profit is a random variable following a certain probability distribution. The integer program with random parameter(s) is called a stochastic integer program. Another class of mathematical program in which the unit price is a mathematical function of a certain parameter is called a parametric integer program.

The proportionality (linearity) assumption implies that the total contribution to a function value is proportional to the values of a variable. In other words, the marginal contribution to the function value by each unit of a variable is constant. Figures 2.2 and 2.3 depict, respectively, the proportionality assumption of a continuous variable x and an integer variable y. Note that both increasing and decreasing functions are linear, and each linear function has a constant slope over the domain defined by the variable(s).

Recall that the slope of a continuous function at any continuous point x is defined as

[image: Equation]

where Δ is arbitrarily small and approaches to 0. For the function of continuous variable x1 defined in Figure 2.2, the slope = limΔ → 0(2(x1 + Δ)−x1)/Δ = 2, a constant for every value of x1. For a function of continuous variable x2, the slope = limΔ → 0(−3(x2 + Δ)−(−3x2))/Δ = −3, a constant for every value of x2.

The slope of a discrete function at any discrete point y is defined as

[image: Equation]

where Δ is a positive increment (equal to 1 in this case). Applying this slope definition to the two functions given in Figure 2.3, we obtain the following constant slopes, respectively:

[image: Equation]


FIGURE 2.2 Proportionality of continuous variables: (a) Increasing linear function; (b) decreasing linear function.

[image: figure]



FIGURE 2.3 Proportionality of integer variables: (a) Increasing linear function; (b) decreasing linear function.

[image: figure]



FIGURE 2.4 Counterexamples for the proportionality assumption.

[image: figure]


and

[image: Equation]

Counterexamples to the proportionality assumption of continuous variables are 2x2 and 8 − x2. They are nonlinear functions, as shown in Figure 2.4. Any math programming problem containing any nonlinear function in the objective or a constraint function is called a nonlinear programming problem (nonlinear program).

The additivity/separability assumption implies that every function (in the objective or in each of the constraints) can be expressed as a sum of several functions, each containing a single variable. Note that the function 3x1 − 5x2 is equivalent to the sum of two single-variable functions: 3x1 + (−5x2), with a negative coefficient in the second function. Also note that a function is separable if it is an algebraic sum of functions of single variables.

Mathematically, a separable function is defined as f(x1, x2, …, xn) = f1(x1) + f2(x2) + … + fn(xn). Counterexamples of additivity/separability include functions that contain product terms such as x1x2 and [image: Inline-Equation]. These functions are nonseparable and nonlinear.

Precaution: When formulating an objective function or a constraint equation/inequality, make sure that the units or dimensions of all terms in the same function are identical.

The single-objective assumption implies that an optimization problem satisfying the above assumptions, but with multiple objectives, is not a mixed integer program. However, there are cases where a multiobjective problem may be converted into a single-objective problem. The multiobjective problem is beyond the scope of this book. For further information, read the references given in Section 2.10.

The simultaneousness assumption implies that a feasible solution must simultaneously satisfy all the constraint equations and inequalities. That is, any feasible solution must not violate any constraint in a given mixed IP. If a problem requires only a subset of constraints to be satisfied, then it must be transformed into an equivalent problem in which all constraints must be satisfied simultaneously. Chapter 3 will discuss how to perform this transformation.

2.2 MODELING PROCESS

Many definitions of operations research (OR) have been published over the five-decade history of ORSA/INFORMS. INFORMS recently defined OR to be “the discipline of applying advanced analytical methods to help make better decisions.” One way to understand how such methods apply to a decision situation (a real system to be optimized or problem to be solved) is to consider the three phases of an OR study in Figure 2.5:

i Construction of the model

ii. Solution of the model

iii. Validation of the model results and interpretation back to the decision situation

Two other phases in the OR approach to problem solving are important, but are not shown in Figure 2.5. There is a premodel phase “Definition of the problem.” This phase establishes objectives and scope of the model and is carried out by the OR analyst in conjunction with the client and his staff, or by the appointed “OR team.” There is also a postmodel phase “Implementation of the optimal policy” in the organizational environment. The policy is translated into action by managers and workers under authority of the client.


FIGURE 2.5 Three phases of an OR study.

[image: figure]


Modeling is therefore central to any application of OR, and the construction of an OR model is in part both art and science. There are many cases where practitioners who follow the following three-step “model construction process” naturally arrive at a model formulation:

Step 1. Verbally identify and define decision variables, input data or parameters, constraints, state variables (if any), and the objective from the given problem description. Then assign appropriate symbols to decision variables, input parameters (or data), and state variables (if any).

Step 2. Translate the verbal description of the objective and constraints into functions, equations, and inequalities. Check whether each of the seven MIP assumptions is satisfied. If all are satisfied, then an MIP is obtained; otherwise, go to Step 3.

Step 3. Check whether the non-MIP factors such as a discrete (but not integer) variable, a nonlinear function, or nonsimultaneous constraints can be transformed into equivalent mathematical expressions that satisfy all MIP assumptions. If yes, we obtain an MIP; otherwise, the problem is not an MIP.

