

[image: image]

CONTENTS

Chapter 1: Getting Started With Android Programming

What is Android?

Obtaining the Required Tools

Creating Your First Android Application

Anatomy of an Android Application

Summary

Chapter 2: Activities, Fragments, and Intents

Understanding Activities

Linking Activities Using Intents

Fragments

Calling Built-In Applications Using Intents

Displaying Notifications

Summary

Chapter 3: Getting to Know The Android User Interface

Understanding the Components of a Screen

Adapting to Display Orientation

Managing Changes to Screen Orientation

Utilizing the Action Bar

Creating the User Interface Programmatically

Listening for UI Notifications

Summary

Chapter 4: Designing Your User Interface With Views

Using Basic Views

Using Picker Views

Using List Views to Display Long Lists

Understanding Specialized Fragments

Summary

Chapter 5: Displaying Pictures and Menus With Views

Using Image Views to Display Pictures

Using Menus with Views

Some Additional Views

Summary

Chapter 6: Data Persistence

Saving and Loading User Preferences

Persisting Data to Files

Creating and Using Databases

Summary

Chapter 7: Content Providers

Sharing Data in Android

Using a Content Provider

Creating Your Own Content Providers

Using the Content Provider

Summary

Chapter 8: Messaging

SMS Messaging

Sending E-mail

Summary

Chapter 9: Location-Based Services

Displaying Maps

Getting Location Data

Monitoring a Location

Project — Building a Location Tracker

Summary

Chapter 10: Networking

Consuming Web Services Using HTTP

Consuming JSON Services

Sockets Programming

Summary

Chapter 11: Developing Android Services

Creating Your Own Services

Establishing Communication between a Service and an Activity

Binding Activities to Services

Understanding Threading

Summary

Chapter 12: Publishing Android Applications

Preparing for Publishing

Deploying APK Files

Summary

Appendix A: Using Eclipse For Android Development

Appendix B: Using The Android Emulator

Appendix C: Answers To Exercises

Introduction

Advertisement

Chapter 1

Getting Started with Android Programming

WHAT YOU WILL LEARN IN THIS CHAPTER

	What is Android?

	Android versions and its feature set

	The Android architecture

	The various Android devices on the market

	The Android Market application store

	How to obtain the tools and SDK for developing Android applications

	How to develop your first Android application

Welcome to the world of Android! When I was writing my first book on Android (which was just less than a year ago), I stated that Android was ranked second in the U.S. smartphone market, second to Research In Motion’s (RIM) BlackBerry, and overtaking Apple’s iPhone. Shortly after the book went to press, comScore (a global leader in measuring the digital world and the preferred source of digital marketing intelligence) reported that Android has overtaken BlackBerry as the most popular smartphone platform in the U.S.

A few months later, Google released Android 3.0, code named Honeycomb. With Android 3.0, Google’s focus in the new Software Development Kit was the introduction of several new features designed for widescreen devices, specifically tablets. If you are writing apps for Android smartphones, Android 3.0 is not really useful, as the new features are not supported on smartphones. At the same time that Android 3.0 was released, Google began working on the next version of Android, which can be used on both smartphones and tablets. In October 2011, Google released Android 4.0, code named Ice Cream Sandwich, and that is the focus of this book.

In this chapter you will learn what Android is, and what makes it so compelling to both developers and device manufacturers alike. You will also get started with developing your first Android application, and learn how to obtain all the necessary tools and set them up so that you can test your application on an Android 4.0 emulator. By the end of this chapter, you will be equipped with the basic knowledge you need to explore more sophisticated techniques and tricks for developing your next killer Android application.

WHAT IS ANDROID?

Android is a mobile operating system that is based on a modified version of Linux. It was originally developed by a startup of the same name, Android, Inc. In 2005, as part of its strategy to enter the mobile space, Google purchased Android and took over its development work (as well as its development team).

Google wanted Android to be open and free; hence, most of the Android code was released under the open source Apache License, which means that anyone who wants to use Android can do so by downloading the full Android source code. Moreover, vendors (typically hardware manufacturers) can add their own proprietary extensions to Android and customize Android to differentiate their products from others. This simple development model makes Android very attractive and has thus piqued the interest of many vendors. This has been especially true for companies affected by the phenomenon of Apple’s iPhone, a hugely successful product that revolutionized the smartphone industry. Such companies include Motorola and Sony Ericsson, which for many years have been developing their own mobile operating systems. When the iPhone was launched, many of these manufacturers had to scramble to find new ways of revitalizing their products. These manufacturers see Android as a solution — they will continue to design their own hardware and use Android as the operating system that powers it.

The main advantage of adopting Android is that it offers a unified approach to application development. Developers need only develop for Android, and their applications should be able to run on numerous different devices, as long as the devices are powered using Android. In the world of smartphones, applications are the most important part of the success chain. Device manufacturers therefore see Android as their best hope to challenge the onslaught of the iPhone, which already commands a large base of applications.

Android Versions

Android has gone through quite a number of updates since its first release. Table 1-1 shows the various versions of Android and their codenames.

TABLE 1-1: A Brief History of Android Versions

	ANDROID VERSION
	RELEASE DATE
	CODENAME

	1.1
	9 February 2009
	

	1.5
	30 April 2009
	Cupcake

	1.6
	15 September 2009
	Donut

	2.0/2.1
	26 October 2009
	Eclair

	2.2
	20 May 2010
	Froyo

	2.3
	6 December 2010
	Gingerbread

	3.0/3.1/3.2
	22 February 2011
	Honeycomb

	4.0
	19 October 2011
	Ice Cream Sandwich

In February 2011, Google released Android 3.0, a tablet-only release supporting widescreen devices. The key changes in Android 3.0 are as follows.

	New user interface optimized for tablets

	3D desktop with new widgets

	Refined multi-tasking

	New web browser features, such as tabbed browsing, form auto-fill, bookmark synchronization, and private browsing

	Support for multi-core processors

Applications written for versions of Android prior to 3.0 are compatible with Android 3.0 devices, and they run without modifications. Android 3.0 tablet applications that make use of the newer features available in 3.0, however, will not be able to run on older devices. To ensure that an Android tablet application can run on all versions of devices, you must programmatically ensure that you only make use of features that are supported in specific versions of Android.

In October 2011, Google released Android 4.0, a version that brought all the features introduced in Android 3.0 to smartphones, along with some new features such as facial recognition unlock, data usage monitoring and control, Near Field Communication (NFC), and more.

Features of Android

Because Android is open source and freely available to manufacturers for customization, there are no fixed hardware or software configurations. However, Android itself supports the following features:

	Storage — Uses SQLite, a lightweight relational database, for data storage. Chapter 6 discusses data storage in more detail.

	Connectivity — Supports GSM/EDGE, IDEN, CDMA, EV-DO, UMTS, Bluetooth (includes A2DP and AVRCP), Wi-Fi, LTE, and WiMAX. Chapter 8 discusses networking in more detail.

	Messaging — Supports both SMS and MMS. Chapter 8 discusses messaging in more detail.

	Web browser — Based on the open source WebKit, together with Chrome’s V8 JavaScript engine

	Media support — Includes support for the following media: H.263, H.264 (in 3GP or MP4 container), MPEG-4 SP, AMR, AMR-WB (in 3GP container), AAC, HE-AAC (in MP4 or 3GP container), MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG, GIF, and BMP

	Hardware support — Accelerometer Sensor, Camera, Digital Compass, Proximity Sensor, and GPS

	Multi-touch — Supports multi-touch screens

	Multi-tasking — Supports multi-tasking applications

	Flash support — Android 2.3 supports Flash 10.1.

	Tethering — Supports sharing of Internet connections as a wired/wireless hotspot

Architecture of Android

In order to understand how Android works, take a look at Figure 1-1, which shows the various layers that make up the Android operating system (OS).

FIGURE 1-1

[image: image]

The Android OS is roughly divided into five sections in four main layers:

	Linux kernel — This is the kernel on which Android is based. This layer contains all the low-level device drivers for the various hardware components of an Android device.

	Libraries — These contain all the code that provides the main features of an Android OS. For example, the SQLite library provides database support so that an application can use it for data storage. The WebKit library provides functionalities for web browsing.

	Android runtime — At the same layer as the libraries, the Android runtime provides a set of core libraries that enable developers to write Android apps using the Java programming language. The Android runtime also includes the Dalvik virtual machine, which enables every Android application to run in its own process, with its own instance of the Dalvik virtual machine (Android applications are compiled into Dalvik executables). Dalvik is a specialized virtual machine designed specifically for Android and optimized for battery-powered mobile devices with limited memory and CPU.

	Application framework — Exposes the various capabilities of the Android OS to application developers so that they can make use of them in their applications.

	Applications — At this top layer, you will find applications that ship with the Android device (such as Phone, Contacts, Browser, etc.), as well as applications that you download and install from the Android Market. Any applications that you write are located at this layer.

Android Devices in the Market

Android devices come in all shapes and sizes. As of late November 2011, the Android OS powers the following types of devices:

	Smartphones

	Tablets

	E-reader devices

	Netbooks

	MP4 players

	Internet TVs

Chances are good that you own at least one of the preceding devices. Figure 1-2 shows (left to right) the Samsung Galaxy S II, the Motorola Atrix 4G, and the HTC EVO 4G smartphones.

FIGURE 1-2

[image: image]

Another popular category of devices that manufacturers are rushing out is the tablet. Tablets typically come in two sizes: seven inches and ten inches, measured diagonally. Figure 1-3 shows the Samsung Galaxy Tab 10.1 (left) and the Asus Eee Pad Transformer TF101 (right), both 10.1-inch tablets. Both the Samsung Galaxy 10.1 and the Asus Eee Pad Transfer TF101 run on Android 3.

FIGURE 1-3

[image: image]

Besides smartphones and tablets, Android is also beginning to appear in dedicated devices, such as e-book readers. Figure 1-4 shows the Barnes and Noble’s NOOK Color (left) and Amazon’s Kindle Fire (right), both of which are color e-Book readers running the Android OS.

FIGURE 1-4

[image: image]

In addition to these popular mobile devices, Android is also slowly finding its way into your living room. People of Lava, a Swedish company, has developed an Android-based TV, called the Scandinavia Android TV (see Figure 1-5).

FIGURE 1-5

[image: image]

Google has also ventured into a proprietary smart TV platform based on Android and codeveloped with companies such as Intel, Sony, and Logitech. Figure 1-6 shows Sony’s Google TV.

FIGURE 1-6

[image: image]

At the time of writing, the Samsung Galaxy Nexus (see Figure 1-7) is the only device running on Android 4.0. However, Google has promised that existing devices (such as the Nexus S) will be able to upgrade to Android 4.0. By the time you are reading this, there should be a plethora of devices running Android 4.0.

FIGURE 1-7

[image: image]

The Android Market

As mentioned earlier, one of the main factors determining the success of a smartphone platform is the applications that support it. It is clear from the success of the iPhone that applications play a very vital role in determining whether a new platform swims or sinks. In addition, making these applications accessible to the general user is extremely important.

As such, in August 2008, Google announced Android Market, an online application store for Android devices, and made it available to users in October 2008. Using the Market application that is preinstalled on their Android device, users can simply download third-party applications directly onto their devices. Both paid and free applications are supported on the Android Market, though paid applications are available only to users in certain countries due to legal issues.

Similarly, in some countries, users can buy paid applications from the Android Market, but developers cannot sell in that country. As an example, at the time of writing, users in India can buy apps from the Android Market, but developers in India cannot sell apps on the Android Market. The reverse may also be true; for example, users in South Korea cannot buy apps, but developers in South Korea can sell apps on the Android Market.

[image: image]
NOTE Chapter 12 discusses more about the Android Market and how you can sell your own applications in it.

The Android Developer Community

With Android in its fourth version, there is a large developer community all over the world. It is now much easier to get solutions to problems, and find like-minded developers to share app ideas and exchange experiences.

Here are some developer communities/sites that you can turn to for help if you run into problems while working with Android:

	Stack Overflow (www.stackoverflow.com) — Stack Overflow is a collaboratively edited question and answer site for developers. If you have a question about Android, chances are someone at Stack Overflow is probably already discussing the same question and someone else had already provided the answer. Best of all, other developers can vote for the best answer so that you can know which are the answers that are trustworthy.

	Google Android Training (http://developer.android.com/training/index.html) — Google has launched the Android Training site that contains a number of useful classes grouped by topics. At the time of writing, the classes mostly contain useful code snippets that are very useful to Android developers once they have started with the basics. Once you have learned the basics in this book, I strongly suggest you take a look at the classes.

