

[image: cover_image]

Table of Contents

Title Page

Copyright

Dedication

Credits

About the Authors

About the Technical Editor

Acknowledgments

Introduction

Who Should Read This Book

How This Book Is Organized

Minimum Requirements

Where to Go from Here

Part I: The Linux Command Line

Chapter 1: Starting with Linux Shells

What Is Linux?

Linux Distributions

Summary

Chapter 2: Getting to the Shell

Terminal Emulation

The terminfo Database

The Linux Console

The xterm Terminal

The Konsole Terminal

The GNOME Terminal

Summary

Chapter 3: Basic bash Shell Commands

Starting the Shell

The Shell Prompt

The bash Manual

Filesystem Navigation

File and Directory Listing

File Handling

Directory Handling

Viewing File Contents

Summary

Chapter 4: More bash Shell Commands

Monitoring Programs

Monitoring Disk Space

Working with Data Files

Summary

Chapter 5: Using Linux Environment Variables

What Are Environment Variables?

Setting Environment Variables

Removing Environment Variables

Default Shell Environment Variables

Setting the PATH Environment Variable

Locating System Environment Variables

Variable Arrays

Using Command Aliases

Summary

Chapter 6: Understanding Linux File Permissions

Linux Security

Using Linux Groups

Decoding File Permissions

Changing Security Settings

Sharing Files

Summary

Chapter 7: Managing Filesystems

Exploring Linux Filesystems

Working with Filesystems

Logical Volume Managers

Summary

Chapter 8: Installing Software

Package Management Primer

The Debian-Based Systems

The Red Hat–Based Systems

Installing from Source Code

Summary

Chapter 9: Working with Editors

The vim Editor

The emacs Editor

The KDE Family of Editors

The GNOME Editor

Summary

Part II: Shell Scripting Basics

Chapter 10: Basic Script Building

Using Multiple Commands

Creating a Script File

Displaying Messages

Using Variables

Redirecting Input and Output

Pipes

Performing Math

Exiting the Script

Summary

Chapter 11: Using Structured Commands

Working with the if-then Statement

The if-then-else Statement

Nesting ifs

The test Command

Compound Condition Testing

Advanced if-then Features

The case Command

Summary

Chapter 12: More Structured Commands

The for Command

The C-Style for Command

The while Command

The until Command

Nesting Loops

Looping on File Data

Controlling the Loop

Processing the Output of a Loop

Summary

Chapter 13: Handling User Input

Command Line Parameters

Special Parameter Variables

Being Shifty

Working with Options

Standardizing Options

Getting User Input

Summary

Chapter 14: Presenting Data

Understanding Input and Output

Redirecting Output in Scripts

Redirecting Input in Scripts

Creating Your Own Redirection

Listing Open File Descriptors

Suppressing Command Output

Using Temporary Files

Logging Messages

Summary

Chapter 15: Script Control

Handling Signals

Running Scripts in Background Mode

Running Scripts Without a Console

Job Control

Being Nice

Running Like Clockwork

Summary

Part III: Advanced Shell Scripting

Chapter 16: Creating Functions

Basic Script Functions

Returning a Value

Using Variables in Functions

Array Variables and Functions

Function Recursion

Creating a Library

Using Functions on the Command Line

Summary

Chapter 17: Writing Scripts for Graphical Desktops

Creating Text Menus

Doing Windows

Getting Graphic

Summary

Chapter 18: Introducing sed and gawk

Text Manipulation

The sed Editor Basics

Summary

Chapter 19: Regular Expressions

What Are Regular Expressions?

Defining BRE Patterns

Extended Regular Expressions

Regular Expressions in Action

Summary

Chapter 20: Advanced sed

Multiline Commands

The Hold Space

Negating a Command

Changing the Flow

Pattern Replacement

Using sed in Scripts

Creating sed Utilities

Summary

Chapter 21: Advanced gawk

Using Variables

Working with Arrays

Using Patterns

Structured Commands

Formatted Printing

Built-in Functions

User-Defined Functions

Summary

Chapter 22: Working with Alternative Shells

What Is the dash Shell?

The dash Shell Features

Scripting in dash

The zsh Shell

Parts of the zsh Shell

Scripting with zsh

Summary

Part IV: Advanced Shell Scripting Topics

Chapter 23: Using a Database

The MySQL Database

The PostgreSQL Database

Working with Tables

Using the Database in Your Scripts

Summary

Chapter 24: Using the Web

The Lynx Program

The cURL Program

Networking with zsh

Summary

Chapter 25: Using E-mail

The Basics of Linux E-Mail

Setting Up Your Server

Sending a Message with Mailx

The Mutt Program

Summary

Chapter 26: Writing Script Utilities

Monitoring Disk Space

Performing Backups

Managing User Accounts

Summary

Chapter 27: Advanced Shell Scripts

Monitoring System Statistics

Problem-Tracking Database

Summary

Appendix A: Quick Guide to bash Commands

Built-in Commands

bash Commands

Environment Variables

Appendix B: Quick Guide to sed and gawk

The sed Editor

The gawk Program

Index

[image: Title Page]

Linux® Command Line and Shell Scripting Bible, Second Edition

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-00442-5

ISBN: 978-1-118-08777-0 (ebk)

ISBN: 978-1-118-08778-7 (ebk)

ISBN: 978-1-118-08779-4 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Control Number: 2011921770

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without written permission. Linux is a registered trademark of Linus Torvalds. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

To the Lord God Almighty, “in whom are hidden all the treasures of wisdom and knowledge.”

—Colossians 2:3

Credits

Acquisitions Editor

Mary James

Project Editor

Brian Herrmann

Technical Editor

Jack Cox

Production Editor

Daniel Scribner

Copy Editor

Nancy Rapoport

Editorial Director

Robyn B. Siesky

Editorial Manager

Mary Beth Wakefield

Freelancer Editorial Manager

Rosemarie Graham

Marketing Manager

Ashley Zurcher

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Katherine Crocker

Proofreader

Publication Services, Inc.

Indexer

Robert Swanson

Cover Designer

Ryan Sneed

Cover Image

Joyce Haughey

About the Authors

Richard Blum has worked in the IT industry for more than 20 years as both a systems and network administrator, and has published numerous Linux and open source books. He has administered UNIX, Linux, Novell, and Microsoft servers, as well as helped design and maintain a 3,500 user network utilizing Cisco switches and routers. He has used Linux servers and shell scripts to perform automated network monitoring, and has written shell scripts in most of the common Linux shell environments. Rich is an online instructor for an Introduction to Linux course that is used by colleges and universities across the U.S. When he's not being a computer nerd, Rich plays electric bass in a couple of different church worship bands, and enjoys spending time with his wife Barbara, and two daughters Katie Jane and Jessica.

Christine Bresnahan starting working with computers more than 25 years ago in the IT industry as a system administrator. Christine is currently an Adjunct Professor at Ivy Tech Community College in Indianapolis, Indiana, teaching Linux system administration, Linux security, and Windows security classes.

About the Technical Editor

Jack Cox is a Senior Manager with CapTech Ventures in Richmond, VA. He has more than 25 years of experience in IT, spanning a broad range of disciplines including mobile computing, transaction processing, RFID, Java development, and cryptography. Jack enjoys life in Richmond with his lovely wife and rambunctious children. Outside of technology, his interests include church, his children, and extended family.

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things possible, and gives us the gift of eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for their outstanding work on this project. Thanks to Mary James, the acquisitions editor, for offering us the opportunity to work on this book. Also thanks to Brian Herrmann, the project editor, for keeping things on track and making this book more presentable. Thanks, Brian, for all your hard work and diligence. The technical editor, Jack Cox, did a wonderful job of double checking all the work in the book, plus making suggestions to improve the content. Thanks to Nancy Rapoport, the copy editor, for her endless patience and diligence to make our work readable. We would also like to thank Carole McClendon at Waterside Productions, Inc., for arranging this opportunity for us, and for helping us out in our writing careers.

Christine would like to thank her husband, Timothy, for his encouragement, patience, and willingness to listen, even when he has no idea what she is talking about.

Introduction

Welcome to the second edition of Linux Command Line and Shell Scripting Bible. Like all books in the Bible series, you can expect to find both hands-on tutorials and real-world information, as well as reference and background information that provides a context for what you are learning. This book is a fairly comprehensive resource on the Linux command line and shell commands. By the time you have completed Linux Command Line and Shell Scripting Bible you will be well prepared to write your own shell scripts that can automate practically any task on your Linux system.

Who Should Read This Book

If you're a system administrator in a Linux environment, you'll benefit greatly by knowing how to write shell scripts. The book doesn't walk you through the process of setting up a Linux system, but once you have it running you'll want to start automating some of the routine administrative tasks. That's where shell scripting comes in, and that's where this book will help you out. This book will demonstrate how to automate any administrative task using shell scripts, from monitoring system statistics and data files to generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting Bible. Nowadays, it's easy to get lost in the graphical world of pre-built widgets. Most desktop Linux distributions try their best to hide the Linux system from the typical user. However, there are times when you have to know what's going on under the hood. This book shows you how to access the Linux command line prompt and what to do once you get there. Often performing simple tasks, such as file management, can be done more quickly from the command line than from a fancy graphical interface. There's a wealth of commands you can use from the command line, and this book shows you how to use them.

How This Book Is Organized

This book leads you through the basics of the Linux command line and into more complicated topics, such as creating your own shell scripts. The book is divided into five parts, each one building on the previous parts.

Part I assumes that you either have a Linux system running, or are looking into getting a Linux system. Chapter 1, “Starting with Linux Shells,” describes the parts of a total Linux system and shows how the shell fits in. After describing the basics of the Linux system, this part continues with the following:

	Using a terminal emulation package to access the shell (Chapter 2)

	Introducing the basic shell commands (Chapter 3)

	Using more advanced shell commands to peek at system information (Chapter 4)

	Working with shell variables to manipulate data (Chapter 5)

	Understanding the Linux filesystem and security (Chapter 6)

	Working with Linux filesystems from the command line (Chapter 7)

	Installing and updating software from the command line (Chapter 8)

	Using the Linux editors to start writing shell scripts (Chapter 9)

In Part II, you begin writing shell scripts. As you go through the chapters you'll do the following:

	Learn how to create and run shell scripts (Chapter 10)

	Alter the program flow in a shell script (Chapter 11)

	Iterate through code sections (Chapter 12)

	Handle data from the user in your scripts (Chapter 13)

	See different methods for storing and displaying data from your Script (Chapter 14)

	Control how and when your shell scripts run on the system (Chapter 15)

Part III dives into more advanced areas of shell script programming, including:

	Creating your own functions to use in all your scripts (Chapter 16)

	Utilizing the Linux graphical desktop for interacting with your script users (Chapter 17)

	Using advanced Linux commands to filter and parse data files (Chapter 18)

	Using regular expressions to define data (Chapter 19)

	Learning advanced methods of manipulating data in your scripts (Chapter 20)

	Generating reports from raw data (Chapter 21)

	Modifying your shell scripts to run in other Linux shells (Chapter 22)

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world environments. In this part, you will:

	See how to use popular open source databases in your shell scripts (Chapter 23)

	Learn how to extract data from Websites, and send data between systems (Chapter 24)

	Use e-mail to send notifications and reports to external users (Chapter 25)

	Write shell scripts to automate your daily system administration functions (Chapter 26)

	Utilize all of the features you've learned from the book to create professional-quality shell scripts (Chapter 27)

Conventions and Features

There are many different organizational and typographical features throughout this book designed to help you get the most of the information.

Notes and Warnings

Whenever the authors want to bring something important to your attention the information will appear in a Warning.

Warning

This information is important and is set off in a separate paragraph with a special icon. Warnings provide information about things to watch out for, whether simply inconvenient or potentially hazardous to your data or systems.

For additional items of interest that relate to the chapter text, the authors will use Notes.

Note

Notes provide additional, ancillary information that is helpful, but somewhat outside of the current presentation of information.

Minimum Requirements

Linux Command Line and Shell Scripting Bible doesn't focus on any specific Linux distribution, so you'll be able to follow along in the book using any Linux system you have available. The bulk of the book references the bash shell, which is the default shell for most Linux systems.

Where to Go from Here

Once you've completed Linux Command Line and Shell Scripting Bible, you'll be well on your way to incorporating Linux commands in your daily Linux work. In the ever-changing world of Linux, it's always a good idea to stay in touch with new developments. Often Linux distributions will change, adding new features and removing older ones. To keep you knowledge of Linux fresh, always stay well-informed. Find a good Linux forum site and monitor what's happening in the Linux world. There are many popular Linux news sites, such as Slashdot and Distrowatch, that provide up-to-the-minute information about new advances in Linux.

Part I

The Linux Command Line

In This Part

Chapter 1: Starting with Linux Shells

Chapter 2: Getting to the Shell

Chapter 3: Basic bash Shell Commands

Chapter 4: More bash Shell Commands

Chapter 5: Using Linux Environment Variables

Chapter 6: Understanding Linux File Permissions

Chapter 7: Managing Filesystems

Chapter 8: Installing Software

Chapter 9: Working with Editors

Chapter 1

Starting with Linux Shells

In this Chapter

	What is Linux?

	Parts of the Linux kernel

	Exploring the Linux desktop

	Visiting Linux distributions

Before you can dive into working with the Linux command line and shells, it's a good idea to first understand what Linux is, where it came from, and how it works. This chapter walks you through what Linux is, and explains where the shell and command line fit in the overall Linux picture.

What Is Linux?

If you've never worked with Linux before, you may be confused as to why there are so many different versions of it available. I'm sure that you have heard various terms such as distribution, LiveCD, and GNU when looking at Linux packages and been confused. Wading through the world of Linux for the first time can be a tricky experience. This chapter takes some of the mystery out of the Linux system before you start working on commands and scripts.

For starters, there are four main parts that make up a Linux system:

	The Linux kernel

	The GNU utilities

	A graphical desktop environment

	Application software

Each of these four parts has a specific job in the Linux system. Each of the parts by itself isn't very useful. Figure 1.1 shows a basic diagram of how the parts fit together to create the overall Linux system.

Figure 1.1 The Linux system

[image: 1.1]

This section describes these four main parts in detail, and gives you an overview of how they work together to create a complete Linux system.

Looking into the Linux Kernel

The core of the Linux system is the kernel. The kernel controls all of the hardware and software on the computer system, allocating hardware when necessary, and executing software when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus Torvalds. Linus is the person responsible for creating the first Linux kernel software while he was a student at the University of Helsinki. He intended it to be a copy of the Unix system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solicited suggestions for improving it. This simple process started a revolution in the world of computer operating systems. Soon Linus was receiving suggestions from students as well as professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos. To simplify things, Linus acted as a central point for all improvement suggestions. It was ultimately Linus's decision whether or not to incorporate suggested code in the kernel. This same concept is still in place with the Linux kernel code, except that instead of just Linus controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:

	System memory management

	Software program management

	Hardware management

	Filesystem management

The following sections explore each of these functions in more detail.

System Memory Management

One of the primary functions of the operating system kernel is memory management. Not only does the kernel manage the physical memory available on the server, but it can also create and manage virtual memory, or memory that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the contents of virtual memory locations back and forth from the swap space to the actual physical memory. This allows the system to think there is more memory available than what physically exists (shown in Figure 1.2).

Figure 1.2 The Linux system memory map

[image: 1.2]

The memory locations are grouped into blocks called pages. The kernel locates each page of memory either in the physical memory or the swap space. The kernel then maintains a table of the memory pages that indicates which pages are in physical memory and which pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory pages that have not been accessed for a period of time to the swap space area (called swapping out), even if there's other memory available. When a program wants to access a memory page that has been swapped out, the kernel must make room for it in physical memory by swapping out a different memory page, and swap in the required page from the swap space. Obviously, this process takes time, and can slow down a running process. The process of swapping out memory pages for running applications continues for as long as the Linux system is running.

You can see the current status of the virtual memory on your Linux system by viewing the special /proc/meminfo file. Here's an example of a sample /proc/meminfo entry:

rich@rich-desktop:∼$cat/proc/meminfo

MemTotal:1026084kB

MemFree:666356kB

Buffers:49900kB

Cached:152272kB

SwapCached:0kB

Active:171468kB

Inactive:154196kB

Active(anon):131056kB

Inactive(anon):32kB

Active(file):40412kB

Inactive(file):154164kB

Unevictable:12kB

Mlocked:12kB

HighTotal:139208kB

HighFree:252kB

LowTotal:886876kB

LowFree:666104kB

SwapTotal:2781176kB

SwapFree:2781176kB

Dirty:588kB

Writeback:0kB

AnonPages:123500kB

Mapped:52232kB

Shmem:7600kB

Slab:17676kB

SReclaimable:9788kB

SUnreclaim:7888kB

KernelStack:2656kB

PageTables:5072kB

NFS_Unstable:0kB

Bounce:0kB

WritebackTmp:0kB

CommitLimit:3294216kB

Committed_AS:1234480kB

VmallocTotal:122880kB

VmallocUsed:7520kB

VmallocChunk:110672kB

HardwareCorrupted:0kB

HugePages_Total:0

HugePages_Free:0

HugePages_Rsvd:0

HugePages_Surp:0

Hugepagesize:4096kB

DirectMap4k:12280kB

DirectMap4M:897024kB

rich@rich-desktop:∼$

The MemTotal: line shows that this Linux server has 1GB of physical memory. It also shows that about 660MB is not currently being used (MemFree). The output also shows that there is about 2.5GB of swap space memory available on this system (SwapTotal).

By default, each process running on the Linux system has its own private memory pages. One process cannot access memory pages being used by another process. The kernel maintains its own memory areas. For security purposes, no processes can access memory used by the kernel processes.

To facilitate data sharing, you can create shared memory pages. Multiple processes can read and write to and from a common shared memory area. The kernel maintains and administers the shared memory areas and allows individual processes access to the shared area.

The special ipcs command allows you to view the current shared memory pages on the system. Here's the output from a sample ipcs command:

#ipcs-m

------SharedMemorySegments--------

keyshmidownerpermsbytesnattchstatus

0x000000000rich600522286dest

0x395ec51c1oracle64057876486

#

Each shared memory segment has an owner that created the segment. Each segment also has a standard Linux permissions setting that sets the availability of the segment for other users. The key value is used to allow other users to gain access to the shared memory segment.

Software Program Management

The Linux operating system calls a running program a process. A process can run in the foreground, displaying output on a display, or it can run in background, behind the scenes. The kernel controls how the Linux system manages all the processes running on the system.

The kernel creates the first process, called the init process, to start all other processes on the system. When the kernel starts, it loads the init process into virtual memory. As the kernel starts each additional process, it gives it a unique area in virtual memory to store the data and code that the process uses.

Some Linux implementations contain a table of processes to start automatically on bootup. On Linux systems, this table is usually located in the special file /etc/inittabs.

Other systems (such as the popular Ubuntu Linux distribution) utilize the /etc/init.d folder, which contains scripts for starting and stopping individual applications at boot time. The scripts are started via entries under the /etc/rcX.d folders, where X is a run level.

The Linux operating system uses an init system that utilizes run levels. A run level can be used to direct the init process to run only certain types of processes, as defined in the /etc/inittabs file or the /etc/rcX.d folders. There are five init run levels in the Linux operating system.

At run level 1, only the basic system processes are started, along with one console terminal process. This is called single user mode. Single user mode is most often used for emergency filesystem maintenance when something is broken. Obviously, in this mode only one person (usually the administrator) can log in to the system to manipulate data.

The standard init run level is 3. At this run level, most application software such as network support software is started. Another popular run level in Linux is run level 5. This is the run level where the system starts the graphical X Window software, and allows you to log in using a graphical desktop window.

The Linux system can control the overall system functionality by controlling the init run level. By changing the run level from 3 to 5, the system can change from a console-based system to an advanced, graphical X Window system.

In Chapter 4, you'll see how to use the ps command to view the processes currently running on the Linux system. Here's an example of what you'll see using the ps command:

$psax

PIDTTYSTATTIMECOMMAND

1?S0:03init

2?SW0:00[kflushd]

3?SW0:00[kupdate]

4?SW0:00[kpiod]

5?SW0:00[kswapd]

243?SW0:00[portmap]

295?S0:00syslogd

305?S0:00klogd

320?S0:00/usr/sbin/atd

335?S0:00crond

350?S0:00inetd

365?SW0:00[lpd]

403ttyS0S0:00gpm-tms

418?S0:00httpd

423?S0:00httpd

424?SW0:00[httpd]

425?SW0:00[httpd]

426?SW0:00[httpd]

427?SW0:00[httpd]

428?SW0:00[httpd]

429?SW0:00[httpd]

430?SW0:00[httpd]

436?SW0:00[httpd]

437?SW0:00[httpd]

438?SW0:00[httpd]

470?S0:02xfs-port-1

485?SW0:00[smbd]

495?S0:00nmbd-D

533?SW0:00[postmaster]

538tty1SW0:00[mingetty]

539tty2SW0:00[mingetty]

540tty3SW0:00[mingetty]

541tty4SW0:00[mingetty]

542tty5SW0:00[mingetty]

543tty6SW0:00[mingetty]

544?SW0:00[prefdm]

549?SW0:00[prefdm]

559?S0:02[kwm]

585?S0:06kikbd

594?S0:00kwmsound

595?S0:03kpanel

596?S0:02kfm

597?S0:00krootwm

598?S0:01kbgndwm

611?S0:00kcmlaptop-daemon

666?S0:00/usr/libexec/postfix/master

668?S0:00qmgr-l-tfifo-u

787?S0:00pickup-l-tfifo

790?S0:00telnetd:192.168.1.2[vt100]

791pts/0S0:00login--rich

792pts/0S0:00-bash

805pts/0R0:00psax

$

The first column in the output shows the process ID (or PID) of the process. Notice that the first process is our friend the init process, and assigned PID 1 by the Linux system. All other processes that start after the init process are assigned PIDs in numerical order. No two processes can have the same PID (although old PID numbers can be reused by the system after the original process terminates).