Decision variables are variables under the control of the decision authority. Appropriate symbols for the decision variables are selected, and data needed to express objective and constraint functions are organized into tables. In large-scale applications, these tables are more appropriately called “decision databases.”

In Step 1, the objective to be achieved by the decision should be expressed verbally. Constraints that often relate to resources, requirements, and regulations should also be verbally described. Sometimes, these symbols, data, and verbal descriptions may be augmented by graphical (or iconic) or analog models, for example, an input–output diagram or a network flow diagram with appropriate labels.

Step 2 translates the verbal and/or graphical description into a mathematical model using the selected symbols for the decision variables, and using functions of these variables to represent objectives (to be maximized or minimized), and other functions of the variables combined with a constant to create equation or inequality constraints. These constraints express the nature of resource limitations or requirements, and how the values of the variables are converted into resource demands (performance versus requirement). It is desirable, of course, if the functions created in the mathematical expression of objectives and constraints are linear. In that case, the tables from Step 1 become matrices in MIP model.

Check the formulated math model to see if it satisfies each of the seven assumptions pertaining to an integer program. If any assumption is violated, the math program is not an MIP, but it may be possible to transform it into an MIP. Step 3 performs the transformation using techniques to be introduced in Chapter 3.

Now we are ready, in Sections 2.3–2.9, to apply this modeling process to the following problem types selected from the IP applications from Interfaces:


	Project selection

	Production planning

	Workforce/staff scheduling

	Fixed-charge transportation and distribution

	Multicommodity network flow

	Side-constrained network optimization

	Supply chain planning



2.3 PROJECT SELECTION PROBLEMS

Two types of project selection (or capital budgeting) problems will be discussed here. One type covers a single time period and the other multiple time periods. In fact, the single-period project problem may be viewed as a knapsack problem. We begin this section with the knapsack problem and then proceed to more complicated, and more realistic, problems.

2.3.1 Knapsack Problem

The simplest form of integer program is the knapsack problem (or 0–1 knapsack problem) that contains a single constraint with 0–1 variables. The name is taken from a decision problem faced by a hiker who is to select items of a given set to be included in his backpack (or knapsack) within the limit of a specified weight. Each item selected contributes a (relative) value to the hiking trip and the objective of this decision problem is to maximize the total value of all the items selected. Following the modeling procedure described above, we now formulate this problem in two steps.

Step 1


	Input parameters:	number of items (n), weight of each item (aj), value of each item (cj), total weight limit (b)

	Decision variables:	whether or not to select item j (yj = 1 or 0)

	Constraint:	total weight of selected items cannot exceed weight limit (b)

	State variables:	none

	Objective:	maximize total value of selected items



Step 2. The knapsack problem can be formulated as follows: Find values of y (j = 1, 2,…, n) so as to

[image: Equation]

where aj, cj, and b are assumed nonnegative.

Sometimes, aj and b are further assumed integer, while other times they are assumed rational (integer or fractional). The integrality assumption does not affect the generality of the problem definition because any constraint containing fractional coefficients can be made integer by multiplying through by an appropriate number. For example, the fractional constraint, 2.4x1 + x2 ≤ 5.6, can be converted to an integer constraint by multiplying it by 5 on both sides.

Depending on its application area, the knapsack problem carries many different names. In project management, for example, a project manager is faced with the problem of selecting a subset of n projects to be undertaken because of budget limitation that prohibits funding them all. Each project j will cost aj dollars if selected, and benefits to the firmin the future have a present value of cj dollars. The manager has a budget of b dollars to be allocated to the selected projects. Thus, the knapsack problem can be viewed as a single-period project selection problem (based on its decision variables) or a single-period capital budgeting problem (based on its constraint).

Furthermore, the knapsack problem sometimes is also referred to as the cargo loading problem when cargos of various weights are being selected for loading onto a vessel having a limited weight capacity. Similarly, the knapsack problem is sometimes called the flyaway kit problem when a number of valuable items are being considered for loading on an airplane.

Obviously, volume can be the deciding factor and can replace weight as the criterion of the constraint. Volume can also be “another” constraint criterion if volume of each item and total volume capacity limit are also specified. This two-constraint problem is known as the two-dimensional knapsack problem. There are obvious extensions to multiple criteria (multidimensional knapsack problem).

In reality, there may be other conditions or requirements about the selection of projects. Examples are the following: (1) the number of projects selected in each period may not exceed a certain number, (2) project 3 may not be selected unless both projects 1 and 2 have been undertaken in the previous periods, (3) either project 4 or project 6, but not both, may be selected in the same time period, and others. These additional conditions may be formulated as linear constraints and will be discussed in detail in Chapter 3.

2.3.2 Capital Budgeting Problem

The capital budgeting problem often arises over a planning horizon of multiple time periods. The time period may be quarterly, semiannually, or annually. The multiperiod problem may be described as follows. A project manager has n projects that he would like to undertake but not all can be selected because of budget limitation in each time period over a prescribed planning horizon. Assume project j has a present value of cj dollars and requires an investment of atj dollars in time period t (t = 1,…, T). The capital available in time period t is bt dollars. The objective of this problem is to maximize the total present value subject to the budgetary constraint in each time period over a prescribed planning horizon T. The problem may be mathematically modeled as follows: Find a set of values for yj so as to

[image: Equation]

where input parameters n and bt are positive, atj nonnegative, and cj unrestricted in sign. Again, the negative coefficient can be made positive by changing the associated variable to its complement. In a real application, a model may have additional constraints such as requiring contingency and/or mutual exclusion among projects. Chapter 3 will discuss how to handle these types of constraints.