	Android Discuss (http://groups.google.com/group/android-discuss) — Android Discuss is a discussion group hosted by Google using the Google Groups service. Here, you will be able to discuss the various aspects of Android programming. This group is monitored closely by the Android team at Google, and so this is good place to clarify your doubts and learn new tips and tricks.

OBTAINING THE REQUIRED TOOLS

Now that you know what Android is and what its feature set contains, you are probably anxious to get your hands dirty and start writing some applications! Before you write your first app, however, you need to download the required tools and SDKs.

For Android development, you can use a Mac, a Windows PC, or a Linux machine. All the tools needed are free and can be downloaded from the Web. Most of the examples provided in this book should work fine with the Android emulator, with the exception of a few examples that require access to the hardware. For this book, I am using a Windows 7 computer to demonstrate all the code samples. If you are using a Mac or Linux computer, the screenshots should look similar; some minor differences may be present, but you should be able to follow along without problems.

Let the fun begin!

JAVA JDK

The Android SDK makes use of the Java SE Development Kit (JDK). If your computer does not have the JDK installed, you should start by downloading it from www.oracle.com/technetwork/java/javase/downloads/index.html and installing it prior to moving to the next section.

Android SDK

The first and most important piece of software you need to download is, of course, the Android SDK. The Android SDK contains a debugger, libraries, an emulator, documentation, sample code, and tutorials.

You can download the Android SDK from http://developer.android.com/sdk/index.html (see Figure 1-8).

FIGURE 1-8

[image: image]

The Android SDK is packaged in a zip file. You can download it and unzip its content (the android-sdk-windows folder) into a folder, say C:\Android 4.0\. For Windows user, Google recommends that you download the installer_r15-windows.exe file instead and use it to set up the tools for you automatically. The following steps walk you through the installation process using this approach.

Installing the Android SDK Tools

When you have downloaded the installer_r15-windows.exe file, double-click it to start the installation of the Android tools. In the welcome screen of the Setup Wizard, click Next to continue.

If your computer does not have Java installed, you will see the error dialog shown in Figure 1-9. However, even if you have Java installed, you may still see this error. If this is the case, click the Report error button and then click Next.

FIGURE 1-9

[image: image]

You will be asked to provide a destination folder to install the Android SDK tools. Enter a destination path (see Figure 1-10) and click Next.

FIGURE 1-10

[image: image]

When you are asked to choose a Start Menu folder to create the program’s shortcut, take the default “Android SDK Tools” and click Install. When the setup is done, check the “Start SDK Manager (to download system images, etc.)” option and click Finish (see Figure 1-11). This will start the SDK Manager.

FIGURE 1-11

[image: image]

Configuring the Android SDK Manager

The Android SDK Manager manages the various versions of the Android SDK currently installed on your computer. When it is launched, you will see a list of items and whether or not they are currently installed on your computer (see Figure 1-12).

FIGURE 1-12

[image: image]

Check the relevant tools, documentation, and platforms you need for your project. Once you have selected the items you want, click the Install button to download them. Because it takes a while to download from Google’s server, it is a good idea to download only what you need immediately, and download the rest when you have more time. For now, you may want to check the items shown in the figure.

[image: image]
NOTE For a start, you should at least select the latest Android 4.0 SDK platform and the Extras. At the time of writing, the latest SDK platform is SDK Platform Android 4.0, API 14.

Each version of the Android OS is identified by an API level number. For example, Android 2.3.3 is level 10 (API 10), while Android 3.0 is level 11 (API 11), and so on. For each level, two platforms are available. For example, level 14 offers the following:

	SDK Platform

	Google APIs by Google Inc.

The key difference between the two is that the Google APIs platform contains additional APIs provided by Google (such as the Google Maps library). Therefore, if the application you are writing requires Google Maps, you need to create an AVD using the Google APIs platform (more on this is provided in Chapter 9, “Location-Based Services.”

You will be asked to choose the packages to install (see Figure 1-13). Check the Accept All option and click Install.

FIGURE 1-13

[image: image]

The SDK Manager will proceed to download the packages that you have selected. The installation takes some time, so be patient. When all the packages are installed, you will be asked to restart the ADB (Android Debug Bridge). Click Yes.

Eclipse

The next step is to obtain the integrated development environment (IDE) for developing your Android applications. In the case of Android, the recommended IDE is Eclipse, a multi-language software development environment featuring an extensible plug-in system. It can be used to develop various types of applications, using languages such as Java, Ada, C, C++, COBOL, Python, and others.

For Android development, you should download the Eclipse IDE for Java EE Developers (www.eclipse.org/downloads/). Six editions are available: Windows (32- and 64-bit), Mac OS X (Cocoa 32- and 64), and Linux (32- and 64-bit). Simply select the relevant one for your operating system. All the examples in this book were tested using the 32-bit version of Eclipse for Windows.

Once the Eclipse IDE is downloaded, unzip its content (the eclipse folder) into a folder, say C:\Android 4.0\. Figure 1-14 shows the content of the eclipse folder.

FIGURE 1-14

[image: image]

To launch Eclipse, double-click on the eclipse.exe file. You are first asked to specify your workspace. In Eclipse, a workspace is a folder where you store all your projects. Take the default suggested (or you can specify your own folder as the workspace) and click OK.

Android Development Tools (ADT)

When Eclipse is launched, select Help ⇒ Install New Software (see Figure 1-15) to install the Android Development Tools (ADT) plug-in for Eclipse.

FIGURE 1-15

[image: image]

The ADT is an extension to the Eclipse IDE that supports the creation and debugging of Android applications. Using the ADT, you will be able to do the following in Eclipse:

	Create new Android application projects.

	Access the tools for accessing your Android emulators and devices.

	Compile and debug Android applications.

	Export Android applications into Android Packages (APKs).

	Create digital certificates for code-signing your APK.

In the Install dialog that appears, specify https://dl-ssl.google.com/android/eclipse/ and press Enter. After a while, you will see the Developer Tools item appear in the middle of the window (see Figure 1-16). Expand it to reveal its content: Android DDMS, Android Development Tools, Android Hierarchy Viewer, and Android Traceview. Check all of them and click Next twice.

FIGURE 1-16

[image: image]

[image: image]
NOTE If you have any problems downloading the ADT, check out Google’s help at http://developer.android.com/sdk/eclipse-adt.html#installing.

You will be asked to review and accept the licenses. Check the “I accept the terms of the license agreements” option and click Finish. Once the installation is completed, you will be asked to restart Eclipse. Go ahead and restart Eclipse now.

When Eclipse is restarted, you are asked to configure your Android SDK (see Figure 1-17). As the Android SDK has already been downloaded earlier in the previous section, check the “Use existing SDKs” option and specify the directory where you have installed the Android SDK. Click Next.

FIGURE 1-17

[image: image]

After this step, you are asked to send your usage statistics to Google. Once you have selected your choice, click Finish.

[image: image]
NOTE As each new version of the SDK is released, the installation steps tend to differ slightly. If you do not experience the same steps as described here, don’t worry — just follow the instructions on screen.

Creating Android Virtual Devices (AVDs)

The next step is to create an Android Virtual Device (AVD) to be used for testing your Android applications. An AVD is an emulator instance that enables you to model an actual device. Each AVD consists of a hardware profile; a mapping to a system image; as well as emulated storage, such as a secure digital (SD) card.

You can create as many AVDs as you want in order to test your applications with several different configurations. This testing is important to confirm the behavior of your application when it is run on different devices with varying capabilities.

[image: image]
NOTE Appendix B discusses some of the capabilities of the Android emulator.

To create an AVD, select Window ⇒ AVD Manager (see Figure 1-18).

FIGURE 1-18

[image: image]

In the Android Virtual Device Manager dialog (see Figure 1-19), click the New... button to create a new AVD.

FIGURE 1-19

[image: image]

In the Create new Android Virtual Device (AVD) dialog, enter the items as shown in Figure 1-20. Click the Create AVD button when you are done.

FIGURE 1-20

[image: image]

In this case, you have created an AVD (put simply, an Android emulator) that emulates an Android device running version 4.0 of the OS with a built-in 10-MB SD card. In addition to what you have created, you also have the option to emulate the device with different screen densities and resolutions.

[image: image]
NOTE Appendix B explains how to emulate the different types of Android devices.

It is preferable to create a few AVDs with different API levels and hardware configurations so that your application can be tested on different versions of the Android OS.

Once your ADV has been created, it is time to test it. Select the AVD that you want to test and click the Start. . . button. The Launch Options dialog will appear (see Figure 1-21). If you have a small monitor, it is recommended that you check the “Scale display to real size” option so that you can set the emulator to a smaller size. Click the Launch button to start the emulator.

FIGURE 1-21

[image: image]

The Android emulator will start, and after a while it will be ready for use (see Figure 1-22). Go ahead and try out the emulator. It will behave just like a real Android device. After that, in the next section you will learn how to write your first Android application!

FIGURE 1-22

[image: image]

CREATING YOUR FIRST ANDROID APPLICATION

With all the tools and the SDK downloaded and installed, it is now time to start your engine. As in all programming books, the first example uses the ubiquitous Hello World application. This will give you a detailed look at the various components that make up an Android project.

TRY IT OUT: Creating Your First Android Application

codefile HelloWorld.zip available for download at Wrox.com

1. Using Eclipse, create a new project by selecting File ⇒ New ⇒ Project . . . (see Figure 1-23).

FIGURE 1-23

[image: image]

[image: image]
NOTE After you have created your first Android application, subsequent Android projects can be created by selecting File ⇒ New ⇒ Android Project.

2. Expand the Android folder and select Android Project (see Figure 1-24). Click Next.

FIGURE 1-24

[image: image]

3. Name the Android project HelloWorld, as shown in Figure 1-25, and then click Next.

FIGURE 1-25

[image: image]

4. Select the Android 4.0 target and click Next.

5. Fill in the Application Info details as shown in Figure 1-26. Click Finish.

FIGURE 1-26

[image: image]

[image: image]
NOTE You need to have at least a period (.) in the package name. The recommended convention for the package name is to use your domain name in reverse order, followed by the project name. For example, my company’s domain name is learn2develop.net ; hence, my package name would be net.learn2develop.HelloWorld.

6. The Eclipse IDE should now look like Figure 1-27.

FIGURE 1-27

[image: image]

7. In the Package Explorer (located on the left of the Eclipse IDE), expand the HelloWorld project by clicking on the various arrows displayed to the left of each item in the project (see Figure 1-28). In the res/layout folder, double-click the main.xml file.

FIGURE 1-28

[image: image]

8. The main.xml file defines the user interface (UI) of your application. The default view is the Layout view, which lays out the activity graphically. To modify the UI by hand, click the main.xml tab located at the bottom (see Figure 1-29).

FIGURE 1-29

[image: image]

9. Add the following code in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is my first Android Application!" />

 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="And this is a clickable button!" />

</LinearLayout>

10. To save the changes made to your project, press Ctrl+S.

11. You are now ready to test your application on the Android emulator. Right-click the project name in Eclipse and select Run As ⇒ Android Application (see Figure 1-30).

FIGURE 1-30

[image: image]

12. If you have not made any mistakes in the project, you should now be able to see the application installed and running on the Android emulator (see Figure 1-31).

FIGURE 1-31

[image: image]

13. Click the Home button (the house icon in the lower-left corner above the keyboard) so that it now shows the Home screen (see Figure 1-32).

FIGURE 1-32

[image: image]

14. Click the application launcher icon to display the list of applications installed on the device. Note that the HelloWorld application is now installed in the application launcher (see Figure 1-33).

FIGURE 1-33

[image: image]

WHICH AVD WILL BE USED TO TEST YOUR APPLICATION?

Recall that earlier you created a few AVDs using the AVD Manager. So which one will be launched by Eclipse when you run an Android application? Eclipse checks the target that you specified (when you created a new project), comparing it against the list of AVDs that you have created. The first one that matches will be launched to run your application.

If you have more than one suitable AVD running prior to debugging the application, Eclipse will display the Android Device Chooser dialog, which enables you to select the desired emulator/device to debug the application (see Figure 1-34).

FIGURE 1-34

[image: image]

How It Works

To create an Android project using Eclipse, you need to supply the information shown in Table 1-2.

TABLE 1-2: Project Files Created by Default

	PROPERTIES
	DESCRIPTION

	Project name
	The name of the project

	Application name
	A user-friendly name for your application

	Package name
	The name of the package. You should use a reverse domain name for this.