The third column shows the current status of the process (S for sleeping, SW for sleeping and waiting, and R for running). The process name is shown in the last column. Processes that are in brackets are processes that have been swapped out of memory to the disk swap space due to inactivity. You can see that some of the processes have been swapped out, but most of the running processes have not.

Hardware Management

Still another responsibility for the kernel is hardware management. Any device that the Linux system must communicate with needs driver code inserted inside the kernel code. The driver code allows the kernel to pass data back and forth to the device, acting as a middle man between applications and the hardware. There are two methods used for inserting device driver code in the Linux kernel:

	Drivers compiled in the kernel

	Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you added a new device to the system, you had to recompile the kernel code. This process became even more inefficient as Linux kernels supported more hardware. Fortunately, Linux developers devised a better method to insert driver code into the running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code into a running kernel without having to recompile the kernel. Also, a kernel module could be removed from the kernel when the device was finished being used. This greatly simplified and expanded using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There are three different classifications of device files:

	Character

	Block

	Network

Character device files are for devices that can only handle data one character at a time. Most types of modems and terminals are created as character files. Block files are for devices that can handle data in large blocks at a time, such as disk drives.

The network file types are used for devices that use packets to send and receive data. This includes network cards and a special loopback device that allows the Linux system to communicate with itself using common network programming protocols.

Linux creates special files, called nodes, for each device on the system. All communication with the device is performed through the device node. Each node has a unique number pair that identifies it to the Linux kernel. The number pair includes a major and a minor device number. Similar devices are grouped into the same major device number. The minor device number is used to identify a specific device within the major device group. The following is an example of a few device files on a Linux server:

rich@rich-desktop:∼$cd/dev

rich@rich-desktop:/dev$ls-alsda*ttyS*

brw-rw----1rootdisk8,02010-09-1817:25sda

brw-rw----1rootdisk8,12010-09-1817:25sda1

brw-rw----1rootdisk8,22010-09-1817:25sda2

brw-rw----1rootdisk8,52010-09-1817:25sda5

crw-rw----1rootdialout4,642010-09-1817:25ttyS0

crw-rw----1rootdialout4,652010-09-1817:25ttyS1

crw-rw----1rootdialout4,662010-09-1817:25ttyS2

crw-rw----1rootdialout4,672010-09-1817:25ttyS3

rich@rich-desktop:/dev$

Different Linux distributions handle devices using different device names. In this distribution, the sda device is the first ATA hard drive, and the ttyS devices are the standard IBM PC COM ports. The listing shows all of the sda devices that were created on the sample Linux system. Not all are actually used, but they are created in case the administrator needs them. Similarly, the listing shows all of the ttyS devices created.

The fifth column is the major device node number. Notice that all of the sda devices have the same major device node, 8, while all of the ttyS devices use 4. The sixth column is the minor device node number. Each device within a major number has its own unique minor device node number.

The first column indicates the permissions for the device file. The first character of the permissions indicates the type of file. Notice that the ATA hard drive files are all marked as block (b) device, while the COM port device files are marked as character (c) devices.

Filesystem Management

Unlike some other operating systems, the Linux kernel can support different types of filesystems to read and write data to and from hard drives. Besides having over a dozen filesystems of its own, Linux can read and write to and from filesystems used by other operating systems, such as Microsoft Windows. The kernel must be compiled with support for all types of filesystems that the system will use. Table 1.1 lists the standard filesystems that a Linux system can use to read and write data.

Table 1.1 Linux Filesystems

	Filesystem
	Description

	ext
	Linux Extended filesystem—the original Linux filesystem

	ext2
	Second extended filesystem, provided advanced features over ext

	ext3
	Third extended filesystem, supports journaling

	ext4
	Fourth extended filesystem, supports advanced journaling

	hpfs
	OS/2 high-performance filesystem

	jfs
	IBM's journaling file system

	iso9660
	ISO 9660 filesystem (CD-ROMs)

	minix
	MINIX filesystem

	msdos
	Microsoft FAT16

	ncp
	Netware filesystem

	nfs
	Network File System

	ntfs
	Support for Microsoft NT filesystem

	proc
	Access to system information

	ReiserFS
	Advanced Linux file system for better performance and disk recovery

	smb
	Samba SMB filesystem for network access

	sysv
	Older Unix filesystem

	ufs
	BSD filesystem

	umsdos
	Unix-like filesystem that resides on top of msdos

	vfat
	Windows 95 filesystem (FAT32)

	XFS
	High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types listed in Table 1.1.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This provides a standard interface for the kernel to communicate with any type of filesystem. VFS caches information in memory as each filesystem is mounted and used.

The GNU Utilities

Besides having a kernel to control hardware devices, a computer operating system needs utilities to perform standard functions, such as controlling files and programs. While Linus created the Linux system kernel, he had no system utilities to run on it. Fortunately for him, at the same time he was working, a group of people were working together on the Internet trying to develop a standard set of computer system utilities that mimicked the popular Unix operating system.

The GNU organization (GNU stands for GNU's Not Unix) developed a complete set of Unix utilities, but had no kernel system to run them on. These utilities were developed under a software philosophy called open source software (OSS).

The concept of OSS allows programmers to develop software and then release it to the world with no licensing fees attached. Anyone can use the software, modify it, or incorporate it into his or her own system without having to pay a license fee. Uniting Linus's Linux kernel with the GNU operating system utilities created a complete, functional, free operating system.

While the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see some Linux purists on the Internet refer to it as the GNU/Linux system to give credit to the GNU organization for its contributions to the cause.

The Core GNU Utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like environment available. This focus resulted in the project porting many common Unix system command line utilities. The core bundle of utilities supplied for Linux systems is called the coreutils package.

The GNU coreutils package consists of three parts:

	Utilities for handling files

	Utilities for manipulating text

	Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are invaluable to the Linux system administrator and programmer. This book covers each of the utilities contained in the GNU coreutils package in detail.

The Shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs, manage files on the filesystem, and manage processes running on the Linux system. The core of the shell is the command prompt. The command prompt is the interactive part of the shell. It allows you to enter text commands, and then it interprets the commands and then executes them in the kernel.

The shell contains a set of internal commands that you use to control things such as copying files, moving files, renaming files, displaying the programs currently running on the system, and stopping programs running on the system. Besides the internal commands, the shell also allows you to enter the name of a program at the command prompt. The shell passes the program name off to the kernel to start it.

You can also group shell commands into files to execute as a program. Those files are called shell scripts. Any command that you can execute from the command line can be placed in a shell script and run as a group of commands. This provides great flexibility in creating utilities for commonly run commands, or processes that require several commands grouped together.

There are quite a few Linux shells available to use on a Linux system. Different shells have different characteristics, some being more useful for creating scripts and some being more useful for managing processes. The default shell used in all Linux distributions is the bash shell. The bash shell was developed by the GNU project as a replacement for the standard Unix shell, called the Bourne shell (after its creator). The bash shell name is a play on this wording, referred to as the “Bourne again shell.”

In addition to the bash shell, we will cover several other popular shells in this book. Table 1.2 lists the different shells we will examine.

Table 1.2 Linux Shells

	Shell
	Description

	ash
	A simple, lightweight shell that runs in low-memory environments but has full compatibility with the bash shell

	korn
	A programming shell compatible with the Bourne shell but supporting advanced programming features like associative arrays and floating-point arithmetic

	tcsh
	A shell that incorporates elements from the C programming language into shell scripts

	zsh
	An advanced shell that incorporates features from bash, tcsh, and korn, providing advanced programming features, shared history files, and themed prompts

Most Linux distributions include more than one shell, although usually they pick one of them to be the default. If your Linux distribution includes multiple shells, feel free to experiment with different shells and see which one fits your needs.

The Linux Desktop Environment

In the early days of Linux (the early 1990s) all that was available was a simple text interface to the Linux operating system. This text interface allowed administrators to start programs, control program operations, and move files around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text interface to work with. This spurred more development in the OSS community, and the Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more relevant than in graphical desktops. There are a plethora of graphical desktops you can choose from in Linux. The following sections describe a few of the more popular ones.

The X Windows System

There are two basic elements that control your video environment—the video card in your PC and your monitor. To display fancy graphics on your computer, the Linux software needs to know how to talk to both of them. The X Windows software is the core element in presenting graphics.

The X Windows software is a low-level program that works directly with the video card and monitor in the PC, and controls how Linux applications can present fancy windows and graphics on your computer.

Linux isn't the only operating system that uses X Windows; there are versions written for many different operating systems. In the Linux world, there are only two software packages that can implement it.

The XFree86 software package is the older of the two, and for a long time was the only X Windows package available for Linux. As its name implies, it's a free open source version of the X Windows software.

The newer of the two packages, X.org, has made great inroads in the Linux world and is now the more popular of the two. It, too, provides an open source software implementation of the X Windows system, but has support for more of the newer video cards used today.

Both packages work the same way, controlling how Linux uses your video card to display content on your monitor. To do that, they have to be configured for your specific system. That is supposed to happen automatically when you install Linux.

When you first install a Linux distribution, it attempts to detect your video card and monitor, and then creates an X Windows configuration file that contains the required information. During installation you may notice a time when the installation program scans your monitor for supported video modes. Sometimes this causes your monitor to go blank for a few seconds. Because there are lots of different types of video cards and monitors out there, this process can take a little while to complete.

The core X Windows software produces a graphical display environment, but nothing else. While this is fine for running individual applications, it is not too useful for day-to-day computer use. There is no desktop environment allowing users to manipulate files or launch programs. To do that, you need a desktop environment on top of the X Windows system software.

The KDE Desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to produce a graphical desktop similar to the Microsoft Windows environment. The KDE desktop incorporates all of the features you are probably familiar with if you are a Windows user. Figure 1.3 shows a sample KDE 4 desktop running in the openSuSE Linux distribution.

Figure 1.3 The KDE 4 desktop on an openSuSE Linux system

[image: 1.3]

The KDE desktop allows you to place both application and file icons in a special area on the desktop. If you single-click an application icon, the Linux system starts the application. If you single-click on a file icon, the KDE desktop attempts to determine what application to start to handle the file.

The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

	The K menu: Much like the Windows Start menu, the K menu contains links to start installed applications.

	Program shortcuts: These are quick links to start applications directly from the Panel.

	The taskbar: The taskbar shows icons for applications currently running on the desktop.

	Applets: These are small applications that have an icon in the Panel that often can change depending on information from the application.

All of the Panel features are similar to what you would find in Windows. In addition to the desktop features, the KDE project has produced a wide assortment of applications that run in the KDE environment. These applications are shown in Table 1.3. (You may notice the trend of using a capital K in KDE application names.)

Table 1.3 KDE Applications

	Application
	Description

	amaroK
	Audio file player

	digiKam
	Digital camera software

	dolphin
	File manager

	K3b
	CD-burning software

	Kaffeine
	Video player

	Kmail
	E-mail client

	Koffice
	Office applications suite

	Konqueror
	File and Web browser

	Kontact
	Personal information manager

	Kopete
	Instant messaging client

This is only a partial list of applications produced by the KDE project. There are lots more applications that are included with the KDE desktop.

The GNOME Desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop environment. First released in 1999, GNOME has become the default desktop environment for many Linux distributions (the most popular being Red Hat Linux).

While GNOME chose to depart from the standard Microsoft Windows look-and-feel, it incorporates many features that most Windows users are comfortable with:

	A desktop area for icons

	Two panel areas

	Drag-and-drop capabilities

Figure 1.4 shows the standard GNOME desktop used in the Ubuntu Linux distribution.

Figure 1.4 A GNOME desktop on an Ubuntu Linux system

[image: 1.4]

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical applications that integrate with the GNOME desktop. These are shown in Table 1.4.

As you can see, there are also quite a few applications available for the GNOME desktop. Besides all of these applications, most Linux distributions that use the GNOME desktop also incorporate the KDE libraries, allowing you to run KDE applications on your GNOME desktop.

Table 1.4 GNOME Applications

	Application
	Description

	epiphany
	Web browser

	evince
	Document viewer

	gcalc-tool
	Calculator

	gedit
	GNOME text editor

	gnome-panel
	Desktop panel for launching applications

	gnome-nettool
	Network diagnostics tool

	gnome-terminal
	Terminal emulator

	nautilus
	Graphical file manager

	nautilus-cd-burner
	CD-burning tool

	sound juicer
	Audio CD–ripping tool

	tomboy
	Note-taking software

	totem
	Multimedia player

Other Desktops

The downside to a graphical desktop environment is that they require a fair amount of system resources to operate properly. In the early days of Linux, a hallmark and selling feature of Linux was its ability to operate on older, less powerful PCs that the newer Microsoft desktop products couldn't run on. However, with the popularity of KDE and GNOME desktops, this has changed, as it takes just as much memory to run a KDE or GNOME desktop as the latest Microsoft desktop environment.

If you have an older PC, don't be discouraged. The Linux developers have banded together to take Linux back to its roots. They've created several low-memory–oriented graphical desktop applications that provide basic features that run perfectly fine on older PCs.

While these graphical desktops don't have a plethora of applications designed around them, they still run many basic graphical applications that support features such as word processing, spreadsheets, databases, drawing, and, of course, multimedia support.

Table 1.5 shows some of the smaller Linux graphical desktop environments that can be used on lower-powered PCs and laptops.

Table 1.5 Other Linux Graphical Desktops

	Desktop
	Description

	fluxbox
	A bare-bones desktop that doesn't include a Panel, only a pop-up menu to launch applications

	xfce
	A desktop that's similar to the KDE desktop, but with less graphics for low-memory environments

	JWM
	Joe's Window Manager, a very lightweight desktop ideal for low-memory and low-disk space environments

	fvwm
	Supports some advanced desktop features such as virtual desktops and Panels, but runs in low-memory environments

	fvwm95
	Derived from fvwm, but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE and GNOME desktops, but they provide basic graphical functionality just fine. Figure 1.5 shows what the fluxbox desktop used in the Puppy Linux antiX distribution looks like.

Figure 1.5 The JWM desktop as seen in the Puppy Linux distribution

[image: 1.5]

If you are using an older PC, try a Linux distribution that uses one of these desktops and see what happens. You may be pleasantly surprised.

Linux Distributions

Now that you have seen the four main components required for a complete Linux system, you may be wondering how you are going to get them all put together to make a Linux system. Fortunately, there are people who have already done that for you.

A complete Linux system package is called a distribution. There are lots of different Linux distributions available to meet just about any computing requirement you could have. Most distributions are customized for a specific user group, such as business users, multimedia enthusiasts, software developers, or average home users. Each customized distribution includes the software packages required to support specialized functions, such as audio- and video-editing software for multimedia enthusiasts, or compilers and integrated development environments (IDEs) for software developers.

The different Linux distributions are often divided into three categories:

	Full core Linux distributions

	Specialized distributions

	LiveCD test distributions

The following sections describe these different types of Linux distributions, and show some examples of Linux distributions in each category.

Core Linux Distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments, and just about every Linux application that is available, precompiled for the kernel. It provides one-stop shopping for a complete Linux installation. Table 1.6 shows some of the more popular core Linux distributions.

Table 1.6 Core Linux Distributions

	Distribution
	Description

	Slackware
	One of the original Linux distribution sets, popular with Linux geeks

	Red Hat
	A commercial business distribution used mainly for Internet servers

	Fedora
	A spin-off from Red Hat but designed for home use

	Gentoo
	A distribution designed for advanced Linux users, containing only Linux source code

	Mandriva
	Designed mainly for home use (previously called Mandrake)

	openSuSe
	Different distributions for business and home use

	Debian
	Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had to download groups of files and then copy them onto disks. It would usually take 20 or more disks to make an entire distribution! Needless to say, this was a painful experience.

Nowadays, with home computers commonly having CD and DVD players built in, Linux distributions are released as either a CD set or a single DVD. This makes installing Linux much easier.

However, beginners still often run into problems when they install one of the core Linux distributions. To cover just about any situation in which someone might want to use Linux, a single distribution has to include lots of application software. They include everything from high-end Internet database servers to common games. Because of the quantity of applications available for Linux, a complete distribution often takes four or more CDs.

While having lots of options available in a distribution is great for Linux geeks, it can become a nightmare for beginning Linux users. Most distributions ask a series of questions during the installation process to determine which applications to load by default, what hardware is connected to the PC, and how to configure the hardware. Beginners often find these questions confusing. As a result, they often either load way too many programs on their computer or don't load enough and later discover that their computer won't do what they want it to.

Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux Distributions

A new subgroup of Linux distributions has started to appear. These are typically based on one of the main distributions but contain only a subset of applications that would make sense for a specific area of use.

In addition to providing specialized software (such as only office products for business users), customized Linux distributions also attempt to help beginning Linux users by autodetecting and autoconfiguring common hardware devices. This makes installing Linux a much more enjoyable process.

Table 1.7 shows some of the specialized Linux distributions available and what they specialize in.

Table 1.7 Specialized Linux Distributions

	Distribution
	Description

	Xandros
	A commercial Linux package configured for beginners

	SimplyMEPIS
	A free distribution for home use

	Ubuntu
	A free distribution for school and home use

	PCLinuxOS
	A free distribution for home and office use

	Mint
	A free distribution for home entertainment use

	dyne:bolic
	A free distribution designed for audio and MIDI applications

	Puppy Linux
	A free small distribution that runs well on older PCs

That's just a small sampling of specialized Linux distributions. There are literally hundreds of specialized Linux distributions, and more are popping up all the time on the Internet. No matter what your specialty, you'll probably find a Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution. They use the same installation files as Debian but package only a small fraction of a full-blown Debian system.

The Linux LiveCD

A relatively new phenomenon in the Linux world is the bootable Linux CD distribution. This lets you see what a Linux system is like without actually installing it. Most modern PCs can boot from a CD instead of the standard hard drive. To take advantage of this, some Linux distributions create a bootable CD that contains a sample Linux system (called a Linux LiveCD). Because of the limitations of the single CD size, the sample can't contain a complete Linux system, but you'd be surprised at all the software they can cram in there. The result is that you can boot your PC from the CD and run a Linux distribution without having to install anything on your hard drive!

This is an excellent way to test various Linux distributions without having to mess with your PC. Just pop in a CD and boot! All of the Linux software will run directly off the CD. There are lots of Linux LiveCDs that you can download from the Internet and burn onto a CD to test drive.

Table 1.8 shows some popular Linux LiveCDs that are available.

Table 1.8 Linux LiveCD Distributions

	Distribution
	Description

	Knoppix
	A German Linux, the first Linux LiveCD developed

	SimplyMEPIS
	Designed for beginning home Linux users

	PCLinuxOS
	Full-blown Linux distribution on a LiveCD

	Ubuntu
	A worldwide Linux project, designed for many languages

	Slax
	A live Linux CD based on Slackware Linux

	Puppy Linux
	A full-featured Linux designed for older PCs

You may notice a familiarity in this table. Many specialized Linux distributions also have a Linux LiveCD version. Some Linux LiveCD distributions, such as Ubuntu, allow you to install the Linux distribution directly from the LiveCD. This enables you to boot with the CD, test drive the Linux distribution, and then if you like it, install it on your hard drive. This feature is extremely handy and user-friendly.

As with all good things, Linux LiveCDs have a few drawbacks. Because you access everything from the CD, applications run more slowly, especially if you're using older, slower computers and CD drives. Also, because you can't write to the CD, any changes you make to the Linux system will be gone the next time you reboot.

But there are advances being made in the Linux LiveCD world that help to solve some of these problems. These advances include the ability to:

	Copy Linux system files from the CD to memory

	Copy system files to a file on the hard drive

	Store system settings on a USB memory stick

	Store user settings on a USB memory stick

Some Linux LiveCDs, such as Puppy Linux, are designed with a minimum number of Linux system files. The LiveCD boot scripts copies them directly into memory when the CD boots. This allows you to remove the CD from the computer as soon as Linux boots. Not only does this make your applications run much faster (because applications run faster from memory), but it also gives you a free CD tray to use for ripping audio CDs or playing video DVDs from the software included in Puppy Linux.

Other Linux LiveCDs use an alternative method that allows you to remove the CD from the tray after booting. It involves copying the core Linux files onto the Windows hard drive as a single file. After the CD boots, it looks for that file and reads the system files from it. The dyne:bolic Linux LiveCD uses this technique, which is called docking. Of course, you must copy the system file to your hard drive before you can boot from the CD.

A very popular technique for storing data from a live Linux CD session is to use a common USB memory stick (also called a flash drive or a thumb drive). Just about every Linux LiveCD can recognize a plugged-in USB memory stick (even if the stick is formatted for Windows) and read and write files to and from it. This allows you to boot a Linux LiveCD, use the Linux applications to create files, store those files on your memory stick, and then access them from your Windows applications later (or from a different computer). How cool is that?

Summary

This chapter discussed the Linux system, and the basics of how it works. The Linux kernel is the core of the system, controlling how memory, programs, and hardware all interact with one another. The GNU utilities are also an important piece in the Linux system. The Linux shell, which is the main focus of this book, is part of the GNU core utilities. The chapter also discussed the final piece of a Linux system, the Linux desktop environment. Things have changed over the years, and Linux now supports several graphical desktop environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles the various parts of a Linux system into a simple package that you can easily install on your PC. The Linux distribution world consists of full-blown Linux distributions that include just about every application imaginable, as well as specialized Linux distributions that only include applications focused on a special function. The Linux LiveCD craze has created another group of Linux distributions that allow you to easily test drive Linux without even having to install it on your hard drive.

In the next chapter, you look at what you need to start your command line and shell scripting experience. You'll see what you need to do to get to the Linux shell utility from your fancy graphical desktop environment. These days that's not always an easy thing.

