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PREFACE

A large shift in the activities and dynamics of the field of plant nitrogen metabolism has occurred since the beginning of the millennium. In terms of research in this field, the pre-genomic era was largely characterized by extensive developments in molecular physiology and the identification of transporters and signal transduction cascades, work that was greatly aided by the intensive effort worldwide to sequence different plant genomes. However, after the millennium, we entered the post-genomic era that has concentrated greater effort on elucidating the information concealed within the genome. In the past 10 years, we have witnessed the widespread application of ‘-omics’ (including phenomics, transcriptomics, proteomics and metabolomics) technologies, together with computational biology and bioinformatics in an intensive interdisciplinary cooperation to explore all the facets of nitrogen metabolism from the single cell to whole plant biology and its interactions with the environment. The post-genomic era has facilitated intensive study at these multiple levels of complexity, including a much greater appreciation and understanding of how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. The recent rise in our understanding of the importance of epigenetic mechanisms of regulation has posed a significant challenge to conventional assumptions  about the relationships between genome structure and function, and between genotype and phenotype. An appreciation of recent developments in the field of nitrogen assimilation metabolism is essential for anyone with interests in plant biology, the environment and the needs of agriculture.

The goal of much of the present-day research into plant nitrogen metabolism is to develop and apply new experimental technologies and to provide computer-based methods for coping with and interpreting the vast amounts of -omic data that are being produced and understanding the basic patterns that are being uncovered. The field of plant nitrogen metabolism and improving plant nitrogen use efficiency remains one of the grand challenges of our times. The field continues to require a large basic research aspect, since we are still not close to understanding the interplay of biological systems even at the cellular level. At the same time, the field is faced with a strong demand for immediate solutions, because improving plant nitrogen use efficiency is crucial to future agricultural sustainability and the future economic success of agriculture. The 13 chapters that comprise this volume bring together the expertise and enthusiasm of an international panel of leading researchers to provide a state-of-the-art overview of the field. Topics covered include nitrogen sensing and signalling, uptake and membrane systems, nitric oxide, primary nitrogen assimilation and C-N balance, and interactions, regulation of root and plant architecture and much more. Together, these chapters provide an up-to-date insight into key issues related to these processes, describing the very latest developments in our understanding of how plants coordinate carbon, nitrate and ammonium assimilation into the organic compounds required for growth on an organ, plant and global scale. The transcription factors that act to integrate environmental nutrient (nitrogen) signals to coordinate primary and secondary metabolism are discussed together with new concepts of cross-talk, transport and signalling, and how such molecular networks influence nitrogen and carbon cycling processes in the environment. The different lines of research and the processes described in these chapters interact in many ways and illustrate how we are starting to disentangle these multiple interactions. These chapters demonstrate the intricacies of this rapidly evolving subject where state-of-the-art post-genomic era technologies are being applied to maximum benefit. We hope that these chapters provide useful, interesting and thought-provoking insights that will prompt further experimentation and breakthroughs in this exciting and expanding field.

Christine H. Foyer and Hanma Zhang





Chapter 1

NITROGEN ASSIMILATION AND ITS RELEVANCE TO CROP IMPROVEMENT

Peter J. Lea1 and Ben J. Miflin2

Abstract: The majority if not all of the organic nitrogen in plants is derived from the assimilation of ammonia into the amide position of glutamine by the enzyme glutamine synthetase (GS). A second enzyme, glutamate synthase, also known as glutamine:2-oxoglutarate amidotransferase (GOGAT), carries out the transfer of the amide group of glutamine to 2-oxoglutarate to yield two molecules of glutamate and thus completes the assimilation of ammonia into amino acids. This GS/GOGAT pathway of ammonia assimilation is of crucial importance for crop growth and productivity and ultimately animal and human nutrition. Glutamate dehydrogenase (GDH) is now considered to be only involved in glutamate catabolism to form ammonia, an important role in N recycling within the plant. Nitrogen is also often diverted from glutamine to asparagine as a temporary measure during periods of carbohydrate shortage and excess of reduced nitrogen. This diversion requires the action of asparagine synthetase in the anabolic reaction and asparaginase in the catabolic reaction. This chapter describes the properties of these enzymes in the assimilation and reassimilation of nitrogen and in particular the genes that encode them, their complexity and the time and place they are expressed. Plant transformation has allowed the construction of a range of plants with enhanced and decreased activity of several of these enzymes, some of which have shown improved agronomic performance.

Keywords: ammonia assimilation; asparaginase; asparagine synthetase; gene regulation; glutamate dehydrogenase; glutamate synthase; glutamine synthetase; overexpression

1.1 Introduction

Nitrogen is fundamental to crop productivity, and the increased use of N fertilizer over the past 50 years has led to a massive increase in food production worldwide. This has enabled the support of a vastly increased world population. Whether N is derived from soil reserves, from N fertilizer or from N2 fixation, it is incorporated into the organic form via the assimilation of ammonia. However, the primary assimilation of ammonia from external inorganic N is only the start of the process. N is released fromorganic combination as ammonia and reassimilated many times during the movement of N around the plant, from seed reserves, through transport to vegetative organs, to eventual redeposition in a new crop of seeds. There is also a major release and reassimilation of N during the process of photorespiration in C3 plants. The process of ammonia assimilation is thus of crucial importance to crop growth and productivity. In this chapter, we will review the major enzymes involved in the assimilation of ammonia and the metabolism of asparagine, which is a molecule crucial in the transport and storage of N.We will consider the genes that encode for these enzymes, their complexity and the situations in time and place where they are expressed. Finally, we will review recent progress in research aimed at finding out if there are possibilities to improve plant performance by manipulation of the genes involved in N metabolism.

1.2 The assimilation of ammonia

1.2.1 Glutamine synthetase

The first step in the assimilation of ammonia is the adenosine triphosphate (ATP)-dependent reaction with glutamate to form glutamine, catalysed by glutamine synthetase (GS, EC 6.3.1.2). The ammonia may have been generated by direct primary nitrate assimilation, or from secondary metabolism such as photorespiration (Leegood et al., 1995; Keys, 2006; Forde & Lea, 2007) and the catabolism of amino acids, in particular asparagine (Lea et al., 2007). GS activity is located in both the cytoplasm and chloroplasts/plastids in most but not all higher plants. The GS enzyme proteins can be readily separated by standard chromatographic, localization and Western blotting techniques into cytoplasmic (GS1) and plastidic (GS2) forms. Despite detailed biochemical, molecular and microscopic analysis of conifers, there is no evidence of a plastid GS2 in conifers (Cánovas et al., 2007). It is possible that the localization of GS in the chloroplast in rapidly photorespiring cells (Keys, 2006) may have been a later evolutionary development (Cánovas et al., 2007).

The subunit of cytosolic GS1 has a molecular mass of 38–40 kDa, whilst the plastid GS2 form is larger at 44–45 kDa, and the proteins can be usefully separated by simple sodium dodecyl sulphate polyacrylamide gel electrophoresis SDS-PAGE). The quaternary molecular structure of plant GS has proved difficult to establish due to major differences between the eukaryotic and prokaryotic proteins. The bacterial enzyme comprises 12 subunits arranged as two hexameric planar rings. Initially, it was thought that the mammal and plant enzymes were octamers; however, there is now strong crystallographic evidence that both native enzyme proteins exist as decamers, comprising two pentameric rings (Unno et al., 2006; Krajewski et al., 2008). The first crystal structure of a plant GS protein was obtained by Unno et al. (2006) using the stable maize GS1a protein. The protein is composed of two face-to-face pentameric rings of identical subunits with a total of ten active sites, each formed between neighbouring subunits within each ring. The first step in the GS reaction is the transfer of the terminal phosphoryl group of ATP to the γ-carboxyl group of glutamate to produce the activated intermediate γ-glutamyl phosphate. In the second step, a bound ammonium ion is deprotonated, forming ammonia, which attacks the carbonyl carbon to form glutamine with the release of phosphate. Unno et al. (2006) also studied the binding of the inhibitors methionine sulphoximine and phosphinothricin to the active site of GS as a guide to the development of potential herbicides.

There is now a growing body of evidence that GS activity is regulated by post-translational modification as well as at the level of gene expression. Phosphorylation of cytosolic GS1 and subsequent interaction with 14-3-3 proteins were initially observed by Moorhead et al. (1999). Reversible phosphorylation of cytosolic GS1 was then demonstrated during light/dark transitions in the leaves of Brassica napus (Finnemann & Schjoerring, 2000). A calciumdependent kinase-related kinase (CRK3) capable of phosphorylating cytosolic GLN1;1 has been demonstrated in Arabidopsis thaliana; both genes GLN1;1 and CRK3 were induced in early senescence (Li et al., 2006). Following the discovery of 14-3-3 proteins in the chloroplast, specific binding to GS2 in tobacco was also demonstrated (Riedel et al., 2001). In Medicago truncatula, GS2 is regulated by selective phosphorylation of residue Ser 97 and subsequent binding to 14-3-3 proteins, which causes proteolytic breakdown to an inactive product (Lima et al., 2006).