	Create Activity
	The name of the first activity in your application

	Min SDK Version
	The minimum version of the SDK that your project is targeting

In Android, an activity is a window that contains the user interface of your applications. An application can have zero or more activities; in this example, the application contains one activity: HelloWorldActivity. This HelloWorldActivity is the entry point of the application, which is displayed when the application is started. Chapter 2 discusses activities in more detail.

In this simple example, you modified the main.xml file to display the string “This is my first Android Application!” and a button. The main.xml file contains the user interface of the activity, which is displayed when HelloWorldActivity is loaded.

When you debug the application on the Android emulator, the application is automatically installed on the emulator. And that’s it — you have developed your first Android application!

The next section unravels how all the various files in your Android project work together to make your application come alive.

ANATOMY OF AN ANDROID APPLICATION

Now that you have created your first Hello World Android application, it is time to dissect the innards of the Android project and examine all the parts that make everything work.

First, note the various files that make up an Android project in the Package Explorer in Eclipse (see Figure 1-35).

FIGURE 1-35

[image: image]

The various folders and their files are as follows:

	src — Contains the .java source files for your project. In this example, there is one file, HelloWorldActivity.java. The HelloWorldActivity.java file is the source file for your activity. You write the code for your application in this file. The Java file is listed under the package name for your project, which in this case is net.learn2develop.HelloWorld.

	gen — Contains the R.java file, a compiler-generated file that references all the resources found in your project. You should not modify this file. All the resources in your project are automatically compiled into this class so that you can refer to them using the class.

	Android 4.0 library — This item contains one file, android.jar, which contains all the class libraries needed for an Android application.

	assets — This folder contains all the assets used by your application, such as HTML, text files, databases, etc.

	bin — This folder contains the files built by the ADT during the build process. In particular, it generates the .apk file (Android Package). An .apk file is the application binary of an Android application. It contains everything needed to run an Android application.

	res — This folder contains all the resources used in your application. It also contains a few other subfolders: drawable-<resolution>, layout, and values. Chapter 3 talks more about how you can support devices with different screen resolutions and densities.

	AndroidManifest.xml — This is the manifest file for your Android application. Here you specify the permissions needed by your application, as well as other features (such as intent-filters, receivers, etc.). Chapter 2 discusses the use of the AndroidManifest.xml file in more detail.

The main.xml file defines the user interface for your activity. Observe the following in bold:

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello" />

The @string in this case refers to the strings.xml file located in the res/values folder. Hence, @string/hello refers to the hello string defined in the strings.xml file, which is “Hello World, HelloWorldActivity!”:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string name="hello">Hello World, HelloWorldActivity!</string>
 <string name="app_name">HelloWorld</string>

</resources>

It is recommended that you store all the string constants in your application in this strings.xml file and reference these strings using the @string identifier. That way, if you ever need to localize your application to another language, all you need to do is make a copy of the entire values folder and modify the values of strings.xml to contain the string in the language that you want to display. Figure 1-36 shows that I have another folder named values-fr with the strings.xml file containing the same hello string in French.

FIGURE 1-36

[image: image]

If the user loads the same application on a phone configured to display French as the default language, your application will automatically display the hello string in French.

The next important file in an Android project is the manifest file. Note the content of the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.HelloWorld"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".HelloWorldActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The AndroidManifest.xml file contains detailed information about the application:

	It defines the package name of the application as net.learn2develop.HelloWorld.

	The version code of the application is 1 (set via the android:versionCode attribute). This value is used to identify the version number of your application. It can be used to programmatically determine whether an application needs to be upgraded.

	The version name of the application is 1.0 (set via the android:versionName attribute). This string value is mainly used for display to the user. You should use the format <major>.<minor>.<point> for this value.

	The android:minSdkVersion attribute of the <uses-sdk> element specifies the minimum version of the OS on which the application will run.

	The application uses the image named ic_launcher.png located in the drawable folders.

	The name of this application is the string named app_name defined in the strings.xml file.

	There is one activity in the application represented by the HelloWorldActivity.java file. The label displayed for this activity is the same as the application name.

	Within the definition for this activity, there is an element named <intent-filter>:

	The action for the intent filter is named android.intent.action.MAIN to indicate that this activity serves as the entry point for the application.

	The category for the intent-filter is named android.intent.category.LAUNCHER to indicate that the application can be launched from the device’s launcher icon. Chapter 2 discusses intents in more detail.

As you add more files and folders to your project, Eclipse will automatically generate the content of R.java, which currently contains the following:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package net.learn2develop.HelloWorld;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040001;
 public static final int hello=0x7f040000;
 }
}

You are not supposed to modify the content of the R.java file; Eclipse automatically generates the content for you when you modify your project.

[image: image]
NOTE If you delete R.java manually, Eclipse will regenerate it for you immediately. Note that in order for Eclipse to generate the R.java file for you, the project must not contain any errors. If you realize that Eclipse has not regenerated R.java after you have deleted it, check your project again. The code may contain syntax errors, or your XML files (such as AndroidManifest.xml, main.xml, etc.) may not be well-formed.

Finally, the code that connects the activity to the UI (main.xml) is the setContentView() method, which is in the HelloWorldActivity.java file:

package net.learn2develop.HelloWorld;

import android.app.Activity;
import android.os.Bundle;

public class HelloWorldActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Here, R.layout.main refers to the main.xml file located in the res/layout folder. As you add additional XML files to the res/layout folder, the filenames will automatically be generated in the R.java file. The onCreate() method is one of many methods that are fired when an activity is loaded. Chapter 2 discusses the life cycle of an activity in more detail.

SUMMARY

This chapter has provided a brief overview of Android, and highlighted some of its capabilities. If you have followed the sections on downloading the tools and the Android SDK, you should now have a working system — one that is capable of developing more interesting Android applications other than the Hello World application. In the next chapter, you will learn about the concepts of activities and intents, and the very important roles they play in Android.

EXERCISES

1. What is an AVD?

2. What is the difference between the android:versionCode and android:versionName attributes in the AndroidManifest.xml file?

3. What is the use of the strings.xml file?

Answers to the exercises can be found in Appendix C.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Android OS
	Android is an open source mobile operating system based on the Linux operating system. It is available to anyone who wants to adapt it to run on their own devices.

	Languages used for Android application development
	You use the Java programming language to develop Android applications. Written applications are compiled into Dalvik executables, which are then run on top of the Dalvik virtual machine.

	Android Market
	The Android Market hosts all the various Android applications written by third-party developers.

	Tools for Android application development
	Eclipse IDE, Android SDK, and the ADT

	Activities
	An activity is represented by a screen in your Android application. Each application can have zero or more activities.

	The Android manifest file
	The AndroidManifest.xml file contains detailed configuration information for your application. As your example application becomes more sophisticated, you will modify this file, and you will see the different information you can add to it as you progress through the chapters.

Chapter 2

Activities, Fragments, and Intents

WHAT YOU WILL LEARN IN THIS CHAPTER

	The life cycles of an activity

	Using fragments to customize your UI

	Applying styles and themes to activities

	How to display activities as dialog windows

	Understanding the concept of intents

	Using the Intent object to link activities

	How intent filters help you selectively connect to other activities

	Displaying alerts to the user using notifications

In Chapter 1, you learned that an activity is a window that contains the user interface of your application. An application can have zero or more activities. Typically, applications have one or more activities; and the main purpose of an activity is to interact with the user. From the moment an activity appears on the screen to the moment it is hidden, it goes through a number of stages, known as an activity’s life cycle. Understanding the life cycle of an activity is vital to ensuring that your application works correctly. In addition to activities, Android 4.0 also supports a feature that was introduced in Android 3.0 (for tablets): fragments. Think of fragments as “miniature” activities that can be grouped to form an activity. In this chapter, you will learn about how activities and fragments work together.

Apart from activities, another unique concept in Android is that of an intent. An intent is basically the “glue” that enables different activities from different applications to work together seamlessly, ensuring that tasks can be performed as though they all belong to one single application. Later in this chapter, you will learn more about this very important concept and how you can use it to call built-in applications such as the Browser, Phone, Maps, and more.

UNDERSTANDING ACTIVITIES

This chapter begins by looking at how to create an activity. To create an activity, you create a Java class that extends the Activity base class:

package net.learn2develop.Activity101;

import android.app.Activity;
import android.os.Bundle;

public class Activity101Activity extends Activity {
 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

Your activity class loads its UI component using the XML file defined in your res/layout folder. In this example, you would load the UI from the main.xml file:

 setContentView(R.layout.main);

Every activity you have in your application must be declared in your AndroidManifest.xml file, like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.Activity101"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".Activity101Activity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

The Activity base class defines a series of events that govern the life cycle of an activity. The Activity class defines the following events:

	onCreate() — Called when the activity is first created

	onStart() — Called when the activity becomes visible to the user

	onResume() — Called when the activity starts interacting with the user

	onPause() — Called when the current activity is being paused and the previous activity is being resumed

	onStop() — Called when the activity is no longer visible to the user

	onDestroy() — Called before the activity is destroyed by the system (either manually or by the system to conserve memory)

	onRestart() — Called when the activity has been stopped and is restarting again

By default, the activity created for you contains the onCreate() event. Within this event handler is the code that helps to display the UI elements of your screen.

Figure 2-1 shows the life cycle of an activity and the various stages it goes through — from when the activity is started until it ends.

FIGURE 2-1

[image: image]

The best way to understand the various stages of an activity is to create a new project, implement the various events, and then subject the activity to various user interactions.

TRY IT OUT: Understanding the Life Cycle of an Activity

codefile Activity101.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Activity101.

2. In the Activity101Activity.java file, add the following statements in bold:

package net.learn2develop.Activity101;

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

public class Activity101Activity extends Activity {
 String tag = "Lifecycle";

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 Log.d(tag, "In the onCreate() event");
 }

 public void onStart()
 {
 super.onStart();
 Log.d(tag, "In the onStart() event");
 }

 public void onRestart()
 {
 super.onRestart();
 Log.d(tag, "In the onRestart() event");
 }

 public void onResume()
 {
 super.onResume();
 Log.d(tag, "In the onResume() event");
 }

 public void onPause()
 {
 super.onPause();
 Log.d(tag, "In the onPause() event");
 }

 public void onStop()
 {
 super.onStop();
 Log.d(tag, "In the onStop() event");
 }

 public void onDestroy()
 {
 super.onDestroy();
 Log.d(tag, "In the onDestroy() event");
 }
}

3. Press F11 to debug the application on the Android emulator.

4. When the activity is first loaded, you should see something very similar to the following in the LogCat window (click the Debug perspective; see also Figure 2-2):

FIGURE 2-2

[image: image]

11-16 06:25:59.396: D/Lifecycle(559): In the onCreate() event
11-16 06:25:59.396: D/Lifecycle(559): In the onStart() event
11-16 06:25:59.396: D/Lifecycle(559): In the onResume() event

5. If you click the Back button on the Android emulator, the following is printed:

11-16 06:29:26.665: D/Lifecycle(559): In the onPause() event
11-16 06:29:28.465: D/Lifecycle(559): In the onStop() event
11-16 06:29:28.465: D/Lifecycle(559): In the onDestroy() event

6. Click the Home button and hold it there. Click the Activities icon and observe the following:

11-16 06:31:08.905: D/Lifecycle(559): In the onCreate() event
11-16 06:31:08.905: D/Lifecycle(559): In the onStart() event
11-16 06:31:08.925: D/Lifecycle(559): In the onResume() event

7. Click the Phone button on the Android emulator so that the activity is pushed to the background. Observe the output in the LogCat window:

11-16 06:32:00.585: D/Lifecycle(559): In the onPause() event
11-16 06:32:05.015: D/Lifecycle(559): In the onStop() event

8. Notice that the onDestroy() event is not called, indicating that the activity is still in memory. Exit the phone dialer by clicking the Back button. The activity is now visible again. Observe the output in the LogCat window:

11-16 06:32:50.515: D/Lifecycle(559): In the onRestart() event
11-16 06:32:50.515: D/Lifecycle(559): In the onStart() event
11-16 06:32:50.515: D/Lifecycle(559): In the onResume() event

The onRestart() event is now fired, followed by the onStart() and onResume() methods.

How It Works

As you can see from this simple example, an activity is destroyed when you click the Back button. This is crucial to know, as whatever state the activity is currently in will be lost; hence, you need to write additional code in your activity to preserve its state when it is destroyed (Chapter 3 shows you how). At this point, note that the onPause() method is called in both scenarios — when an activity is sent to the background, as well as when it is killed when the user presses the Back button.