2.4 PRODUCTION PLANNING PROBLEMS

Production planning problems often arise in multiple periods. As shown in Figure 2.6, there is a demand in each time period. The demand can be met by two sources: production in the same time period and the inventory carried over from the previous period (assuming no backorder is allowed). A production run incurs a fixed setup cost (per run) and a variable production cost (function of production quantity). The inventory carried over from the previous period incurs a variable “carrying” or holding cost (function of carryover quantity). The planning objective is to minimize the sum of these three costs. In what follows, we shall discuss three examples of production planning.


FIGURE 2.6 Uncapacitated lot sizing.

[image: figure]


2.4.1 Uncapacitated Lot Sizing

A lot sizing problem in production planning is to find an optimal lot size (or quantity of a production run) for each time period, so that the total cost of production and inventory is minimized while the demand in each period is satisfied. The uncapacitated lot sizing problem assumes unlimited production capacity (lot size) in each period. This implies one lot size (production run) per time period. For the following problem formulation, we further assume that (1) the production cost is proportional to the production quantity and (2) the carrying cost is proportional to the ending inventory level of the previous period.

Step 1


	Input parameters:	number of periods (T), demand in each period (dt), setup cost for each period (ft), unit production cost (ct), unit holding cost (ht)

	Decision variables:	whether or not to produce in each time period (yt = 1 or 0) and how much if the decision is to produce (xt)

	Constraints:	satisfy the demand in each period t

	State variables:	inventory level at the end of each period (st), assuming the beginning inventory level s0 = 0

	Objective:	minimize the total production and inventory costs



Step 2. Let M be a “sufficiently” large number (say, M = ∑tdt). Note that yt = 1 if and only if xt > 0. The problem can be formulated as follows: Find values of xt and yt (t = 1, 2, …, T) so as to

[image: Equation]

Note that if backorder is allowed, we simply change the constraint from st−1+xt−st = dt to st−1+xt−st−bt−1+bt = dt, to include a backorder amount in the inventory balancing equation, where bt is the backorder amount cumulated at the end of time period t.

2.4.2 Capacitated Lot Sizing

In the event that the production quantity in a given time period cannot exceed a certain amount, for instance, due to plant capacity, then the problem becomes a capacitated lot sizing problem. When the given capacity is constant over periods, we simply replace the big “M” in the uncapacitated lot sizing model with a capacity upper limit u (i.e., replace xt ≤ Myt with xt ≤ uyt).

The capacity may also vary from period to period with an upper limit ut in period t, which is reflected in the model by using xt ≤ utyt to replace xt ≤ Myt; the complete model becomes

[image: Equation]

2.4.3 Just-in-Time Production Planning

Now we present a multiproduct, multiperiod production planning problem under the just-in-time environment. This type of production planning seeks to determine a production level for each product in each time period with the right quantity at the right time. The ideal for just-in-time manufacturing is to maintain a zero inventory level (i.e., to prevent any surplus or shortage of inventory for each product at each time). However, in practice, there may occur a small surplus of inventory that can be temporarily stored on the plant floor in buffer area(s) or there may occur a temporary shortage of inventory. In either case, a penalty is imposed on each unit of excess or shortage of inventory. If no amount of shortage is allowed, a very large penalty should be imposed. Note that any excessive inventory implies production “too soon” and any shortage of inventory implies tardy production.

Thus, the primary objective of the just-in-time production problem may be modeled as to minimize the total penalties caused by the earliness/tardiness for all products over the planning horizon. The unit penalty of earliness and of tardiness, which may or may not be the same, may be assessed by the management. The model formulation follows.

Step 1


	Input parameters:	number of product types (n), number of periods (T), demand of product j in each period (djt), prescribed production lot size for each product (ljt), unit penalty of earliness (pj), unit penalty of lateness (qj)

	Decision variables:	production level of each product in each period (xjt ≥ 0), number of production runs in each period t for each product (yjt)

	Constraints:	satisfy demand of each product j in each period and constraints relating to prescribed lot size, number of production runs per period, and production level

	State variables:	surplus and shortage inventory levels for each product in each time period [image: Inline-Equation] ending inventory level of each product (sjt)

	Objective:	minimize total penalty cost of all products due to earliness and lateness over all periods



Step 2. Recall the inventory balancing equation that relates the beginning inventory level, production level, demand level, and the ending level given below:

[image: Equation]

Let [image: Inline-Equation] and [image: Inline-Equation], respectively, be a nonnegative amount of surplus and shortage for each period t and each product j. Let [image: Inline-Equation] Note that variable sjt may be positive, negative, or zero; all xjt, [image: Inline-Equation], and [image: Inline-Equation] are nonnegative variables.