Chapter 2

Getting to the Shell

In This Chapter

	Terminal emulation

	The terminfo database

	The Linux console

	The xterm terminal

	The Konsole terminal

	The GNOME terminal

In the old days of Linux, all that was available to work with was the shell. System administrators, programmers, and system users all sat at the Linux console terminal entering text commands and viewing text output. These days, with our fancy graphical desktop environments, it's getting harder just to find a shell prompt on the system to work from. This chapter discusses what is required to provide a command line environment, and then walks you through the terminal emulation packages you may run into in the various Linux distributions.

Terminal Emulation

Back before the days of graphical desktops, the only way to interact with a Unix system was through a text command line interface (CLI) provided by the shell. The CLI allowed text input only, and could only display text and rudimentary graphics output.

Because of this restriction, output devices did not have to be very fancy. Often a simple dumb terminal was all that was required to interact with the Unix system. A dumb terminal was usually nothing more than a monitor and keyboard (although later on in life they started getting fancier by utilizing a mouse) connected to the Unix system via a communication cable (usually a multi-wire serial cable). This simple combination provided an easy way to enter text data into the Unix system and view text results.

As you well know, things are significantly different in today's Linux environment. Just about every Linux distribution uses some type of graphical desktop environment. However, to access the shell you still need a text display to interact with a CLI. The problem now is getting to one. With all of the new graphical Linux desktop features, sometimes finding a way to get a CLI in a Linux distribution is not an easy task.

One way to get to a CLI is to take the Linux system out of graphical desktop mode and place it in text mode. This provides nothing more than a simple shell CLI on the monitor, just like the days before graphical desktops. This mode is called the Linux console because it emulates the old days of a hard-wired console terminal and is a direct interface to the Linux system.

The alternative to being in the Linux console is to use a terminal emulation package from within the graphical Linux desktop environment. A terminal emulation package simulates working on a dumb terminal, all within a graphical window on the desktop. Figure 2.1 shows an example of a terminal emulator running in a graphical Linux desktop environment.

Figure 2.1 A simple terminal emulator running on a Linux desktop

[image: 2.1]

Each terminal emulation package has the ability to emulate one or more specific types of dumb terminals. If you're going to work with the shell in Linux, unfortunately you'll need to know a little bit about terminal emulation.

Knowing the core features of the old dumb terminals will help you decide which emulation type to select when you're using a graphical terminal emulator, and use all of the available features to their full capabilities. The main features used in the dumb terminal can be broken down into two areas: the graphics capabilities and the keyboard. This section describes these features and discusses how they relate to the different types of terminal emulators.

Graphics Capabilities

The most important part of terminal emulation is how it displays information on the monitor. When you hear the phrase “text mode,” the last thing you'd think to worry about is graphics. However, even the most rudimentary dumb terminals supported some method of screen manipulation (such as clearing the screen and displaying text at a specific location on the screen).

This section describes the graphics features that make each of the different terminal types unique, and what to look for in the terminal emulation packages.

Character Sets

All terminals must display characters on the screen (otherwise, text mode would be pretty useless). The trick is in what characters to display, and what codes the Linux system needs to send to display them. A character set is a set of binary commands that the Linux system sends to a monitor to display characters. There are several character sets that are supported by various terminal emulation packages:

	ASCII: The American Standard Code for Information Interchange. This character set contains the English characters stored using a 7-bit code, and consists of 128 English letters (both upper and lower case), numbers, and special symbols. This character set was adopted by the American National Standards Institute (ANSI) as US-ASCII. You will often see it referred to in terminal emulators as the ANSI character set.

	ISO-8859-1 (commonly called Latin-1): An extension of the ASCII character set developed by the International Organization for Standardization (ISO). It uses an 8-bit code to support the standard ASCII characters as well as special foreign language characters for most Western European languages. The Latin-1 character set is popular in multinational terminal emulation packages.

	ISO-8859-2: ISO character set that supports Eastern European language characters.

	ISO-8859-6: ISO character set that supports Arabic language characters.

	ISO-8859-7: ISO character set that supports Greek language characters.

	ISO-8859-8: ISO character set that supports Hebrew language characters.

	ISO-10646 (commonly called Unicode): ISO 2-byte character set that contains codes for most English and non-English languages. This single character set contains all of the codes defined in all of the ISO-8859-x series of character sets. The Unicode character set is quickly becoming popular among open source applications.

By far the most common character set in use today in English-speaking countries is the Latin-1 character set. The Unicode character set is becoming more popular, and may very well one day become the new standard in character sets. Most popular terminal emulators allow you to select which character set to use in the terminal emulation.

Control Codes

In addition to being able to display characters, terminals must have the ability to control special features on the monitor and keyboard, such as the cursor location on the screen. They accomplish this using a system of control codes. A control code is a special code not used in the character set, which signals the terminal to perform a special, nonprintable operation.

Common control code functions are the carriage return (return the cursor to the beginning of the line), line feed (put the cursor on the next horizontal row), horizontal tab (shift the cursor over a preset number of spaces), arrow keys (up, down, left, and right), and the page up/page down keys. While these codes mainly emulate features that control where the cursor is placed on the monitor, there are also several other codes, such as clearing the entire screen, and even a bell ring (emulating the old typewriter end-of-carriage bell).

Control codes were also used in controlling the communication features of dumb terminals. Dumb terminals were connected to the computer system via some type of communication channel, often a serial communication cable. Sometimes data needed to be controlled on the communication channel, so developers devised special control codes just for data communication purposes. While these codes aren't necessarily required in modern terminal emulators, most support these codes to maintain compatibility. The most common codes in this category are the XON and XOFF codes, which start and stop data transmission to the terminal, respectively.

Block Mode Graphics

As dumb terminals became more popular, manufacturers started experimenting with rudimentary graphics capabilities. By far the most popular type of “graphical” dumb terminal used in the Unix world was the Digital Equipment Corporation (DEC) VT series of terminals. The turning point for dumb terminals came with the release of the DEC VT100 in 1978. The DEC VT100 terminal was the first terminal to support the complete ANSI character set, including block mode graphic characters.

The ANSI character set contains codes that not only allowed monitors to display text but also rudimentary graphics symbols, such as boxes, lines, and blocks. By far one of the most popular dumb terminals used in Unix operations during the 1980s was the DEC VT102, an upgraded version of the VT100. Most modern terminal emulation programs still emulate the operation of the VT102 display, supporting all of the ANSI codes for creating block mode graphics.

Vector Graphics

The Tektronix company produced a popular series of terminals that used a display method called vector graphics. Vector graphics deviated from the DEC method of block mode graphics by making all screen images (including characters) a series of line segments (vectors). The Tektronix 4010 terminal was the most popular graphical dumb terminal produced. Many terminal emulation packages still emulate its capabilities.

The 4010 terminal displays images by drawing a series of vectors using an electron beam, much like drawing with a pencil. Because vector graphics doesn't use dots to create lines, it has the ability to draw geometric shapes using higher precision than most dot-oriented graphics terminals. This was a popular feature among mathematicians and scientists.

Modern terminal emulators use software to emulate the vector graphics drawing capabilities of the Tektronix 4010 terminals. This is still a popular feature for people who need precise graphical drawings, or those who still run applications that used the vector graphics routines to draw complicated charts and diagrams.

Display Buffering

A key to graphics displays is the ability of the terminal to buffer data. Buffering data requires having additional internal memory within the terminal itself to store characters not currently being displayed on the monitor.

The DEC VT series of terminals utilized two types of data buffering:

	Buffering data as it scrolled off of the main display window (called a history)

	Buffering a completely separate display window (called an alternate screen)

The first type of buffering is known as a scroll region. The scroll region is the amount of memory the terminal has that enables it to “remember” data as it scrolls off of the screen. A standard DEC VT102 terminal contained a viewing area for 25 lines of characters. As the terminal displays a new line of characters, the previous line is scrolled upward. When the terminal reaches the bottom line of the display, the next line causes the top line to scroll off the display.

The internal memory in the VT102 terminal allowed it to save the last 64 lines that had scrolled off of the display. Users had the ability to lock the current screen display and use arrow keys to scroll backward through the previous lines that had “scrolled off” of the display. Terminal emulation packages allow you to use either a side scrollbar or a mouse scroll button to scroll through the saved data without having to lock the display. Of course, for full emulation compatibility, most terminal emulation packages also allow you to lock the display and use arrow and page up/page down to scroll through the saved data.

The second type of buffering is known as an alternative screen. Normally, the terminal writes data directly to the normal display area on the monitor. A method was developed to crudely implement animation by using two screen areas to store data. Control codes were used to signal the terminal to write data to the alternative screen instead of the current display screen. That data was held in memory. Another control code would signal the terminal to switch the monitor display between the normal screen data and the data contained in the alternative screen almost instantaneously. By storing successive data pages in the alternative screen area, then displaying it, you could crudely simulate moving graphics.

Terminals that emulate the VT series of terminals have the ability to support both the scroll region and the alternative screen buffering methods.

Color

Even back in the black-and-white (or green) dumb terminal days, programmers were experimenting with different ways to present data. Most terminals supported special control codes to produce the following types of special text:

	Bold characters

	Underline characters

	Reverse video (black characters on white background)

	Blinking

	Combinations of all of the above features

Back in the old days, if you wanted to get someone's attention, you used bold, blinking, reverse video text. Now there's something that could hurt your eyes!

As color terminals became available, programmers added special control codes to display text in various colors and shades. The ANSI character set includes control codes for specifying specific colors for both foreground text and the background color displayed on the monitor. Most terminal emulators support the ANSI color control codes.

The Keyboard

There is more to a terminal than just how the monitor operates. If you have ever worked with different types of dumb terminals, you have seen that they often contain different keys on the keyboard. Trying to emulate specific keys on a specific dumb terminal has proven to be a difficult task for terminal emulation packages.

It was impossible for the creators of the PC keyboard to include keys for every possible type of special key found in dumb terminals. Some PC manufacturers experimented with including special keys for special functions, but eventually the PC keyboard keys became somewhat standardized.

For a terminal emulation package to completely emulate a specific type of dumb terminal, it must remap any dumb terminal keys that don't appear on the PC keyboard. This remapping feature can often become confusing, especially when different systems use different control codes for the same key.

Some common special keys you'll see in terminal emulation packages are:

	Break: Sends a stream of zeroes to the host. This is often used to interrupt the currently executing program in the shell.

	Scroll Lock: Also called “no scroll,” this stops the output on the display. Some terminals included memory to hold the contents of the display so the user could scroll backward through previously viewed information while the scroll lock was enabled.

	Repeat: When held down with another key, this caused the terminal to repeatedly send the other key's value to the host.

	Return: Commonly used to send a carriage return character to the host. Most often used to signify the end of a command for the host to process (now called Enter on PC keyboards).

	Delete: While basically a simple feature, the Delete key causes grief for terminal emulation packages. Some terminals delete the character at the current cursor location, while others delete the preceding character. To resolve this dilemma, PC keyboards include two delete keys, Backspace and Delete.

	Arrow keys: Commonly used to position the cursor at a specific place—for example, when scrolling through a listing.

	Function keys: A combination of specialty keys that can be assigned unique values in programs similar to the PC F1 through F12 keys. The DEC VT series of terminals actually had two sets of function keys, F1 through F20, and PF1 through PF4.

Keyboard emulation is a crucial element in a terminal emulation package. Unfortunately, often applications are written requiring users to hit specific keys for specific functions. I've seen many a communications package that used the old DEC PF1 through PF4 keys, which are often hard to find on a terminal emulation keyboard.

The terminfo Database

Now that you know about terminal emulation packages that can emulate different types of terminals, you need a way for the Linux system to know exactly what terminal you're emulating. The Linux system needs to know what control codes to use when communicating with the terminal emulator. This is done by using an environment variable (see Chapter 5) and a special set of files collectively called the terminfo database.

The terminfo database is a set of files that identify the characteristics of various terminals that can be used on the Linux system. The Linux system stores the terminfo data for each terminal type as a separate file in the terminfo database directory. The location of this directory often varies from distribution to distribution. Some common locations are /usr/share/terminfo, /etc/terminfo, and /lib/terminfo.

To help with organization (often there are lots of different terminfo files), you will see that the terminfo database directory contains directories for different letters of the alphabet. The individual files for specific terminals are stored under the appropriate letter directory for their terminal name. For example, under /usr/share/terminfo/v are the VT terminal emulators.

An individual terminfo file is a binary file that is the result of compiling a text file. This text file contains code words that define screen functions, associated with the control code required to implement the function on the terminal.

Since the terminfo database files are binary, you cannot see the codes within these files. However, you can use the infocmp command to convert the binary entries into text. An example of using this command is:

$infocmpvt100

#Reconstructedviainfocmpfromfile:/lib/terminfo/v/vt100

vt100|vt100-am|decvt100(w/advancedvideo),

am,msgr,xenl,xon,

cols#80,it#8,lines#24,vt#3,

acsc=“aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}∼∼,

bel=ˆG,blink=\E[5m$<2>,bold=\E[1m$<2>,

clear=\E[H\E[J$<50>,cr=ˆM,csr=\E[%i%p1%d;%p2%dr,

cub=\E[%p1%dD,cub1=ˆH,cud=\E[%p1%dB,cud1=ˆJ,

cuf=\E[%p1%dC,cuf1=\E[C$<2>,

cup=\E[%i%p1%d;%p2%dH$<5>,cuu=\E[%p1%dA,

cuu1=\E[A$<2>,ed=\E[J$<50>,el=\E[K$<3>,el1=\E[1K$<3>,

enacs=\E(B\E)0,home=\E[H,ht=ˆI,hts=\EH,ind=ˆJ,ka1=\EOq,

ka3=\EOs,kb2=\EOr,kbs=ˆH,kc1=\EOp,kc3=\EOn,kcub1=\EOD,

kcud1=\EOB,kcuf1=\EOC,kcuu1=\EOA,kent=\EOM,kf0=\EOy,

kf1=\EOP,kf10=\EOx,kf2=\EOQ,kf3=\EOR,kf4=\EOS,kf5=\EOt,

kf6=\EOu,kf7=\EOv,kf8=\EOl,kf9=\EOw,rc=\E8,

rev=\E[7m$<2>,ri=\EM$<5>,rmacs=ˆO,rmam=\E[?7l,

rmkx=\E[?1l\E>,rmso=\E[m$<2>,rmul=\E[m$<2>,

rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h,

sc=\E7,

sgr0=\E[m\017$<2>,smacs=ˆN,smam=\E[?7h,smkx=\E[?1h\E=,

smso=\E[7m$<2>,smul=\E[4m$<2>,tbc=\E[3g,

$

The terminfo entry defines the terminal name (in this case vt100), along with any alias names that can be associated with the terminal name. Notice that the first line shows the location of the terminfo file the values were extracted from.

Following that, the infocmp command lists the capabilities of the terminal definition, along with the control codes used to emulate the individual capabilities. Some capabilities are either enabled or disabled. If the capability appears in the list, it's enabled by the terminal definition (such as the am, auto-right-margin, feature). Other capabilities must define a specific control code sequence to perform the task (such as clearing the monitor display). Table 2.1 shows a list of some of the capabilities you see in the vt100 terminfo definition file listed.

Table 2.1 Terminfo Capability Codes

	Code
	Description

	am
	Set right-side auto-margin

	msgr
	Safe to move cursor in standout mode

	xenl
	Newline characters ignored after 80 columns

	xon
	Terminal uses XON/XOFF characters for flow control

	cols#80
	80 columns in a line

	it#8
	Tab character set to eight spaces

	lines#24
	24 lines on a screen

	vt#3
	Virtual terminal number 3

	bel
	Control code to use to emulate the bell

	blink
	Control code used to produce blinking text

	bold
	Control code used to produce bold text

	clear
	Control code used to clear the screen

	cr
	Control code used to enter a carriage return

	csr
	Control code used to change scroll region

	cub
	Move one character to the left without erasing

	cub1
	Move cursor back one space

	cud
	Move cursor down one line

	cud1
	Control code to move cursor down one line

	cuf
	Move one character to the right without erasing

	cuf1
	Control code to move the cursor right one space without erasing

	cup
	Control code to move to row one, column two on the display

	cuu
	Move cursor up one line

	cuu1
	Control code to move cursor up one line

	ed
	Clear to the end of the screen

	el
	Clear to the end of the line

	el1
	Clear to the beginning of the line.

	enacs
	Enable the alternate character set

	home
	Control code to move cursor to the home position—row one, column two (same as cup)

	ht
	Tab character

	hts
	Set tab in every row at current column

	ind
	Scroll text up

	ka1
	Upper-left key in keypad

	ka3
	Upper-right key in keypad

	kb2
	Center key in keypad

	kbs
	Backspace key

	kc1
	Lower-left key in keypad

	kc3
	Lower-right key in keypad

	kcub1
	The left arrow key

	kcud1
	Control code for down arrow key

	kcuf1
	The right arrow key

	kcuu1
	The up arrow key

	kent
	The Enter key

	kf0
	The F0 function key

	kf1
	The F1 function key

	kf10
	The F10 function key

	rc
	Restore cursor to last saved position

	rev
	Reverse video mode

	ri
	Scroll text down

	rmacs
	End alternate character set

	rmam
	Turn off automatic margins

	rmkx
	Exit keyboard transmit mode

	rmso
	Exit standout mode

	rmul
	Exit underline mode

	rs2
	Reset

	sc
	Save current cursor position

	sgr
	Define video attributes

	sgr0
	Turn off all attributes

	smacs
	Start alternate character set

	smam
	Turn on automatic margins

	smkx
	Start keyboard transmit mode

	smso
	Begin standout mode

	smul
	Begin underline mode

	tbc
	Clear all tab stops

The Linux shell uses the TERM environment variable to define which terminal emulation setting in the terminfo database to use for a specific session. When the TERM environment variable is set to vt100, the shell knows to use the control codes associated with the vt100 terminfo database entry for sending control codes to the terminal emulator. To see the TERM environment variable, you can just echo it from the CLI:

$echo$TERM

xterm

$

This example shows that the current terminal type is set to the xterm entry in the terminfo database.

The Linux Console

In the early days of Linux, when you booted up your system you would see a login prompt on your monitor, and that's all. As mentioned earlier, this is called the Linux console. It was the only place you could enter commands for the system.

With modern Linux systems, when the Linux system starts it automatically creates several virtual consoles. A virtual console is a terminal session that runs in memory on the Linux system. Instead of having several dumb terminals connected to the PC, most Linux distributions start seven (or sometimes even more) virtual consoles that you can access from the single PC keyboard and monitor.

In most Linux distributions, you can access the virtual consoles using a simple keystroke combination. Usually you must hold down the Ctl+Alt key combination, and then press a function key (F1 through F8) for the virtual console you want to use. Function key F1 produces virtual console 1, key F2 produces virtual console 2, and so on.

Six of the virtual consoles use a full-screen text terminal emulator to display a text login screen, as shown in Figure 2.2.

Figure 2.2 The Linux console login screen

[image: 2.2]

After logging in with your user ID and password, you are taken to the Linux bash shell CLI. In the Linux console, you do not have the ability to run any graphical programs. You can only use text programs to display on the Linux text consoles.

After logging in to a virtual console, you can keep it active and switch to another virtual console without losing your active session. You can switch between all of the virtual consoles, with multiple active sessions running.

The first or the last two virtual consoles are normally reserved for X Window graphical desktops. Some distributions only assign one so you may have to test all three Ctl+Alt+F1, Ctl+Alt+F7, and Ctl+Alt+F8 to see which one your particular distribution uses. Most distributions automatically switch to one of the graphical virtual consoles after the boot sequence completes, providing a complete graphical login and desktop experience.

Logging in to a text virtual terminal session and then switching over to a graphical one can get tedious. Fortunately, there's a better way to jump between graphical and text mode on the Linux system: terminal emulation packages are a popular way to access the shell CLI from within a graphical desktop session. The following sections describe the most common software packages that provide terminal emulation in a graphical window.

The xterm Terminal

The oldest and most basic of X Window terminal emulation packages is xterm. The xterm package has been around since the original days of X Window, and is included by default in most X Window packages.

The xterm package provides both a basic VT102/220 terminal emulation CLI and a graphical Tektronix 4014 environment (similar to the 4010 environment). While xterm is a full terminal emulation package, it doesn't require many resources (such as memory) to operate. Because of this, the xterm package is still popular in Linux distributions designed to run on older hardware. Some graphical desktop environments, such as fluxbox, use it as the default terminal emulation package.

While not offering many fancy features, the xterm package does one thing extremely well, and that is emulate a VT220 terminal. The newer versions of xterm even emulate the VT series of color control codes, allowing you to use color in your scripts.

Figure 2.3 shows what the basic xterm display looks like running on a graphical Linux desktop.

Figure 2.3 The basic xterm display

[image: 2.3]

The xterm package allows you to set individual features using both command line parameters and a series of four simple graphical menus. The following sections discuss these features and how to change them.

Command Line Parameters

The list of xterm command line parameters is extensive. There are lots of features you can control to customize the terminal emulation features, such as enabling or disabling individual VT emulations.

The xterm command line parameters use the plus (+) and minus (-) signs to signify how a feature is set. A plus sign indicates that the feature should be returned to the default setting. A minus sign indicates that you are setting the feature to a non-default value. Table 2.2 lists some of the more common features that you can set using the command line parameters.