The first steps to isolating and characterizing the genes for GS took place a quarter of a century ago with the isolation of cDNAs for GS from Phaseolus vulgaris (Cullimore et al., 1984) and alfalfa cells (Donn et al., 1984). At this stage it was clear that GS was encoded by a multigene family. This was definitively shown for A. thaliana when Peterman and Goodman (1991) isolated four different GS cDNAs, indicating the presence of four or possibly five genes. Analysis of the A. thaliana genome has identified one GS2 gene and five GS1 genes, but only four of which appear to be expressed (Ishiyama et al., 2004b). Subsequent work has shown the presence of multigene families in all species so far studied, generally numbering five or more. These fall into two classes for the two major isoenzyme groups for the enzymes GS1 and GS2. The latter is found in the chloroplast and is encoded by a single gene in most species. Bernard et al. (2008) have recently published an analysis of GS sequences in wheat. Their results show a relatively complex situation with three subclasses of GS2 genes and some seven GS1 subclasses. This complexity probably reflects the hexaploid nature of wheat, with the three different GS2 genes coming one each from the different homologous sets of chromosomes. The sequences of the wheat genes, together with those from other species, have been subject to phylogenetic analysis. The results show that the GS genes can be divided into a number of related groups (Fig. 1.1). All the GS2 genes analysed fall into a single clade A, which includes genes from both mono- and dicotyledons. The GS1 genes from monocotyledons could be divided into three phylogenetic groups (clades B, C and D). In contrast, the allocation of the GS1 genes from dicotyledons was less certain, and no clear pattern has emerged.

Each of the GS genes appears to participate in different metabolic processes, based on where and how they are expressed. With respect to the monocotyledon genes represented in Figure 1.1, the genes in the different clades have different expression patterns. In maize, the putative roles of the five GS1 forms are shown in Figure 1.2 (Martin et al., 2006). Those genes falling in clade B are generally expressed in roots. In some cases they are also expressed throughout the rest of the plant but with a high expression in the root, for example, the genes from rice OsGS1;21 (Tabuchi et al., 2005), maize ZmGln1-1 (Hirel et al., 2005) and wheat TaGSr (Bernard et al., 2008). Other genes appear to have relatively low expression in the root (ZmGln1-5; Sakakibara et al., 1992; Li et al., 1993) and perhaps elsewhere.

The genes falling in clade C are characterized by their presence in the pedicels, spikelets and developing kernels. Thus, ZmGln1-2 has been shown to be expressed in the developing kernel, pedicel and pericarp and also present in the anthers, glumes and ear husks of maize (Rastogi et al., 1998; Muhitch, 2003). Rice OsGS1;3 is found specifically in the spikelet (Tabuchi et al., 2005).

The major GS1 genes expressed in leaves are those that fall in clade D. The maize genes ZmGln1-3 and ZmGln1-4 were highly expressed at all leaf ages, although there appeared to be more transcripts of ZmGln1-4 in older leaves (Hirel et al., 2005). Cytoimmunochemistry and in situ hybridization showed that ZmGln1-3 is expressed and GS1 protein present in mesophyll cells, whereas ZmGS1-4 is specifically localized in the bundle sheath cells. OsGS1;1 is expressed in all organs but with higher expression in leaf blades (Tabuchi et al., 2005). In wheat, TaGS1a, b and c are expressed in the leaves, and their expression increases as the leaf ages, particularly after the onset of anthesis and senescence (Bernard et al., 2008). Several other studies in different species also suggest that GS1 increases in importance in leaves during senescence and GS2 decreases (Brugièreetal. et al., 2000;Masclaux-Daubresseetal., 2005; Tabuchi et al., 2007), supporting the role of GS1 in the mobilization of leaf nitrogen into the transport system to developing seeds and other sinks.

Figure 1.1 Unrooted phylogenetic tree of GS protein sequences from plants. The figure and legend were generously supplied by Dr D. Habash. The figure is reproduced from Bernard et al. (2008) by kind permission of Springer Science and Business Media. Analysis was carried out using the PIE interface to the phylogeny inference package (PHYLIP) version 3.5. The proml analysis was used with a JTT model for amino acid change and the tree calculated by the maximum likelihood method. The reliabilities of each branch point were assessed by bootstrap analysis (100 replicates). Bootstrap values are displayed on the tree. Ta-GS2a, AAZ30060; Ta-GSe1, AAR84349; Ta-GSe2, AAR84350; Ta-GSr1, AAR84347; Ta-GSr2, AAR84348; Ta-GS1a, AAZ30057; Ta-GS1b, AAZ30058; Ta-GS1c, AAZ30059; Os-GS2, CAA32462; Os-Gln1;1, CAA32461; Os-Gln1;2, CAA32460; Os-Gln1;3, AAK18848; Zm-GS2, CAA46724; Zm-GS1-1, CAA46719; Zm-GS1-2, CAA46720; Zm-GS1-3, CAA46721; Zm-GS1-4, CAA46722; Zm-GS1-5, CAA46723; Hv-GS2, AA37643; Hv-GS1, CAA48830; At-Gln1;1 (At5g37600), NP 198576; At-Gln1;2 (At1g66200), NP 176794; At-Gln1;3 (At3g17820), NP 188409; At-Gln1;4 (At5g16570), NP 568335; At-Gln1;5 (At1g48470), NP 175280; At-Gln2 (At5g35630), AAB20558; Pv-Gln-δ, AA31234; Pv-Gln-α CAA27632; Pv-Glnβ-, CAA27631; Pv-Gln-γ, CAA32759.
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Figure 1.2 Schematic representation depicting the expression and possible function of the GS isoenzymes within a maize plant. The figure and legend were generously supplied by Dr B. Hirel. The copyright ownership of the American Society of Plant Biologists following original publication in Martin et al. (2006) is gratefully acknowledged. Gln1-1 to Gln1-5 are the five genes encoding cytosolic GS1 and Gln2 the gene encoding plastidic GS2. Their tissue or cellular localization and their putative function are indicated by small arrows and text. The large arrows indicate the flux of glutamine (Gln) occurring within the plant: 1, from the roots to the shoots (reaction catalysed by GS1-1); 2, in the phloem (reaction catalysed by GS1-2); 3, from the source leaves to the ear (reaction catalysed by GS1-3 and GS1-4); and 4, from the young leaves to the other shoot parts (reaction catalysed by GS2). The function of GS1-5 is unknown, as indicated by question marks.
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Differential expression for the different GS1 genes has also been described for a number of dicotyledons (Forde & Cullimore, 1989). In P. vulgaris, there are three different GS1 genes termed Gln-α, Gln-β and Gln-γ. PvGln-γ is strongly induced during nodulation, particularly in the infected cells, while PvGln-β is preferentially expressed in roots. Studies with promoter fusions of these genes suggest sophisticated differential regulation of the expression of these genes within the cell types of the nodule (Gebhardt et al., 1986; Forde et al., 1989). PvGln-α is expressed in the cotyledons and embryonic axis of dry seeds and represents the most abundant GS mRNA in the early days of germination (Swarup et al., 1991). Similar differential expression of these GS1 genes has been described for soybean, although there are two members of each class of gene; this may reflect the allotetraploid nature of soybean (Morey et al., 2002). In contrast, Medicago trunculata has one of the smallest GS gene families with only two genes for GS1 and one for GS2 (Carvalho & Cullimore, 2003).

GS has also been studied in gymnosperms such as conifers. Interestingly, GS2 does not appear to be present in the conifer family (Garcia-Gutierrez et al., 1998), but there are two GS1 genes, GS1a and b (Cánovas et al., 2007). GS1b is expressed in vascular tissue, suggesting its role in N transport. GS1a is associated with the development of the chloroplast, and its expression is stimulated by light. It is proposed that the physiological role of the enzyme encoded by GS1a may be comparable to that of GS2 in angiosperms (Canton et al., 1999).

The GS genes exhibit differences in their response to N availability. Studies in A. thaliana (Ishiyama et al., 2004b) show that AtGln1;2 is the only one of four active GS1 genes that is significantly up-regulated by NH4+. In rice, the genes OsGS1;1 and OsGS1;2 are reciprocally regulated by NH4+ availability. The former accumulates in the surface layers of roots under NH4+ limitation, whereas the latter accumulates in the same cell layers when NH4+ is sufficient (Ishiyama et al., 2004a). Sakakibara et al. (1996) found that, in maize, mRNA for two of the GS1 genes increased with NH4+ nutrition whereas that for the other two decreased. In maize leaves, the major forms (ZmGln3 and 4) appear relatively unaffected by N status but ZmGln1 is much more highly expressed in the leaves under N limitation (Hirel et al., 2005).

The expression of GS1 genes and the presence of the enzyme differ considerably at the tissue and cellular levels. This has aided the understanding of the different processes in N metabolism in which the enzyme functions (see Fig. 1.2). Sakurai et al. (1996) showed that, in rice leaves, GS1 was detected immunologically in the companion cells of large vascular bundles and also in the vascular parenchyma cells of both large and small vascular bundles. This suggested that GS1 was important in the export of leaf N from senescing leaves. Similar results have shown the immunolocalization of GS1 in the vascular tissue of tobacco (Dubois et al., 2003). In situ hybridization also showed the transcripts of NtGln1-5 were localized in the vascular tissues of roots and stems, whereas those of NtGlt1-3 were found in all root cells and floral organs. Immunolocalization studies in wheat leaves also show GS protein to be present in phloem companion perifascicular sheath cells and in the connections between the mestome sheath cells and the vascular cells in the flag leaf (Kichey et al., 2005, Bernard et al., 2008). In situ localization suggested that this distribution was due to differential expression of different GS1 genes: TaGS1 transcripts being expressed in the perifascicular cells and TaGSr transcripts being confined to the vascular cells (Bernard et al., 2008).