When an activity is started, the onStart() and onResume()methods are always called, regardless of whether the activity is restored from the background or newly created. When an activity is created for the first time, the onCreate() method is called.

From the preceding example, you can derive the following guidelines:

	Use the onCreate() method to create and instantiate the objects that you will be using in your application.

	Use the onResume() method to start any services or code that needs to run while your activity is in the foreground.

	Use the onPause() method to stop any services or code that does not need to run when your activity is not in the foreground.

	Use the onDestroy() method to free up resources before your activity is destroyed.

[image: image]
NOTE Even if an application has only one activity and the activity is killed, the application will still be running in memory.

Applying Styles and Themes to an Activity

By default, an activity occupies the entire screen. However, you can apply a dialog theme to an activity so that it is displayed as a floating dialog. For example, you might want to customize your activity to display as a pop-up, warning users about some actions that they are going to perform. In this case, displaying the activity as a dialog is a good way to get their attention.

To apply a dialog theme to an activity, simply modify the <Activity> element in the AndroidManifest.xml file by adding the android:theme attribute:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.Activity101"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Dialog">
 <activity
 android:label="@string/app_name"
 android:name=".Activity101Activity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

This will make the activity appear as a dialog, as shown in Figure 2-3.

FIGURE 2-3

[image: image]

Hiding the Activity Title

You can also hide the title of an activity if desired (such as when you just want to display a status update to the user). To do so, use the requestWindowFeature() method and pass it the Window.FEATURE_NO_TITLE constant, like this:

import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;

public class Activity101Activity extends Activity {
 String tag = "Lifecycle";

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //---hides the title bar---
 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.main);
 Log.d(tag, "In the onCreate() event");
 }
}

This will hide the title bar, as shown in Figure 2-4.

FIGURE 2-4

[image: image]

Displaying a Dialog Window

There are times when you need to display a dialog window to get a confirmation from the user. In this case, you can override the onCreateDialog() protected method defined in the Activity base class to display a dialog window. The following Try It Out shows you how.

TRY IT OUT: Displaying a Dialog Window Using an Activity

codefile Dialog.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Dialog.

2. Add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_dialog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a dialog"
 android:onClick="onClick" />

</LinearLayout>

3. Add the following statements in bold to the DialogActivity.java file:

package net.learn2develop.Dialog;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class DialogActivity extends Activity {
 CharSequence[] items = { "Google", "Apple", "Microsoft" };
 boolean[] itemsChecked = new boolean [items.length];

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View v) {
 showDialog(0);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case 0:
 return new AlertDialog.Builder(this)
 .setIcon(R.drawable.ic_launcher)
 .setTitle("This is a dialog with some simple text...")
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 }
)
 .setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "Cancel clicked!", Toast.LENGTH_SHORT).show();
 }
 }
)
 .setMultiChoiceItems(items, itemsChecked,
 new DialogInterface.OnMultiChoiceClickListener() {
 public void onClick(DialogInterface dialog,
 int which, boolean isChecked) {
 Toast.makeText(getBaseContext(),
 items[which] + (isChecked ? " checked!":" unchecked!"),
 Toast.LENGTH_SHORT).show();
 }
 }
).create();

 }
 return null;
 }

}

4. Press F11 to debug the application on the Android emulator. Click the button to display the dialog (see Figure 2-5). Checking the various checkboxes will cause the Toast class to display the text of the item checked/unchecked. To dismiss the dialog, click the OK or Cancel button.

FIGURE 2-5

[image: image]

How It Works

To display a dialog, you first implement the onCreateDialog() method in the Activity class:

 @Override
 protected Dialog onCreateDialog(int id) {
 //...
 }

This method is called when you call the showDialog() method:

 public void onClick(View v) {
 showDialog(0);
 }

The onCreateDialog() method is a callback for creating dialogs that are managed by the activity. When you call the showDialog() method, this callback will be invoked. The showDialog() method accepts an integer argument identifying a particular dialog to display. In this case, we used a switch statement to identify the different types of dialogs to create, although the current example creates only one type of dialog. Subsequent Try It Out exercises will extend this example to create different types of dialogs.

To create a dialog, you use the AlertDialog class’s Builder constructor. You set the various properties, such as icon, title, and buttons, as well as checkboxes:

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case 0:
 return new AlertDialog.Builder(this)
 .setIcon(R.drawable.ic_launcher)
 .setTitle("This is a dialog with some simple text...")
 .setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 }
)
 .setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "Cancel clicked!", Toast.LENGTH_SHORT).show();
 }
 }
)
 .setMultiChoiceItems(items, itemsChecked,
 new DialogInterface.OnMultiChoiceClickListener() {
 public void onClick(DialogInterface dialog,
 int which, boolean isChecked) {
 Toast.makeText(getBaseContext(),
 items[which] + (isChecked ? " checked!":" unchecked!"),
 Toast.LENGTH_SHORT).show();
 }
 }
).create();

 }
 return null;
 }

The preceding code sets two buttons, OK and Cancel, using the setPositiveButton() and setNegativeButton() methods, respectively. You also set a list of checkboxes for users to choose via the setMultiChoiceItems() method. For the setMultiChoiceItems() method, you passed in two arrays: one for the list of items to display and another to contain the value of each item, to indicate if they are checked. When each item is checked, you use the Toast class to display a message indicating the item that was checked.

The preceding code for creating the dialog looks complicated, but it could easily be rewritten as follows:

package net.learn2develop.Dialog;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.AlertDialog.Builder;
import android.app.Dialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class DialogActivity extends Activity {
 CharSequence[] items = { "Google", "Apple", "Microsoft" };
 boolean[] itemsChecked = new boolean [items.length];

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View v) {
 showDialog(0);
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case 0:
 Builder builder = new AlertDialog.Builder(this);
 builder.setIcon(R.drawable.ic_launcher);
 builder.setTitle("This is a dialog with some simple text...");
 builder.setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 }
);

 builder.setNegativeButton("Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton) {
 Toast.makeText(getBaseContext(),
 "Cancel clicked!", Toast.LENGTH_SHORT).show();
 }
 }
);

 builder.setMultiChoiceItems(items, itemsChecked,
 new DialogInterface.OnMultiChoiceClickListener() {
 public void onClick(DialogInterface dialog,
 int which, boolean isChecked) {
 Toast.makeText(getBaseContext(),
 items[which] + (isChecked ? " checked!":" unchecked!"),
 Toast.LENGTH_SHORT).show();
 }
 }
);
 return builder.create();
 }
 return null;
 }
}

THE CONTEXT OBJECT

In Android, you often encounter the Context class and its instances. Instances of the Context class are often used to provide references to your application. For example, in the following code snippet, the first parameter of the Toast class takes in a Context object:

.setPositiveButton("OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog, int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 }

However, because the Toast() class is not used directly in the activity (it is used within the AlertDialog class), you need to return an instance of the Context class by using the getBaseContext() method.

You also encounter the Context class when creating a view dynamically in an activity. For example, you may want to dynamically create a TextView from code. To do so, you instantiate the TextView class, like this:

TextView tv = new TextView(this);

The constructor for the TextView class takes a Context object; and because the Activity class is a subclass of Context, you can use the this keyword to represent the Context object.

Displaying a Progress Dialog

One common UI feature in an Android device is the “Please wait” dialog that you typically see when an application is performing a long-running task. For example, the application may be logging in to a server before the user is allowed to use it, or it may be doing a calculation before displaying the result to the user. In such cases, it is helpful to display a dialog, known as a progress dialog, so that the user is kept in the loop.

The following Try It Out demonstrates how to display such a dialog.

TRY IT OUT: Displaying a Progress (Please Wait) Dialog

1. Using the same project created in the previous section, add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_dialog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a dialog"
 android:onClick="onClick" />

<Button
 android:id="@+id/btn_dialog2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a progress dialog"
 android:onClick="onClick2" />

</LinearLayout>

2. Add the following statements in bold to the DialogActivity.java file:

package net.learn2develop.Dialog;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.AlertDialog.Builder;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class DialogActivity extends Activity {
 CharSequence[] items = { "Google", "Apple", "Microsoft" };
 boolean[] itemsChecked = new boolean [items.length];

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View v) {
 showDialog(0);
 }

 public void onClick2(View v) {
 //---show the dialog---
 final ProgressDialog dialog = ProgressDialog.show(
 this, "Doing something", "Please wait...", true);
 new Thread(new Runnable(){
 public void run(){
 try {
 //---simulate doing something lengthy---
 Thread.sleep(5000);
 //---dismiss the dialog---
 dialog.dismiss();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }).start();
 }

 @Override
 protected Dialog onCreateDialog(int id) { ... }

}

3. Press F11 to debug the application on the Android emulator. Clicking the second button will display the progress dialog, as shown in Figure 2-6. It will go away after five seconds.

FIGURE 2-6

[image: image]

How It Works

Basically, to create a progress dialog, you created an instance of the ProgressDialog class and called its show() method:

 //---show the dialog---
 final ProgressDialog dialog = ProgressDialog.show(
 this, "Doing something", "Please wait...", true);

This displays the progress dialog that you have just seen. Because this is a modal dialog, it will block the UI until it is dismissed. To perform a long-running task in the background, you created a Thread using a Runnable block (you will learn more about threading in Chapter 11). The code that you placed inside the run() method will be executed in a separate thread, and in this case you simulated it performing something for five seconds by inserting a delay using the sleep() method:

 new Thread(new Runnable(){
 public void run(){
 try {
 //---simulate doing something lengthy---
 Thread.sleep(5000);
 //---dismiss the dialog---
 dialog.dismiss();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }).start();

After the five seconds elapse, you dismiss the dialog by calling the dismss() method.

Displaying a More Sophisticated Progress Dialog

Besides the generic “please wait” dialog that you created in the previous section, you can also create a dialog that displays the progress of an operation, such as the status of a download.

The following Try It Out shows you how to display a specialized progress dialog.

TRY IT OUT: Displaying the Progress of an Operation

1. Using the same project created in the previous section, add the following lines in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_dialog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a dialog"
 android:onClick="onClick" />

<Button
 android:id="@+id/btn_dialog2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a progress dialog"
 android:onClick="onClick2" />

<Button
 android:id="@+id/btn_dialog3"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to display a detailed progress dialog"
 android:onClick="onClick3" />

</LinearLayout>

2. Add the following statements in bold to the DialogActivity.java file:

package net.learn2develop.Dialog;

import android.app.Activity;
import android.app.AlertDialog;
import android.app.AlertDialog.Builder;
import android.app.Dialog;
import android.app.ProgressDialog;
import android.content.DialogInterface;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class DialogActivity extends Activity {
 CharSequence[] items = { "Google", "Apple", "Microsoft" };
 boolean[] itemsChecked = new boolean [items.length];

 ProgressDialog progressDialog;

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) { ... }

 public void onClick(View v) { ... }

 public void onClick2(View v) { ... }

 public void onClick3(View v) {
 showDialog(1);
 progressDialog.setProgress(0);

 new Thread(new Runnable(){
 public void run(){
 for (int i=1; i<=15; i++) {
 try {
 //---simulate doing something lengthy---
 Thread.sleep(1000);
 //---update the dialog---
 progressDialog.incrementProgressBy((int)(100/15));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 progressDialog.dismiss();
 }
 }).start();
 }

 @Override
 protected Dialog onCreateDialog(int id) {
 switch (id) {
 case 0:
 return new AlertDialog.Builder(this)
 //...
).create();

 case 1:
 progressDialog = new ProgressDialog(this);
 progressDialog.setIcon(R.drawable.ic_launcher);
 progressDialog.setTitle("Downloading files...");
 progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 progressDialog.setButton(DialogInterface.BUTTON_POSITIVE, "OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 });
 progressDialog.setButton(DialogInterface.BUTTON_NEGATIVE, "Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "Cancel clicked!", Toast.LENGTH_SHORT).show();
 }
 });
 return progressDialog;
 }

 return null;
 }
}

3. Press F11 to debug the application on the Android emulator. Click the third button to display the progress dialog (see Figure 2-7). Note that the progress bar will count up to 100%.