Table 2.2 xterm Command Line Parameters

	Parameter
	Description

	132
	By default, xterm does not allow 132 characters per line mode.

	ah
	Always highlight the text cursor.

	aw
	Auto-line-wrap is enabled.

	bc
	Enables text cursor blinking.

	bg color
	Specify the color to use for the background.

	cm
	Disables recognition of ANSI color change control codes.

	fb font
	Specify the font to use for bold text.

	fg color
	Specify the color to use for the foreground text.

	fn font
	Specify the font to use for text.

	fw font
	Specify the font to use for wide text.

	hc color
	Specify the color to use for highlighted text.

	j
	Use jump scrolling, scrolling multiple lines at a time.

	l
	Enable logging screen data to a log file.

	lf filename
	Specify the file name to use for screen logging.

	mb
	Ring a margin bell when the cursor reaches the end of a line.

	ms color
	Specify the color used for the text cursor.

	name name
	Specify the name of the application that appears in the title bar.

	rv
	Enable reverse video by swapping the background and foreground colors.

	sb
	Use a side scrollbar to allow scrolling of saved scroll data.

	t
	Start xterm in Tektronix mode.

	tb
	Specify that xterm should display a toolbar at the top.

It is important to note that not all implementations of xterm support all of these command line parameters. You can determine which parameters your xterm implements by using the -help parameter when you start xterm on your system.

The xterm Main Menu

The main xterm menu contains configuration items that apply to both the VT102 and Tektronix windows. You can access the main menu by holding down the Ctrl key and clicking the mouse button once (the left button on a right-hand mouse, the right button on a left-hand mouse) while in an xterm session window. Figure 2.4 shows what the xterm main menu looks like.

Figure 2.4 The xterm main menu

[image: 2.4]

There are four sections in the xterm main menu, as described in the following sections.

X Event Commands

The X event commands section contains features that allow you to manage how xterm interacts with the X Window display.

	Toolbar: If the xterm installation supports the toolbar, this entry enables or disables displaying the toolbar in the xterm window (the same as the tb command line parameter).

	Secure Keyboard: Restricts the keyboard keystrokes to a specific xterm window. This is useful when typing passwords to ensure they don't get hijacked by another window.

	Allow SendEvents: Allows X Window events generated by other X Window applications to be accepted by the xterm window.

	Redraw Window: Instructs X Window to refresh the xterm window.

Again, all of these features may not be supported by your particular xterm implementation. If they're not supported, they'll appear grayed-out in the menu.

Output Capturing

The xterm package allows you to capture data displayed in the window and either log it to a file or send it to a default printer defined in X Window. The features that appear in this section are:

	Log to file: Sends all data displayed in the xterm window to a text file.

	Print window: Sends all data displayed in the current window to the default X Window printer.

	Redirect to printer: Sends all data displayed in the xterm window to the default X Window printer as well. This feature must be turned off to stop printing data.

The capturing feature can get messy if you are using graphics characters or control characters (such as colored text) in your display area. All characters sent to the display, including control characters, are stored in the log file or sent to the printer.

The xterm print feature assumes that you define a default printer in the X Window system. If you have no printer defined, the feature will appear grayed out in the menu.

Keyboard Settings

The keyboard settings section contains features that allow you to customize how xterm sends keyboard characters to the host system.

	8-bit controls: Sends 8-bit control codes, used in VT220 terminals, rather than 7-bit ASCII control codes.

	Back arrow key: Toggles the back arrow key between sending a backspace character or a delete character.

	Alt/Numlock Modifiers: Controls whether the Alt or Numlock keys change the PC number pad behavior.

	Alt Sends Escape: The Alt key sends an escape control code along with the other key pressed.

	Meta sends Escape: Controls whether the function keys send a two-character control code, including the escape control code.

	Delete is DEL: The PC Delete key sends a delete character instead of a backspace character.

	Old Function keys: The PC functions keys emulate the DEC VT100 function keys.

	Termcap Function keys: The PC function keys emulate the Berkley Unix Termcap function keys.

	Sun Function keys: The PC function keys emulate the Sun Workstation function keys.

	VT220 keyboard: The PC function keys emulate the DEC VT220 function keys.

As you can see, setting keyboard preferences often depends on the specific application and/or environment you're working in. There's also a fair amount of personal preference involved as well. Often it's just a matter of what works best for you as to which keyboard settings to make.

The VT Options Menu

The VT options menu sets features xterm uses in the VT102 emulation. You access the VT options menu by holding down the Control key and clicking the second mouse button. Typically, the second mouse button is the middle mouse button. If you're using a two-button mouse, most Linux X Window configurations emulate the middle mouse button when you click both the left and right mouse buttons together. Figure 2.5 shows what the VT options menu looks like.

Figure 2.5 The xterm VT options menu

[image: 2.5]

As you can see from Figure 2.5, many of the VT features that you can set from the command line parameters can also be set from the VT options menu. This produces quite a large list of available options. The VT options are divided into three sets of commands, described in the following sections.

VT Features

The VT features commands to change the features of how xterm implements the VT102/220 emulation. They include:

	Enable Scrollbar

	Enable Jump Scrollbar

	Enable Reverse Video

	Enable Auto Wraparound

	Enable Reverse Wraparound

	Enable Auto Linefeed

	Enable Application Cursor Keys

	Enable Application Keypad

	Scroll to Bottom on Keypress

	Scroll to Bottom on TTY Output

	Allow 80/132 Column Switching

	Select to Clipboard

	Enable Visual Bell

	Enable Bell Urgency

	Enable Pop on Bell

	Enable Blinking Cursor

	Enable Alternate Screen Switching

	Enable Active Icon

You can enable or disable each of these features by clicking on the feature in the menu. An enabled feature will have a checkmark next to it.

VT Commands

The VT commands section sends a specific reset command to the xterm emulation window. They include:

	Do Soft Reset

	Do Full Reset

	Reset and Clear Saved Lines

The soft reset sends a control code to reset the screen area. This is convenient if a program sets the scroll region incorrectly. The full reset clears the screen, resets any set tab positions, and resets any terminal mode feature set during the session to the initial state. The Reset and Clear Saved Lines command performs a full reset and also clears out the scroll area history file.

Current Screen Commands

The current screen commands section sends commands to the xterm emulator that affect which screen is the currently active screen.

	Show Tek Window: Display the Tektronix terminal window along with the VT100 terminal window.

	Switch to Tek Window: Hide the VT100 terminal window and display the Tektronix terminal window.

	Hide VT Window: Hide the VT100 terminal window while displaying the Tektronix terminal window.

	Show Alternate Screen: Display the data currently stored in the VT100 alternate screen area.

The xterm terminal emulator provides the ability to start in either VT100 terminal mode (by default) or in the Tektronix terminal mode (by using the t command line parameter). After you start in either mode, you can use this menu area to switch to the other mode during your session.

The VT Fonts Menu

The VT fonts menu sets the font style used in the VT100/220 emulation window. You can access this menu by holding the Control key and clicking on mouse button three (the right button on a right-handed mouse, or the left button on a left-handed mouse). Figure 2.6 shows what the VT fonts menu looks like.

Figure 2.6 The xterm VT fonts menu

[image: 2.6]

The VT fonts menu, covered in the following sections, contains three sections of selections.

Set the Font

These menu options set the size of the font used in the xterm window. The available sizes are:

	Default

	Unreadable

	Tiny

	Small

	Medium

	Large

	Huge

	Escape Sequence

	Selection

The default font is the standard-sized font used to display text in the current X Window frame. The unreadable font is pretty much what it says. It shrinks the xterm window down to a size that is not really usable. This is handy, however, when you want to minimize the window on your desktop without completely minimizing it on the system. The large and huge font options produce extremely large font sizes for visually impaired users.

The Escape the Sequence option sets the font to the last font set by the VT100 set font control code. The Selection option allows you to save the current font with a special font name.

Display the Font

This section of menu options defines the type of characters used to create the text. There are three options available:

	Line Drawing Characters: Tells the Linux system to produce ANSI graphical lines instead of using line characters from the chosen font.

	Packed Font: Tells the Linux system to use a packed font.

	Doublesized characters: Tells the Linux system to scale the set font to double the normal size.

The line drawing characters allow you to determine which types of graphical features to use when drawing in text mode. You can use either characters provided by the selected font source or characters provided by the DEC VT100 control codes.

Specify the Font

This section of the menu provides options for what type of fonts are used to create the characters:

	TrueType Fonts

	UTF-8 Fonts

	UTF-8 Titles

The TrueType fonts are popular in graphical environments. Instead of each character taking the same amount of space in the line, characters are proportioned by their natural sizes. Thus, the letter i takes up less space on the line than the letter m. The UTF-8 font allows you to temporarily switch to use the Unicode character set for applications that don't support foreign characters. The Titles option allows the xterm window title to be encoded using UTF-8.

The Konsole Terminal

The KDE Desktop Project has created its own terminal emulation package called Konsole. The Konsole package incorporates the basic xterm features, along with more advanced features that we now expect from a Windows application. This section describes the features of the Konsole terminal, and shows how to use them.

Command Line Parameters

Often a Linux distribution provides a method for starting applications directly from the graphical desktop menu system. If your distribution doesn't provide this feature, you can manually start Konsole by using the format:

konsoleparameters

Just like xterm, the Konsole package uses command line parameters to set features in the new sessions. Table 2.3 shows the available Konsole command line parameters.

Table 2.3 The Konsole Command Line Parameters

	Parameter
	Description

	-e command
	Execute command instead of a shell.

	--keytab file
	Use the specified key file to define key mappings.

	--keytabs
	List all of the available keytabs.

	--ls
	Start the Konsole session with a login screen.

	--name name
	Set the name that appears in the Konsole title bar.

	--noclose
	Prevent the Konsole window from closing when the last session has been closed.

	--noframe
	Start Konsole without a frame.

	--nohist
	Prevent Konsole from saving scroll history in sessions.

	--nomenubar
	Start Konsole without the standard menu bar options.

	--noresize
	Prevent changing the size of the Konsole window area.

	--notabbar
	Start Konsole without the standard tab area for sessions.

	--noxft
	Start Konsole without support for aliasing smaller fonts.

	--profile file
	Start Konsole with settings saved in the specified file.

	--profiles
	List all of the available Konsole profiles.

	--schema name
	Start Konsole using the specified schema name or file.

	--schemata
	List the schemes available in Konsole.

	-T title
	Set the Konsole window title.

	--type type
	Start a Konsole session using the specified type.

	--types
	List all of the available Konsole session types.

	--vt_sz CxL
	Specify the terminal columns (C) and rows (L).

	--workdir dir
	Specify the working directory for Konsole to store temporary files.

Tabbed Window Sessions

When you start Konsole, you'll notice that it has a tabbed window, with one tab open to a terminal emulation session. This is the default tabbed window session, and it is normally a standard bash shell CLI. Konsole allows you to have multiple tabs active at the same time. The tabs, placed at either the top or bottom of the window area, allow you to easily switch between sessions. This is a great feature for programmers who need to edit code in one tab, while testing the code in another tabbed window. It's easy to flip back and forth between different active tabs in Konsole. Figure 2.7 shows a Konsole window with three active tabs.

Figure 2.7 The Konsole terminal emulator with three active sessions

[image: 2.7]

Similar to the xterm terminal emulator, Konsole provides a simple menu by right-clicking in the active tab area. If you right-click in the tab area, a menu appears with the following options:

	Copy: Copy the selected text to the clipboard.

	Paste: Paste the contents of the clipboard to the selected area.

	Clear Scrollback & Reset: Clears all the text out of the current tab and resets the terminal.

	Open File Manager: Opens the KDE default file manager, Dolphin, at the present working directory.

	Change Profile: Changes the profile for the current tab.

	Edit Current Profile: Edits the current tab's profile.

	Show Menu Bar: Toggles on/off the menu bar display.

	Character Encoding: Selects the character set used to send and display characters.

	Close Tab: Terminate the tabbed window session. If it is the last tab in the Konsole window, Konsole will close.

Konsole also provides another quick way to access the new tab menu—by holding down the Ctrl key and right-clicking in the tab area.

After a tabbed window has been modified, you can keep the modifications to use in the future using a profile.

Profiles

Konsole delivers a powerful method, called profiles, for saving and reusing a tabbed session's settings. When you start Konsole for the first time, the tab session's settings are pulled from the default profile, Shell. These settings include items such as what shell to use, color schemes, and so on. Once you have modified your current tab session, you can save those modifications as a new profile. This feature allows multiple tab setups, such as a tab session that uses a different shell than bash.

Profiles can also be used to automate mundane tasks, such as logging into another system. You can define many profiles and use different ones in each open tab session. To create a new profile, use the Edit Current Profile setting, described previously in the simple Konsole menu. To switch the current profile to a different profile, use the simple menu option Change Profile. These options are also provided on the menu bar.

By default, Konsole uses a menu bar to provide additional functionality so that you can modify and save your Konsole tabs and profiles.

The Menu Bar

The default Konsole setup uses a menu bar for you to easily view and change options and features in your tabs. The menu bar consists of six items, as described in the following sections.

File

The File menu bar item provides a location for starting a new tab in the current window or in a new window. It contains the following entries:

	New Tab: Start a new Konsole tab within the current terminal window using the default profile, Shell.

	New Window: Start a new terminal window to hold a new Konsole tab.

	List of defined profiles: Switch to a new profile in the current tab session.

	Open File Manager: Open the file manager at the present working directory.

	Close Tab: Close the current tab.

	Quit: Quit the Konsole application.

When you first start Konsole, the only profile listed in the List-of-Defined-Profiles will be Shell. As more profiles are created and saved, their names will appear in the list.

Edit

The Edit menu bar provides options for handling text in the session as well as a few additional options:

	Copy: Copies selected text (which was highlighted with the mouse) to the system clipboard.

	Paste: Pastes text currently in the system clipboard to the current cursor location. If the text contains newline characters, they will be processed by the shell.

	Rename Tab: Changes the current tab name. The following tokens can be used in addition to text:

	%#—Session number

	%D—Current directory (absolute name)

	%d—Current directory (relative name)

	%n—Program name

	%u—User name

	%w—Shell set window title

	Copy Input To: Sends typed text in the current tab to one or more tabs in the current terminal windows.

	ZModem Upload: Uploads a file to the system using the ZModem protocol.

	Clear and Reset: Sends the control code to reset the terminal emulator, and clears the current session window.

Konsole provides an excellent method for tracking a tab's function. Using the Rename Tab menu option, you can name a tab to match its profile. This helps in tracking which open tab is performing what function.

View

The View menu bar item contains items for controlling the individual sessions in the Konsole window. These selections include:

	Split View: Controls the display within the current terminal emulation window. Views can be modified by:

	Split View Left/Right: Splits the current display into two identical screens, side by side

	Split View Top/Bottom: Splits the current display into two identical screens, one on top of the other

	Close Active: Merges the current split terminal window back into a single window

	Close Others: Merges non-current split terminal windows back into a single window

	Expand View: Adjusts the active split of a terminal window to take up more of the display window

	Shrink View: Adjusts the active split of a terminal window to take up less display window

	Detach View: Remove the current tab from the Konsole window, and start a new Konsole window using the current tab. This is available only when more than one active tab is open.

	Show Menu Bar: Toggles on/off the display of the menu bar.

	Full Screen Mode: Toggles on/off the terminal window filling the entire monitor display area.

	Monitor for Silence: Toggles on/off a special icon appearance when no new text appears in the tab for 10 seconds. This allows you to switch to another tab while waiting for output from an application to stop, such as when compiling a large application.

	Monitor for Activity: Toggles on/off a special icon appearance when new text appears in the tab. This allows you to switch to another tab while waiting for output from an application.

	Character Encoding: Selects the character set used to send and display characters.

	Increase Text Size: Increases the size of the text font.

	Decrease Text Size: Decreases the size of the text font.

The Split View option in Konsole will maintain the current number of open tabs in the split view. For example, if you have three tabs in the terminal window and split the view, each view will have three tabs.

Scrollback

Konsole retains a history area, formally called a scrollback buffer, for each tab. The history area contains the output text for lines that scroll out of the viewing area of the terminal emulator. By default, the last 1,000 lines of output in the scrollback buffer are retained. The Scrollback menu offers various options for reviewing this buffer.

	Search Output: Opens a dialog box at the bottom of the current tab. The Find dialog box enables Konsole to search for specific text in the scroll buffer. It has options for case, regular expressions, and search direction.

	Find Next: Finds the next text match in more recent history of the scrollback buffer.

	Find Previous: Finds the next text match in more ancient history of the scrollback buffer.

	Save Output: Saves the contents of the scrollback buffer to a text or HTML file.

	Scrollback Options: Controls the activity of the scrollback buffer. The modifications available are:

	No Scrollback: Disable the scrollback buffer.

	Fixed Scrollback: Set the size (number of lines) of the scrollback buffer. The default is 1,000 lines.

	Unlimited Scrollback: Allows an infinite number of lines to be stored in the scrollback buffer.

	Save to Current Profile: Save the scrollback buffer options to the current profile settings.

	Clear Scrollback & Reset: Removes the contents of the scrollback buffer and resets the terminal window.

You can scroll through the scrollback buffer by using the scrollbar in the viewing area, or by pressing the Shift key and the Up Arrow key to scroll line by line, or the Page Up key to scroll page (24 lines) by page.

Bookmarks

The Bookmarks menu items provide a way to manage bookmarks set in the Konsole window. A bookmark enables you to save your directory location in an active session and then easily return there in either the same session or a new session. Have you ever drilled down several directories deep to find something on the Linux system, exited, and then forgotten how you got there? Bookmarks will solve that problem. When you get to your desired directory location, just add a new bookmark. When you want to return, look at the Bookmarks for your new bookmark, and it will automatically perform the directory change to the desired location for you. The bookmark entries include:

	Add Bookmark: Create a new bookmark at the current directory location.

	Bookmark Tabs as Folder: Create a bookmark for all the current terminal window tabs.

	New Bookmark Folder: Create a new storage folder for bookmarks.

	Edit Bookmarks: Edit existing bookmarks.

	A list of your bookmarks: Any bookmarks you have created.

There is no limit to how many bookmarks you can store in Konsole, but having lots of bookmarks can get confusing. By default, they all appear at the same level in the Bookmark area. You can organize them by creating new bookmark folders and moving individual bookmarks to the new folders using the Edit Bookmarks item.

Settings

The Settings menu bar area allows you to customize and manage your profiles as well as add a little more functionality to the current tab session. This area includes:

	Change Profile: Applies a selected profile for the current tab.

	Edit Current Profile: Opens a dialog box where a large variety of profile settings can be changed.

	Manage Profiles: Allows a particular profile to be the default profile and enables you to create and delete profiles. Also manages the order in which your profiles appear in the File menu.

	Configure Shortcuts: Creates keyboard shortcuts for Konsole commands.

	Configure Notifications: Sets actions for specific session events.

	Configure Konsole: Create custom Konsole schemas and sessions.

The Configure Notifications area is pretty cool. It allows you to associate five specific events that can occur within a session with six different actions. When one of the events occurs, the defined action (or actions) are taken.

The Edit Current Profile settings is a powerful tool that provides advanced control over profile features This dialog box provides a way to create and save a variety of profiles for later use. Figure 2.8 shows the main Edit Current Profile dialog box.

Figure 2.8 The Konsole edit current profile dialog box

[image: 2.8]

Within the Edit Current Profile dialog box are six tabbed areas:

	General: Allows you to set the profile's name, the icon, the initial filesystem directory, and so on. You can also designate the command to be executed upon the tab opening. This typically points to the bash shell, /bin/bash, but can also be regularly used shell commands, such as top.

	Tabs: Defines the tab's title format and the position of the tab bars.

	Appearance: Items such as a tab's color scheme and font settings are in this window.

	Scrolling: Settings included are the size of the scrollback buffer and the scroll bar's location on the window.

	Input: Keybindings, what characters are sent to the terminal emulation when certain keyboard combinations are pressed, can be set here.

	Advanced: Allows you to configure several settings in this window. They include terminal features, character encoding, mouse interaction, and cursor features.

Help

The Help menu item provides the full Konsole handbook (if KDE handbooks were installed in your Linux distribution), a “tip of the day” feature that shows interesting little-known shortcuts and tips each time you start Konsole, and the standard About Konsole dialog box.

The GNOME Terminal

As you would expect, the GNOME desktop project has its own terminal emulation program. The GNOME Terminal software package has many of the same features as Konsole and xterm. This section walks you through the various parts of configuring and using GNOME Terminal.

The Command Line Parameters

The GNOME Terminal application also provides a wealth of command line parameters that allow you to control GNOME's behavior when starting it. Table 2.4 lists the parameters available.

Table 2.4 The GNOME Terminal Command Line Parameters

	Parameter
	Description

	-e command
	Execute the argument inside a default terminal window.

	-x
	Execute the entire contents of the command line after this parameter inside a default terminal window.

	--window
	Open a new window with a default terminal window. You may add multiple --window parameters to start multiple windows.

	--window-with-profile=
	Open a new window with a specified profile. You may also add this parameter multiple times to the command line.

	--tab
	Open a new tabbed terminal inside the last opened terminal window.

	--tab-with-profile=
	Open a new tabbed terminal inside the last opened terminal window using the specified profile.

	--role=
	Set the role for the last specified window.

	--show-menubar
	Enable the menu bar at the top of the terminal window.

	--hide-menubar
	Disable the menu bar at the top of the terminal window.

	--full-screen
	Display the terminal window fully maximized.

	--geometry=
	Specify the X Window geometry parameter.

	--disable-factory
	Don't register with the activation nameserver.

	--use-factory
	Register with the activation nameserver.

	--startup-id=
	Set the ID for the Linux startup notification protocol.

	-t, --title=
	Set the window title for the terminal window.

	--working-directory=
	Set the default working directory for the terminal window.

	--zoom=
	Set the terminal's zoom factor.

	--active
	Set the last specified terminal tab as the active tab.

The GNOME Terminal command line parameters allow you to set lots of features automatically as GNOME Terminal starts. However, you can also set most of these features from within the GNOME Terminal window after it starts.

Tabs

Similar to Konsole, the GNOME Terminal calls each session a tab, and it also uses tabs to keep track of multiple sessions running within the window. Figure 2.9 shows a GNOME Terminal window with three session tabs active.