Mutants of GS1 genes have been difficult to generate. However, Tabuchi et al. (2005) have constructed knockout insertion mutants of OsGS1;1 in rice. The mutant gene caused the transcription of abnormal mRNA, and the activity of GS1 protein was scarcely detectable in the leaf blades of the homozygous mutants. These mutant plants showed severely retarded growth and poor grain filling under normal N nutrition. Martin et al. (2006) studied single and double mutants of maize GS1 genes caused by Mu insertions into ZmGln1-3 and ZmGln1-4. These genes from rice and maize are homologous and fall in clade D in Figure 1.1. The expression of mRNA was impaired in the single and double maize mutants, which resulted in decreased GS1 protein and activity. At plant maturity, shoot biomass was not modified in either the double or single mutants. There was however a marked effect on grain production; kernel number was reduced in gln1-3 and kernel size in gln1-4 mutants, with both characters being decreased in the double mutant. In both species, the mutations could be suppressed by overexpression of the equivalent wild-type GS1 genes in transgenic plants. These results show that GS1 genes from clade D are important in grain yield and their function cannot be compensated for by the other GS1 genes or by GS2. The importance of GS1 in anthers and pollen has recently been demonstrated by constructing transgenic tobacco with mutated GS genes driven by tapetum and microspore-specific promoters. The plants were male sterile, but this could be reversed by spraying with glutamine (Ribarits et al., 2007).

The gene for GS2 is highly expressed in the mesophyll of leaves and other photosynthetic tissues from all species analysed. It is a nuclear gene targeted to the chloroplast where the enzyme is located (Lightfoot et al., 1988; Tingey et al.,1988).Its expression is stimulated by light(Lightfootetal.,1988;Edwards et al., 1990). The isolation of photorespiratory mutants lacking GS2 shows that the major function of GS2 is in the reassimilation of ammonia during photorespiration (Wallsgrove et al., 1987; Blackwell et al., 1988). Taira et al. (2004) have proposed that GS2 is dual targeted to both the leaf mitochondria and chloroplasts in A. thaliana. This was on the basis of the finding that leaf mitochondria catalysed the transferase activity of GS and could use glycine as the sole source of energy, NH3 and CO2 to drive the conversion of ornithine to citrulline. In addition, plants transformed with constructs combining the GS2 promoter with the green fluorescent reporter gene showed fluorescence in the mitochondria. In contrast, Hemon et al. (1990) failed to find mitochondrial targeting of GS in transgenic plants unless a specific targeting sequence was added. There are also many reports on the subcellular immunolocalization of GS in several species that fail to show any evidence for GS in the mitochondria (Tobin & Yamaya, 2001; Kichey et al., 2005; Bernard et al., 2008). Bernard et al. (2008) also failed to find any evidence for GS2 mRNA outside the chloroplasts. Wallsgrove et al. (1979, 1980) analysed density gradients from barley pea leaf protoplasts but did not observe any GS peak co-migratingwith mitochondrial markers, and biochemical studies with isolated mitochondria also failed to provide evidence for a functional GS in mitochondria. Keys et al. (1978) examined the ability of purified mitochondria to refix 15N from glycine but found that this required the addition of partially purified GS. Since it is always difficult to confirm the absence of an enzyme, it will be interesting to see if the dual localization of GS2 is corroborated by further experimentation.

In summary, a picture is beginning to emerge of a very complex and sophisticated set of GS genes and expression patterns. These reflect the central role of GS in nitrogen metabolism as shown in Figure  1.3 (Miflin & Habash, 2002) in which ammonia is assimilated, released and reassimilated numerous times between the uptake of nitrogen from the environment and its eventual deposition in the protein stores of the seed. However, not all of the regulation of GS activity is at the transcriptional level (see above and Miflin & Habash, 2002). These regulatory processes are presumably under the influence of further sets of genes which generate yet another layer of genetic complexity of N metabolism

Figure 1.3 The central role of GS in the complex matrix of plant N metabolism. The central scheme encompasses the total role of GS. The boxes around the outside indicate the matrix of various internal and external locations and environments, and stages of plant development, in which GS may be operating. The direction of the flow of N will depend on which part of the matrix is under consideration. Thus, in the developing seed the flux will be from incoming transport compounds towards protein, whilst in the germinating seed the flow will be in the reverse direction. Figure reproduced with permission of Miflin & Habash (2002).
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1.2.2 Glutamate synthase

The second enzyme involved in ammonia assimilation is glutamate synthase, also known as glutamine:2-oxoglutarate amidotransferase (GOGAT). The reaction is a reductant-driven transfer of the amide amino group of glutamine to 2-oxoglutarate to yield two molecules of glutamate. The enzyme in plants is present in two distinct forms, one that uses reduced ferredoxin (Fd) as the electron donor (EC 1.4.7.1) and one that uses reduced nicotinamide adenine dinucleotide (NADH) as the electron donor (EC 1.4.1.14). Both forms of glutamate synthase are localized in plastids, as established by direct measurement of the enzyme activity (Lea & Miflin, 2003) or via immunolocalization studies (Cánovas et al., 2007; Tabuchi et al., 2007). The Fd-dependent enzyme is normally present in high activities in the chloroplasts of photosynthetic tissues, where it is able to utilize light energy directly as a supply of reductant. The NADH-dependent enzyme is located predominantly in nonphotosynthesizing cells, where reductant is supplied by the pentose phosphate pathway (Bowsher et al., 2007). The Fd- and NADH-dependent forms of glutamate synthase are expressed differently in separate plant tissues, as will be discussed in a later section.

The bacterial NADPH-glutamate synthase consists of two separate sub-units, α (162 kDa) and β (52.3 kDa). The functional protein contains one flavin adenine dinucleotide (FAD), one flavin mononucleotide (FMN) and three different iron-sulphur clusters, one [3Fe-4S] and two [4Fe-4S]. The minimum catalytic structure is the αβ-protomer, but there is now evidence that the active enzyme exists as an (αβ)6-structure of molecular mass 1.2 MDa (Cottevieille et al., 2008). Data obtained using the enzyme from Azospirillum brasiliense (Vanoni et al., 2005; Vanoni & Curti, 2008) have shown that there are six steps in the glutamate synthase reaction, as shown in Figure 1.4. The most interesting is the transfer of the ammonia molecule from the glutaminase site to the synthase site through a 30 Å long intramolecular tunnel, a mechanism now known to be common to all glutamine amidotransferase reactions (Mouilleron & Golinelli-Pimpaneau, 2007).

Initial studies on Fd-glutamate synthase indicated that the protein was monomeric, with experimentally determined molecular masses ranging from 145 to 180 kDa. Calculations of molecular masses from gene sequences provided values of 165.5 kDa for A. thaliana and 165.3 kDa for maize, following the removal of plastid transit peptides, leading to the formation of the active enzyme (Lea & Miflin, 2003; Suzuki & Knaff, 2005). A detailed analysis of the crystal structures of Fd-glutamate synthase from the cyanobacterium Synechocystis sp. PCC 6803 has been carried out and has been reviewed in some detail (van den Heuvel et al., 2004; Vanoni et al., 2005). The protein contains one FMN group and one [3Fe-4S] cluster per molecule, but no FAD. Plant Fd-glutamate synthase is similar to the _-subunit of the bacterial enzyme, except that the reducing equivalents are donated following the reversible association of reduced ferredoxin, possibly through a 26-amino acid conserved loop within the FMN domain. It has been proposed that the FMN domain of Fd-glutamate synthase is also involved in the delivery of sulphite to the reaction centre of uridine diphosphate (UDP)-sulphoquinovose synthase (SQD1), thus linking nitrate and sulphate assimilation (Shimojima et al., 2005).

Figure 1.4 The reaction of prokaryotic NADPH-glutamate synthase (GltS), described in a sequence of six steps. The figure and legend were generously supplied by Dr M. Vanoni. The figure is reproduced from Vanoni and Curti (2008) by kind permission of John Wiley & Sons, Inc. Step 1: NADPH binding to the β-subunit and reduction of the FAD co-factor (two linked ovals); Step 2: electron transfer from FAD to FMN (oval) in the synthase domain of the α-subunit through the enzyme iron-sulphur clusters (cubes), namely two low-potential [4Fe-4S] on the -subunit and a [3Fe-4S] centre on the α-subunit; Step 3: l-glutamine (Gln) binding at the glutaminase site in the PurF-type glutamine amidotransferase domain and hydrolysis with release of the first l-glutamate (Glu) product and ammonia; Step 4: ammonia transfer from the glutaminase to the synthase site through the intramolecular tunnel; Step 5: addition of ammonia to 2-oxoglutarate (2-OG) bound to the synthase site with the formation of the postulated 2-iminoglutarate (2-IG) intermediate; Step 6: reduction of 2-IG to l-glutamate by reduced FMN. In Fd-glutamate synthase (GltS), reduced ferredoxin (Fd) is the electron donor. It has been shown that Fd binds to glutamate synthase protein with a 1:1 stoichiometry in solution.
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The molecular mass of the NADH-glutamate synthase was originally shown experimentally to be more than 200 kDa. Calculations from the gene sequences indicated that NADH-glutamate synthase in alfalfa nodules has a molecular mass of 229.3 kDa (Gregerson et al., 1993), whilst the enzymes in rice (Goto et al., 1998) and P. vulgaris (Blanco et al., 2008) are 236.7 and 241 kDa, respectively, including a plastid transit sequence. The existence of two very similar forms of NADH-glutamate synthase was first demonstrated in P. vulgaris nodules (Chen & Cullimore, 1988). All the enzymes studied have been shown to have an FMN binding site, [3Fe-4S] cluster, an NADH binding site and a glutamine amidotransferase site. It is thought that the plant NADHglutamate synthase protein is a fusion of the prokaryotic α- and β-subunits, with a highly charged hydrophilic connecting region linking the C-terminus of the α-subunit and N-terminus of the β-subunit.