To model the relationships between the production level (a continuous variable), prescribed production lot size (an integer constant), and number of production runs (an integer variable), caution must be exercised because the production level may not be divisible by the prescribed lot size, which may result in a fractional number of production runs. To overcome this modeling difficulty, we introduce the following pair of inequality constraints. For example, assume the prescribed lot size in period t (ljt) = 150 units and the production level in period t (xjt) = 700 units. Then the number of lots in period t is 700/150 = 4.67 or 5 after rounding up. Thus, the fifth (the last) lot contains only 100 units instead of 150. To resolve this problem, we introduce the following pair of inequality constraints:

[image: Equation]

where yjt ≥ 0 and integer for all j and t.

Thus, the objective is to

[image: Equation]

2.5 WORKFORCE/STAFF SCHEDULING PROBLEMS

2.5.1 Scheduling Full-Time Workers

Many companies or institutions, especially those operating 24 h daily, usually divide the daily schedule into discrete (say, T) time windows. Examples include hospitals, restaurants, call centers, and police departments. The number of staff required typically varies among time windows. Staff members are scheduled to n different (work) shifts, each covering m(m < T) consecutive time windows. Staff members assigned to different shifts may be paid differently, depending on which shift they work. For example, those working overnight are usually paid at a higher rate. The scheduling problem is to determine the number of workers to be assigned to each shift so that the company meets the demand in each time window.

Following is an example of a 24 h fast food restaurant. The daily operation is divided into eight consecutive time windows, each of 3 h duration. A shift covers three consecutive time windows (i.e., 9 h), as shown in Table 2.1. Information about the number of workers required within each time window as well as the wage level for each shift is also listed in the table.

Step 1


	Input parameters:	number of shifts (n), number of time windows (T), number of workers required per time window (dt), wage rate per shift (wj)

	Decision variables:	number of workers needed per work shift (yj)

	Constraints:	demand within each time window t must be satisfied

	State variables:	none

	Objective:	minimize the total wages paid to all workers



Step 2. Let ajt = 1 if shift j covers time window t (j = 1,…, n; t = 1,…, T) and ajt = 0 otherwise. Then the model formulation is

[image: Equation]

where the matrix (ajt) is of the following form:

[image: Equation]

Note that in the previous model if the integer requirement is relaxed, the problem might generate fractional solutions. In reality, a fractional staff member can be interpreted as a part-time worker. For example, a solution with 4.2 workers in shift 2 means that we have 4 full-time shift-2 workers, and a part-time worker who works 20% of the time and is paid 20% of a full-time workers. Hence, if it is allowed for some shifts to have part-time staff, then the problem becomes a mixed integer program. However, this is not the only way to handle the part-time situation. In Section 2.5.2, we will discuss another way to formulate the personnel scheduling problem when both full-time and part-time staffs are necessary in the model.

TABLE 2.1 Time Windows for Shift Workers

[image: table]
2.5.2 Scheduling Full-Time and Part-Time Workers

We still consider the problem described in Section 2.5.1. Now assume that part-time workers may be hired per time window. That is, during time window t, if a part-time worker is used, then he/she is paid ct. However, at least one full-time worker has to be present when part-time workers are hired. The problem is to determine how many full-time and part-time workers need to be hired to minimize the total workforce cost.

Step 1


	Input parameters:	number of shifts (n), number of time windows (T), number of workers required during each time window (dt, t = 1, 2,…, T), wage rate per 12 h shift for a full-time worker (wj), wage rate per 6 h time window per part-time worker (ct)

	Decision variables:	number of full-time workers needed for each work shift (yj), number of part-time workers needed for each time window (xt)

	Constraints:	demand within each time window t must be satisfied, restriction on using part-time workers (can be used only if one or more full-time workers are available in the same time window)

	State variables:	none

	Objective:	minimize the total wages paid to all workers



Step 2. Let ajt = 1 if shift j covers time window t, 0 otherwise. Let M be a “sufficiently” large number (say, M = Σtdt). Then the model formulation is

[image: Equation]

2.6 FIXED-CHARGE TRANSPORTATION AND DISTRIBUTION PROBLEMS

2.6.1 Fixed-Charge Transportation

Units of a product (single commodity) are to be shipped from m source nodes to supply the demands at n destinations (as shown in Figure 2.7). Shipping cost from source i to destination j includes a unit shipping charge cij in addition to a fixed charge fij if arc (i, j) is used in the solution, regardless of the shipping quantity (as long as a positive amount, of course). Find a minimum cost shipping plan so that the demand at each destination is met. Assume that each source node can supply all the demands at destinations.


FIGURE 2.7 Transportation problem.

[image: figure]


Step 1


	Decision variables:	whether or not source i will supply destination j(yij = 1 or 0). If yes, how much (xij)

	Input parameters:	unit shipping cost (cij), fixed cost (fij) from source i to destination j, demand at destination j(dj)

	Constraints:	demand at each destination must be satisfied (assuming unlimited product availability at each source node)

	State variables:	none

	Objective:	minimize sum of fixed and variable costs



Step 2. Let M be a “sufficiently” large number (we can let M = Σjdj). Note that yij = 1 if and only if xij > 0. The transportation model can be formulated as

[image: Equation]

2.6.2 Uncapacitated Facility Location

A company needs to build several distribution centers to supply its retail stores located at n different cities, each with different demand. There are m candidate locations for the distribution centers. There is a unit transportation cost for shipping from distribution center i to retail store j, and a fixed cost for opening distribution center i. Decide on which distribution centers to open so that total cost (including opening cost and transportation cost) is minimized, while the demand at each retail store is satisfied.