FIGURE 2-7

[image: image]

How It Works

To create a dialog that shows the progress of an operation, you first create an instance of the ProgressDialog class and set its various properties, such as icon, title, and style:

 progressDialog = new ProgressDialog(this);
 progressDialog.setIcon(R.drawable.ic_launcher);
 progressDialog.setTitle("Downloading files...");
 progressDialog.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);

You then set the two buttons that you want to display inside the progress dialog:

 progressDialog.setButton(DialogInterface.BUTTON_POSITIVE, "OK",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "OK clicked!", Toast.LENGTH_SHORT).show();
 }
 });
 progressDialog.setButton(DialogInterface.BUTTON_NEGATIVE, "Cancel",
 new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dialog,
 int whichButton)
 {
 Toast.makeText(getBaseContext(),
 "Cancel clicked!", Toast.LENGTH_SHORT).show();
 }
 });
 return progressDialog;

The preceding code causes a progress dialog to appear (see Figure 2-8).

FIGURE 2-8

[image: image]

To display the progress status in the progress dialog, you can use a Thread object to run a Runnable block of code:

 progressDialog.setProgress(0);

 new Thread(new Runnable(){
 public void run(){
 for (int i=1; i<=15; i++) {
 try {
 //---simulate doing something lengthy---
 Thread.sleep(1000);
 //---update the dialog---
 progressDialog.incrementProgressBy((int)(100/15));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 progressDialog.dismiss();
 }
 }).start();

In this case, you want to count from 1 to 15, with a delay of one second between each number. The incrementProgressBy() method increments the counter in the progress dialog. When the progress dialog reaches 100%, it is dismissed.

LINKING ACTIVITIES USING INTENTS

An Android application can contain zero or more activities. When your application has more than one activity, you often need to navigate from one to another. In Android, you navigate between activities through what is known as an intent.

The best way to understand this very important but somewhat abstract concept in Android is to experience it firsthand and see what it helps you to achieve. The following Try It Out shows how to add another activity to an existing project and then navigate between the two activities.

TRY IT OUT: Linking Activities with Intents

codefile UsingIntent.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it UsingIntent.

2. Right-click on the package name under the src folder and select New ⇒ Class (see Figure 2-9).

FIGURE 2-9

[image: image]

3. Name the new class SecondActivity and click Finish.

4. Add the following statements in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.UsingIntent"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".UsingIntentActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:label="Second Activity"
 android:name=".SecondActivity" >
 <intent-filter >
 <action android:name="net.learn2develop.SecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>

</manifest>

5. Make a copy of the main.xml file (in the res/layout folder) by right-clicking on it and selecting Copy. Then, right-click on the res/layout folder and select Paste. Name the file secondactivity.xml. The res/layout folder will now contain the secondactivity.xml file (see Figure 2-10).

FIGURE 2-10

[image: image]

6. Modify the secondactivity.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is the Second Activity!" />

</LinearLayout>

7. In the SecondActivity.java file, add the following statements in bold:

package net.learn2develop.UsingIntent;

import android.app.Activity;
import android.os.Bundle;

public class SecondActivity extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondactivity);
 }
}

8. Add the following lines in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Display second activity"
 android:onClick="onClick"/>

</LinearLayout>

9. Modify the UsingIntentActivity.java file as shown in bold:

package net.learn2develop.UsingIntent;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class UsingIntentActivity extends Activity {
 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View view) {
 startActivity(new Intent("net.learn2develop.SecondActivity"));
 }
}

10. Press F11 to debug the application on the Android emulator. When the first activity is loaded, click the button and the second activity will now be loaded (see Figure 2-11).

FIGURE 2-11

[image: image]

How It Works

As you have learned, an activity is made up of a UI component (for example, main.xml) and a class component (for example, UsingIntentActivity.java). Hence, if you want to add another activity to a project, you need to create these two components.

In the AndroidManifest.xml file, specifically you have added the following:

 <activity
 android:label=" Second Activity"
 android:name=".SecondActivity" >
 <intent-filter >
 <action android:name="net.learn2develop.SecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

Here, you have added a new activity to the application. Note the following:

	The name (class) of the new activity added is SecondActivity.

	The label for the new activity is named Second Activity.

	The intent filter name for the new activity is net.learn2develop.SecondActivity. Other activities that wish to call this activity will invoke it via this name. Ideally, you should use the reverse domain name of your company as the intent filter name in order to reduce the chances of another application having the same intent filter name. (The next section discusses what happens when two or more activities have the same intent filter.)

	The category for the intent filter is android.intent.category.DEFAULT. You need to add this to the intent filter so that this activity can be started by another activity using the startActivity() method (more on this shortly).

When the button is clicked, you use the startActivity() method to display SecondActivity by creating an instance of the Intent class and passing it the intent filter name of SecondActivity (which is net.learn2develop.SecondActivity):

 public void onClick(View view) {
 startActivity(new Intent("net.learn2develop.SecondActivity"));
 }

Activities in Android can be invoked by any application running on the device. For example, you can create a new Android project and then display SecondActivity by using its net.learn2develop.SecondActivity intent filter. This is one of the fundamental concepts in Android that enables an application to invoke another easily.

If the activity that you want to invoke is defined within the same project, you can rewrite the preceding statement like this:

 startActivity(new Intent(this, SecondActivity.class));

However, this approach is applicable only when the activity you want to display is within the same project as the current activity.

Resolving Intent Filter Collision

In the previous section, you learned that the <intent-filter> element defines how your activity can be invoked by another activity. What happens if another activity (in either the same or a separate application) has the same filter name? For example, suppose your application has another activity named Activity3, with the following entry in the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.UsingIntent"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".UsingIntentActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:label="Second Activity"
 android:name=".SecondActivity" >
 <intent-filter >
 <action android:name="net.learn2develop.SecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 <activity
 android:label="Third Activity"
 android:name=".ThirdActivity" >
 <intent-filter >
 <action android:name="net.learn2develop.SecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

 </application>

</manifest>

If you call the startActivity() method with the following intent, then the Android OS will display a selection of activities, as shown in Figure 2-12:

FIGURE 2-12

[image: image]

 startActivity(new Intent("net.learn2develop.SecondActivity"));

If you check the “Use by default for this action” item and then select an activity, then the next time the intent “net.learn2develop.SecondActivity” is called again, it will launch the previous activity that you have selected.

To clear this default, go to the Settings application in Android and select Apps ⇒ Manage applications, and then select the application name (see Figure 2-13). When the details of the application are shown, scroll down to the bottom and click the Clear defaults button.

FIGURE 2-13

[image: image]

Returning Results from an Intent

The startActivity() method invokes another activity but does not return a result to the current activity. For example, you may have an activity that prompts the user for user name and password. The information entered by the user in that activity needs to be passed back to the calling activity for further processing. If you need to pass data back from an activity, you should instead use the startActivityForResult() method. The following Try It Out demonstrates this.

TRY IT OUT: Obtaining a Result from an Activity

1. Using the same project from the previous section, add the following statements in bold to the secondactivity.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is the Second Activity!" />

<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Please enter your name" />

<EditText
 android:id="@+id/txt_username"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

<Button
 android:id="@+id/btn_OK"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="OK"
 android:onClick="onClick"/>

</LinearLayout>

2. Add the following statements in bold to SecondActivity.java:

package net.learn2develop.UsingIntent;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.EditText;

public class SecondActivity extends Activity{
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondactivity);
 }

 public void onClick(View view) {
 Intent data = new Intent();

 //---get the EditText view---
 EditText txt_username =
 (EditText) findViewById(R.id.txt_username);

 //---set the data to pass back---
 data.setData(Uri.parse(
 txt_username.getText().toString()));
 setResult(RESULT_OK, data);

 //---closes the activity---
 finish();
 }
}

3. Add the following statements in bold to the UsingIntentActivity.java file:

package net.learn2develop.UsingIntent;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class UsingIntentActivity extends Activity {
 int request_Code = 1;

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View view) {
 //startActivity(new Intent("net.learn2develop.SecondActivity"));
 //or
 //startActivity(new Intent(this, SecondActivity.class));
 startActivityForResult(new Intent(
 "net.learn2develop.SecondActivity"),
 request_Code);
 }

 public void onActivityResult(int requestCode, int resultCode, Intent data)
 {
 if (requestCode == request_Code) {
 if (resultCode == RESULT_OK) {
 Toast.makeText(this,data.getData().toString(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }
}

4. Press F11 to debug the application on the Android emulator. When the first activity is loaded, click the button. SecondActivity will now be loaded. Enter your name (see Figure 2-14) and click the OK button. The first activity will display the name you have entered using the Toast class.

FIGURE 2-14

[image: image]

How It Works

To call an activity and wait for a result to be returned from it, you need to use the startActivityForResult() method, like this:

 startActivityForResult(new Intent(
 "net.learn2develop.SecondActivity"),
 request_Code);

In addition to passing in an Intent object, you need to pass in a request code as well. The request code is simply an integer value that identifies an activity you are calling. This is needed because when an activity returns a value, you must have a way to identify it. For example, you may be calling multiple activities at the same time, and some activities may not return immediately (for example, waiting for a reply from a server). When an activity returns, you need this request code to determine which activity is actually returned.

[image: image]
NOTE If the request code is set to -1, then calling it using the startActivityForResult() method is equivalent to calling it using the startActivity() method. That is, no result will be returned.

In order for an activity to return a value to the calling activity, you use an Intent object to send data back via the setData() method:

 Intent data = new Intent();

 //---get the EditText view---
 EditText txt_username =
 (EditText) findViewById(R.id.txt_username);

 //---set the data to pass back---
 data.setData(Uri.parse(
 txt_username.getText().toString()));
 setResult(RESULT_OK, data);

 //---closes the activity---
 finish();

The setResult() method sets a result code (either RESULT_OK or RESULT_CANCELLED) and the data (an Intent object) to be returned back to the calling activity. The finish() method closes the activity and returns control back to the calling activity.

In the calling activity, you need to implement the onActivityResult() method, which is called whenever an activity returns:

 public void onActivityResult(int requestCode, int resultCode,
 Intent data)
 {
 if (requestCode == request_Code) {
 if (resultCode == RESULT_OK) {
 Toast.makeText(this,data.getData().toString(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }

Here, you check for the appropriate request and result codes and display the result that is returned. The returned result is passed in via the data argument; and you obtain its details through the getData() method.

Passing Data Using an Intent Object

Besides returning data from an activity, it is also common to pass data to an activity. For example, in the previous example you may want to set some default text in the EditText view before the activity is displayed. In this case, you can use the Intent object to pass the data to the target activity.

The following Try It Out shows you the various ways in which you can pass data between activities.

TRY IT OUT: Passing Data to the Target Activity

1. Using Eclipse, create a new Android project and name it PassingData.

2. Add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_SecondActivity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to go to Second Activity"
 android:onClick="onClick"/>

</LinearLayout>

3. Add a new XML file to the res/layout folder and name it secondactivity.xml. Populate it as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Welcome to Second Activity" />

<Button
 android:id="@+id/btn_MainActivity"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to return to main activity"
 android:onClick="onClick"/>

</LinearLayout>

4. Add a new Class file to the package and name it SecondActivity. Populate the SecondActivity.java file as follows:

package net.learn2develop.PassingData;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class SecondActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.secondactivity);

 //---get the data passed in using getStringExtra()---
 Toast.makeText(this,getIntent().getStringExtra("str1"),
 Toast.LENGTH_SHORT).show();

 //---get the data passed in using getIntExtra()---
 Toast.makeText(this,Integer.toString(
 getIntent().getIntExtra("age1", 0)),
 Toast.LENGTH_SHORT).show();

 //---get the Bundle object passed in---
 Bundle bundle = getIntent().getExtras();

 //---get the data using the getString()---
 Toast.makeText(this, bundle.getString("str2"),
 Toast.LENGTH_SHORT).show();

 //---get the data using the getInt() method---
 Toast.makeText(this,Integer.toString(bundle.getInt("age2")),
 Toast.LENGTH_SHORT).show();
 }

 public void onClick(View view) {
 //---use an Intent object to return data---
 Intent i = new Intent();

 //---use the putExtra() method to return some
 // value---
 i.putExtra("age3", 45);

 //---use the setData() method to return some value---
 i.setData(Uri.parse(
 "Something passed back to main activity"));

 //---set the result with OK and the Intent object---
 setResult(RESULT_OK, i);

 //---destroy the current activity---
 finish();
 }
}

5. Add the following statements in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.PassingData"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".PassingDataActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:label="Second Activity"
 android:name=".SecondActivity" >
 <intent-filter >
 <action android:name="net.learn2develop.PassingDataSecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>

</manifest>

6. Add the following statements in bold to the PassingDataActivity.java file:

package net.learn2develop.PassingData;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Toast;

public class PassingDataActivity extends Activity {
 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View view) {
 Intent i = new
 Intent("net.learn2develop.PassingDataSecondActivity");
 //---use putExtra() to add new name/value pairs---
 i.putExtra("str1", "This is a string");
 i.putExtra("age1", 25);

 //---use a Bundle object to add new name/values
 // pairs---
 Bundle extras = new Bundle();
 extras.putString("str2", "This is another string");
 extras.putInt("age2", 35);

 //---attach the Bundle object to the Intent object---
 i.putExtras(extras);

 //---start the activity to get a result back---
 startActivityForResult(i, 1);
 }

 public void onActivityResult(int requestCode,
 int resultCode, Intent data)
 {
 //---check if the request code is 1---
 if (requestCode == 1) {

 //---if the result is OK---
 if (resultCode == RESULT_OK) {

 //---get the result using getIntExtra()---
 Toast.makeText(this, Integer.toString(
 data.getIntExtra("age3", 0)),
 Toast.LENGTH_SHORT).show();

 //---get the result using getData()---
 Toast.makeText(this, data.getData().toString(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }

}

7. Press F11 to debug the application on the Android emulator. Click the button on each activity and observe the values displayed.