Genes for Fd- and NADH-dependent glutamate synthases have been isolated in a number of plants. The first evidence for Fd-GOGAT genes came from mutation studies in A. thaliana (Somerville & Ogren, 1980; Somerville, 1986) and barley (Kendall et al., 1986; Blackwell et al., 1988) in which conditional lethal mutants that could not survive under photorespiratory conditions were isolated. Several of these mutants were highly deficient in Fd-glutamate synthase activity. It was thought, based on these mutants, termed gls mutants (Somerville 1986), that there was only one Fd-glutamate synthase gene in A. thaliana. However, detailed studies by Coschigano et al. (1998) showed that there were two genes GLU1 and GLU2. GLU1 maps to the same local region of the chromosome as gls1. This gene is expressed at the highest levels in leaves, and its expression is induced by light. In contrast, GLU2 is expressed at a low constitutive level in leaves and, preferentially, in roots. It was concluded that GLU1 functioned in the reassimilation of the NH4+ released in photorespiration and some, if not all, of the primary N assimilation in leaves, whereas GLU2 probably had a function in N assimilation in roots. Similar conclusions have been drawn for the tobacco genes (Feraud et al., 2005).

An NADH-GOGAT gene was first isolated from Medicago sativa (Vance et al., 1995). There appears to be a single gene, and there is considerable evidence from location and expression studies that it functions in the actively N2-fixing nodules (Trepp et al., 1999). In contrast, the expression of the Fd-GOGAT gene was not detected in nodules. M. sativa plants were transformed with antisense constructs of NADH-GOGAT, which caused the enzyme activity to be reduced by about 50%. When the plants were grown under N2-fixing conditions, they were chlorotic, although their ability to fix N2 did not seem to be impaired. The addition of nitrate restored growth and relieved chlorosis. Perhaps surprisingly, the plants were also male sterile (Schoenbeck et al., 2000). The results suggest that NADH-glutamate synthase functions in N fixation and in developing flowers. Recently, Blanco et al. (2008) have isolated two NADH-GOGAT genes from P. vulgaris. PvNAPH-GOGATII was differentially and highly expressed in the developing nodules, while the PvNADH-GOGATI promoter was more active in the meristematic tissues of the root, particularly lateral root primordia.

Rice also has two NADH-GOGAT genes (Tabuchi et al., 2007). OsNADHGOGAT1 was isolated by Goto et al. (1998) and is expressed in developing tissues such as the root tip following the supply of NH4+, in the spikelet during the early stages of ripening, and in the premature leaf blades. In contrast, OsNADH-GOGAT2 is mainly expressed in the mature leaf blade and sheath of the rice plant.

Double-labelling experiments have shown that the Fd- and NADHglutamate synthase proteins present in the rice root are differentially located and do not overlap. The NADH protein is found in the dermatogen, epidermis and exodermis of the root, while the Fd-protein is found in the meristem, central cylinder and cortex of the roots. Tabuchi et al. (2007) have proposed a model in which NH4+ is normally assimilated in the outer root zone via NADH-glutamate synthase, and the pathway via the Fd-enzyme only comes into play when there is excess NH4+ supply, or NH4+ is generated from other reactions locally. It is also thought, mainly based on localization studies (Hayakawa et al., 1994; Tabuchi et al., 2007), that NADH-GOGAT1 is important in developing sink organs in the reutilization of glutamine. The enzyme accumulates in the vascular parenchyma cells and the mestome sheath of developing young leaves, and the dorsal vascular cells of young grains.

A. thaliana appears to have one NADH-glutamate synthase gene (GLT1) (Lam et al., 1995). Lancien et al. (2002) have probed the function of this gene by constructing a T-DNA insertion in the gene to produce a knockout mutant, which lacked GLT1 mRNA and enzyme activity. Under normal growth conditions, the mutant showed little phenotypic difference from the wild type. However, when the plants were grown under 1% CO2 (i.e. nonphotorespiratory conditions), there was a 20% decrease in growth and a 70% decrease in glutamate levels. This shows that the NADH-enzyme has a function in plant metabolism, different from the Fd-glutamate synthases, which may be important in aspects of root glutamate synthesis and remobilization of N. This is possibly similar to the role proposed above for the rice enzyme.

As for GS, the genetic control of glutamate synthase activity is complex in which a number of genes with complementary roles have been described for several important crop species. Again, these different genes are likely to have specific and non-redundant roles in the different pathways of N metabolism, indicated in Figure 1.3.

1.2.3 Glutamate dehydrogenase

The two enzymes, involved in glutamate synthesis discussed previously, catalyse irreversible reactions. A third enzyme, glutamate dehydrogenase (GDH; EC 1.4.1.2), catalyses a reversible amination/deamination reaction, which could lead to either the synthesis or catabolism of glutamate. GDH extracted from most plant species can be readily separated into seven isoenzymic forms following native gel electrophoresis (Thurman et al., 1965; Loulakakis & Roubelakis-Angelakis, 1996). The reason for this is that GDH comprises two distinct subunits α (43 kDa) and β(42.5 kDa) that are able to assemble, apparently at random into enzymatically active hexamers. The relative proportion of the α- and β- subunits, and hence the isoenzyme pattern observed, varies with plant organ and nitrogen source (Loulakakis & Roubelakis-Angelakis, 1991; Turano et al., 1997). Mutant and antisense lines deficient in GDH have been obtained in maize (Magalhaes et al., 1990; Pryor 1990), A. thaliana (Melo-Oliveira et al., 1996; Myashita & Good, 2008) and tobacco (Fontaine et al., 2006), which confirm the roles of the α- and β- subunits in the production of the seven banded isoenzyme patterns.

By far the major proportion of higher plant GDH can only utilize NAD(H) as a coenzyme. This form of GDH is located in the mitochondria, particularly within the phloem companion cells of shoots (Paczek et al., 2002; Tercé-Laforgue et al., 2004a; Fontaine et al., 2006). Immunolocalization studies in Nicotiana tabacum, wheat and vine (Paczek et al., 2002; Dubois et al., 2003; Tercé-Laforgue et al., 2004b; Kichey et al., 2005) suggest that under certain circumstances, for example senescing leaves, flower receptacles and in epidermal root tip cells, the enzyme is also localized in the cytoplasm. There have also been reports of an NADP-GDH present in the chloroplasts of higher plants (Lea & Thurman, 1972; Turano et al., 1997), although the activity is low and difficult to measure (Miyashita & Good, 2008). However, high ammonium-inducible NADP-GDH activity has been fully characterized in green algae such as Chlorella sorokiniana (Bascomb et al., 1987; Cock et al., 1991; Jaspard, 2006), where it is located in the chloroplasts.

Two cDNAs and/or genes for the NAD enzyme have been cloned from a number of species corresponding to the two polypeptides (Purnell et al., 2005). The two genes in A. thaliana have been termed GDH1 and GDH2 (MeloOliveira et al., 1996; Turano et al., 1997) and code for the β- and α-subunits, respectively (Melo-Oliveira et al., 1996; Purnell et al., 2005; Fontaine et al., 2006; Miyashita & Good, 2008). Analysis of the A. thaliana sequence database by Purnell et al. (2005) identified the presence of a second DNA sequence that could code for a β- subunit. This sequence (At3g03910) was reported as being expressed using microarray analysis (Yamada et al., 2003). However, enzyme analysis of A. thaliana gdh1 mutants did not show any evidence for the expression of a -subunit (Melo-Oliveira et al., 1996; Fontaine et al., 2006; Miyashita & Good, 2008), which would be expected if At3g03910 led to the expression of a functional protein. The conclusion is that there is probably only one functional gene for the β-subunit in A. thaliana.

Genes for GDH have been isolated from Nicotiana species. Nicotiana plumbaginifolia has two genes GDHA and GDHB (Ficarelli et al., 1999; Restivo, 2004) that code for the α- and β-subunits, respectively. Masclaux-Daubresse et al. (2002) isolated a GDH1 gene from N. tabacum coding for a β- subunit that was 95% sequence identical with the GDHB gene from N. plumbaginifolia. Purnell et al. (2005) isolated two partial cDNA clones for GDH that were 98% homologous to the N. plumbaginifolia genes GDHA and GDHB, respectively. The sequence homology between the GDH1 reported by Masclaux-Daubresse et al. (2002) and the cDNA for GDHB reported by Purnell et al. (2005) was 89%, leading the latter authors to suggest that there were two genes for the β-subunit of GDH in N. tabacum. Genes for the α-subunit have been identified in maize (Sakakibara et al., 1995) and Vitis vinifera (Syntichaki et al., 1996).