Step 1


	Decision variables:	whether or not distribution center i should be opened (yi = 1 or 0). If opened, how much should be shipped from distribution center to retail store (xij)

	Input parameters:	unit shipping cost from center i to retail j (cij), fixed cost for opening distribution center (fi)

	Constraints:	all demands are to be met at all retail stores

	State variables:	none

	Objective:	minimize total cost of opening and transportation cost



Step 2. Let M be a “sufficiently” large number (we can let M = Σjdj). Note that yi = 1 if and only if Σjxij > 0. The uncapacitated facility location problem can be formulated as

[image: Equation]

Substituting [image: Inline-Equation] or [image: Inline-Equation] into the above model, an alternate formulation is obtained:

[image: Equation]

where [image: Inline-Equation] Note that [image: Inline-Equation] can be interpreted as the fraction (between 0 and 1 inclusive) of demand, rather than the quantity supplied, at store j satisfied by distribution center i. Also note that the “big M” is replaced by “n”, which is the total number of retail stores. This replacement is valid because the demand at each store location, after the transformation, is equal to 1. Thus, the total demand at n store locations is n.

A third formulation can also be obtained by using a set of m constraints, [image: Inline-Equation] to replace each i of [image: Inline-Equation] Although this replacement multiplies the number of constraints, this alternative does give a better formulation. We will justify this claim later in Chapter 4.

2.6.3 Capacitated Facility Location

When each distribution center has limited supply ui, the uncapacitated facility location problem becomes a capacitated facility location problem.

Let ui be the supply amount at distribution center i, then the first model formulation is

[image: Equation]

2.7 MULTICOMMODITY NETWORK FLOW PROBLEM

A set of p commodities is to be shipped from m sources to n sinks. A source i can supply up to [image: Inline-Equation] units of commodity k. A sink j has demand [image: Inline-Equation] on commodity k. A transshipment node t is used as a connecting point between sources and sinks, but does not have its own supply or demand. The shipping amount between any pair of nodes is subject to a capacity limit, and for each unit of commodity k shipped from node i to t, or t to j, a cost is incurred. The problem requires finding a shipping plan that minimizes the total shipping cost as well as meets the demand for each commodity at each sink. Assume the nodes have been numbered consecutively and grouped into the three classes of source, transshipment, and sink nodes with indices i, t, and j, respectively. Also, assume no “backflow” is permitted from sink to transshipment or source, nor from transshipment to source.

Step 1


	Decision variables:	units of commodity k to be shipped from source i to sink [image: Inline-Equation] from source i to transshipment [image: Inline-Equation] and from transshipment t to sink [image: Inline-Equation]

	Input parameters:	supply [image: Inline-Equation] of each commodity k at each source i, demand [image: Inline-Equation] for each commodity k at each sink j; maximum combined shipping capacity for all commodities from source i to sink j(uij), from source i to transshipment node t(uit), from transshipment t to sink j(utj); unit transportation cost for commodity k that can be transported from source i to sink [image: Inline-Equation] from source i to transshipment [image: Inline-Equation] from transshipment t to sink [image: Inline-Equation]

	Constraints:	supply constraints for all sources, demand constraints for all sinks, flow conservation constraints for each transshipment node (total outflow equals total inflow for each commodity), maximum combined flow capacity for all commodities between any two nodes

	State variables:	none

	Objective:	minimize total transportation cost



Step 2. The problem can be mathematically modeled as

[image: Equation]

2.8 NETWORK OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS

All the network problems we have discussed so far have common constraints: (1) each arc has some capacity limit, (2) flow on an arc is subject to unit cost, and (3) each node satisfies a flow conservation constraint. Sometimes, additional or side constraints are required. One of the most frequently seen side constraints are proportional constraints and blending constraints.

Proportional constraints are usually seen in production where raw materials are refined into different semiproducts, in which the amount of each semiproduct is specified as a proportion of raw materials. Figure 2.8 shows an example of such a production scenario. Requirements like this can be expressed by a set of side constraints in the following way.

Suppose the nodes are labeled with numbers, that is, the nodes associated with raw materials 1 and 2 are labeled nodes 1 and 2, respectively. The processor is node 3, semiproducts made from raw material 1 are nodes 4–6, and semiproducts made from raw material 2 are nodes 7–9. Let xij be the flow to be determined from node i to node j. Then the mathematical expressions for the proportional constraints are

[image: Equation]

Blending constraints are used to reflect a mixing or blending process. Several ingredients are mixed according to different ratios to get different products. Figure 2.9 shows such a blending process. With the raw material nodes labeled 1 and 2, as before, the processor node 3, and semiproduct nodes 4–6, such requirements can then be reflected by the following equality constraints: x34 = 0.4x13 + 0.3x23, x35 = 0.2x13 + 0.6x23, x36 = 0.4x13 + 0.1x23.