How It Works

While this application is not visually exciting, it does illustrate some important ways to pass data between activities.

First, you can use the putExtra() method of an Intent object to add a name/value pair:

 //---use putExtra() to add new name/value pairs---
 i.putExtra("str1", "This is a string");
 i.putExtra("age1", 25);

The preceding statements add two name/value pairs to the Intent object: one of type string and one of type integer.

Besides using the putExtra() method, you can also create a Bundle object and then attach it using the putExtras() method. Think of a Bundle object as a dictionary object — it contains a set of name/value pairs. The following statements create a Bundle object and then add two name/value pairs to it. It is then attached to the Intent object:

 //---use a Bundle object to add new name/values pairs---
 Bundle extras = new Bundle();
 extras.putString("str2", "This is another string");
 extras.putInt("age2", 35);

 //---attach the Bundle object to the Intent object---
 i.putExtras(extras);

On the second activity, to obtain the data sent using the Intent object, you first obtain the Intent object using the getIntent() method. Then, call its getStringExtra() method to get the string value set using the putExtra() method:

 //---get the data passed in using getStringExtra()---
 Toast.makeText(this,getIntent().getStringExtra("str1"),
 Toast.LENGTH_SHORT).show();

In this case, you have to call the appropriate method to extract the name/value pair based on the type of data set. For the integer value, use the getIntExtra() method (the second argument is the default value in case no value is stored in the specified name):

 //---get the data passed in using getIntExtra()---
 Toast.makeText(this,Integer.toString(
 getIntent().getIntExtra("age1", 0)),
 Toast.LENGTH_SHORT).show();

To retrieve the Bundle object, use the getExtras() method:

 //---get the Bundle object passed in---
 Bundle bundle = getIntent().getExtras();

To get the individual name/value pairs, use the appropriate method. For the string value, use the getString() method:

 //---get the data using the getString()---
 Toast.makeText(this, bundle.getString("str2"),
 Toast.LENGTH_SHORT).show();

Likewise, use the getInt() method to retrieve an integer value:

 //---get the data using the getInt() method---
 Toast.makeText(this,Integer.toString(bundle.getInt("age2")),
 Toast.LENGTH_SHORT).show();

Another way to pass data to an activity is to use the setData() method (as used in the previous section), like this:

 //---use the setData() method to return some value---
 i.setData(Uri.parse(
 "Something passed back to main activity"));

Usually, you use the setData() method to set the data on which an Intent object is going to operate (such as passing a URL to an Intent object so that it can invoke a web browser to view a web page; see the section “Calling Built-In Applications Using Intents” later in this chapter for more examples).

To retrieve the data set using the setData() method, use the getData() method (in this example data is an Intent object):

 //---get the result using getData()---
 Toast.makeText(this, data.getData().toString(),
 Toast.LENGTH_SHORT).show();

FRAGMENTS

In the previous section you learned what an activity is and how to use it. In a small-screen device (such as a smartphone), an activity typically fills the entire screen, displaying the various views that make up the user interface of an application. The activity is essentially a container for views. However, when an activity is displayed in a large-screen device, such as on a tablet, it is somewhat out of place. Because the screen is much bigger, all the views in an activity must be arranged to make full use of the increased space, resulting in complex changes to the view hierarchy. A better approach is to have “mini-activities,” each containing its own set of views. During runtime, an activity can contain one or more of these mini-activities, depending on the screen orientation in which the device is held. In Android 3.0 and later, these mini-activities are known as fragments.

Think of a fragment as another form of activity. You create fragments to contain views, just like activities. Fragments are always embedded in an activity. For example, Figure 2-15 shows two fragments. Fragment 1 might contain a ListView showing a list of book titles. Fragment 2 might contain some TextViews and ImageViews showing some text and images.

FIGURE 2-15

[image: image]

Now imagine the application is running on an Android tablet in portrait mode (or on an Android smartphone). In this case, Fragment 1 may be embedded in one activity, while Fragment 2 may be embedded in another activity (see Figure 2-16). When users select an item in the list in Fragment 1, Activity 2 will be started.

FIGURE 2-16

[image: image]

If the application is now displayed in a tablet in landscape mode, both fragments can be embedded within a single activity, as shown in Figure 2-17.

FIGURE 2-17

[image: image]

From this discussion, it becomes apparent that fragments present a versatile way in which you can create the user interface of an Android application. Fragments form the atomic unit of your user interface, and they can be dynamically added (or removed) to activities in order to create the best user experience possible for the target device.

The following Try It Out shows you the basics of working with fragments.

TRY IT OUT: Using Fragments

codefile Fragments.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Fragments.

2. In the res/layout folder, add a new file and name it fragment1.xml. Populate it with the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#00FF00"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is fragment #1"
 android:textColor="#000000"
 android:textSize="25sp" />
</LinearLayout>

3. Also in the res/layout folder, add another new file and name it fragment2.xml. Populate it as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFE00"
 >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is fragment #2"
 android:textColor="#000000"
 android:textSize="25sp" />
</LinearLayout>

4. In main.xml, add the following code in bold:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:name="net.learn2develop.Fragments.Fragment1"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 <fragment
 android:name="net.learn2develop.Fragments.Fragment2"
 android:id="@+id/fragment2"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />

</LinearLayout>

5. Under the net.learn2develop.Fragments package name, add two Java class files and name them Fragment1.java and Fragment2.java (see Figure 2-18).

FIGURE 2-18

[image: image]

6. Add the following code to Fragment1.java:

package net.learn2develop.Fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Fragment1 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 //---Inflate the layout for this fragment---
 return inflater.inflate(
 R.layout.fragment1, container, false);
 }
}

7. Add the following code to Fragment2.java:

package net.learn2develop.Fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Fragment2 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 //---Inflate the layout for this fragment---
 return inflater.inflate(
 R.layout.fragment2, container, false);
 }
}

8. Press F11 to debug the application on the Android emulator. Figure 2-19 shows the two fragments contained within the activity.

FIGURE 2-19

[image: image]

How It Works

A fragment behaves very much like an activity — it has a Java class and it loads its UI from an XML file. The XML file contains all the usual UI elements that you expect from an activity: TextView, EditText, Button, and so on. The Java class for a fragment needs to extend the Fragment base class:

public class Fragment1 extends Fragment {
}

[image: image]
NOTE Besides the Fragment base class, a fragment can also extend a few other subclasses of the Fragment class, such as DialogFragment, ListFragment , and PreferenceFragment . Chapter 4 discusses these types of fragments in more detail.

To draw the UI for a fragment, you override the onCreateView() method. This method needs to return a View object, like this:

 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 //---Inflate the layout for this fragment---
 return inflater.inflate(
 R.layout.fragment1, container, false);
 }

Here, you use a LayoutInflater object to inflate the UI from the specified XML file (R.layout.fragment1 in this case). The container argument refers to the parent ViewGroup, which is the activity in which you are trying to embed the fragment. The savedInstanceState argument enables you to restore the fragment to its previously saved state.

To add a fragment to an activity, you use the <fragment> element:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:name="net.learn2develop.Fragments.Fragment1"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 <fragment
 android:name="net.learn2develop.Fragments.Fragment2"
 android:id="@+id/fragment2"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />

</LinearLayout>

Note that each fragment needs a unique identifier. You can assign one via the android:id or android:tag attribute.

Adding Fragments Dynamically

While fragments enable you to compartmentalize your UI into various configurable parts, the real power of fragments is realized when you add them dynamically to activities during runtime. In the previous section, you saw how you can add fragments to an activity by modifying the XML file during design time. In reality, it is much more useful if you create fragments and add them to activities during runtime. This enables you to create a customizable user interface for your application. For example, if the application is running on a smartphone, you might fill an activity with a single fragment; if the application is running on a tablet, you might then fill the activity with two or more fragments, as the tablet has much more screen real estate compared to a smartphone.

The following Try It Out shows how fragments can be added programmatically to an activity during runtime.

TRY IT OUT: Adding Fragments during Runtime

1. Using the same project created in the previous section, modify the main.xml file by commenting out the two <fragment> elements:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <!--
 <fragment
 android:name="net.learn2develop.Fragments.Fragment1"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 <fragment
 android:name="net.learn2develop.Fragments.Fragment2"
 android:id="@+id/fragment2"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 -->
</LinearLayout>

2. Add the following code in bold to the FragmentsActivity.java file:

package net.learn2develop.Fragments;

import android.app.Activity;
import android.app.FragmentManager;
import android.app.FragmentTransaction;
import android.os.Bundle;
import android.view.Display;
import android.view.WindowManager;

public class FragmentsActivity extends Activity {
 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

 //---get the current display info---
 WindowManager wm = getWindowManager();
 Display d = wm.getDefaultDisplay();
 if (d.getWidth() > d.getHeight())
 {
 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);
 }
 else
 {
 //---portrait mode---
 Fragment2 fragment2 = new Fragment2();
 fragmentTransaction.replace(
 android.R.id.content, fragment2);
 }
 fragmentTransaction.commit();
 }
}

3. Press F11 to run the application on the Android emulator. Observe that when the emulator is in portrait mode, fragment 2 (yellow) is displayed (see Figure 2-20). If you press Ctrl+F11 to change the orientation of the emulator to landscape, fragment 1 (green) is shown instead (see Figure 2-21).

FIGURE 2-20

[image: image]

FIGURE 2-21

[image: image]

How It Works

To add fragments to an activity, you use the FragmentManager class by first obtaining an instance of it:

 FragmentManager fragmentManager = getFragmentManager();

You also need to use the FragmentTransaction class to perform fragment transactions in your activity (such as add, remove or replace):

 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

In this example, you used the WindowManager to determine whether the device is currently in portrait mode or landscape mode. Once that is determined, you add the appropriate fragment to the activity by creating the fragment and then calling the replace() method of the FragmentTransaction object to add the fragment to the specified view container (in this case, android.R.id.content refers to the content view of the activity):

 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);

Using the replace() method is essentially the same as calling the remove() method followed by the add() method of the FragmentTransaction object. To ensure that the changes take effect, you need to call the commit() method:

 fragmentTransaction.commit();

Life Cycle of a Fragment

Like activities, fragments have their own life cycle. Understanding the life cycle of a fragment enables you to properly save an instance of the fragment when it is destroyed, and restore it to its previous state when it is recreated.

The following Try It Out examines the various states experienced by a fragment.