The expression of the α- and β-subunit genes differs throughout the plant and in response to different external stimuli. The A. thaliana gene GDH2 was expressed in all A. thaliana tissues tested, whereas transcripts of GDH1 were not found in roots (Turano et al., 1997) except at a very low level (MeloOliveira et al., 1996). The two genes also respond differently to the supply of nitrogen and carbohydrate. Thus, while AtGDH1 is the prevalent form in rosette leaves in the light, AtGDH2 is preferentially expressed in those leaves when plants are kept in the dark, with or without sucrose (Turano et al., 1997; Miyashita & Good, 2008); in addition, Melo-Oliveira et al. (1996) have found that the expression of GDH1 is suppressed by sucrose. In tobacco callus cultures, GDHA mRNA was more abundant when the cultures were grown in NH4+, whereas the GDHB mRNA increased when the carbon source was removed. The two genes also responded differently to NaCl stress, with the GDHA transcript being increased by NaCl and the GDHB decreased (Restivo, 2004). Similar results on the effect of salt stress on the expression of the GDHA gene were found in N. tabacum plants, and the expression of the equivalent V. vinifera gene was increased by NH4+ (Skopelitis et al., 2006). In summary, the two GDH genes are differentially regulated with respect to different tissues and organs of the plant and in respect of different conditions of N and C metabolism, stress and senescence. Comparison of the transcript and enzyme levels of GDH suggests that the two are not always correlated and thus there may be transcriptional and translational levels of control (Restivo, 2004; Purnell et al., 2005). There is also evidence of compensatory mechanisms in which one gene can compensate for the absence of the other (Fontaine et al., 2006).

There is some evidence for the presence of NADP-GDH genes in higher plants. The gene sequence from Chlorella sorokiana (Cock et al., 1991) was used to probe various Triticum species (Boisson et al., 2005), and a number of sequences that could possibly code for NADPH-GDH were identified. Purnell et al. (2005) also reported the identification of a clone in the rice and A. thaliana genome databases that could code for the enzyme.

The role of GDH has been the subject of much debate since the discovery of the GS/GOGAT pathway in plants (see Lea & Miflin, 1974, 2003; Miflin & Lea, 1976; Miflin & Habash, 2002). The discovery of the genes and the production of mutants of GDH have provided materials to test the role of GDH in plants. Pryor (1990) constructed a homozygous recessive maize mutant lacking GDH1. The phenotype of the plant is altered compared to the wild type in that it is more cold-sensitive and it also has a lower shoot-to-root ratio. This mutant was used by Magalhaes et al. (1990) in a kinetic study of 15N assimilation. It was found that the mutant had a lower flux of 15N via glutamate than the wild type, which could suggest that GDH has a role in ammonia assimilation. However, the flux of 15N through NH4+ to glutamate in both mutant and wild type was abolished by application of methionine sulphoximine, a potent inhibitor of GS. This strongly suggests that GDH was not carrying out ammonia assimilation. Studies by Stewart et al. (1995) with the same mutant appear to confirm this conclusion and suggest that the GDH encoded by GDH1 is functioning in the direction of oxidative deamination. However, some reservation should be placed on these maize studies since the two genotypes are not isogenic. Melo-Oliveira et al. (1996) constructed a gdh1 mutant of A. thaliana that appeared to have an impairment of root growth and some shoot chlorosis when grown under high N nutrition. Although the authors state that this suggests that GDH plays a non-redundant role in ammonia assimilation, they provided no biochemical evidence for this and the results could equally be explained by GDH playing an important role in the deamination of glutamate to produce keto acids, as suggested by Miflin and Habash (2002). It is interesting that in these studies no gdh2 mutants were recovered. However, Alonso et al. (2003) generated a genome-wide series of TDNA insertions in A. thaliana from which two GDH mutants were identified, gdh1 (SALK 042736) and gdh2 (SALK 0102711), in which the production of, respectively, either the – or -subunit was suppressed. Fontaine et al. (2006) did not report any phenotypic effect of either of the single mutants on plant growth. In part, this may have been because they observed strong compensatory effects on the production of GDH encoded by the gene that was not mutated. Recently, Miyashita and Good (2008), using the same mutant stocks, have constructed the double mutant gdh1/gdh2 and studied this as well as the single mutants separately. The double mutant has no detectable GDH protein or activity. They grow and reproduce under normal growth conditions without a visible phenotype. The mutations have no effect on the ability of the plants to grow on inorganic N, but the gdh2 and gdh1/gdh2 mutants are impaired in their ability to grow on glutamate as an N source. The double mutant also exhibited marked leaf necrosis under prolonged dark treatments. The results are compatible with the hypothesis that GDH plays no part in N assimilation but suggest there are a number of conditions in which the deamination activity may be important for plant function.

1.2.4 Asparagine synthetase

Although not strictly on the direct route of ammonia assimilation, nitrogen is often diverted from glutamine to asparagine as a temporary measure during periods of carbohydrate shortage and reduced nitrogen excess. The periods when asparagine can accumulate include seed germination, senescence, nitrogen transport and storage and a wide range of stress conditions and nutrient deficiencies (Sieciechowicz et al., 1988; Lea et al., 2007; Lehmann & Ratajczak, 2008). Recently, there has been a considerable revival of interest in the accumulation of asparagine in plant foodstuffs due to its capacity to combine with sugars in the Maillard reaction during cooking to form acrylamide, a highly toxic compound (Mottram et al., 2002; Halford et al., 2007).

The major route of asparagine synthesis involves the initial assimilation of ammonia to the amide position of glutamine as described above, followed by the transfer to form the amide position of asparagine (Ta et al., 1986; Rhodes et al., 1989; Lea et al., 2007). The enzyme asparagine synthetase (AS; EC 6.3.5.4) catalyses the ATP-dependent transfer of the amide amino group of glutamine to a molecule of aspartate to generate glutamate and asparagine:

Glutamine + aspartate + ATP → glutamate + asparagine + AMP + PPi

It has also been proposed that the AS enzyme can use ammonia directly as a substrate under certain circumstances (Oaks & Ross, 1984). Direct evidence was presented by Masclaux-Daubresse et al. (2006), who showed that, in tobacco leaves, 15N-labelled ammonia was incorporated into the amide position of asparagine in the dark in the presence of azaserine, whilst assimilation into glutamate was totally inhibited. Carvalho et al. (2003) demonstrated an inverse relationship between the gene expression of GS and AS in M. truncatula nodules and proposed that ammonia-dependent AS could operate in the direction of asparagine formation when the activity of GS was low. However, this suggestion was later modified, when it was considered that a shortage in the supply of aspartate would limit asparagine synthesis (Barsch et al., 2006).

Measuring the expected levels of activity of the enzyme AS in plant tissues has proved a difficult task. On many occasions authors have reported very low or zero levels of activity, although the particular plant tissue has been shown to be synthesizing asparagine at high rates (Lea et al., 2007). AS has been assayed and studied to a limited extent in germinating seedlings, nitrogen-fixing root nodules and maize roots. The enzymes isolated from these different sources exhibited similar properties. The purification to homogeneity of AS from alfalfa root nodules has been reported (Shi et al., 1997), but no details of the methods used, or the kinetic properties, were provided. Gálvez-Valdiviesoetal.(2005)were able to express both genes encoding AS isolated from P. vulgaris in Escherichia coli. The PvAS2-encoded protein was used to raise the antibody that recognized both P. vulgaris gene products with a molecular mass of 66 kDa. AS protein was detected in mature roots, senescing leaves and only very early in the development of the root nodules of P. vulgaris (Gálvez-Valdivieso et al., 2005). Again, unfortunately, no attempt was made to study the properties of the enzyme protein.

Genes encodingplantAS(AS1andAS2)were initially isolated from peas by Tsai and Coruzzi (1990, 1991), and two encoded proteins of molecular mass 66.3 and 65.6 kDa were shown to be highly homologous with the human enzyme. Northern blot analysis indicated that the expression of both genes was repressed by light in the leaves, but that in the roots AS2 was expressed constitutively and only AS1 was repressed by light. The repression of the genes encoding AS by light and stimulation in the dark agreed with the early work showing that asparagine accumulation was stimulated by darkness (Lea et al., 2007).

An asparagine synthetase cDNA clone was isolated from Asparagus spears that encoded a 66.5 kDa protein that was 81% identical to the AS1 from pea (Davies & King, 1993). It was proposed that the induction of asparagus AS mRNA was stimulated by a rapid reduction in the soluble sugar content. Later analysis of the promoter of the asparagus gene identified a potential carbohydrate-responsive element at −410 to −401 bp relative to the translation initiation ATG, with sequence identity to a rice -amylase carbohydrate-responsive element (Winichayakul et al., 2004a). Further studies confirmed that low carbohydrate but not darkness acted as the signal for the induction of the promoter of asparagus AS (Winichayakul et al., 2004b), probably through the involvement of hexokinase.