Side constraints can take other forms too, either of special structure or of some arbitrary structure. Side constraints can be adjoined to many network optimization problems, such as multicommodity flow, facility location, and production lot sizing. When embedded in a problem, side constraints might dramatically increase the difficulty in solving the problem, and new efficient algorithms must be developed to handle these constraints.


FIGURE 2.8 Proportional constraints.

[image: figure]



FIGURE 2.9 Blending constraints.

[image: figure]


2.9 SUPPLY CHAIN PLANNING PROBLEMS

Two broad classes of operations research models are used to support supply chain management: normative models in the form of MIPs, which provide insight into pending decisions about supply chain structure, and descriptive models in the form of simulation models, which capture the dynamics of a proposed or existing supply chain after the structure is decided. Shapiro (2001) states that “optimization models provide templates for integration of concepts and constructs from multiple disciplines,” which make up supply chain planning (SCP). According to Shapiro, “a company’s supply chain is comprised of geographically dispersed facilities where products are acquired, transformed, stored, or sold, and transportation links connecting facilities along which products flow.”

If product demand is assumed fixed, the SCP optimization problem is to minimize the total supply chain cost of satisfying demand, which may involve a simple transportation model (which distribution centers supply which products) or a complex, sequential decision involving multiple suppliers, multiple plants, and multiple distribution centers— and the transportation links among them. Furthermore, the time frame may vary from an operational planning model run weekly (for production or logistics planning) to strategic network models run once per year, with a planning horizon of 1–5 years. See Table 2.2 for time frames and horizons of typical MIP modeling situations in SCP.

Obviously, many supply chain problems have one of the network structures previously discussed, hence may be modeled as MIPs:


	Transportation model

	Assignment model

	Transshipment model

	Multicommodity flow model

	Single- and multicommodity capacitated flow model

	Multiple choices of mode of transport on the same arcs, each with costs and capacities



TABLE 2.2 Typical MIP Modeling Situations in Supply Chain Planning

[image: table]
The last item listed hints only at the broad applicability of 0–1 variables in supply chain modeling. Other well-recognized applications are to capture


	Fixed and investment costs

	Economies and diseconomies of scale

	Sole sourcing of markets

	A wide range of logical (if–then) conditions



Although it is recognized that integer variables should be used sparingly (only when necessary) in SCP models, their use in conjunction with MIP provides the company with powerful insights into decision situations that can literally convert a marginally profitable product line or supply chain into a profit maker. For a simple introduction to the use of MIP modeling constructs in SCP, see Shapiro (2001), Chapter 4.

As an example of a supply chain model, consider the following strategic distribution network model (Karabakal et al., 2000) implemented at Volkswagen of America.1 Sources and markets were fixed, as was the variety of vehicle types and which sources would provide which vehicle type. The processing centers (which receive vehicles from sources) and the distribution centers (which receive vehicles from processing centers and provide them to markets) had to be located, the type of facility at the distribution centers had to be decided, and shipping quantities on each node of the network had to be determined. The objective was to minimize the total combined cost of transportation and fixed-facility installation. Therefore, the following model is a multicommodity, transshipment model with fixed and variable transportation costs between nodes and investment costs for the centers that are included in the network.

Step 1


	Decision variables:	annual shipment of type k vehicles from source i to processing center [image: Inline-Equation] annual shipment of type k vehicles from processing center p to distribution center [image: Inline-Equation] annual shipment of type k vehicles from distribution center j to market [image: Inline-Equation] yes–no variable on whether to install type f(f = 1, 2) facility at distribution center j(yjf = 1 or 0), yes–no variable on whether to install processing center p(zp = 1 or 0)

	Input parameters:	annual demand for type k vehicles in market [image: Inline-Equation] mileage between distribution center j and market t(mjt), cost of shipping one vehicle from source i to processing center p(cip), cost of shipping one vehicle from processing center p to distribution center j(spj), number of vehicles shipped to market t each load (Lt), fixed shipment cost per load of truck (C), shipment cost per mile traveled by each truck (v), fixed cost for installing a type f facility in distribution center j(gjf), fixed cost for operating processing center p(hp), annual shipment capacity of a type 1 facility at distribution center j(uj)

	Constraints:	demand at each market area for each vehicle type must be met; vehicle flows from sources to processing centers and from processing centers to distribution centers must be balanced; total vehicle flow to each distribution center must satisfy the capacity limitation of the facility installed; no shipment to a distribution center (processing center) is possible if no facility installed there; facility type 2 (large) is installed only if facility type 1 (total capacity uj at DCj) does not have enough capacity to meet the shipment requirement to distribution center j, for each j

	Objective:	minimize total cost, including shipping cost, facility installation cost, and processing centers operation cost



Step 2. Let M be a “sufficiently” large number, say, [image: Inline-Equation] then the SCP problem can be mathematically formulated as

[image: Equation]

2.10 NOTES

Section 2.1

The seven MIP assumptions described in this section are extended from the four wellknown LP assumptions described in introductory OR/MS textbooks such as Hillier and Lieberman (2005) and Winston (1994). The three additional assumptions are simultaneousness (conjunction), single objective, and integrality. Figure 2.1 is our original contribution intended to help practitioners understand and exploit these assumptions.