TRY IT OUT: Understanding the Life Cycle of a Fragment

codefile Fragments.zip available for download at Wrox.com

1. Using the same project created in the previous section, add the following code in bold to the Fragment1.java file:

package net.learn2develop.Fragments;

import android.app.Activity;
import android.app.Fragment;
import android.os.Bundle;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class Fragment1 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {

 Log.d("Fragment 1", "onCreateView");

 //---Inflate the layout for this fragment---
 return inflater.inflate(
 R.layout.fragment1, container, false);
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 Log.d("Fragment 1", "onAttach");
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d("Fragment 1", "onCreate");
 }

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 Log.d("Fragment 1", "onActivityCreated");
 }

 @Override
 public void onStart() {
 super.onStart();
 Log.d("Fragment 1", "onStart");
 }

 @Override
 public void onResume() {
 super.onResume();
 Log.d("Fragment 1", "onResume");
 }

 @Override
 public void onPause() {
 super.onPause();
 Log.d("Fragment 1", "onPause");
 }

 @Override
 public void onStop() {
 super.onStop();
 Log.d("Fragment 1", "onStop");
 }

 @Override
 public void onDestroyView() {
 super.onDestroyView();
 Log.d("Fragment 1", "onDestroyView");
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d("Fragment 1", "onDestroy");
 }

 @Override
 public void onDetach() {
 super.onDetach();
 Log.d("Fragment 1", "onDetach");
 }

}

2. Switch the Android emulator to landscape mode by pressing Ctrl+F11.

3. Press F11 in Eclipse to debug the application on the Android emulator.

4. When the application is loaded on the emulator, the following is displayed in the LogCat window (Windows ⇒ Show View ⇒ LogCat):

12-09 04:17:43.436: D/Fragment 1(2995): onAttach
12-09 04:17:43.466: D/Fragment 1(2995): onCreate
12-09 04:17:43.476: D/Fragment 1(2995): onCreateView
12-09 04:17:43.506: D/Fragment 1(2995): onActivityCreated
12-09 04:17:43.506: D/Fragment 1(2995): onStart
12-09 04:17:43.537: D/Fragment 1(2995): onResume

5. Click the Home button on the emulator. The following output will be displayed in the LogCat window:

12-09 04:18:47.696: D/Fragment 1(2995): onPause
12-09 04:18:50.346: D/Fragment 1(2995): onStop

6. On the emulator, click the Home button and hold it. Launch the application again. This time, the following is displayed:

12-09 04:20:08.726: D/Fragment 1(2995): onStart
12-09 04:20:08.766: D/Fragment 1(2995): onResume

7. Finally, click the Back button on the emulator. Now you should see the following output:

12-09 04:21:01.426: D/Fragment 1(2995): onPause
12-09 04:21:02.346: D/Fragment 1(2995): onStop
12-09 04:21:02.346: D/Fragment 1(2995): onDestroyView
12-09 04:21:02.346: D/Fragment 1(2995): onDestroy
12-09 04:21:02.346: D/Fragment 1(2995): onDetach

How It Works

Like activities, fragments in Android also have their own life cycle. As you have seen, when a fragment is being created, it goes through the following states:

	onAttach()

	onCreate()

	onCreateView()

	onActivityCreated()

When the fragment becomes visible, it goes through these states:

	onStart()

	onResume()

When the fragment goes into the background mode, it goes through these states:

	onPause()

	onStop()

When the fragment is destroyed (when the activity it is currently hosted in is destroyed), it goes through the following states:

	onPause()

	onStop()

	onDestroyView()

	onDestroy()

	onDetach()

Like activities, you can restore an instance of a fragment using a Bundle object, in the following states:

	onCreate()

	onCreateView()

	onActivityCreated()

[image: image]
NOTE You can save a fragment’s state in the onSaveInstanceState() method. Chapter 3 discusses this topic in more detail.

Most of the states experienced by a fragment are similar to those of activities. However, a few new states are specific to fragments:

	onAttached() — Called when the fragment has been associated with the activity

	onCreateView() — Called to create the view for the fragment

	onActivityCreated() — Called when the activity’s onCreate() method has been returned

	onDestroyView() — Called when the fragment’s view is being removed

	onDetach() — Called when the fragment is detached from the activity

Note one of the main differences between activities and fragments: When an activity goes into the background, the activity is placed in the back stack. This allows the activity to be resumed when the user presses the Back button. In the case of fragments, however, they are not automatically placed in the back stack when they go into the background. Rather, to place a fragment into the back stack, you need to explicitly call the addToBackStack() method during a fragment transaction, like this:

 //---get the current display info---
 WindowManager wm = getWindowManager();
 Display d = wm.getDefaultDisplay();
 if (d.getWidth() > d.getHeight())
 {
 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);
 }
 else
 {
 //---portrait mode---
 Fragment2 fragment2 = new Fragment2();
 fragmentTransaction.replace(
 android.R.id.content, fragment2);
 }
 //---add to the back stack---
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();

The preceding code ensures that after the fragment has been added to the activity, the user can click the Back button to remove it.

Interactions between Fragments

Very often, an activity may contain one or more fragments working together to present a coherent UI to the user. In this case, it is very important for fragments to communicate with one another and exchange data. For example, one fragment might contain a list of items (such as postings from an RSS feed) and when the user taps on an item in that fragment, details about the selected item may be displayed in another fragment.

The following Try It Out shows how one fragment can access the views contained within another fragment.

TRY IT OUT: Communication between Fragments

1. Using the same project created in the previous section, add the following statement in bold to the Fragment1.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#00FF00" >
<TextView
 android:id="@+id/lblFragment1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is fragment #1"
 android:textColor="#000000"
 android:textSize="25sp" />
</LinearLayout>

2. Add the following lines in bold to fragment2.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FFFE00" >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is fragment #2"
 android:textColor="#000000"
 android:textSize="25sp" />

<Button
 android:id="@+id/btnGetText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Get text in Fragment #1"
 android:textColor="#000000"
 android:onClick="onClick" />

</LinearLayout>

3. Put back the two fragments in main.xml:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="horizontal" >

 <fragment
 android:name="net.learn2develop.Fragments.Fragment1"
 android:id="@+id/fragment1"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 <fragment
 android:name="net.learn2develop.Fragments.Fragment2"
 android:id="@+id/fragment2"
 android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />

</LinearLayout>

4. Modify the FragmentsActivity.java file by commenting out the code that you added in the earlier sections. It should look like this after modification:

public class FragmentsActivity extends Activity {
 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 /∗
 FragmentManager fragmentManager = getFragmentManager();
 FragmentTransaction fragmentTransaction =
 fragmentManager.beginTransaction();

 //---get the current display info---
 WindowManager wm = getWindowManager();
 Display d = wm.getDefaultDisplay();
 if (d.getWidth() > d.getHeight())
 {
 //---landscape mode---
 Fragment1 fragment1 = new Fragment1();
 // android.R.id.content refers to the content
 // view of the activity
 fragmentTransaction.replace(
 android.R.id.content, fragment1);
 }
 else
 {
 //---portrait mode---
 Fragment2 fragment2 = new Fragment2();
 fragmentTransaction.replace(
 android.R.id.content, fragment2);
 }
 //---add to the back stack---
 fragmentTransaction.addToBackStack(null);
 fragmentTransaction.commit();
 ∗/
 }
}

5. Add the following statements in bold to the Fragment2.java file:

package net.learn2develop.Fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class Fragment2 extends Fragment {
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 //---Inflate the layout for this fragment---
 return inflater.inflate(
 R.layout.fragment2, container, false);
 }

 @Override
 public void onStart() {
 super.onStart();
 //---Button view---
 Button btnGetText = (Button)
 getActivity().findViewById(R.id.btnGetText);
 btnGetText.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 TextView lbl = (TextView)
 getActivity().findViewById(R.id.lblFragment1);
 Toast.makeText(getActivity(), lbl.getText(),
 Toast.LENGTH_SHORT).show();
 }
 });
 }

}

6. Press F11 to debug the application on the Android emulator. In the second fragment on the right, click the button. You should see the Toast class displaying the text “This is fragment #1” (see Figure 2-22).

FIGURE 2-22

[image: image]

How It Works

Because fragments are embedded within activities, you can obtain the activity in which a fragment is currently embedded by first using the getActivity() method and then using the findViewById() method to locate the view(s) contained within the fragment:

 TextView lbl = (TextView)
 getActivity().findViewById(R.id.lblFragment1);
 Toast.makeText(getActivity(), lbl.getText(),
 Toast.LENGTH_SHORT).show();

The getActivity() method returns the activity with which the current fragment is currently associated.

Alternatively, you can also add the following method to the FragmentsActivity.java file:

 public void onClick(View v) {
 TextView lbl = (TextView)
 findViewById(R.id.lblFragment1);
 Toast.makeText(this, lbl.getText(),
 Toast.LENGTH_SHORT).show();
 }

CALLING BUILT-IN APPLICATIONS USING INTENTS

Until this point, you have seen how to call activities within your own application. One of the key aspects of Android programming is using the intent to call activities from other applications. In particular, your application can call the many built-in applications that are included with an Android device. For example, if your application needs to load a web page, you can use the Intent object to invoke the built-in web browser to display the web page, instead of building your own web browser for this purpose.

The following Try It Out demonstrates how to call some of the built-in applications commonly found on an Android device.

TRY IT OUT: Calling Built-In Applications Using Intents

codefile Intents.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Intents.

2. Add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_webbrowser"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Web Browser"
 android:onClick="onClickWebBrowser" />

<Button
 android:id="@+id/btn_makecalls"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Make Calls"
 android:onClick="onClickMakeCalls" />

<Button
 android:id="@+id/btn_showMap"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Map"
 android:onClick="onClickShowMap" />

</LinearLayout>

3. Add the following statements in bold to the IntentsActivity.java file:

package net.learn2develop.Intents;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;

public class IntentsActivity extends Activity {

 int request_Code = 1;

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClickWebBrowser(View view) {
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 startActivity(i);
 }

 public void onClickMakeCalls(View view) {
 Intent i = new
 Intent(android.content.Intent.ACTION_DIAL,
 Uri.parse("tel:+651234567"));
 startActivity(i);
 }

 public void onClickShowMap(View view) {
 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("geo:37.827500,-122.481670"));
 startActivity(i);
 }
}

4. Press F11 to debug the application on the Android emulator.

5. Click the Web Browser button to load the Browser application on the emulator. Figure 2-23 shows the built-in Browser application displaying the site www.amazon.com.

FIGURE 2-23

[image: image]

6. Click the Make Calls button and the Phone application, as shown in Figure 2-24, will load.

FIGURE 2-24

[image: image]

7. Similarly, to load the Maps application, shown in Figure 2-25, click the Show Map button.

FIGURE 2-25

[image: image]

[image: image]
NOTE In order to display the Maps application, you need to run the application on an AVD that supports the Google APIs.

How It Works

In this example, you saw how you can use the Intent class to invoke some of the built-in applications in Android (such as Maps, Phone, Contacts, and Browser).

In Android, intents usually come in pairs: action and data. The action describes what is to be performed, such as editing an item, viewing the content of an item, and so on. The data specifies what is affected, such as a person in the Contacts database. The data is specified as an Uri object.

Some examples of action are as follows:

	ACTION_VIEW

	ACTION_DIAL

	ACTION_PICK

Some examples of data include the following:

	www.google.com

	tel:+651234567

	geo:37.827500,-122.481670

	content://contacts

[image: image]
NOTE The section “Using Intent Filters” explains the type of data you can define for use in an activity.

Collectively, the action and data pair describes the operation to be performed. For example, to dial a phone number, you would use the pair ACTION_DIAL/tel:+651234567. To display a list of contacts stored in your phone, you use the pair ACTION_VIEW/content://contacts. To pick a contact from the list of contacts, you use the pair ACTION_PICK/content://contacts.

In the first button, you create an Intent object and then pass two arguments to its constructor, the action and the data:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 startActivity(i);

The action here is represented by the android.content.Intent.ACTION_VIEW constant. You use the parse() method of the Uri class to convert a URL string into a Uri object.

The android.content.Intent.ACTION_VIEW constant actually refers to the “android.intent.action.VIEW” action, so the preceding could be rewritten as follows:

 Intent i = new
 Intent("android.intent.action.VIEW",
 Uri.parse("http://www.amazon.com"));
 startActivity(i);

The preceding code snippet can also be rewritten like this:

 Intent i = new
 Intent("android.intent.action.VIEW");
 i.setData(Uri.parse("http://www.amazon.com"));
 startActivity(i);

Here, you set the data separately using the setData() method.

For the second button, you dial a specific number by passing in the telephone number in the data portion:

 Intent i = new
 Intent(android.content.Intent.ACTION_DIAL,
 Uri.parse("tel:+651234567"));
 startActivity(i);

In this case, the dialer will display the number to be called. The user must still press the dial button to dial the number. If you want to directly call the number without user intervention, change the action as follows:

 Intent i = new
 Intent(android.content.Intent.ACTION_CALL,
 Uri.parse("tel:+651234567"));
 startActivity(i);

[image: image]
NOTE If you want your application to directly call the specified number, you need to add the android.permission.CALL_PHONE permission to your application.

To display the dialer without specifying any number, simply omit the data portion, like this:

 Intent i = new
 Intent(android.content.Intent.ACTION_DIAL);
 startActivity(i);

The third button displays a map using the ACTION_VIEW constant:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("geo:37.827500,-122.481670"));
 startActivity(i);

Here, instead of using “http” you use the “geo” scheme.

Understanding the Intent Object

So far, you have seen the use of the Intent object to call other activities. This is a good time to recap and gain a more detailed understanding of how the Intent object performs its magic.