This simple story of carbohydrate regulation became somewhat complicated when it was found that there were three genes encoding AS in A. thaliana (Lam et al., 1994, 1998), which appeared to be regulated in a totally different manner. Expression of ASN1 was stimulated when plants were placed in the dark and dramatically repressed following exposure to light for only 2 hours, whilst sucrose to some extent could substitute for light. In contrast, the expression of ASN2 was induced during the same period and further stimulated for another 16 hours in the light, and again sucrose could substitute for light. Even more interestingly, the expression of ASN1 was stimulated by the amino acids asparagine and glutamine and glutamate, whilst ASN2 was repressed by the same amino acids. Expression of the ASN3 gene was not detected in any of the organs examined. Further studies in A. thaliana by Thum et al. (2003) indicated that light was able to override sucrose in the regulation of ASN1, whilst sucrose was able to override light as the major regulator of ASN2. There was also evidence that blue and red light had differential effects on the expression of the AS genes. Recently, Hanson et al. (2008) have shown that the transcription factor bZIP11 is involved in the regulation of the sugar-repressible ASN1 gene of A. thaliana through a G-box element present in the promoter.

The influence of carbon on the regulation of AS gene expression was further studied by Silvente et al. (2008) in the tropical legume P. vulgaris, which is a ureide rather than an asparagine transporter. The AS gene PvNAS2 was highly expressed in the roots and to a lesser extent in the outer cortical cells of root nodules during the early stages of nitrogen fixation. The addition of sugars induced PvNAS2 expression and asparagine production. A model was proposedinwhichwhentherateofnitrogenfixationishigh,thesugarcontent is low and AS is down-regulated, leading to the diversion of nitrogen from glutamine to purine and ureide synthesis. Hexokinase was again postulated as being involved in the sugar-sensing mechanism in P. vulgaris (Silvente et al., 2008).

Three distinct genes encoding asparagine synthetase have also been identified in sunflower (Helianthus annuus) (Herrera-Rodriguez et al., 2002, 2004, 2006). HAS1 and HAS1.1 were shown to be light-repressed genes whose transcripts accumulated to high levels in darkness. Light regulated the genes by means of two different mechanisms, a direct one, via phytochrome, and an indirect one, stimulating photosynthetic CO2 assimilation and the production of carbon metabolites such as sucrose. The third AS gene of sunflower, HAS2, was regulated by light and carbon in an opposite manner to that of HAS1 and HAS1.1. HAS2 had a high level of constitutive expression and was stimulated by light and sucrose. HAS1 and HAS1.1 expressions were dependent on the presence of a nitrogen source, while HAS2 transcripts were still found in N-starved plants. High ammonium levels induced all three AS genes and partially reverted the sucrose repression of HAS1 and HAS1.1 (Herrera-Rodriguez et al., 2004).

To investigate the involvement of asparagine and AS genes in the main nitrogen mobilization processes in sunflower, the expression of HAS1, HAS1.1 and HAS2 genes, as well as the synthesis of asparagine and other nitrogen and carbon metabolites, was studied during germination and natural senescence of cotyledons and leaves (Herrera-Rodriguez et al., 2006). HAS2 was expressed early in germination, and there was a correlation between the AS transcript level and asparagine accumulation in the sunflower tissues. Throughout leaf senescence, all three genes were expressed, during which time there was a reduction in sucrose content. In a later study on sunflower, it was shown that the expression of HAS1 and HAS1.1 particularly in the roots was induced by salt stress, osmotic stress and heavy metal stress and reduced by heat stress, whilst that of HAS2 was not affected (Herrera-Rodriguez et al., 2007).

Genes encoding AS have now been isolated from a wide range of species (Lea et al., 2007). Although there is considerable variation between plants in the exact mechanisms involved in the regulation of the expression of AS, there is an overall consensus. The expression of one gene (often that which is most highly expressed) is induced by a reduction in soluble carbohydrate supply and, in some cases, darkness, while a second gene may be stimulated by carbohydrate and light. An increased supply of reduced nitrogen, either as ammonium or amino acids, induces the expression of AS genes.

Analysis of the amino acid sequences of plant AS shows that there is a high percentage of identity with the E. coli AS-B protein, which has been studied in some detail due to its potential for the screening of chemotherapeutic compounds (Richards & Kilberg, 2006). In the Pinus sylvestris sequence, binding sites for glutamine, aspartate and an adenosine monophosphate (AMP) anchoring site have been identified (Cañas et al., 2006). Phylogenetic trees of the plant amino acid sequences have been constructed by a number of researchers and compared to bacteria, fungi and animals (Shi et al., 1997; Osuna et al., 2001; Møller et al., 2003). In the most recent study of the P. sylvestris enzyme, the plant sequences were clustered in two main groups: (1) the sequences close to A. thaliana AS1 and (2) those grouped with A. thaliana AS2 and AS3. The legume sequences were located in the AS1 cluster, whilst the monocot sequences were in the AS2/3 group (Cañas et al., 2006).

1.2.5 Asparaginase

As indicated previously, asparagine synthesis and accumulation occur under specifi cconditions, often those of stress and/or carbohydrate deficiency. Once the situation changes, there is a need to liberate the nitrogen from asparagine for the synthesis of other amino acids. There are two established pathways of asparagine catabolism in higher plants, and these have been considered in detail by Joy (1988) and Sieciechowicz et al. (1988). Asparagine can be transaminated, particularly inleaves, to yield oxosuccinamic acid, which may then be reduced to hydroxysuccinamic acid and subsequently deamidated to yield malate. It is likely that asparagine is metabolized through the above route as part of the photorespiratory nitrogen cycle (Keys, 2006), but that the majority of the nitrogen is continuously recycled and that there is little net catabolism of asparagine.

The major route of asparagine catabolism is via the enzyme asparaginase (EC 3.5.1.1), which catalyses the hydrolysis of asparagine to yield aspartate and ammonia. The ammonia is subsequently reassimilated by the GS/glutamate synthase enzymes as described above:

Asparagine + H2O → aspartate + NH3

The assay of asparaginase has also proved difficult in higher plants, with some plant sources providing extracts with high rates of activity and others low or zero. A full description of the early setbacks has been provided by Sieciechowicz et al. (1988) and Lea et al. (2007).

It was the detailed investigation by Atkins et al. (1975), who first gave the important indication that particularly high asparaginase activity could be detected during the development of L. albus cotyledons inside the pod. Subsequently, a number of workers confirmed the presence of high activities of asparaginase in legume seeds during the maturation process (Lea et al., 1978; Murray & Kennedy, 1980; Chang & Farnden, 1981). Sodek et al. (1980) then described an asparaginase in both the testa and maturing cotyledons of peas that was totally dependent on the presence of potassium (K+) ions. The asparaginase in developing soybean cotyledons was also shown to be K+dependent (Gomes & Sodek, 1984; Tonin & Sodek, 1990). A K+-dependent asparaginase has been studied in some detail in pea leaves, where the enzyme is only functional in the light when there is sufficient ATP and reducing power to fuel the GS/glutamate synthase reactions (Sieciechowicz et al., 1988).

It was originally demonstrated that the native K+-independent asparaginase from Lupinus polyphyllus seeds was a dimer of molecular mass of 71–72 kDa with subunits of 35–38 kDa (Lea et al., 1978; Sodek & Lea, 1993). Lough et al. (1992a) went on to show that when asparaginase was purified from Lupinus arboreus seeds, although the native molecular mass was 75 kDa, three polypeptides in the range 14–19 kDa were present following SDS gel electrophoresis. At the time, the reason for the complex number of subunits was not clear. Sodek et al. (1980) reported a native molecular mass of 68 kDa for the pea cotyledon K+-dependent enzyme, whilst the enzyme protein in pea leaves had a lower native molecular mass of 58 kDa (Sieciechowicz et al., 1988).

A cDNA clone encoding a K+-dependent asparaginase was isolated from L. arboreus. This encoded a 32.8 kDa protein, which appeared to be only expressed at a specific time during seed maturation, coinciding with high enzyme activity. Somewhat surprisingly the gene was not expressed in roots, which had also been shown to have high asparaginase activity (Chang & Farnden, 1981; Lough et al., 1992b). Dickson et al. (1992) isolated a genomic sequence encoding asparaginase from Lupinus angustifolius that contained four exons and three introns. The 5′-flanking region contained sequences associated with nodule-specific and seed-specific expressions.

The promoter of the asparaginase gene isolated by Dickson et al. (1992) was ligated to a GUS reporter gene and transformed into tobacco plants (Grant & Bevan, 1994). GUS activity was found mainly in the developing tissues of mature plants such as apical meristems, expanding leaves, inflorescences and seeds of tobacco. The chimaeric gene was also used to investigate transient expression in lupins. As might be expected from earlier enzyme measurements, transient GUS expression was detected in the developing pods, seed testas and cotyledons.

A major breakthrough in our understanding of the molecular structure of plant asparaginases was obtained when Hejazi et al. (2002) were able to express the A. thaliana gene in E. coli. The purified asparaginase protein was shown to comprise peptides of approximately 35, 24 and 12 kDa, following SDS-PAGE. The authors proposed that the two smaller peptides were the result of proteolytic cleavage and that the native protein, rather than being a dimer, was in fact an (αβ)2-tetramer. Analysis of the substrate specificity of the recombinant A. thaliana protein showed that the enzyme could use a range of β-aspartyl peptides as substrates, with β-aspartyl-phenylalanine and β-aspartyl-alanine having Vmax values close to that of asparagine.