Section 2.2

The three-phase process of an OR study discussed in this section is similar to the three-phase modeling process given in Ravindran et al. (1987) and the five-phase process given in Taha (2007).

Section 2.3

Traditionally, “the knapsack problem” refers to the problem involving only one item of each type, each represented by a 0–1 variable. A problem that allows multiple items of each type is called integer, general, or multi-item knapsack problem. The knapsack problem received considerable attention in the literature during the early development of OR algorithms (1950–1970) mainly because it can be used as a subproblem in developing a decomposition algorithm for the well-known cutting stock (or trim loss) problem and because a general integer linear problem can be converted to a knapsack problem. Dozens of specialized algorithms for knapsack problems have been developed, encompassing dynamic programming, enumeration, Lagrangian multiplier, and network approaches.

Section 2.4

The just-in-time production planning model discussed in this section is based on a recent article by Li et al. (2006).

Section 2.8

SAS/OR User’s Guide: Mathematical Programming (retrieved online at http://www.csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/ormp/chap4/sect4.htm).

Section 2.9

For those interested in using MIPs in modeling supply chain planning problems at all levels (strategic, tactical, and operational), Shapiro (2001) is recommended.

2.11 EXERCISES

2.1 Consider the case of a quantity discount to a buyer, that is, the unit cost is lower when quantity purchased reaches a certain level. How would you express the quantity discount in the objective function of the lot sizing problem? Does the revised model still satisfy the assumptions of integer programming? (Assumption)

2.2 Give a situation (with side constraints) in which a project selection problem cannot be modeled as an MIP. (Hint: Include some special structure in the specification of the objective function or the constraint function.) (Assumption)

2.3 (A Diet Problem) Mrs. Bradley is on diet according to the instruction from her family doctor. Every day she can eat only several specific types of food and drink several specific beverages. There is even a limitation on how many ounces of each type of food she can eat at maximum. And she cannot take more than two types of beverages each day. Suppose if every day she eats W ounces of food and drinks L ounces of beverages, then she feels full. Given that each type of food or drink has a different unit price, how should she plan her diet to minimize the total daily cost? (Modeling Process)

(a) Follow the modeling process strictly and try to formulate the problem.

(b) Does the problem belong to any of the model types discussed in this chapter?

(c) What feature (variables or constraints) is unique about this problem?

TABLE 2.3 Stock Selection Options

[image: table]
2.4 Jimmy plans to invest in several stocks in the coming 3 years, each with a different expected return for each dollar invested and a specific amount of investment, as shown in Table 2.3 (all in thousands of dollars). Given that the amount Jimmy can invest in stock purchases is limited each year, help Jimmy to decide which stocks to invest in each year so as to maximize the total returns. (Project Selection)

2.5 (The Cutting Stock Problem) A standard fabric is usually L yards long. Based on customer need, it will be cut into small pieces of different lengths, say, l1, l2,…, ln. Any cutting combination will typically result in some unusable “leftover” material, of length less than min{li}. Suppose the daily demand for the respective pieces is d1, d2,…, dn. Find a cutting pattern so that the leftover is minimized. (Modeling Process)

(a) Identify the parameters provided in this problem.

(b) Identify decision variables, objective, and constraints.

(c) What information is important for formulating this model but is not included in the problem description?

(d) If the information needed in part (c) is given, construct a model to solve the problem.

2.6 Nurses in large hospitals usually work 3 days a week. Daily demand for nurses is summarized in Table 2.4. Determine the number of nurses required per schedule type so that the total wage cost is minimized.

(a) What is the coefficient matrix A = (ajt)?

(b) Use the numbers (not symbols) in the table to model this problem instance.

TABLE 2.4 Weekly Scheduling of Nurses

[image: table]
2.7 In Exercise 2.6, if part-time nurses are hired at the rate of $150/day, formulate the problem to minimize the total cost. If part-time nursesmust be accompanied by at least four full-time nurses, how would you formulate this constraint?

2.8 XYZ University is planning on the construction of parking lots to solve the parking problem. There are m possible locations for parking lots, each with a specific amount of maintenance cost fi, and a projected number of parking positions si. Students go to classes located at n different blocks. Distance from parking lot i to block j is aij. Forecast shows that the number of students attending classes at block j each day is around dj. Assuming that one unit distance of walking costs $1, help the university to decide which parking lots to construct, and the most ideal parking situation, so that the total cost including walking and maintenance is minimized. (Facility Location)

2.9 Is the problem in Exercise 2.8 capacitated or uncapacitated? Under what situation(s) will it convert to the other? Do you believe such situation is realistic? Why? What if the maintenance cost of a lot is comprised of a fixed cost plus a variable cost that is proportional to the number of parking positions it contains? How does the model change?