Figure 2.9 The GNOME Terminal with three active sessions

[image: 2.9]

You can right-click in the tab window to see the quick menu. This quick menu provides a few actions for your use in the tab session:

	Open Terminal: Open a new GNOME Terminal window with a default tab session.

	Open Tab: Open a new session tab in the existing GNOME Terminal window.

	Close Tab or Close Window: If multiple tabs are open, the menu option Close Tab is shown and it closes the current session tab. If only one tab is open, the menu option Close Window is displayed and it closes the GNOME Terminal window.

	Copy: Copy highlighted text in the current session tab to the clipboard.

	Paste: Paste data in the clipboard into the current session tab at the current cursor location.

	Profiles: Change the profile for the current session tab or edit the current tab profile.

	Show Menubar: Toggles on/off the menu bar display.

	Input Methods: Allows you to change the current Input Method to another character translation or turn it off completely.

The quick menu provides easy access to commonly used actions that are available from the standard menu bar in the terminal window.

The Menu Bar

The main operation of GNOME Terminal happens in the menu bar. The menu bar contains all of the configuration and customization options you'll need to make your GNOME Terminal just the way you want it. The following sections describe the different items in the menu bar.

File

The File menu item contains items to create and manage the terminal tabs:

	Open Terminal: Start a new shell session in a new GNOME Terminal window.

	Open Tab: Start a new shell session on a new tab in the existing GNOME Terminal window.

	New Profile: Allows you to customize the tab session and save it as a profile, which you can recall for use later.

	Save Contents: Saves the contents of the scrollback buffer to a text file.

	Close Tab: Close the current tab in the window.

	Close Window: Close the current GNOME Terminal session, closing all active tabs.

Most of the items in the File menu are also available by right-clicking in the session tab area. The New Profile entry allows you to customize your session tab settings and save them for future use.

The New Profile first requests that you provide a name for the new profile; then it produces the Editing Profile dialog box, shown in Figure 2.10.

Figure 2.10 The GNOME Terminal Editing Profile dialog box

[image: 2.10]

This is the area where you can set the terminal emulation features for the session. It consists of six areas:

	General: Provides general settings such as font, the bell, and the menu bar.

	Title and Command: Allows you to set the title for the session tab (displayed on the tab) and determine if the session starts with a special command rather than a shell.

	Colors: Sets the foreground and background colors used in the session tab.

	Background: Allows you to set a background image for the session tab, or make it transparent so you can see the desktop through the session tab.

	Scrolling: Controls whether a scroll region is created, and how large.

	Compatibility: Allows you to set which control codes the Backspace and Delete keys send to the system.

Once you configure a profile, you can specify it when opening new session tabs.

Edit

The Edit menu item contains items for handling text within the tabs. You can use your mouse to copy and paste texts anywhere within the tab window. This allows you to easily copy text from the command line output to a clipboard and import it into an editor. You can also paste text from another GNOME application into the tab session.

	Copy: Copy selected text to the GNOME clipboard.

	Paste: Paste text from the GNOME clipboard into the tab session.

	Select All: Selects output in the entire scrollback buffer.

	Profiles: Add, delete, or modify profiles in the GNOME Terminal.

	Keyboard Shortcuts: Create key combinations to quickly access GNOME Terminal features.

	Profile Preferences: Provides a quick way to edit the profile used for the current session tab.

The profile-editing feature is an extremely powerful tool for customizing several profiles, and then changing profiles as you change sessions.

View

The View menu item contains items for controlling how the session tab windows appear. They include:

	Show Menubar: Toggles on/off the menu bar display.

	Full Screen: Enlarges the GNOME Terminal window to the entire desktop.

	Zoom In: Makes the font in the tab window larger.

	Zoom Out: Makes the font in the tab window smaller.

	Normal Size: Returns the tab font to the default size.

If you hide the menu bar, you can easily get it back by right-clicking in any session tab and toggling the Show Menubar item.

Terminal

The Terminal menu item contains items for controlling the terminal emulation features of the tab session. They include:

	Change Profile: Allows you to switch to another configured profile in the session tab.

	Set Title: Sets the title on the session tab to easily identify it.

	Set Character Encoding: Selects the character set used to send and display characters.

	Reset: Sends the reset control code to the Linux system.

	Reset and Clear: Sends the reset control code to the Linux system and clears any text currently showing in the tab area.

	Window Size List: Lists different sizes to which the current GNOME terminal window can be adjusted. Select a size and the window automatically adjusts its size.

The character encoding offers a large list of available character sets to choose from. This is especially handy if you must work in a language other than English.

Tabs

The Tabs menu item provides items for controlling the location of the tabs and selecting which tab is active. This menu only displays when you have more than one tab session open.

	Next Tab: Make the next tab in the list active.

	Previous Tab: Make the previous tab in the list active.

	Move Tab to the Left: Shuffle the current tab in front of the previous tab.

	Move Tab to the Right: Shuffle the current tab in front of the next tab.

	Detach Tab: Remove the tab and start a new GNOME Terminal window using this tab session.

	The Tab list: Lists the currently running session tabs in the terminal window. Select a tab to quickly jump to that session.

This section allows you to manage your tabs, which can come in handy if you have several tabs open at once.

Help

The Help menu item provides a full GNOME Terminal manual so that you can research individual items and features used in the GNOME Terminal.

Summary

To start learning Linux command line commands, you need access to a command line. In a world of graphical interfaces, this can sometimes be challenging. This chapter discussed different things you should consider when trying to get to the Linux command line from within a graphical desktop environment. First, the chapter covered terminal emulation and showed what features you should know about to ensure that the Linux system can properly communicate with your terminal emulation package, and display text and graphics properly.

In particular, the chapter covered three different types of terminal emulators. The xterm terminal emulator package was the first available for Linux. It emulates both the VT102 and Tektronix 4014 terminals. The KDE desktop project created the Konsole terminal emulation package. It provides several fancy features, such as the ability to have multiple sessions in the same window, using both console and xterm sessions, with full control of terminal emulation parameters.

Finally, the chapter discussed the GNOME desktop project's GNOME Terminal emulation package. GNOME Terminal also allows multiple terminal sessions from within a single window; plus it provides a convenient way to set many terminal features.

In the next chapter, you'll start looking at the Linux command line commands. I'll walk you through the commands necessary to navigate around the Linux filesystem, and create, delete, and manipulate files.

Chapter 3

Basic bash Shell Commands

In This Chapter

	Starting the shell

	The shell prompt

	The bash manual

	Filesystem navigation

	File and directory listing

	File handling

	Directory handling

	Viewing file contents

The default shell used in all Linux distributions is the GNU bash shell. This chapter describes the basic features available in the bash shell, and walks you through how to work with Linux files and directories using the basic commands provided by the bash shell. If you're already comfortable working with files and directories in the Linux environment, feel free to skip this chapter and continue with Chapter 4 to see more advanced commands.

Starting the Shell

The GNU bash shell is a program that provides interactive access to the Linux system. It runs as a regular program, normally started whenever a user logs in to a terminal. The shell that the system starts depends on your user ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along with some basic configuration information about each user. Here's a sample entry from a /etc/passwd file:

rich:x:501:501:RichBlum:/home/rich:/bin/bash

Each entry has seven data fields, with each field separated by a colon. The system uses the data in these fields to assign specific features for the user. These fields are:

	The username

	The user's password (or a placeholder if the password is stored in another file)

	The user's system user ID number

	The user's system group ID number

	The user's full name

	The user's default home directory

	The user's default shell program

Most of these entries will be discussed in more detail in Chapter 6. For now, just pay attention to the shell program specified.

Most Linux systems use the default bash shell program when starting a command line interface (CLI) environment for the user. The bash program also uses command line parameters to modify the type of shell you can start. Table 3.1 lists the command line parameters available in bash that define what type of shell to use.

Table 3.1 The bash Command Line Parameters

	Parameter
	Description

	-c string
	Read commands from string and process them.

	-r
	Start a restricted shell, limiting the user to the default directory.

	-i
	Start an interactive shell, allowing input from the user.

	-s
	Read commands from the standard input.

By default, when the bash shell starts, it automatically processes commands in the .bashrc file in the user's home directory. Many Linux distributions use this file to also load a common file that contains commands and settings for everyone on the system. This common file is normally located in the file /etc/bashrc. This file often sets environment variables (see Chapter 5) used in various applications.

The Shell Prompt

Once you start a terminal emulation package or log in from the Linux console, you get access to the shell CLI prompt. The prompt is your gateway to the shell. This is the place where you enter shell commands.

The default prompt symbol for the bash shell is the dollar sign ($). This symbol indicates that the shell is waiting for you to enter text. However, you can change the format of the prompt used by your shell. The different Linux distributions use different formats for the prompt. On this Ubuntu Linux system, the bash shell prompt looks like this:

rich@user-desktop:∼$

On this Fedora Linux system, it looks like this:

[rich@testbox∼]$

You can configure the prompt to provide basic information about your environment. The first example shows three pieces of information in the prompt:

	The username that started the shell

	The current virtual console number

	The current directory (the tilde sign is shorthand for the home directory)

The second example provides similar information, except that it uses the hostname instead of the virtual console number. There are two environment variables that control the format of the command line prompt:

	PS1: Controls the format of the default command line prompt

	PS2: Controls the format of the second-tier command line prompt

The shell uses the default PS1 prompt for initial data entry into the shell. If you enter a command that requires additional information, the shell displays the second-tier prompt specified by the PS2 environment variable.

To display the current settings for your prompts, use the echo command:

rich@user-desktop:∼$echo$PS1

${debian_chroot:+($debian_chroot)}\u@\h:\w\$

rich@user-desktop:∼$echo$PS2

>

rich@user-desktop:∼$

The format of the prompt environment variables can look pretty odd. The shell uses special characters to signify elements within the command line prompt. Table 3.2 shows the special characters that you can use in the prompt string.

Table 3.2 Bash Shell Prompt Characters

	Character
	Description

	\a
	Bell character

	\d
	Date in the format “Day Month Date”

	\e
	ASCII escape character

	\h
	Local hostname

	\H
	Fully qualified domain hostname

	\j
	Number of jobs currently managed by the shell

	\l
	Basename of the shell's terminal device name

	\n
	ASCII newline character

	\r
	ASCII carriage return

	\s
	Name of the shell

	\t
	Current time in 24-hour HH:MM:SS format

	\T
	Current time in 12-hour HH:MM:SS format

	\@
	Current time in 12-hour am/pm format

	\u
	Username of the current user

	\v
	Version of the bash shell

	\V
	Release level of the bash shell

	\w
	Current working directory

	\W
	Basename of the current working directory

	\!
	Bash shell history number of this command

	\#
	Command number of this command

	\$
	A dollar sign if a normal user, or a pound sign if the root user

	\nnn
	Character corresponding to the octal value nnn

	\\
	Backslash

	\[
	Begins a control code sequence

	\]
	Ends a control code sequence

Notice that all of the special prompt characters begin with a backslash (\). This is what delineates a prompt character from normal text in the prompt. In the earlier example, the prompt contained both prompt characters and a normal character (the “at” sign, and the square brackets). You can create any combination of prompt characters in your prompt. To create a new prompt, just assign a new string to the PS1 variable:

[rich@testbox∼]$PS1=“[\t][\u]\$”

[14:40:32][rich]$

This new shell prompt now shows the current time, along with the username. The new PS1 definition only lasts for the duration of the shell session. When you start a new shell, the default shell prompt definition is reloaded. In Chapter 5 you'll see how you can change the default shell prompt for all shell sessions.

The bash Manual

Most Linux distributions include an online manual for looking up information on shell commands, as well as lots of other GNU utilities included in the distribution. It is a good idea to become familiar with the manual, as it's invaluable for working with utilities, especially when you're trying to figure out various command line parameters.

The man command provides access to the manual pages stored on the Linux system. Entering the man command followed by a specific utility name provides the manual entry for that utility. Figure 3.1 shows an example of looking up the manual pages for the date command.

Figure 3.1 Displaying the manual pages for the Linux date command

[image: 3.1]

The manual page divides information about the command into separate sections, shown in Table 3.3.

Table 3.3 The Linux man Page Format

	Section
	Description

	Name
	Displays the command name and a short description

	Synopsis
	Shows the format of the command

	Description
	Describes each command option

	Author
	Provides information on the person who developed the command

	Reporting bugs
	Provides information on where to report any bugs found

	Copyright
	Provides information on the copyright status of the command code

	See Also
	Refers you to any similar commands available

You can step through the man pages by pressing the spacebar or using the arrow keys to scroll forward and backward through the man page text (assuming that your terminal emulation package supports the arrow key functions). When you are done with the man pages, press the q key to quit.

To see information about the bash shell, look at the man pages for it using the following command:

$manbash

This allows you to step through all of the man pages for the bash shell. This is extremely handy when building scripts, as you don't have to refer back to books or Internet sites to look up specific formats for commands. The manual is always there for you in your session.

Filesystem Navigation

As you can see from the shell prompt, when you start a shell session, you are usually placed in your home directory. Most often, you will want to break out of your home directory and explore other areas in the Linux system. This section describes how to do that using shell commands. Before we do that, however, let's take a tour of just what the Linux filesystem looks like so we know where we're going.

The Linux Filesystem

If you're new to the Linux system, you may be confused by how it references files and directories, especially if you're used to the way that the Microsoft Windows operating system does that. Before exploring the Linux system, it helps to have an understanding of how it's laid out.

The first difference you'll notice is that Linux does not use drive letters in pathnames. In the Windows world, the physical drives installed on the PC determine the pathname of the file. Windows assigns a letter to each physical disk drive, and each drive contains its own directory structure for accessing files stored on it.

For example, in Windows you may be used to seeing the filepaths such as:

c:\Users\Rich\Documents\test.doc.

This indicates that the file test.doc is located in the directory Documents, which itself is located in the directory Rich. The Rich directory is contained under the directory Users, which is located on the hard disk partition assigned the letter C (usually the first hard drive on the PC).

The Windows filepath tells you exactly which physical disk partition contains the file named test.doc. If you wanted to save a file on a flash drive, it could be, for example, designated by the J drive. You would click the icon for the J drive, which would automatically use the filepath J:\test.doc. This path indicates that the file is located at the root of the drive assigned the letter J.

This is not the method used by Linux. Linux stores files within a single directory structure, called a virtual directory. The virtual directory contains filepaths from all the storage devices installed on the PC, merged into a single directory structure.

The Linux virtual directory structure contains a single base directory, called the root. Directories and files beneath the root directory are listed based on the directory path used to get to them, similar to the way Windows does it.

Tip

You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote directories in filepaths. The backslash character in Linux denotes an escape character and causes all sorts of problems when you use it in a filepath. This may take some getting used to if you're coming from a Windows environment.

For example, the Linux filepath /home/rich/Documents/test.doc indicates only that the file test.doc is in the directory Documents, under the directory rich, which is contained in the directory home. It doesn't provide any information as to which physical disk on the PC the file is stored on.

The tricky part about the Linux virtual directory is how it incorporates each storage device. The first hard drive installed in a Linux PC is called the root drive. The root drive contains the core of the virtual directory. Everything else builds from there.

On the root drive, Linux creates special directories called mount points. Mount points are directories in the virtual directory where you assign additional storage devices.

The virtual directory causes files and directories to appear within these mount point directories, even though they are physically stored on a different drive.

Often the system files are physically stored on the root drive, while user files are stored on a different drive, as shown in Figure 3.2.

Figure 3.2 The Linux file structure

[image: 3.2]

In Figure 3.2, there are two hard drives on the PC. One hard drive is associated with the root of the virtual directory (indicated by a single forward slash). Other hard drives can be mounted anywhere in the virtual directory structure. In this example, the second hard drive is mounted at the location /home, which is where the user directories are located.

The Linux filesystem structure has evolved from the Unix file structure. Unfortunately, the Unix file structure has been somewhat convoluted over the years by different flavors of Unix. Nowadays it seems that no two Unix or Linux systems follow the same filesystem structure. However, there are a few common directory names that are used for common functions. Table 3.4 lists some of the more common Linux virtual directory names.

Table 3.4 Common Linux Directory Names

	Directory
	Usage

	/
	root of the virtual directory. Normally, no files are placed here.

	/bin
	binary directory, where many GNU user-level utilities are stored.

	/boot
	boot directory, where boot files are stored.

	/dev
	device directory, where Linux creates device nodes.

	/etc
	system configuration files directory.

	/home
	home directory, where Linux creates user directories.

	/lib
	library directory, where system and application library files are stored.

	/media
	media directory, a common place for mount points used for removable media.

	/mnt
	mount directory, another common place for mount points used for removable media.

	/opt
	optional directory, often used to store optional software packages.

	/root
	root home directory.

	/sbin
	system binary directory, where many GNU admin-level utilities are stored.

	/tmp
	temporary directory, where temporary work files can be created and destroyed.

	/usr
	user-installed software directory.

	/var
	variable directory, for files that change frequently, such as log files.

When you start a new shell prompt, your session starts in your home directory, which is a unique directory assigned to your user account. When you create a user account, the system normally assigns a unique directory for the account (see Chapter 6).

In the Windows world, you're probably used to moving around the directory structure using a graphical interface. To move around the virtual directory from a CLI prompt, you'll need to learn to use the cd command.

Traversing Directories

You use the change directory command (cd) to move your shell session to another directory in the Linux filesystem. The format of the cd command is pretty simplistic:

cddestination

The cd command may take a single parameter, destination, which specifies the directory name you want to go to. If you don't specify a destination on the cd command, it will take you to your home directory.

The destination parameter, however, can be expressed using two different methods:

	An absolute filepath

	A relative filepath

The following sections describe the differences between these two methods.

Absolute Filepaths

You can reference a directory name within the virtual directory using an absolute filepath. The absolute filepath defines exactly where the directory is in the virtual directory structure, starting at the root of the virtual directory, sort of like a full name for a directory.

Thus, to reference the apache directory, which is contained within the lib directory, which in turn is contained within the usr directory, you would use the absolute filepath:

/usr/lib/NetworkManager

With the absolute filepath, there's no doubt as to exactly where you want to go. To move to a specific location in the filesystem using the absolute filepath, you just specify the full pathname in the cd command:

rich@testbox[∼]$cd/etc

rich@testbox[etc]$

The prompt shows that the new directory for the shell after the cd command is now /etc. You can move to any level within the entire Linux virtual directory structure using the absolute filepath:

rich@testbox[∼]$cd/usr/lib/NetworkManager

rich@testbox[NetworkManager]$

However, if you're just working within your own home directory structure, often using absolute filepaths can get tedious. For example, if you're already in the directory /home/rich, it seems somewhat cumbersome to have to type the command

cd/home/rich/Documents

just to get to your Documents directory. Fortunately, there's a simpler solution.

Relative Filepaths

Relative filepaths allow you to specify a destination filepath relative to your current location, without having to start at the root. A relative filepath doesn't start with a forward slash, indicating the root directory.

Instead, a relative filepath starts with either a directory name (if you're traversing to a directory under your current directory), or a special character indicating a relative location to your current directory location. The two special characters used for this are:

	The dot (.) to represent the current directory

	The double dot (..) to represent the parent directory

The double dot character is extremely handy when trying to traverse a directory hierarchy. For example, if you are in the Documents directory under your home directory and need to go to your Desktop directory, also under your home directory, you can do this:

rich@testbox[Documents]$cd../Desktop

rich@testbox[Desktop]$

The double dot character takes you back up one level to your home directory; then the /Desktop portion then takes you back down into the Desktop directory. You can use as many double dot characters as necessary to move around. For example, if you are in your home directory (/home/rich) and want to go to the /etc directory, you could type the following:

rich@testbox[∼]$cd../../etc

rich@testbox[etc]$

Of course, in a case like this, you actually have to do more typing to use the relative filepath rather than just typing the absolute filepath, /etc!

File and Directory Listing

The most basic feature of the shell is the ability to see what files are available on the system. The list command (ls) is the tool that helps do that. This section describes the ls command and all of the options available to format the information it can provide.

Basic Listing

The ls command at its most basic form displays the files and directories located in your current directory:

$ls

4richDesktopDownloadMusicPicturesstorestore.ziptest

backupDocumentsDriversmyprogPublicstore.sqlTemplatesVideos

Notice that the ls command produces the listing in alphabetical order (in columns rather than rows). If you're using a terminal emulator that supports color, the ls command may also show different types of entries in different colors. The LS_COLORS environment variable controls this feature. Different Linux distributions set this environment variable depending on the capabilities of the terminal emulator.

If you don't have a color terminal emulator, you can use the -F parameter with the ls command to easily distinguish files from directories. Using the -F parameter produces the following output:

$ls-F

4rich/Documents/Music/Public/store.zipVideos/

backup.zipDownload/myprog*store/Templates/

Desktop/Drivers/Pictures/store.sqltest

$

The -F parameter now flags the directories with a forward slash, to help identify them in the listing. Similarly, it flags executable files (like the myprog file above) with an asterisk, to help you more easily find the files that can be run on the system.

The basic ls command can be somewhat misleading. It shows the files and directories contained in the current directory, but not necessarily all of them. Linux often uses hidden files to store configuration information. In Linux, hidden files are files with file names that start with a period. These files don't appear in the default ls listing (thus, they are called hidden).

To display hidden files along with normal files and directories, use the -a parameter. Figure 3.3 shows an example of using the -a parameter with the ls command.

Figure 3.3 Using the -a parameter with the ls command

[image: 3.3]

Wow, that's quite a difference. In a home directory for a user who has logged in to the system from a graphical desktop, you'll see lots of hidden configuration files. This particular example is from a user logged in to a GNOME desktop session. Also notice that there are three files that begin with .bash. These files are hidden files that are used by the bash shell environment. These features are covered in detail in Chapter 5.