Borek et al. (2004) expressed a gene encoding the Lupinus luteus K+independent asparaginase (Borek et al., 1999) in E. coli. The recombinant native enzyme had a molecular mass of 75 kDa, but the peptide underwent an autoproteolytic cleavage, leading to the formation of two β-subunits of 23 kDa (α−subunit) and 14 kDa (β−subunit), confirming the existence of the (αβ)2-tetramer. This cleavage gives rise to an N-terminal nucleophilic threonine residue on the β-subunit. Phylogenetic analysis of N-terminal nucleophilic hydrolases indicated that the amino acid sequences of the plant asparaginases from A. thaliana, L. luteus, barley, rice and soybean fell in a group with bacterial enzymes that also had isoaspartyl peptidase activity. Although asparagine was a substrate for the recombinant L. luteus enzyme with a Km of 4.8 mM, the surprising result was that β-aspartyl-leucine wasa substrate with over four times the Vmax and a Km of only 0.14 mM (Borek et al., 2004).

Michalska et al. (2006a, 2006b, 2008) crystallized the K+-independent as-paraginase from L. luteus and carried out a detailed analysis of the structure.The protein exhibited an αββα-fold typical of N-terminal nucleophilic hydrolases. Each of the two active sites of the (αβ)2-heterotetrameric protein is located in a deep cleft between the β-sheets, near the nucleophilic threonine-193 residue, which is liberated in the autocatalytic event at the N-terminus of the β-subunit. A comparison of the active sites of the L. luteus asparaginase and the E. coli EcAIII enzyme showed a high degree of conservation of the residues participating in substrate/product binding and of all other residues forming important hydrogen bonds within the catalytic pocket. Some evidence was provided as to how the active site could accept both asparagine and β-aspartyl peptides.

The availability of the complete sequence of the A. thaliana genome allowed Bruneau et al. (2006) to isolate a second gene encoding an asparaginase enzyme that was dependent on K+ for full activity. The K+-dependent enzyme had 55% identity with the K+-independent form, indicating that they belong to two evolutionarily distinct subfamilies of plant asparaginases, as revealed by phylogenetic analysis. However, the two enzyme proteins had remarkably similar structures, the K+-dependent enzyme having -subunits of 22.7 kDa and -subunits of 13.6 kDa. In addition, there were conserved autoproteolytic pentapeptide cleavage sites, commencing with the catalytic threonine nucleophile, as determined by ESI-MS analysis. The K+-dependent enzyme in A. thaliana had a lower Km and much higher Vmax than the K+independent form, indicating an 80-fold higher catalytic efficiency with asparagine.TheK+-dependent enzyme was unable to use β-aspartyl dipeptides as substrates, demonstrating a clear difference between the enzyme and the K+-independent enzyme (Bruneau et al., 2006).

The steady-state mRNA levels of the two asparaginase genes in A. thaliana were determined by quantitative reverse transcription polymerase chain reaction (RT-PCR) in various tissues during development. As expected, the expression of both genes was associated with sink tissues, and was highest in flowers, siliques, flower buds and leaves. The two genes showed largely overlapping patterns of developmental expression, but in all the tissues examined, the transcript levels of the K+-dependent enzyme were lower than those of the K+-independent enzyme. Microarray analysis showed that the K+-dependent enzyme was highly expressed in stamens and mature pollen of A. thaliana (Schmid et al., 2005). Cho et al. (2007) isolated a cDNA (GmASP1) from soybean that encoded a K+-dependent enzyme expressed in leaves. The expression of GmASP1 mRNA was induced by low temperature and salt stress, but not by heat shock or drought stress.

As part of a study of both the synthesis and catabolism of asparagine in germinating seedlings of P. sylvestris, Cañas et al. (2007) isolated the PsASPG gene encoding a K+-dependent asparaginase. The gene encoded a 39.7 kDa protein, which following proteolysis could be split into subunits of 27 and 12 kDa. However, this process required an accessory protein and was not an autocatalytic reaction as had been shown with other plant asparaginases. During the early stages of seed germination in P. sylvestris, the hypocotyl is the major site of asparagine production and the AS gene PsAS1 is highly expressed (Cañas et al., 2006). However, at later stages when the hypocotyl develops a more vascularized structure, the expression of PsAS1 decreases and that of PsASPG increases, probably indicating a major shift from asparagine production to consumption (Cañas et al., 2007).

Bruneau et al. (2006) suggested that as the spatial patterns of the expression of the two asparaginase genes were largely overlapping, that the two enzymes had redundant functions. As mutants and knockout lines are not currently available, it is not possible to test this hypothesis. However, the key question is why should plants have one form of an asparaginase, which apparently has a greater activity and a higher affinity for isoaspartyl peptides? One possible reason is due to the frequently occurring conversion of asparagine to isoaspartyl residues in mature proteins. This is a dangerous modification, as it causes a structural change that may significantly alter the three-dimensional structure of the protein, leading to a change of activity, degradation or aggregation. Proteins with isoaspartyl residues can be degraded by proteolytic enzymes, but among the products there will be β-aspartyl peptides containing N-terminal isoaspartyl residues which require specialized hydrolytic enzymes (Shimizu et al., 2005). Borek et al. (2004) proposed that isoaspartyl peptidase activity could be particularly important in seeds that have to retain their ability to grow for a very long time. During the storage period, the seed proteins can undergo modification and isoaspartyl peptidase activity is necessary to destroy the altered proteins and to allow only the healthy seeds to germinate.

1.3 Crop improvement through manipulating genes for nitrogen metabolism

The metabolism of nitrogen by crops is of prime importance to crop productivity. It also has a strong impact on the environment due to the need to fertilize many crops with N fertilizer or the release of N from crop residues, particularly legumes. Crop improvement over the last century has progressed tremendously through selection-based improvement grounded in a knowledge of genetics. We are now at the stage where direction-based crop improvement is becoming a reality, by the use of either transformation techniques or genetic marker-based selection. Both approaches with respect to N metabolism are discussed below.

1.3.1 Identification of markers of N metabolism important in crop performance

DNA marker technology such as RFLPs (restriction fragment length polymorphisms) has allowed the locations of genes important in determining polygenic traits – the so-called quantitative trait loci (QTL) – to be identified. It is implicit in the technique that there is allelic variation between genotypes at these loci so that differences can be measured. The more favourable alleles at the different loci can then be assembled in the same plant to potentially provide improved genotypes. For more detailed discussion of the technology, see reviews by Tanksley (1993) and Collard and Mackill (2008).

Several approaches in different crops have been used to try to identify loci of consequence to nitrogen metabolism and also to see if such loci are also important in aspects of crop performance. The advantage of this approach is that it can deal with traits controlled by several genes and that the nature of the genes does not have to be predetermined so that new interesting loci and eventually genes can be identified. Thus, determination of loci important in the amount of GS activity in a plant could identify regulatory, as well as structural, loci for the enzyme. There are a number of challenges inherent in the approach. Defining the trait to be measured is not simple; for example, crop improvement in relation to N metabolism can be considered in terms of yield, of seed protein content (high or low according to the use of the crop) for a given yield or nitrogen use efficiency (NUE). Deciding on a measurement of NUE is itself complex, and Good et al. (2004) review a number of definitions that have been used. Once the traits to be measured have been defined, then it is critical that they are measured accurately. This can often involve complex field experiments. Finally, the genetic crosses and resultant population of offspring have to be established. In this it is crucial that the parents are different in the traits to be measured, as only loci at which there are allelic differences have the potential to be revealed as important in determining the trait under consideration.

Obara et al. (2001) mapped QTL in a cross between varieties of japonica and indica strains of rice that affected the content of cytoplasmic GS1 and NADHglutamate synthase. Seven QTL regions were detected for GS1 and six for NADH-glutamate synthase protein content. Some of these mapped to regions where a structural gene was located, for example, the structural gene for NADH-glutamate synthase on chromosome 1. Other loci were linked to both GS1 content and earlier leaf senescence. Interestingly, the region containing a structural gene for GS1 (OsGS1;1) on chromosome 2 was associated with a QTL for spikelet weight. The importance of this locus in crop performance was confirmed by studying near isogenic lines in which a 50 cM segment of the indica chromosome 2 was transferred into the japonica background (Obara et al., 2004).

Hirel et al. (2001) analysed leaves of inbred maize lines that had been assessed for their agronomic performance for certain physiological traits associated with N metabolism. QTL for various agronomic and physiological traits were located on the genetic map of maize. Coincidences of QTL for yield and its components with genes encoding GS1 and the corresponding enzyme activity were observed. Gallais and Hirel (2004) extended these findings and recognized three chromosome regions where there were coincidences in QTL for yield, N-remobilization, GS activity and a structural gene for GS1. They proposed that the GS structural gene on chromosome 5 (ZmGln1-4) could be a candidate gene to explain variation in N use efficiency. This is in line with the studies on the maize gln1-3 and gln1-4 mutants (Martin et al., 2006). Further discussion of these issues in maize is given in Hirel et al. (2007).