2.10 (A Modified Caterer Problem) A caterer to “The Ritz” motel collects the dirty napkins and sends them to laundry every day. Due to different room occupation levels during a week, the number of dirty napkins on day i is di (i = 1,…, 7). The caterer can wash and dry at most u napkins every day. If a dirty napkin is not cleaned on the same day, a new one is purchased at the price of c. If the laundry room is used on day i, a fixed cost of fi is incurred. Assume that at the beginning of a week (Sunday), there are no dirty napkins left. That is, all dirty napkins are discarded at the end of the week, and Sunday’s napkins are all new or clean. Find the best laundry plan for the caterer so that the entire week’s cost is minimized. (Lot Sizing)

2.11 Cool Summer is a beverage company. It has 20 distribution centers located in different states to supply its 500 retail partners. Each retail partner j has a weekly demand level of dj. Shipping cost per bottle of beverage from distribution center i to retail store j is cij. Once it is decided to ship from distribution center i to retail store j, a labor cost of fi is incurred. Find the minimum cost shipping plan so that demand from each retail partner is satisfied. (Fixed Charge Transportation)

2.12 In Exercise 2.11, what changes will happen to the problem if distribution center i can only supply ui bottles of beverages?

2.13 Consider Exercise 2.11 again. Now assume that Cool Summer produces four types of beverages. Each retail partner has different demand for each type of beverage. Shipping cost per bottle is the same for all four types and labor cost remains the same. The fixed cost is incurred once, if any quantity of any type of beverage is shipped from i to j. Formulate the problem to minimize the total cost. (Multicommodity Flow)

2.14 Formulate the following multicommodity flow problem as an IP: The Farmer’s Orchard is a large fruit supplier in Georgia. It has three branch stores supplying five types of fruits to the distributors in six different cities. Due to the long distance and the fruit freshness requirements, some cities cannot be directly reached. Instead, the trucks have to stop at some other connecting cities, repack the fruit, and deliver from that city to the destination. The shipping network is shown in Figure 2.10. Demand for fruit type t in city i is shown in Table 2.5. Supply of fruit type t(t = 1,…, 5) from each branch store is shown in Table 2.6. Shipping cost for fruit t from city i to j is labeled below the arc (i, j) as a vector. Shipping capacity (regardless of fruit type) from city i to j is labeled above the associated arc. Develop a shipping policy to minimize the total shipping cost, while satisfying the demand from each retailer. (Multicommodity Flow)


FIGURE 2.10 Multicommodity flow network.

[image: figure]


TABLE 2.5 Multicommodity Demand

[image: table]
TABLE 2.6 Multicommodity Supply

[image: table]
2.15 Consider the following lot sizing problem with side constraints: The production plan for some product A is to be determined for the next T time periods. At the end of each period, 60% of the products unsold will go back to the assembly line and be renewed (assuming that this does not take up the capacity of the assembly line). The other 40% will be carried to the next time period as inventory. Demand at period t is dt. Production and reassembling cost per unit is ct for time period t. Inventory holding cost per unit is It. No backorders are allowed. Formulate the problem of finding the minimum cost production plan as an IP model. (Network with Side Constraints)

2.16 Consider the following multicommodity production–distribution problem with side constraints: Happy Bakery is a company making breads, cakes, muffins, and so on. It supplies 10 retailers in the city, including supermarkets, gas stations, and bakery thrift stores. Happy Bakery receives raw materials (flour, sugar, and butter) from two suppliers. Supplier A can provide up to 300 lb of flour, 500 lb of sugar, and 100 lb of butter. Supplier B can provide up to 700 lb of flour, 200 lb of sugar, and 150 lb of butter. Shipping cost for each raw material from each supplier is listed in Table 2.7. The ratios of the raw materials in bread, cake, and muffin are 5:2:1, 4:4:1, and 3:2:1, respectively (assuming that the weight of water can be omitted). If the demand for bread is 400 lb, for cake is 300 lb, and for muffin is 200 lb, develop the minimum cost shipping plan. (Network with Side Constraints)

TABLE 2.7 Raw Material Shipping Costs

[image: table]
TABLE 2.8 Travel Times from Depots to Neighborhoods

[image: figure]
2.17 Read Chapter 4 of Shapiro (2001). Consider the example of “strategic planning at Ajax” in Section 4.3. Study the strategic model carefully. The model is a combination of which models discussed in this chapter (regardless of the objective function)? Identify them. Try to list the complete mathematical formulation of the problem using your own symbols.

2.18 (Shapiro, 2001, Exercise 4.3, p. 1652) Home Grocery is a new company that makes same-day deliveries of groceries to people’s homes. The company is launching its business in Metropolis, a large urban area. The marketing department has identified eight neighborhoods in Metropolis where the company should concentrate its business. The logistics manager has identified six locations where the company may locate grocery depots. Table 2.8 shows the average time (in minutes) required to travel from each of the six potential depot locations to the center of each of the eight neighborhoods. It also shows the target population (in thousands) for the company’s service in each neighborhood.

The company wishes to locate two depots so that they maximize the population served within 12 min of average travel time. Formulate the problem as an IP model.

1 Reprinted with permission of authors (see Bibliography). Copyright 2000, the Institute for Operations Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA.

2 From Shapiro, Modeling the Supply Chain, 1st edition. Copyright 2001, South-Western, a part of Centage Learning, Inc. Reproduced with permission, www.centage.com/permissions.
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