The -R parameter is another option the ls command can use. It shows files that are contained within directories in the current directory. If you have lots of directories, this can be quite a long listing. Here's a simple example of what the -R parameter produces:

$ls-F-R

.:

file1test1/test2/

./test1:

myprog1*myprog2*

./test2:

$

Notice that first, the -R parameter shows the contents of the current directory, which is a file (file1) and two directories (test1 and test2). Following that, -R traverses each of the two directories, showing if any files are contained within each directory. The test1 directory shows two files (myprog1 and myprog2), while the test2 directory doesn't contain any files. If there had been further subdirectories within the test1 or test2 directories, the -R parameter would have continued to traverse those as well. As you can see, for large directory structures this can become quite a large output listing.

Modifying the Information Presented

As you can see in the basic listings, the ls command doesn't produce a whole lot of information about each file. For listing additional information, another popular parameter is -l. The -l parameter produces a long listing format, providing more information about each file in the directory:

$ls-l

total2064

drwxrwxr-x2richrich40962010-08-2422:044rich

-rw-r--r--1richrich17662052010-08-2415:34backup.zip

drwxr-xr-x3richrich40962010-08-3122:24Desktop

drwxr-xr-x2richrich40962009-11-0104:06Documents

drwxr-xr-x2richrich40962009-11-0104:06Download

drwxrwxr-x2richrich40962010-07-2618:25Drivers

drwxr-xr-x2richrich40962009-11-0104:06Music

-rwxr--r--1richrich302010-08-2321:42myprog

drwxr-xr-x2richrich40962009-11-0104:06Pictures

drwxr-xr-x2richrich40962009-11-0104:06Public

drwxrwxr-x5richrich40962010-08-2422:04store

-rw-rw-r--1richrich987722010-08-2415:30store.sql

-rw-r--r--1richrich1075072010-08-1315:45store.zip

drwxr-xr-x2richrich40962009-11-0104:06Templates

drwxr-xr-x2richrich40962009-11-0104:06Videos

[rich@testbox∼]$

The long listing format lists each file and directory contained in the directory on a single line. In addition to the file name, the listing shows additional useful information. The first line in the output shows the total number of blocks contained within the directory. Following that, each line contains the following information about each file (or directory):

	The file type—such as directory (d), file (-), character device (c), or block device (b)

	The permissions for the file (see Chapter 6)

	The number of hard links to the file (see the section “Linking Files” in this chapter)

	The username of the owner of the file

	The group name of the group the file belongs to

	The size of the file in bytes

	The time the file was modified last

	The file or directory name

The -l parameter is a powerful tool to have. Armed with this information, you can see just about any information you need to for any file or directory on the system.

The Complete Parameter List

There are lots of parameters for the ls command that can come in handy as you do file management. If you use the man command for ls, you'll see several pages of available parameters for you to use to modify the output of the ls command.

The ls command uses two types of command line parameters:

	Single-letter parameters

	Full-word (long) parameters

The single-letter parameters are always preceded by a single dash. Full-word parameters are more descriptive and are preceded by a double dash. Many parameters have both a single-letter and full-word version, while some have only one type. Table 3.5 lists some of the more popular parameters that will help you out with using the bash ls command.

Table 3.5 Some Popular ls Command Parameters

	Single Letter
	Full Word
	Description

	-a
	--all
	Don't ignore entries starting with a period.

	-A
	--almost-all
	Don't list the . and .. files.

	
	--author
	Print the author of each file.

	-b
	--escape
	Print octal values for nonprintable characters.

	
	--block-size=size
	Calculate the block sizes using size-byte blocks.

	-B
	--ignore-backups
	Don't list entries with the tilde (∼) symbol (used to denote backup copies).

	-c
	
	Sort by time of last modification.

	-C
	
	List entries by columns.

	
	--color=when
	When to use colors (always, never, or auto).

	-d
	--directory
	List directory entries instead of contents, and don't dereference symbolic links.

	-F
	--classify
	Append file-type indicator to entries.

	
	--file-type
	Only append file-type indicators to some filetypes (not executable files).

	
	--format=word
	Format output as either across, commas, horizontal, long, single-column, verbose, or vertical.

	-g
	
	List full file information except for the file's owner.

	
	--group-directories-first
	List all directories before files.

	-G
	--no-group
	In long listing don't display group names.

	-h
	--human-readable
	Print sizes using K for kilobytes, M for megabytes, and G for gigabytes.

	
	--si
	Same as -h, but use powers of 1000 instead of 1024.

	-i
	--inode
	Display the index number (inode) of each file.

	-l
	
	Display the long listing format.

	-L
	--dereference
	Show information for the original file for a linked file.

	-n
	--numeric-uid-gid
	Show numeric userid and groupid instead of names.

	-o
	
	In long listing don't display owner names.

	-r
	--reverse
	Reverse the sorting order when displaying files and directories.

	-R
	--recursive
	List subdirectory contents recursively.

	-s
	--size
	Print the block size of each file.

	-S
	--sort=size
	Sort the output by file size.

	-t
	--sort=time
	Sort the output by file modification time.

	-u
	
	Display file last access time instead of last modification time.

	-U
	--sort=none
	Don't sort the output listing.

	-v
	--sort=version
	Sort the output by file version.

	-x
	
	List entries by line instead of columns.

	-X
	--sort=extension
	Sort the output by file extension.

You can use more than one parameter at a time if you want to. The double dash parameters must be listed separately, but the single dash parameters can be combined together into a string behind the dash. A common combination to use is the -a parameter to list all files, the -i parameter to list the inode for each file, the -l parameter to produce a long listing, and the -s parameter to list the block size of the files. The inode of a file or directory is a unique identification number the kernel assigns to each object in the filesystem. Combining all of these parameters creates the easy-to-remember -sail parameter:

$ls-sail

total2360

3018608drwx------36richrich40962010-09-0315:12.

654738drwxr-xr-x6rootroot40962010-07-2914:20..

3606218drwxrwxr-x2richrich40962010-08-2422:044rich

3018628-rw-r--r--1richrich1242010-02-1210:18.bashrc

3614438drwxrwxr-x4richrich40962010-07-2620:31.ccache

3018798drwxr-xr-x3richrich40962010-07-2618:25.config

3018718drwxr-xr-x3richrich40962010-08-3122:24Desktop

3018708-rw-------1richrich262009-11-0104:06.dmrc

3018728drwxr-xr-x2richrich40962009-11-0104:06Download

3602078drwxrwxr-x2richrich40962010-07-2618:25Drivers

3018828drwx------5richrich40962010-09-0223:40.gconf

3018838drwx------2richrich40962010-09-0223:43.gconfd

3603388drwx------3richrich40962010-08-0623:06.gftp

In addition to the normal -l parameter output information, you'll see two additional numbers added to each line. The first number in the listing is the file or directory inode number. The second number is the block size of the file. The third entry is a diagram of the type of file, along with the file's permissions. We dive into that in more detail in Chapter 6.

Following that, the next number is the number of hard links to the file (discussed later in the “Linking Files” section), the owner of the file, the group the file belongs to, the size of the file (in bytes), a timestamp showing the last modification time by default, and finally, the actual file name.

Filtering Listing Output

As you've seen in the examples, by default the ls command lists all of the files in a directory. Sometimes this can be overkill, especially when you're just looking for information on a single file.

Fortunately, the ls command also provides a way for you to define a filter on the command line. It uses the filter to determine which files or directories it should display in the output.

The filter works as a simple text-matching string. Include the filter after any command line parameters you want to use:

$ls-lmyprog

-rwxr--r--1richrich302007-08-2321:42myprog

$

When you specify the name of specific file as the filter, the ls command only shows the information for that one file. Sometimes you might not know the exact name of the file you're looking for. The ls command also recognizes standard wildcard characters and uses them to match patterns within the filter:

	A question mark to represent one character

	An asterisk to represent zero or more characters

The question mark can be used to replace exactly one character anywhere in the filter string. For example:

$ls-lmypro?

-rw-rw-r--1richrich02010-09-0316:38myprob

-rwxr--r--1richrich302010-08-2321:42myprog

$

The filter mypro? matched two files in the directory. Similarly, the asterisk can be used to match zero or more characters:

$ls-lmyprob*

-rw-rw-r--1richrich02010-09-0316:38myprob

-rw-rw-r--1richrich02010-09-0316:40myproblem

$

The asterisk matches zero characters in the myprob file, but it matches three characters in the myproblem file.

This is a powerful feature to use when searching for files when you're not quite sure of the file names.

File Handling

The bash shell provides lots of commands for manipulating files on the Linux filesystem. This section walks you through the basic commands you will need to work with files from the CLI for all your file-handling needs.

Creating Files

Every once in a while you will run into a situation where you need to create an empty file. Sometimes applications expect a log file to be present before they can write to it. In these situations, you can use the touch command to easily create an empty file:

$touchtest1

$ls-iltest1

1954793-rw-r--r--1richrich0Sep109:35test1

$

The touch command creates the new file you specify and assigns your username as the file owner. Because the -il parameter was used for the ls command, the first entry in the listing shows the inode number assigned to the file. Every file on a Linux filesystem has a unique inode number.

Notice that the file size is zero because the touch command just created an empty file. The touch command can also be used to change the access and modification times on an existing file without changing the file contents:

$touchtest1

$ls-ltest1

-rw-r--r--1richrich0Sep109:37test1

$

The modification time of test1 is now updated from the original time. If you want to change only the access time, use the -a parameter. To change only the modification time, use the -m parameter. By default, touch uses the current time. You can specify the time by using the -t parameter with a specific timestamp:

$touch-t201112251200test1

$ls-ltest1

-rw-r--r--1richrich0Dec252011test1

$

Now the modification time for the file is set to a date significantly in the future from the current time.

Copying Files

Copying files and directories from one location in the filesystem to another is a common practice for system administrators. The cp command provides this feature.

In its most basic form, the cp command uses two parameters, the source object and the destination object:

cpsourcedestination

When both the source and destination parameters are file names, the cp command copies the source file to a new file with the file name specified as the destination. The new file acts like a brand new file, with an updated file creation and last modified times:

$cptest1test2

$ls-il

total0

1954793-rw-r--r--1richrich0Dec252011test1

1954794-rw-r--r--1richrich0Sep109:39test2

$

The new file test2 shows a different inode number, indicating that it's a completely new file. You'll also notice that the modification time for the test2 file shows the time that it was created. If the destination file already exists, the cp command will prompt you to answer whether or not you want to overwrite it:

$cptest1test2

cp:overwrite‘test2’?y

$

If you don't answer y, the file copy will not proceed. You can also copy a file to an existing directory:

$cptest1dir1

$ls-ildir1

total0

1954887-rw-r--r--1richrich0Sep609:42test1

$

The new file is now under the dir1 directory, using the same file name as the original. These examples all used relative pathnames, but you can just as easily use the absolute pathname for both the source and destination objects.

To copy a file to the current directory you're in, you can use the dot symbol:

$cp/home/rich/dir1/test1.

cp:overwrite‘./test1’?

As with most commands, the cp command has a few command line parameters to help you out. These are shown in Table 3.6.

Table 3.6 The cp Command Parameters

	Parameter
	Description

	-a
	Archive files by preserving their attributes.

	-b
	Create a backup of each existing destination file instead of overwriting it.

	-d
	Preserve.

	-f
	Force the overwriting of existing destination files without prompting.

	-i
	Prompt before overwriting destination files.

	-l
	Create a file link instead of copying the files.

	-p
	Preserve file attributes if possible.

	-r
	Copy files recursively.

	-R
	Copy directories recursively.

	-s
	Create a symbolic link instead of copying the file.

	-S
	Override the backup feature.

	-u
	Copy the source file only if it has a newer date and time than the destination (update).

	-v
	Verbose mode, explaining what's happening.

	-x
	Restrict the copy to the current filesystem.

Use the -p parameter to preserve the file access or modification times of the original file for the copied file.

$cp-ptest1test3

$ls-il

total4

1954886drwxr-xr-x2richrich4096Sep109:42dir1/

1954793-rw-r--r--1richrich0Dec252011test1

1954794-rw-r--r--1richrich0Sep109:39test2

1954888-rw-r--r--1richrich0Dec252011test3

$

Now, even though the test3 file is a completely new file, it has the same timestamps as the original test1 file.

The -R parameter is extremely powerful. It allows you to recursively copy the contents of an entire directory in one command:

$cp-Rdir1dir2

$ls-l

total8

drwxr-xr-x2richrich4096Sep609:42dir1/

drwxr-xr-x2richrich4096Sep609:45dir2/

-rw-r--r--1richrich0Dec252011test1

-rw-r--r--1richrich0Sep609:39test2

-rw-r--r--1richrich0Dec252011test3

$

Now dir2 is a complete copy of dir1. You can also use wildcard characters in your cp commands:

$cp-ftest*dir2

$ls-aldir2

total12

drwxr-xr-x2richrich4096Sep610:55./

drwxr-xr-x4richrich4096Sep610:46../

-rw-r--r--1richrich0Dec252011test1

-rw-r--r--1richrich0Sep610:55test2

-rw-r--r--1richrich0Dec252011test3

$

This command copied all of the files that started with test to dir2. The -f parameter was included to force the overwrite of the test1 file that was already in the directory without asking.

Linking Files

You may have noticed a couple of the parameters for the cp command referred to linking files. This is a pretty cool option available in the Linux filesystems. If you need to maintain two (or more) copies of the same file on the system, instead of having separate physical copies, you can use one physical copy and multiple virtual copies, called links. A link is a placeholder in a directory that points to the real location of the file. There are two different types of file links in Linux:

	A symbolic, or soft link

	A hard link

The hard link creates a separate file that contains information about the original file and where to locate it. When you reference the hard link file, it's just as if you're referencing the original file:

$cp-ltest1test4

$ls-il

total16

1954886drwxr-xr-x2richrich4096Sep109:42dir1/

1954889drwxr-xr-x2richrich4096Sep109:45dir2/

1954793-rw-r--r--2richrich0Sep109:51test1

1954794-rw-r--r--1richrich0Sep109:39test2

1954888-rw-r--r--1richrich0Dec252011test3

1954793-rw-r--r--2richrich0Sep109:51test4

$

The -l parameter created a hard link for the test1 file called test4. In the file listing, you can see that the inode number of both the test1 and test4 files is the same, indicating that, in reality, they are both the same file. Also notice that the link count (the third item in the listing) now shows that both files have two links.

Note

You can only create a hard link between files on the same physical medium. You can't create a hard link between files under separate mount points. In that case, you'll have to use a soft link.

On the other hand, the -s parameter creates a symbolic, or soft link:

$cp-stest1test5

$ls-iltest*

total16

1954793-rw-r--r--2richrich6Sep109:51test1

1954794-rw-r--r--1richrich0Sep109:39test2

1954888-rw-r--r--1richrich0Dec252011test3

1954793-rw-r--r--2richrich6Sep109:51test4

1954891lrwxrwxrwx1richrich5Sep109:56test5->test1

$

There are a couple of things to notice in the file listing, First, you'll notice that the new test5 file has a different inode number than the test1 file, indicating that the Linux system treats it as a separate file. Second, the file size is smaller. A linked file needs to store only information about the source file, not the actual data in the file. The file name area of the listing shows the relationship between the two files.

Tip

Instead of using the cp command, if you want to link files you can also use the ln command. By default, the ln command creates hard links. If you want to create a soft link, you'll still need to use the -s parameter.

Be careful when copying linked files. If you use the cp command to copy a file that's linked to another source file, all you're doing is making another copy of the source file. This can quickly get confusing. Instead of copying the linked file, you can create another link to the original file. You can have many links to the same file with no problems. However, you also don't want to create soft links to other soft-linked files. This creates a chain of links that can not only be confusing but also be easily broken, causing all sorts of problems.

Renaming Files

In the Linux world, renaming files is called moving. The mv command is available to move both files and directories to another location:

$mvtest2test6

$ls-iltest*

1954793-rw-r--r--2richrich6Sep109:51test1

1954888-rw-r--r--1richrich0Dec252011test3

1954793-rw-r--r--2richrich6Sep109:51test4

1954891lrwxrwxrwx1richrich5Sep109:56test5->test1

1954794-rw-r--r--1richrich0Sep109:39test6

$

Notice that moving the file changed the file name but kept the same inode number and the timestamp value. Moving a file with soft links is a problem:

$mvtest1test8

$ls-iltest*

total16

1954888-rw-r--r--1richrich0Dec252011test3

1954793-rw-r--r--2richrich6Sep109:51test4

1954891lrwxrwxrwx1richrich5Sep109:56test5->test1

1954794-rw-r--r--1richrich0Sep109:39test6

1954793-rw-r--r--2richrich6Sep109:51test8

[rich@test2clsc]$mvtest8test1

The test4 file that uses a hard link still uses the same inode number, which is perfectly fine. However, the test5 file now points to an invalid file, and it is no longer a valid link.

You can also use the mv command to move directories:

$mvdir2dir4

The entire contents of the directory are unchanged. The only thing that changes is the name of the directory. Thus, the mv command operates much faster than the cp command.

Deleting Files

Most likely at some point in your Linux career, you'll want to be able to delete existing files. Whether it's to clean up a filesystem or to remove a software package, there are always opportunities to delete files.

In the Linux world, deleting is called removing. The command to remove files in the bash shell is rm. The basic form of the rm command is pretty simple:

$rm-itest2

rm:remove‘test2’?y

$ls-l

total16

drwxr-xr-x2richrich4096Sep109:42dir1/

drwxr-xr-x2richrich4096Sep109:45dir2/

-rw-r--r--2richrich6Sep109:51test1

-rw-r--r--1richrich0Dec252011test3

-rw-r--r--2richrich6Sep109:51test4

lrwxrwxrwx1richrich5Sep109:56test5->test1

$

Notice that the command prompts you to make sure that you're serious about removing the file. There's no recycle bin or trashcan in the bash shell. Once you remove a file, it's gone forever.

Now, here's an interesting tidbit about deleting a file that has links to it:

$rmtest1

$ls-l

total12

drwxr-xr-x2richrich4096Sep109:42dir1/

drwxr-xr-x2richrich4096Sep109:45dir2/

-rw-r--r--1richrich0Dec252011test3

-rw-r--r--1richrich6Sep109:51test4

lrwxrwxrwx1richrich5Sep109:56test5->test1

$cattest4

hello

$cattest5

cat:test5:Nosuchfileordirectory

$

The test1 file was removed, which had both a hard link with the test4 file and a soft link with the test5 file. Notice what happened. Both of the linked files still appear, even though the test1 file is now gone (although on my color terminal the test5 file name now appears in red). When you look at the contents of the test4 file that was a hard link, it still shows the contents of the file. When you look at the contents of the test5 file that was a soft link, bash indicates that it doesn't exist anymore.

Remember that the hard link file uses the same inode number as the original file. The hard link file maintains that inode number until you remove the last file hard-linked to it, preserving the data! All the soft link file knows is that the underlying file is now gone, so it has nothing to point to. This is an important feature to remember when working with linked files.

One other feature of the rm command, if you're removing lots of files and don't want to be bothered with the prompt, is to use the -f parameter to force the removal. Just be careful!

Tip

As with copying files, you can use wildcard characters with the rm command. Again, use caution when doing this, as anything your remove, even by accident, is gone forever!

Directory Handling

In Linux there are a few commands that work for both files and directories (such as the cp command), and some that only work for directories. To create a new directory, you'll need to use a specific command, which is covered in this section. Removing directories can get interesting, so that is covered in this section as well.

Creating Directories

There's not much to creating a new directory in Linux—just use the mkdir command:

$mkdirdir3

$ls-il

total16

1954886drwxr-xr-x2richrich4096Sep109:42dir1/

1954889drwxr-xr-x2richrich4096Sep110:55dir2/

1954893drwxr-xr-x2richrich4096Sep111:01dir3/

1954888-rw-r--r--1richrich0Dec252011test3

1954793-rw-r--r--1richrich6Sep109:51test4

$

The system creates a new directory and assigns it a new inode number.

Deleting Directories

Removing directories can be tricky, but there's a reason for that. There are lots of opportunities for bad things to happen when you start deleting directories. The bash shell tries to protect us from accidental catastrophes as much as possible. The basic command for removing a directory is rmdir:

$rmdirdir3

$rmdirdir1

rmdir:dir1:Directorynotempty

$

By default, the rmdir command only works for removing empty directories. Because there is a file in the dir1 directory, the rmdir command refuses to remove it. You can remove nonempty directories using the --ignore-fail-on-non-empty parameter.

Our friend the rm command can also help us out some when handling directories.

If you try using it with no parameters, as with files, you'll be somewhat disappointed:

$rmdir1

rm:dir1:isadirectory

$

However, if you really want to remove a directory, you can use the -r parameter to recursively remove the files in the directory, then the directory itself:

$rm-rdir2

rm:descendintodirectory‘dir2’?y

rm:remove‘dir2/test1’?y

rm:remove‘dir2/test3’?y

rm:remove‘dir2/test4’?y

rm:removedirectory‘dir2’?y

$

While this works, it's somewhat awkward. Notice that you still must verify every file that gets removed. For a directory with lots of files and subdirectories, this can become tedious.

The ultimate solution for throwing caution to the wind and removing an entire directory, contents and all, is the rm command with both the -r and -f parameters:

$rm-rfdir2

$

That's it. No warnings, no fanfare, just another shell prompt. This, of course, is an extremely dangerous tool to have, especially if you're logged in as the root user account. Use it sparingly, and only after triple checking to make sure that you're doing exactly what you want to do.

Note

You may have noticed in the last example that the two command line parameters were combined using one dash. This is a feature in the bash shell that allows you to combine command line parameters to help cut down on typing.

Viewing File Contents

So far we've covered everything there is to know about files, except for how to peek inside of them. There are several commands available for taking a look inside files without having to pull out an editor (see Chapter 11). This section demonstrates a few of the commands you have available to help you examine files.