Mickelson et al. (2003) reported on the identification of QTL in barley, associated with nitrogen uptake, storage and remobilization in flag leaves relative to QTL for grain protein and certain development traits. Among their results, they found that alleles associated with inefficient N remobilization were associated with depressed yield, but that the most prominent QTL for grain protein did not co-locate with the QTL for N remobilization. Unfortunately, they did not have the genes for GS marked on their map. Habash et al. (2007) have reported on a similar study in wheat in which they determined QTL for 21 traits related to growth, yield and leaf N assimilation during grain fill. One cluster of QTL for GS activity co-localized with the TaGS2 gene on chromosome 2A and another mapped to a region containing the TaGSr gene on chromosome 4A. This study also provided a wealth of detail as to the interrelationships between different physiological traits and yield components.

This brief review, of the use of QTL mapping in trying to identify the important N metabolism genes, indicates that results have been obtained suggesting possible links between GS structural genes and yield components. In this regard, they are consistent with the mutant studies in maize and rice, identifying the importance of GS1 genes from clade D in relation to yield components. They suggest that selection of the favourable alleles at these QTL could lead to crop improvement. The studies also identify other chromosomal regions, without structural genes for major enzymes of N metabolism, important in contributing to the control of aspects of the N economy of plants. Future studies hold the promise of identifying and isolating genes important in regulatory aspects of N metabolism that contribute to crop improvement.

1.3.2 Effect of transforming plants with N metabolism genes on crop performance

A number of species of plants have been transformed with genes important in N metabolism, and the effect of these transformed genes has been measured on a range of characters, including NUE (see Andrews et al., 2004; Good et al., 2004; Lea & Azevedo, 2007, for further discussion). In the main, the genes have been sourced from plants other than the host and a number of different promoters used to drive the expression of the genes. The majority of these studies have been carried out with GS genes.

Early studies were done with tobacco, mainly using the CaMV35S promoter linked to a GS1 gene, and led to increased production of GS in the transformed plants (Eckes et al., 1989). In many cases, the transformed plants had relatively high enhancement of GS1 transcripts with a lesser enhancement of GS1 protein and only subtle effects on GS activity (Habash et al., 2001; Ortega et al., 2001; Fei et al., 2003). There is also evidence of compensation between GS1 and GS2 enzyme levels in transgenic plants. For example, wheat lines transformed with the GS1 gene PvGln-α under the control of the Rubisco small subunit promoter had more GS1 and less GS2 enzyme activity in the flag leaves during grain filling (Habash et al., 2001).

Effects on the growth characteristics of the transgenic plants have been reported. Fuentes et al. (2001) found that T1 generation tobacco plants, transformed with CaMV35S:GS1 constructs, were similar to the wild type under high N nutrition but were greener and had higher shoot and root dry weight than the controls in low N. In contrast, Oliveira et al. (2002) found that similar tobacco transformants grew better under both N-sufficient and N-limiting conditions. In general, the effects were observed in younger plants and later in development they were harder to establish. In part, this might be because transformed plants appeared to mature earlier (Vincent et al., 1997). In many of the studies, the effects varied between different transformed lines in the same experiment (Fei et al., 2003, 2006).

Martin et al. (2006) transformed maize with a GLN1-3 gene, driven by a constitutive CsVMV promoter, and the resulting plants had higher activities of GS1 and an increase in grain yield and number. Some wheat lines transformed with the GS1 gene PvGln-α, under the control of the Rubisco small subunit promoter, also showed increased grain yield, although this was due to increased grain weight (Habash et al., 2001). In contrast, overexpression of OsGS1;1 in rice did not lead to any yield benefits (Tabuchi et al., 2007).

Most experiments on annual plants have been done with single plants grown in pots. This may not equate to what may occur in a monoculture field, where the plants compete with each other. Thus, it is not clear that enhancing the overall level of GS1 through transformation will lead to improvedcropproductivityinannualcrops.Thismaybebecauseofthecomplex and subtle way in which GS is located and regulated during the life cycle of a plant. Success may need to await the development of more sophisticated transformation strategies, particularly the use of specific promoters, that take this complex system into account. More consistent results have been obtained with transgenic clones of hybrid poplar (Gallardo et al., 1999). Clones expressing a GS1 a gene from the conifer P.sylvestris, under the control of the CaMV35S promoter, have been shown to have higher vegetative growth with enhanced nitrogen assimilation efficiency, higher net photosynthetic rates, higher rates of photorespiration and enhanced resistance to water stress (see Kirby et al., 2006, for a review). Many of these benefits have been sustained in a 3-year field test (Jing et al., 2004).

Kozaki and Takeba(1996)constructed tobacco plants with higher and lower expression of a GS2 transgene and reported that the higher level of GS2 increased their capacity for photorespiration and enhanced their resistance to high light intensity. Later experiments with rice (Hoshida et al., 2000) showed that the GS2 transgenics again had higher photorespiratory capacity and had increased tolerance of salt stress. However, studies with barley and oil seed rape, in which the activity of GS2 had been reduced, provided variable results as to the effect on the rate of photorespiratory ammonia release (Leegood et al., 1995; Husted et al., 2002). Migge et al. (2000) also used a GS2 gene fused to a Rubisco small subunit promoter and reported increased growth of the transformed tobacco seedlings. However, older plants did not differ in size, but the transformants were developmentally more advanced, reflecting similar effects observed in GS1 transformants. Although the young plants had markedly higher level of GS2 transcripts, the enzyme activities were only about twofold higher and by the time plants were mature there was no difference in GS activity between the transformants and wild-type plants. Taken together with results from GS1 transgenics, the data suggest that there are a series of post-transcriptional and translational controls of GS enzyme activity that operate to modify the effects of the overexpression of the GS transgene.

Overexpression of a chimeric NADH-GOGAT gene in rice produced some transgenic lines that had enhanced glutamate synthase activity and which appeared to have higher spikelet weights, supporting the importance of NADH-glutamate synthase in grain filling (Yamaya et al., 2002). Tobacco plants transformed with CaMV35S:NADH-GOGAT had higher levels of enzyme activity, particularly in the roots, and higher C and N content and shoot dry weight as the plants were beginning to flower (Chichkova et al., 2001).

Tobacco plants have been transformed with an E. coli NADPH-GDHA gene, fused to a CaMV35S promoter, and subjected to a number of phenotypic tests including field trials. It has been reported that these plants are more resistant to methionine sulphoximine than the wild type and had more biomass in the greenhouse and the field (Ameziane et al., 2000). Maize was also transformed with the E. coli gene under the control of an ubiquitin promoter (Lightfoot et al., 2007). These plants had increased levels of GDH, although those with the highest enzyme activity were infertile. The fertile transformants were selfed, back-crossed and crossed with B73 to produce hybrids. Each of these was field tested. Plants with the E. coli GDHA gene had increased biomass but only in seasons and locations where there were water deficits. The results suggested that the EcGDHA gene may improve plant performance under arid conditions.

Brears et al. (1993) transformed tobacco with a pea gene for AS with the CaMV35S promoter. The plants accumulated more asparagine, but there was no statistically significant increase in growth. Later, Lam et al. (2003) found that A. thaliana plants transformed with a similar construct produced seeds that had an improved N status, in that the seeds had more soluble and total protein and the young germinating seedlings grew better under Nlimiting conditions. Brears et al. (1993) also transformed plants with a gene modified to be able to use NH4+ rather than glutamine but the plants grew more slowly. Bellucci et al. (2004) used an NH4+-dependent AS gene from E. coli to transform L. corniculatus. Those plants that expressed the gene were also characterized by reduced growth and premature flowering. In contrast, some lines of oilseed rape plants containing a similar construct showed an advantage in higher seed N yield under high N supply (Seiffert et al., 2004).

Good et al. (2007) transformed canola (Brassica napus) with an alanine dehydrogenase cDNA under the control of a root-specific promoter. Thetransgenic plants had increased biomass and seed yield, both in the laboratory and the field, under low N conditions, whereas no differences were observed under high N. The results suggested that the transgenics required 40% less applied nitrogen fertilizer to achieve yields similar to the wild type.

1.4 Conclusions

The research reviewed here has tended to confirm the generalities of the established biochemical pathways for N assimilation and cycling around the plant. What has changed radically in recent years is the understanding of the complexity of the genetics and controls of enzyme activity. Nowhere is this more evident than for cytosolic glutamine synthetase, which is encoded by multiple genes with different expression patterns and subject to multiple levels of control. The availability of genes for the major enzymes has increased the potential for constructing mutants lacking a specific gene and thereby enabled the testing of the function of the gene product. This has led to the confirmation of the general role of GS in ammonia assimilation and of the inability of GDH to perform the same function. It has also allowed the roles of some of the individual genes encoding GS1 to be evaluated.

The availability of genes and methods of plant transformation have allowed the creation of a variety of plants with enhanced activity of several enzymes of N metabolism. In a few cases the transformed plants have shown improved agronomic performance. More sustained improvements probably await the second series of transgenics with more targeted transformations. The use of genetic markers has also indicated that improvement of crops with respect to N metabolism could be possible. In particular, regions of the chromosome containing GS1 genes have been linked with crop improvement. Both of these developments show promise for the future.
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