Viewing File Statistics

You've already seen that the ls command can be used to provide lots of useful information about files. However, there's still more information that you can't see in the ls command (or at least not all at once).

The stat command provides a complete rundown of the status of a file on the filesystem:

$stattest10

File:“test10”

Size:6Blocks:8RegularFile

Device:306h/774dInode:1954891Links:2

Access:(0644/-rw-r--r--)Uid:(501/rich)Gid:(501/rich)

Access:SatSep112:10:252010

Modify:SatSep112:11:172010

Change:SatSep112:16:422010

$

The results from the stat command show just about everything you'd want to know about the file being examined, even down to the major and minor device numbers of the device where the file is being stored.

Viewing the File Type

Despite all of the information the stat command produces, there's still one piece of information missing—the file type. Before you go charging off trying to list out a 1000-byte file, it's usually a good idea to get a handle on what type of file it is. If you try listing a binary file, you'll get lots of gibberish on your monitor and possibly even lock up your terminal emulator.

The file command is a handy little utility to have around. It has the ability to peek inside of a file and determine just what kind of file it is:

$filetest1

test1:ASCIItext

$filemyscript

myscript:Bourneshellscripttextexecutable

$filemyprog

myprog:ELF32-bitLSBexecutable,Intel80386,version1(SYSV),

dynamicallylinked(usessharedlibs),notstripped

$

The file command classifies files into three categories:

	Text files: Files that contain printable characters

	Executable files: Files that you can run on the system

	Data files: Files that contain nonprintable binary characters, but that you can't run on the system

The first example shows a text file. The file command determined not only that the file contains text but also the character code format of the text. The second example shows a text script file. While the file is text, because it's a script file, you can execute (run) it on the system. The final example is a binary executable program. The file command determines the platform that the program was compiled for and what types of libraries it requires. This is an especially handy feature if you have a binary executable program from an unknown source.

Viewing the Whole File

If you have a large text file on your hands, you may want to be able to see what's inside of it. There are three different commands in Linux that can help you out here.

The cat Command

The cat command is a handy tool for displaying all of the data inside a text file:

$cattest1

hello

Thisisatestfile.

Thatwe'llusetotestthecatcommand.

$

Nothing too exciting, just the contents of the text file. There are a few parameters you can use with the cat command, however, that can help you out.

The -n parameter numbers all of the lines for you:

$cat-ntest1

1hello

2

3Thisisatestfile.

4

5

6Thatwe'llusetotestthecatcommand.

$

That feature will come in handy when you're examining scripts. If you just want to number the lines that have text in them, the -b parameter is for you:

$cat-btest1

1hello

2Thisisatestfile.

3Thatwe'llusetotestthecatcommand.

$

If you need to compress multiple blank lines into a single blank line, use the -s parameter:

$cat-stest1

hello

Thisisatestfile.

Thatwe'llusetotestthecatcommand.

$

Finally, if you don't want tab characters to appear, use the -T parameter:

$cat-Ttest1

hello

Thisisatestfile.

Thatwe'llusetoˆItestthecatcommand.

$

The -T parameter replaces any tabs in the text with the ˆI character combination.

For large files, the cat command can be somewhat annoying. The text in the file will just quickly scroll off of the monitor without stopping. Fortunately, there's a simple way to solve this problem.

The more Command

The main drawback of the cat command is that you can't control what's happening once you start it. To solve that problem, developers created the more command. The more command displays a text file, but stops after it displays each page of data. A sample more screen is shown in Figure 3.4.

Figure 3.4 Using the more command to display a text file

[image: 3.4]

Notice that at the bottom of the screen in Figure 3.4, the more command displays a tag showing that you're still in the more application and how far along in the text file you are. This is the prompt for the more command. At this point, you can enter one of several options, shown in Table 3.7.

Table 3.7 The more Command Options

	Option
	Description

	H
	Display a help menu.

	spacebar
	Display the next screen of text from the file.

	z
	Display the next screen of text from the file.

	ENTER
	Display one more line of text from the file.

	d
	Display a half-screen (11 lines) of text from the file.

	q
	Exit the program.

	s
	Skip forward one line of text.

	f
	Skip forward one screen of text.

	b
	Skip backward one screen of text.

	/expression
	Search for the text expression in the file.

	n
	Search for the next occurrence of the last specified expression.

	’
	Go to the first occurrence of the specified expression.

	!cmd
	Execute a shell command.

	v
	Start up the vi editor at the current line.

	CTRL-L
	Redraw the screen at the current location in the file.

	=
	Display the current line number in the file.

	.
	Repeat the previous command.

The more command allows some rudimentary movement through the text file. For more advanced features, try the less command.

The less Command

Although from its name it sounds like it shouldn't be as advanced as the more command, the less command is actually a play on words and is an advanced version of the more command (the less command name comes from the phrase “less is more”). It provides several very handy features for scrolling both forward and backward through a text file, as well as some pretty advanced searching capabilities.

The less command can also display the contents of a file before it finishes reading the entire file. This is a serious drawback for both the cat and more commands when viewing extremely large files.

The less command operates much the same as the more command, displaying one screen of text from a file at a time. Figure 3.5 shows the less command in action.

Figure 3.5 Viewing a file using the less command

[image: 3.5]

Notice that the less command provides additional information in its prompt, showing the total number of lines in the file and the range of lines currently displayed. The less command supports the same command set as the more command plus lots more options. To see all of the options available, look at the man pages for the less command. One set of features is that the less command recognizes the up and down arrow keys as well as the page up and page down keys (assuming that you're using a properly defined terminal). This gives you full control when viewing a file.

Viewing Parts of a File

Often the data you want to view is located either right at the top or buried at the bottom of a text file. If the information is at the top of a large file, you still need to wait for the cat or more commands to load the entire file before you can view it. If the information is located at the bottom of a file (such as a log file), you need to wade through thousands of lines of text just to get to the last few entries. Fortunately, Linux has specialized commands to solve both of these problems.

The tail Command

The tail command displays the last group of lines in a file. By default, it will show the last 10 lines in the file, but you can change that with command line parameters, shown in Table 3.8.

Table 3.8 The tail Command Line Parameters

	Parameter
	Description

	-c bytes
	Display the last byte's number of bytes in the file.

	-n lines
	Display the last line's number of lines in the file.

	-f
	Keeps the tail program active and continues to display new lines as they're added to the file.

	--pid=PID
	Along with -f, follows a file until the process with ID PID terminates.

	-s sec
	Along with -f, sleeps for sec seconds between iterations.

	-v
	Always displays output headers giving the file name.

	-q
	Never displays output headers giving the file name.

The -f parameter is a pretty cool feature of the tail command. It allows you to peek inside a file as it's being used by other processes. The tail command stays active and continues to display new lines as they appear in the text file. This is a great way to monitor the system log file in real-time mode.

The head Command

While not as exotic as the tail command, the head command does what you'd expect; it displays the first group of lines at the start of a file. By default, it will display the first 10 lines of text. Similar to the tail command, it supports the -c and -n parameters so that you can alter what's displayed.

Usually the beginning of a file doesn't change, so the head command doesn't support the -f parameter feature. The head command is a handy way to just peek at the beginning of a file if you're not sure what's inside, without having to go through the hassle of displaying the entire file.

Summary

This chapter covered the basics of working with the Linux filesystem from a shell prompt. We began with a discussion of the bash shell and showed you how to interact with the shell. The command line interface (CLI) uses a prompt string to indicate when it's ready for you to enter commands. You can customize the prompt string to display useful information about your system, your logon ID, and even dates and times.

The bash shell provides a wealth of utilities you can use to create and manipulate files. Before you start playing with files, it's a good idea to understand how Linux stores them. This chapter discussed the basics of the Linux virtual directory and showed you how Linux references store media devices. After describing the Linux filesystem, the chapter walked you through using the cd command to move around the virtual directory.

After showing you how to get to a directory, the chapter demonstrated how to use the ls command to list the files and subdirectories. There are lots of parameters that customize the output of the ls command. You can obtain information on files and directories just by using the ls command.

The touch command is useful for creating empty files and for changing the access or modification times on an existing file. The chapter also discussed using the cp command to copy existing files from one location to another. It walked you through the process of linking files instead of copying them, providing an easy way to have the same file in two locations without making a separate copy. The cp command does this, as does the ln command.

Next, you learned how to rename files (called moving) in Linux using the mv command, and saw how to delete files (called removing) using the rm command. It also showed you how to perform the same tasks with directories, using the mkdir and rmdir commands.

Finally, the chapter closed with a discussion on viewing the contents of files. The cat, more, and less commands provide easy methods for viewing the entire contents of a file, while the tail and head commands are great for peeking inside a file to just see a small portion of it.

The next chapter continues the discussion on bash shell commands. We'll take a look at more advanced administrator commands that will come in handy as you administer your Linux system.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/c17f009.jpg
006 ®

tems | need

¥ 0K || @ Cancel

OEBPS/images/c25f005.jpg
Ggnew + | Dgjsend/Receive by G B - @ T B g € D O

 Inbox 2Uneadatotl] show: | All Messages v | search:[@ @] in|current Folder
* on This Computer Subject Date
& nbox (2) Log ile Today 11
[# orarts RichBlum <rich@rich-ara... Testmessage Today 10:02
S8t @ The Ubuntu One Team <... Bring your digital life .. 08/11/2010 14:07
obe @ The Evolution Team <ev... Welcome to Evolution! ~ 03/14/2007 08:00
#sent
i Templates
O Trash
v Search Folders
i@ Unmatched
From: Rich Blum <rich@rich Parallels-VirtualPlatform>
“To: Rich glum <rich@rich-Parallels Virtual-Platform>
Subject: Log fle
Date: Thu, 9Dec 2010 11:10:04 0500
> 8 1Attachment |SaveAs
= wmail

contacts | [55] Calendar

[Tasks | B Memos

-5

Here's the log file

31+ | plain text document attachment (messages)

OEBPS/images/cover_fmt.jpg
Richard Blum and Christine Bresnahan

Linux
Command Line

and Shell Scrlptm

Second Edition

Use command lines and

bypass the GUI
Automate common tasks

Create professional,
real-world scripts

The book you need to succeed!

OEBPS/images/c25f004.jpg
tal) - Evolution

Folc H

Bgnew + | bggsend/receve B gy Bff - @& (DB 0 ¢ D O

. Inbox Fnresd 3608l show:| Allmessages | search[@ ®) in|CurrentFolder ~
¥ On This Computer & ® @ From Subject Date &
& Inbox 2) a Test message Today 10:02
[# Dratts £ The Ubuntu One Team <... Bring your digital life .. 08/11/2010 1407
Jurk =] The Evolution Team <ev... Welcome to Evolution! 03/14/2007 08:00
Outbox
@ sent
[Templates
@ Trash
rich@localhost
v Search Folders
i@ Unmatched
From: Rich Blum <rich@rich Parallels Virtual Platform>
To: rich@rich-Parallels-Virtual-Platform

Subject: Test message.
Date: Thu, 9 Dec 2010 10:02:57 0500 (EST)

= — This is a test message.

[g contacts | 5} calendar

5 ks, | I Memos

=»= Click to mail Rich Blum <rich@rich-Parallels-Virtual-Platform>

OEBPS/images/c08f001.jpg
File Edit View Search Terminal Help

New Packages (6530)

Not Installed Packages (24288)
Obsolete and Locally Created Packages (4)

virtual Packages (3568)
Tasks (16196)

These packages are currently installed on your computer.

This group contains 1535 packages.

OEBPS/images/c17f005.jpg
File Edit View Search Terminal Help

root:x:0:0: root: /root: /bin/bash
daemon:x:1:1:daenon: /usr/sbin: /bin/sh
bin:x:2:2:bin:/bin: /bin/sh
sys:x:3:3:sys: /dev: /bin/sh
sync:x:4:65534:sync: /bin: /bin/sync
games :x:5:60: ganes: /usr/ganes: /bin/sh
man:x:6:12:man: /var/cache/man: /bin/sh
1p:x:7:7:1p: /var/spool/1pd: /bin/sh
mail:x:8:8:mail:/var/mail: /bin/sh
news:x:9:9:news: /var/spool/news /bin/sh
uucp: x:10:10: uucp: /var/spool/uucp: /bin/sh
i)

It

OEBPS/images/c25f001.jpg
Linux server

e-mail database

Mail Delivery Agent (MDA)

Mail User Agent (MUA)

Mail Transfer Agent (MTA)

Remote
MTAs

7

Workstation

OEBPS/images/c17f006.jpg
latform:

Irtual

@O rich@rich-Parallels-

Edit_View Search Terminal Help

Sys Adnin menu

Display users
Display memory usage
Exit

THE <cancel>

OEBPS/images/c17f007.jpg
©® rich@rich-Parallels-Virtual-Platform:

Edit View Search Terminal Help

Directories Files

bash_history

bash_Logout

bashrc

dnrc

esd_auth
fontconfig gtk-booknarks
gconf profile
gconfd pulse-cookie
gnone2 recently-used. xbel

1#) i+

/home/rich/

K <cancel>

OEBPS/images/c25f003.jpg
rich@rich-Parallels-Virtual-Platform:
File Edit View Search Terminal Help

Date: Thu, 9 Dec 2010 10:19:50 -0500 (EST)

Fron: Rich Blun <richerich-Parallels-virtual-Platforn>
: rich@rich-Parallels-Virtual-Platforn

subject: Test nessage
Mailer: mail (GNU Mailutils 2.1)

his is a test message.

OEBPS/images/c17f008.jpg
File Edit View Search Terminal Help

HeaTotal 1025296 kB
MenFree 467776 KB
Buffers 62560 kB
Cached 304636 kB
SwapCached o kB
Active 245632 KB
Inactive 255276 kB
Active(anon): 134624 kB
Inactive(anon): 3844 kB
Active(file) 111608 kB
Inactive(file): 251432 kB
Unevictable 12 k8
Mlocked 12 kB
HighTotal 139208 kB
HighFree 244 kB
LowTotal 886688 KB
) |

OEBPS/images/c25f002.jpg
To: Rich

To: Barbara

MTA

MDA

rich folder

barbara foldel

r

-

To: Katie

katie folder

OEBPS/images/c17f001.jpg
Irtual-Platform: ~

Sys Adnin Menu

. Display disk space
.~ Display logged on users
. Display memory usage

. Exit menu

Enter option: ||

OEBPS/images/c17f002.jpg

OEBPS/images/c17f003.jpg

OEBPS/images/c17f004.jpg

OEBPS/images/c07f001.jpg
Logical Volume 1

Logical Volume 2

Volume Group

Physical
Volume 1

Physical
Volume 2

Physical
Volume 3

Physical
Volume 4

Physical
Volume 5

partition
1

partition partition
2 1

partition 0 () partition unused
2 1

space

[

Hard Drive 1

Hard Drive 2

Hard Drive 3

OEBPS/images/c09f012.jpg
2.0 @ factorial.sh (~) - gedit

(1 Documents ® 1 factorialsh % | myproge %
| factorialsh #1/bin/bash
e factorial=1
number=5
for ((1=1; 1 <= Snumber; is+))
<
factorial="expr $factorial * $i
echo The factorial of snusber is Sfactorial.
[E]
shv TabWidth: v (n1,Coll INS

OEBPS/images/c09f011.jpg
L Filesystem Browssr . Documents|

[= © configure - Kate

Document List

- | P

@ Terminal
5 File Selector
~ 3 Editor Component
I Appaarance
: Fonts & Colors
) Edting
el Open/Save
& Edtansions

pricaion Session Management

Elements of Sessions

'/ Includa window configuration

Bhavior on Aplication Startup
_ Stat new sassion

_ Lowd lastusad sassion

= Manually chocss a sassion

Behavior on Application Exit or Session Switch
_ Do not save session

o Sae session

 Askuser

¥ 0K @ Aply

006 &

@ Cancsl

<> C_ I > (3 (o =} §

OEBPS/images/c09f010.jpg
() Defaul Session: factorial.sh - Kate
File Edit View Go Bookmarks Sessions Tools Settings Help

P €« > &H MO 5@

New Open Back Foward Smve SaeAs Cose U e

1 s b N
I T —

£ f—

& number3

v for ((1=1; 1 <= Srumber; 14+)

E v (

£ A SR O G

H

&)

§

= echa The factorial of Snumber 1s $tactorial

=] v

B e ——————————— = I3
Ling: 1 Cal: 1 INS LINE factorialsh

richalocalhost:-/Docunents> /factorial. sh

The factarial of 5 15 121

rich@localhost ~/Docunents> Il

<> C_ I >

@ Torminal @8 Find in Files

OEBPS/images/c24f002.jpg
Server Client

Listen on TCP port

/— Connect to hostname and TCP port

Accept connection <

send data —__ |
[receive data

| — senddata
receive data <«

close connection close connection

OEBPS/images/c24f001.jpg
©O® rich@rich-Parallels-Virtual-Platform: ~
File Edit View Search Terminal Help

Lynx is the text web browser. This is the top level page for the Lynx
software distribution site hosted by the Internet Software Consortiun.

Theffcurrent development sources have the latest version of Lynx
available (developnent towards 2.8.8). The nain help page for
lynx-current is online; the current User Guide is part of the online
docunentation.

The most recent stable release is 1yn:2-5-7. The main help page is
online, as well as the User Guide.

other resources include:
ftp and http mirrors
Mailing list archives
PgP/gpg signatures

Viewable with any browser; valid HTHL

Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
H)elp 0)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

OEBPS/images/c09f014.jpg
View Editor Font & Colors Plugins

Active Plugins:
|y Change Case
| Changes the case of selected text.

4 4 Document Statistics
Analyzes the cument document and re...

4 External Tools

Execute extemal commands and shell ...

File Browser
Ensy fle access from the side pane
Insert Date/Time

Inserts current date and time at the cu...
Modelines.

Emacs, Kate and Vim-style modelines ...
Python Console

Interactive Python console standing in
Ouick Onan

8 8 &
* * B

[Close |

ial.

INs

OEBPS/images/c09f013.jpg
gedit Preferences

Sl Open
[Documents

factorialsh |
myprog.c

View Editor Font & Colors Plugins

Text Wrapping
@ Enable text wrapping
@ Do not split words over two lines
Line Numbers.
Display line numbers

Current Line
Highlight current line

Right Margin
Display right margin

Bracket Matching
Highlight matching bracket

it

ial.

INs

OEBPS/images/c17f012.jpg
Q search

D Recently Used
i ri
85 Desktop

2 File system

. Floppy Drive
2268 Filesys...
S 11GBFilesyst...
1 Documents

& Music

@ Pictures

@ Videos

@i Downloads

Name
i Desktop

3 Documents

& Downloads

& Music

@ Pictures

public

2 Templates

i@ Videos

[agetxt

| examples desktop
L file.txt

= menut

£ menu3

| test.txt

cancel

size | modified
saturday
10/14/2010
10/14/2010
10/14/2010
10/14/2010
10/14/2010
10/14/2010
10/14/2010

2bytes 0925

179 bytes | 10/14/2010

1ibytes 0937

241 bytes 09:18

777 bytes 09:41

ibyte 0930

OEBPS/images/c23f002.jpg
A O vasr2
Fle paciaos Confguaton Dspendsnciss Optons Exras Help

weh | EPUGrous | nstalton Summay D
msd R Summary Tnsated puatabie 5| A
] woosC-umsopec ODBC trfacs o Communicatin wih W/SOL.. (251271695:3.21) 755018
0 oreecite-mysal Database comctyfor oo @e23271) 2120K8
SRR] cor-autib s WSOL supporforta Coutr auhnicaton .. 002231) 220K
(0] dovecoi2-backeni-mysal WiSQL supporto Doscol 25080 140K8
(] inaprusit.dodmysal DBD arerorwrsaL 3921 21048
] wgas_ompsa WSOL Provdefor GHU DataRccss GOR (31533) E0ks
] gt ompa WSOL Provderfor GNU Dataccass (GDA) (412:25) 1780k8
] temysaictentdeel WSOL Dsveopment Headsr s and Lbraris (6146:019) 7850113
0] iemysgietennis WS Sharsd Lariss Gieorn 14ws
rhm 0] wemysaeent 15 WL Shard Livares Giasorn t4we
(] iomysaiopcomndavsl Dénlapmantlas orYSOL ComnactnCr (10521) sioks
RPMProvdes”] iemysappcont WSOL ComictorCr+ Standarized databass . (10521) 6r50km
e 3 iemysa deel MSOL mbeddsd server dovlopmentfies (5145011 52608
U] i sabmysal Ol WySOL support @ssaan soks
o gty o ysal shost_ WSOL bassa it hosts (hosts) e for __(1420:362) 120148
s adminstatr 'AMYSQL Sener Vanagemant, Contouslon an... (GORAGT1) 43WB
] mysakbenen WL Bencmane G101 2ews
o] mysabclent WS Grant Giav0rn) w:E0KE
5] mysabcommeceejava Ol OBC Drwerfor sl @1525 170k
Contains | |1 mysatcometorjava avasoc ofial 0BG O or oL 61529 105we| S
Deserpton TecicalData Dependencies \ersions _ FleList Chang Log
Casa senstna ol ATt Mol Mulveadad SOL Database Sonar 2]
0L 1 mostpopulr databss langusos e workd WySOL s 3 chenysanermplemsntaionthat consits o
S4nar daamon () andmany GBantchant pregrams and v
08 main goal of ySOL a1 Speed, abusingss,an s of use. MYSQL vas arginal orsopad bass
eveloners 1T e an SO s5rer ot Coud il ey 91 a5 an 0t o e e nan
kG v Ul Tt ham Thay have o b Using IVSGL Sincs 1538 an acnment i
mors 1an 40 atacases coiining 0,000)65, orweh mors han 500 havs o han 7 milln ows, This 5
5000t 100 gaabyes ofmision <oRcs et
Th asa U WIChMYSCL i bl 3 S oules hat havs bsan Usdin Nghy demanding reducton
Grronmantor man ears. e WYSOL 1SS dovelopment ey oers anh and oy Use unctn | &

=

OEBPS/images/c17f013.jpg
rich@rich-Parallels-Virtual-Platforn:~$./menus

Selectitems From the list below.
Select | Menultem
Display disk space
Displayusers
Display memory usage
Fuit

cancel oK

OEBPS/images/c06f001.jpg
-rwxrwxr-x 1richrich 4862 2010-09-16 1

permissions for everyone else

permissions for group members

permissions for the file owner

OEBPS/images/c17f010.jpg
© () Kbialog 200

Sys Admin Menu
Display sk space

Display users

Display memory usage

Exit

¥ 0K || @ Cancel

OEBPS/images/c19f001.jpg
regular
expression

rejected data

OEBPS/images/c02f010.jpg
) Asplications Places System Mon Dec 20, 8:45 AM st

File Edit View Search Terminal Help

s
il

‘General Title and Command | Colors | Background | Scroling | Compatibilty

profile name: [My_profie
) Use the system fixed width font

) Allow bold text
) Show menubar by default in new teminals

@ Terminal bel
Cursor shape: [Block
Select-by-wor characters: [A-2-20-9,/7%6#:

) Use custom default terminal size.

OEBPS/images/c17f011.jpg
rich@rich-Parallels-Virtual-Platform:~$ zenity --calendar

Select a date from below.
Calendar:

< December » 42011 »

ERE
45 6 7 8 9 10
N2 oW o1s 161
18 19 20 21 2 23 2
Bl 27 5 2 0 3

cancel oK

OEBPS/images/square.gif

OEBPS/images/c10f001.jpg
File Edit View Search Terminal Help

abrt-1.1.14-1.c14.1686
abrt-addon-ccpp-1.1.14-1, fc14. 1686

abrt-addon-kerneloops-1.1.14-1.fc14.1686
abrt-addon-python-1.1.14-1.c14.1686
abrt-desktop-1.1.14-1.fc14.1686
abrt-gui-1,1.14-1.fc14.1686
abrt-libs-1.1.14-1.fc14.1686
abrt-plugin-bugzilla-1.1.14-1.fc14.1686
abrt-plugin-logger-1.1.14-1.c14.1686
abrt-plugin-runapp-1.1.14-1.fc14. 1686
acl-2.2.49-8.7c14.1686
alsa-firmiare-1.6.23-1.fc14.noarch
alsa-lib-1.0.23-2.fc14.1686
alsa-plugins-pulseaudio-1.6.22-1.fc13. 1686
alsa-tools-firmvare-1.0.23-1.fc14.1686
alsa-utils-1.0.23-3.fc14.1686
anaconda-14.22-1.c14. 1686
anaconda-yun-plugins-1.9-5. fc12.noarch
anthy-9108h-15. fc14.1686
apr-1.3.9-3.fc13.1686
apr-util-1.3.10-1.fc14.1686
apr-util-ldap-1.3.10-1.fc14.1686
ar9170-irmvare-2009.05.28-2. fc13.noarch

OEBPS/images/c10f002.jpg
File Edit View Terminal Help
total 2276 o
drwxr-xr-x. 3 root root 4096 Sep abrt
drwxr-xr-x. 4 root root 4096 Sep acpi

1 root root 45 Sep adjtine

1 root root 1512 May aliases

1 root smsp 12288 Sep aliases.db
drexr-xr-x. 2 root root 4096 Sep alsa
dnuxr-xr-x. 2 root root 4096 Sep alternatives

1 root rost 541 Aug anacrontab

1root root 245 May anthy-conf

1 root root 148 Sep asound. conf

1 root root 1 Har at.deny

3 root root 4996 Sep audisp

2 root root 4996 Sep audit
drexr-xr-x. 4 root root 409 Sep avahi
drwxr-xr-x. 2 root root 4096 Sep bash_completion.d
-ri-r--r--. 1 root root 2615 May bashrc
drwxr-xr-x. 2 root root 4096 Aug blkid
drwxr-xr-x. 2 root root 4096 Sep bluetooth
drwxr-xr-x. 2 rot root 4096 Sep bonobo-activation
i-r--r--. 1 root root 788 Aug cgeonfig. conf
rv-r--r--. 1 root root 1705 Aug 2 10:50 cgrules.conf
dnixr-xr-x. 2 root root 4996 Mar 4 2010 chkconfig.d

OEBPS/images/c23f001.jpg
Quick search

& N Q_ search
Reload | MarkAll Upgrades| Ap; Properties |mysal

Al s Package Installed Version _ Latest vers|*
Amateur Radio (universe) mysqbnavigator 1.42:12bui
Communication O mysql-admi 5.0r14+0p€
Communication (multivers 5.1.45-1ut
Communication (universe). ® mysqllient 5.1.49-1uby
Cross Platform om— -
Cross Platform (multiverse

Sections |

status

origin
custom Filters

searchResults J

MySQL database server (metapackage depending on
the latest version)

Get screenshot.

‘This is an empty package that depends on the current "best”
version of

mysqlserver (currently mysqlserver-.1), as determined by
the MysQL

maintainers. Install this package if in doubt about which MySQL
versionyou need. That willinstall the version recommended by
the

338 packages listed, 1296 installed, 0 broken. 0 to install/upgrade, 0 to remove.

OEBPS/images/c20f001.jpg
data file Pattern Space Hold Space

Line 4

Lined |[Line3 |[Line2 |[Linet |

OEBPS/images/c04f001.jpg
: oad average: 0.82, 0.52, 6.20
Tasks: 179 total, 1 running, 178 sleeping, O stopped, O zombie
1.3%y, 0.0%ni, 97.8%d, 0.3wa, 0.6%hi, ©.0%si, 0.0%st
1026084k total, 433076k used, 593068k free, 50440k buffers
2781176k total, ok used, 2781176k free, 191008k cached
i
952 root 26 035924 22m 75765 1 2.3 Xorg
1432 root 20 015656 1868 1516 5 6 0.2 pri_wmouse_d
1527 rich 2 078512 17m 1as 6 1.7 nautilus
1668 rich 20 064568 15m 1nS 0 1.5 gnone- terminal
1 root 20 © 2804 165612005 0 0.2 init
2 root 2 o 0 8 05 008 Kthreadd
3 root RT 6 0 6 05 0 0.6 migration/e
4 root 2 o 0 8 05 0 0.0 ksoftirgd/e
5 root R o © © 05 008 watchdog/0
6 root RT o © © 05 008 migration/1
7 root 20 o o 8 05 008 ksoftirad/1
8 root RT 0 65 0 6.0 watchdog/1
9 root 2 o o0 8 05 0 0.6 events/6
10 root 2 0 0 8 05 0 0.0 events/1
11 root 2 o o 8 05 0 0.8 cpuset
12 root 2 0 o 65 0 6.0 Khelper
13 root % 0 o 65 0 6.0 netns
14 root % 0 o es 0 60 async/mgr
15 root % 0 o 6s 0 6.0 o
17 root 2 6 o s @ 6.8 sync_supers

OEBPS/images/c02f002.jpg
Ubuntu 10.10 user-desktop tty2
user-desktop login: user
Paasord:
Coet Togin: on 0ec 20 9:03:13 57 2010 an t032
Linux uder-desktop 2.6.55.24-generic 442-Uhumtl S#P Tha Dec 2 Q1141357 UTC 2010 1686 GW/Linux
bty 10,16

Welcone to bntut
* Docunentation: https://help.ubunto. con/

Mo matl.
¢

OEBPS/images/c02f001.jpg
Wy_stuff
Phonetic Alphabet
script.dat
scripts

set.dat
Stuff_to_Archive
Stuff_to_Restore
tests

test_directory
test_script
wb. junk
wrong_Alphabet

zombie.c

T

OEBPS/images/c06tnt005.jpg
Permissions Binary Octal Description

--- 000 0 No permissions

--x 001 1 Execute-only permission

W 010 2 Write-only permission

-wx o11 3 Write and execute permissions
r-- 100 4 Read-only permission

r-x 101 5 Read and execute permissions
r- 110 6 Read and write permissions

rux m 7 Read, write, and execute permissions

OEBPS/images/c02f004.jpg
erm

b e tao sripradot
i

ey S o vcive h sk
Fineticlohabet Surt s Arstore g Alsbet

Main Options

OEBPS/images/c02f003.jpg
[Terminal]

Has_Repeats_too
Junie

rount . dat
ny_sturr
Phanatic_Alphabet

& xterm

seript.dat
seripts
sat.dat
Stufr_to_Archive
Stuff_to_Restore

tests
tost_directory
test_script

Vb junk
Uirong_ALphabet

St

zonbie
zonbio.c

816AM @ use

OEBPS/images/c02f006.jpg
@ user user

Has_Repeats_too script.dat tosty zombie
jurk scripts test_directory zombie.c
nount .gat sot.dat test_script

fy_Store Stuff_to_Archive vb.junk
Phonetic_Alphabet Stuff_to_Restore lnong_Alphabet

VT Fonts

Derault
Unreadable
i

TrusTupe Fonte

UIFD Titles
Zhtlow Color s
Allow Font Ops

Allow Torncap Gps
Rllow Title ps

Terminal] - xterm Allow Hindow Ops.

OEBPS/images/c02f005.jpg
T 4) @ 818AM @ use

Has_Repeats_too script.dat zombie
junic zombie.c
rount dat VT Options
Hy_sturr
Phonetic_a| _Endble serollbar
| < enate sunp seront
Enoble Reverse Video
< Enable o e aporound
Enable Reverse Hroparaund
ko Linefeed
Aoplication Cursor Keus
AopLication Keupod
o Botton on Key Presa
o otton on Tty Output

Enable linking Cursor
o Saft Reset
o Full Reset
Resot_and Clear Soved Lines
Show Tok Hindow
Suiteh to Tek Hde
Hide' VT Hindow
& O [Terminal & xterm Show Altornate Screen

OEBPS/images/c02f008.jpg
EiProfle 'My_Prfie’ - Konsole Vool o

Geneal Tabs Appearance Scrolling Input Advanced
Generat
Pofilename: Wy profle @
L
waldrectory, &
directony

OEBPS/images/c02f007.jpg
my_stuff
Phonetic Alphabet
script.dat
scripts

set.dat
Stuff_to_Archive
Stuff_to_Restore
tests

test_directory
test_script
wb

- junk
Wrong_Alphabet
zombie

=y

= KINBKS

OEBPS/images/c02f009.jpg
€) Avplications Places System 0, B:43AM user

Computer
= Fle Edt view Scarch Temninal Tbs Help
users Home

g

Tash

OEBPS/images/c03f005.jpg
- Terminal -+ x
Fle Edit View Search Terminal Help
:daemon: /usr/sbin: /bin/sh

bin/sh

\ews: /var/spool/news /bin/sh
ucp: /var/spool/uucp: /bin/sh

ircd: /var/run/ircd: /bin/sh
1:Gnats Bug-Reporting Systen (adwin):/var/lib/gnats: /bin/sh
bod) bin/sh

02:105: : /var/run/dbus: /bin/false
Avahi autoip daemon,,, :/var/Lib/avahi-autoipd: /bin/false
/var/run/avahi-daenon: /bin/false
iuzlldb :x:105: 113: CouchDB Adwinistrator, , :/var/Lib/couchdb: /bin/bash

OEBPS/images/c03f004.jpg
- Terminal -+ x
Fle Edit View Search Terminal Help N
ro0t:x:9:0: root: /root : /bin/bash

‘daenor :daenon: /usr/sbin: /bin/sh

/var/spool/1pd: /bin/sh
iL: /var/mail: /bin/sh
\ews: /var/spool /news: /bin/sh
ucp: /var/spool/uucp: /bin/sh
proxy: /bin:/bin/sh
33:www-ata: /var/wau: /bin/sh
ckup: /var/backups : /bin/sh
iling List Manager:/var/List: /bin/sh
rcd: /var/run/ircd: /bin/sh
Gnats Bug-Reporting System (adwin) :/var/1ib/gnats: /bin/sh
534:65534:n0body:/nonexistent: /bin/sh
var/Lib/Libuuid: /bin/sh

62:165: : /var/ run/dbus: /biny false

wahi autoip daemon, ,, :/var/lib/avahi-autoipd: /bin/false|

‘avahi:x:104:109:Avahi MONS daemon, ,, :/var/run/avahi-daenon: /bin/ false K

OEBPS/images/c03f003.jpg
3 darc
Docusents
Dounloads
-esd_auth

archive “evolution

avast “fontconfig

bash_history gconf

bash_logout gconfd

bashrc ~gegL-

[bogotilter .gimp-

cache “gksu. lock

- conpiz “gnash

contig “gnose2

dbus. _gnome2_private

| debtags

Desktop

tkclodkmrks opamoftice.ory - thusbnails

Pictures

postponed
“printer-groups.xal

“kehmviewer
ke

Tocal

“nacrosedia

Hail Irecently-used

-mission-control _recently-used.xbel

“nozilla selected editor

Husic sent Cxsession-errors
my.cnf -ssh “xsession-errors.old
“nysqU history _sudo_as_adain successful

“nautitus Tenplates

OEBPS/images/c03f002.jpg

OEBPS/images/c03f001.jpg
Terminal

File Edit View Search Terminal Help
DATE (1) User consands DATE(1)

date - print or set the systen date and time

15
date [0PTION]... [+FORMAT]
ote [SME] - dmiverast) (woobbant[cCIyYILssl]
DESCRIPTION

Display the current tine in the given FORMAT, or set the systea date

fate=STRING
display tine described by STRING, not “now’

--file=DATEFILE
Tike --date once for each line of DATEFILE

r, --reference=EILE
ispiey the-ast modification tine of FILE

R, --rfc-2822

output date and tine in RFC 2822 format. Example: Mon, 67 Aug 2006 12 -0600

-rfc-3339=TIMESPEC
output date and time in RFC 3339 format. TIMESPEC="date’, "seconds’, or “ns’ for
date and tine to the indicated precision. Date and tine components are separated
by a single space: 2006-08-07 12:34:56-06:00

5, --set=STRING

OEBPS/images/c01f005.jpg
information

holp mount install setup. lock

I@E’ @

vEh 4

Desiaop
Setup

utity

Graphic
Document
e
Network
ntarmet

Muktimedia

OEBPS/images/c01f004.jpg
8:49PM 1)) B3 @ ri

B Qo @ @iy Q

a a

Downloads Misic

511 68 Fiesystem
5 oppy bive Ll f
e Pctures Pubic Tempiates =

Docaments B2
& music i =
e untited oder videos Examples oupr
8 Videos . o
& bownioads A

pestsn s

14 tems, Free space: 54.1 GB |

TS B® rich- File Browse

OEBPS/images/c01f003.jpg
B e

56 Cotpe ity

50 rn-tovan
B vew Go ok S
4 [E)E

(<]

W 1P 153481

OEBPS/images/c27f001.jpg
File Edit View Search Terminal Help

oK --]

Type: text/plain, Encoding: 7bit, Size

[-- Attachment #2: Snapshot Stats_12122010.rpt -
[-- Type: text/plain, Encoding: 7bit, Size

Daily System Report
Today is 12/12/2610
Systen has been up 3 days 4:44

/dev/sdal usage: 1%
/dev/sdaz usage: 64%

Memory Usage: 94%

Current System Zombie Processes
z 8894

Bottom of message is shown.

OEBPS/images/c01f002.jpg
Virtual Viemory

Physical Memory

The Kernel

Swap Space

OEBPS/images/c27f003.jpg
Dy @B TOF &9

From: user <user@user desktop>

To: user <user@user-desktop>
Subject: Peformance Report 12/12/2010
Date: Sun, 12 Dec 2010 13:59:22-0500

> @ 1Attachment [Savens|

1| [) HTML document attachment (capstats.heml)

Report for 12/12/2010
[pate frime _[Users [Load [Free Memory (cPUTdie

[12/09/2010[0:06:50 2 [0.29 [645988 99
[12/09/2010[5:07:55 2 [0.28 [620252 100
[12/09/2010[:40:51 [[0.37 [a7a740 100
[12/10/2010[14:36:46[3___[0.30 [46640 o8
[12712/2010[7:16:26 [4_[0.25 [27308. o8
[12712/2010[13:28:53 4 [0.42 [s8832 100

OEBPS/images/c27f002.jpg
coe

[BIMost Visited » @) Getting Started

[®)file:///tmp/capstats.hml +

file:///tmp/capstatshtml | [+

Report for 12/12/2010

[Date Time |Users|Load Free Memory %CPU Idle|
[12/09/2010(9:06:50 |2 [0.29 645988 99
[12/09/2010(9:07:55 |2 [0.28 620252 100
[12/09/2010/9:40:51 |3 [0.37 (474740 100
[12/10/2010/14:36:463 [0.30 (46640 98
[12/12/2010/7:16:26 [4 [0.25 [27308 98
[121272010(13:28:53/4 [0.42 58832 100

OEBPS/images/c26f001.jpg
Day
01 Y
/nome/user/archive/hourly 01
02
02

01

OEBPS/images/c09f001.jpg
int main()

int 1;
int factorial
int number = 5;

for(i = 1; i <= number; i++)

factorial = factorial * i;

printf(*The factorial of % is %d\n*, nusber,
return 6;

“myprog.c* 16 lines, 237 characters

factorial);

OEBPS/images/blum_titlepage.jpg
Linux® Command Line
and Shell Scripting Bible

Second Edition

Richard Blum
Christine Bresnahan

@)

'WILEY
Wiley Publishing, Inc.

OEBPS/images/c09f005.jpg
©6

#1/bin/bash

factoriat=l
number=

for ((1

54 <= gnumber; 1+)

factortal="expr $tactorial * $1°

echo The factorial of Snumber is $factorial.|

OEBPS/images/c09f004.jpg
€3 A &
©©@ emacs@rich-desktop

-

o 7:42PM @) o

< %
Binclude <stdio
int main()

int i;

int factorial
int number = 5

for(i = 1; i <= number; i++)

factorial = factorial * i;

}

printf("The factorial of %d is %d\n", number, factorial
myprog.c Top L1 (C/1 Abbrev)---
Eel:ome to GNU Emacs, one component of the GNU/Linux operating system.
To follow a link, click Mouse-1 on it, or move to it and type RET.
To quit a partially entered command, type Control-g.

Important Help menu items:
cs Tutorial Learn basic Emacs keystroke commands
Read the Emacs Manual View the Emacs manual using Info
{Non)Warranty GNU acs comes with ABSOLUTELY NO WARRANTY
+ Copying Conditions Conditions for redistributing and changing Emacs

[Update Manager]

OEBPS/images/c09f003.jpg
/home/rich:
total used
drxr-xr-x
dnexr-xr-x

draxr-xr-x
draxr-xr-x
wereere
drexr-xr-x
drxr-xr-x
draxr-xr-x
w
-rWereeres
drxr-xr-x

1

i rectary ses sallakle senioe
4096

rich rich 2010-10-07
root root 4096 2016-69-23
rich rich 4096 2010-69-22
rich rich 2831 2010-69-27
rich rich 220 2010-65-10
rich rich 3103 2010-65-10
rich rich 4696 2010-10-67
rich rich 4696 2010-69-11
rich rich 4096 2010-69-11
rich rich 4096 2016-65-16
rich rich 4096 2010-69-22
rich rich 4696 2010-69-11
rich rich 41 2010-10-67
rich rich 4096 2010-65-10
rich rich 4896 2010-69-22
rich rich 4696 2010-10-67
rich rich 16 2010-65-10
rich rich 179 2010-65-10
rich rich 4896 2019-86-28

K Regexp 1

-bash_history
-bash_logout
-bashrc

-dnrc

.esd_auth
exanples. desktop

OEBPS/images/c09f002.jpg
int main()
«

int i;
int factorial =
int number = 5

for(i = 1; i <= number; i++)

factorial = factorial * i;

printf(*The factorial of %d is %d\n", number, fact
return 6;

F1_nyprog.c
For infornation about G Eracs and the GNU system, type C-h

OEBPS/images/c01f001.jpg
Application Software

b

b ¢

§

Windows
Management
Software

GNU
System
Utilities

b)

)

Linux Kernel

b

i i

Computer Hardware

OEBPS/images/c09f009.jpg
®

) Defaut: factorialc -Kate ~ ————— ©6
File Edt View Go Bookmarks Sessions Tools Settings
P& ¢ > WO D@
S e e e
£ it wain0>
8 {
H
: R
H) 23 1 o S)
2 H
H SRR & (TR ©
3)
TR AT 72 S i, RS
& —— =
Line: 17 Col: 1 INS LINE factorial.c

& Teminal @0

din Files

f e = N

OEBPS/images/c09f008.jpg
06 ®

|| Aways use t
9 owSosson_((£ Cpon Session)3 aut |

choics.

OEBPS/images/c09f007.jpg
206 ®

| Dynamic Word Wrap

s Dynamic word wrap indicatars (i applicable) a
Fonts & Colors T
y Align dynamically wrapped lines to indsntation d T TS
Edi Borders

v Show folding markes (f avalable)
OponSave || | Showicon border
i | Show fine numbers

i lbar
Extongns | Show scrolbar marks

Advanced

Enabls powsr user mods (KDE 3 mods)

| Show indentation nes
| Highight ange betwean selectad brackets

¥ 0K || @ Cancal

OEBPS/images/c09f006.jpg
factorial=l
number=

for ((1=1; 1 <= $number; 14+)
«

factortal= $tactoral * §1

echo The factorfal of Snumber 1s $factorial

<C

O Fn

Replace:

Pl

Replacs

v Match case

Opions.

Line: 4 Cok: 5 INS UNE Bash factorialsh