First, you learned that you can call another activity by passing its action to the constructor of an Intent object:

 startActivity(new Intent("net.learn2develop.SecondActivity"));

The action (in this example “net.learn2develop.SecondActivity”) is also known as the component name. This is used to identify the target activity/application that you want to invoke. You can also rewrite the component name by specifying the class name of the activity if it resides in your project, like this:

 startActivity(new Intent(this, SecondActivity.class));

You can also create an Intent object by passing in an action constant and data, such as the following:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 startActivity(i);

The action portion defines what you want to do, while the data portion contains the data for the target activity to act upon. You can also pass the data to the Intent object using the setData() method:

 Intent i = new
 Intent("android.intent.action.VIEW");
 i.setData(Uri.parse("http://www.amazon.com"));

In this example, you indicate that you want to view a web page with the specified URL. The Android OS will look for all activities that are able to satisfy your request. This process is known as intent resolution. The next section discusses in more detail how your activities can be the target of other activities.

For some intents, there is no need to specify the data. For example, to select a contact from the Contacts application, you specify the action and then indicate the MIME type using the setType() method:

 Intent i = new
 Intent(android.content.Intent.ACTION_PICK);
 i.setType(ContactsContract.Contacts.CONTENT_TYPE);

[image: image]
NOTE Chapter 7 discusses how to use the Contacts application from within your application.

The setType() method explicitly specifies the MIME data type to indicate the type of data to return. The MIME type for ContactsContract.Contacts.CONTENT_TYPE is "vnd.android.cursor.dir/contact".

Besides specifying the action, the data, and the type, an Intent object can also specify a category. A category groups activities into logical units so that Android can use it for further filtering. The next section discusses categories in more detail.

To summarize, an Intent object can contain the following information:

	Action

	Data

	Type

	Category

Using Intent Filters

Earlier, you saw how an activity can invoke another activity using the Intent object. In order for other activities to invoke your activity, you need to specify the action and category within the <intent-filter> element in the AndroidManifest.xml file, like this:

 <intent-filter >
 <action android:name="net.learn2develop.SecondActivity" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

This is a very simple example in which one activity calls another using the “net.learn2develop.SecondActivity” action. The following Try It Out shows you a more sophisticated example.

TRY IT OUT: Specifying Intent Filters in More Detail

1. Using the Intents project created earlier, add a new class to the project and name it MyBrowserActivity. Also add a new XML file to the res/layout folder and name it browser.xml.

2. Add the following statements in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.Intents"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name="android.permission.CALL_PHONE"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".IntentsActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".MyBrowserActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="net.learn2develop.MyBrowser" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" />
 </intent-filter>
 </activity>

 </application>

</manifest>

3. Add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_webbrowser"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Web Browser"
 android:onClick="onClickWebBrowser" />

<Button
 android:id="@+id/btn_makecalls"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Make Calls"
 android:onClick="onClickMakeCalls" />

<Button
 android:id="@+id/btn_showMap"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Map"
 android:onClick="onClickShowMap" />

<Button
 android:id="@+id/btn_launchMyBrowser"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Launch My Browser"
 android:onClick="onClickLaunchMyBrowser" />

</LinearLayout>

4. Add the following statements in bold to the IntentsActivity.java file:

package net.learn2develop.Intents;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;

public class IntentsActivity extends Activity {

 int request_Code = 1;

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) { . . . }

 public void onClickWebBrowser(View view) { . . . }

 public void onClickMakeCalls(View view) { ... }

 public void onClickShowMap(View view) { ... }

 public void onClickLaunchMyBrowser(View view) {
 Intent i = new
 Intent("net.learn2develop.MyBrowser");
 i.setData(Uri.parse("http://www.amazon.com"));
 startActivity(i);
 }

}

5. Add the following statements in bold to the browser.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<WebView
 android:id="@+id/WebView01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />
</LinearLayout>

6. Add the following statements in bold to the MyBrowserActivity.java file:

package net.learn2develop.Intents;

import android.app.Activity;
import android.net.Uri;
import android.os.Bundle;
import android.webkit.WebView;
import android.webkit.WebViewClient;

public class MyBrowserActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.browser);

 Uri url = getIntent().getData();
 WebView webView = (WebView) findViewById(R.id.WebView01);
 webView.setWebViewClient(new Callback());
 webView.loadUrl(url.toString());
 }

 private class Callback extends WebViewClient {
 @Override
 public boolean shouldOverrideUrlLoading (WebView view, String url) {
 return(false);
 }
 }
}

7. Press F11 to debug the application on the Android emulator.

8. Click the Launch my Browser button and you should see the new activity displaying the Amazon.com web page (see Figure 2-26).

FIGURE 2-26

[image: image]

How It Works

In this example, you created a new activity named MyBrowserActivity. You first needed to declare it in the AndroidManifest.xml file:

 <activity android:name=".MyBrowserActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="net.learn2develop.MyBrowser" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" />
 </intent-filter>
 </activity>

In the <intent-filter> element, you declared it to have two actions, one category, and one data. This means that all other activities can invoke this activity using either the “android.intent.action.VIEW” or the “net.learn2develop.MyBrowser” action. For all activities that you want others to call using the startActivity() or startActivityForResult() methods, they need to have the “android.intent.category.DEFAULT” category. If not, your activity will not be callable by others. The <data> element specifies the type of data expected by the activity. In this case, it expects the data to start with the “http://” prefix.

The preceding intent filter could also be rewritten as follows:

 <activity android:name=".MyBrowserActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" />
 </intent-filter>
 <intent-filter>
 <action android:name="net.learn2develop.MyBrowser" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" />
 </intent-filter>
 </activity>

Writing the intent filter this way makes it much more readable, and it logically groups the action, category, and data within an intent filter.

If you now use the ACTION_VIEW action with the data shown here, Android will display a selection (as shown in Figure 2-27):

FIGURE 2-27

[image: image]

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));

You can choose between using the Browser application or the Intents application that you are currently building.

Notice that when multiple activities match your Intent object, the dialog titled “Complete action using” appears. You can customize this by using the createChooser() method from the Intent class, like this:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 startActivity(Intent.createChooser(i, "Open URL using..."));

The preceding will change the dialog title to “Open URL using. . .,” as shown in Figure 2-28. Note that the “Use by default for this action” option is now not available.

FIGURE 2-28

[image: image]

The added benefit of using the createChooser() method is that in the event that no activity matches your Intent object, your application will not crash. Instead, it will display the message shown in Figure 2-29.

FIGURE 2-29

[image: image]

Adding Categories

You can group your activities into categories by using the <category> element in the intent filter. Suppose you have added the following <category> element to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.Intents"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name="android.permission.CALL_PHONE"/>
 <uses-permission android:name="android.permission.INTERNET"/>
 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".IntentsActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <activity android:name=".MyBrowserActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="net.learn2develop.MyBrowser" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="net.learn2develop.Apps" />
 <data android:scheme="http" />
 </intent-filter>
 </activity>

 </application>

</manifest>

In this case, the following code will directly invoke the MyBrowerActivity activity:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 i.addCategory("net.learn2develop.Apps");
 startActivity(Intent.createChooser(i, "Open URL using..."));

You add the category to the Intent object using the addCategory() method. If you omit the addCategory() statement, the preceding code will still invoke the MyBrowerActivity activity because it will still match the default category android.intent.category.DEFAULT.

However, if you specify a category that does not match the category defined in the intent filter, it will not work (no activity will be launched):

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 //i.addCategory("net.learn2develop.Apps");
 //---this category does not match any in the intent-filter---
 i.addCategory("net.learn2develop.OtherApps");
 startActivity(Intent.createChooser(i, "Open URL using..."));

The preceding category (net.learn2develop.OtherApps) does not match any category in the intent filter, so a run-time exception will be raised (if you don’t use the createChoose() method of the Intent class).

If you add the following category in the intent filter of MyBrowerActivity, then the preceding code will work:

 <activity android:name=".MyBrowserActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="net.learn2develop.MyBrowser" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="net.learn2develop.Apps" />
 <category android:name="net.learn2develop.OtherApps" />
 <data android:scheme="http" />
 </intent-filter>
 </activity>

You can add multiple categories to an Intent object; for example, the following statements add the net.learn2develop.SomeOtherApps category to the Intent object:

 Intent i = new
 Intent(android.content.Intent.ACTION_VIEW,
 Uri.parse("http://www.amazon.com"));
 //i.addCategory("net.learn2develop.Apps");
 //---this category does not match any in the intent-filter---
 i.addCategory("net.learn2develop.OtherApps");
 i.addCategory("net.learn2develop.SomeOtherApps");
 startActivity(Intent.createChooser(i, "Open URL using..."));

Because the intent filter does not define the net.learn2develop.SomeOtherApps category, the preceding code will not be able to invoke the MyBrowerActivity activity. To fix this, you need to add the net.learn2develop.SomeOtherApps category to the intent filter again.

From this example, it is evident that when using an Intent object with categories, all categories added to the Intent object must fully match those defined in the intent filter before an activity can be invoked.

DISPLAYING NOTIFICATIONS

So far, you have been using the Toast class to display messages to the user. While the Toast class is a handy way to show users alerts, it is not persistent. It flashes on the screen for a few seconds and then disappears. If it contains important information, users may easily miss it if they are not looking at the screen.

For messages that are important, you should use a more persistent method. In this case, you should use the NotificationManager to display a persistent message at the top of the device, commonly known as the status bar (sometimes also referred to as the notification bar). The following Try It Out demonstrates how.

TRY IT OUT: Displaying Notifications on the Status Bar

codefile Notifications.zip available for download at Wrox.com

1. Using Eclipse, create a new Android project and name it Notifications.

2. Add a new class file named NotificationView to the package. In addition, add a new notification.xml file to the res/layout folder.

3. Populate the notification.xml file as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Here are the details for the notification..." />
</LinearLayout>

4. Populate the NotificationView.java file as follows:

package net.learn2develop.Notifications;

import android.app.Activity;
import android.app.NotificationManager;
import android.os.Bundle;

public class NotificationView extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.notification);

 //---look up the notification manager service---
 NotificationManager nm = (NotificationManager)
 getSystemService(NOTIFICATION_SERVICE);

 //---cancel the notification that we started---
 nm.cancel(getIntent().getExtras().getInt("notificationID"));
 }
}

5. Add the following statements in bold to the AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="net.learn2develop.Notifications"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk android:minSdkVersion="14" />
 <uses-permission android:name="android.permission.VIBRATE"/>

 <application
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name" >
 <activity
 android:label="@string/app_name"
 android:name=".NotificationsActivity" >
 <intent-filter >
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".NotificationView"
 android:label="Details of notification">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 </application>

</manifest>

6. Add the following statements in bold to the main.xml file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

<Button
 android:id="@+id/btn_displaynotif"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Display Notification"
 android:onClick="onClick"/>

</LinearLayout>

7. Finally, add the following statements in bold to the NotificationsActivity.java file:

package net.learn2develop.Notifications;

import android.app.Activity;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;

public class NotificationsActivity extends Activity {
 int notificationID = 1;

 /∗∗ Called when the activity is first created. ∗/
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }

 public void onClick(View view) {
 displayNotification();
 }

 protected void displayNotification()
 {
 //---PendingIntent to launch activity if the user selects
 // this notification---
 Intent i = new Intent(this, NotificationView.class);
 i.putExtra("notificationID", notificationID);

 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, i, 0);

 NotificationManager nm = (NotificationManager)
 getSystemService(NOTIFICATION_SERVICE);

 Notification notif = new Notification(
 R.drawable.ic_launcher,
 "Reminder: Meeting starts in 5 minutes",
 System.currentTimeMillis());

 CharSequence from = "System Alarm";
 CharSequence message = "Meeting with customer at 3pm...";

 notif.setLatestEventInfo(this, from, message, pendingIntent);

 //---100ms delay, vibrate for 250ms, pause for 100 ms and
 // then vibrate for 500ms---
 notif.vibrate = new long[] { 100, 250, 100, 500};
 nm.notify(notificationID, notif);
 }

}

8. Press F11 to debug the application on the Android emulator.

9. Click the Display Notification button and a notification ticker text (set in the constructor of the Notification object) will appear on the status bar (see Figure 2-30).

FIGURE 2-30

[image: image]

10. Clicking and dragging the status bar down will reveal the notification details set using the setLatestEventInfo() method of the Notification object (see Figure 2-31).

FIGURE 2-31

[image: image]

11. Clicking on the notification will reveal the NotificationView activity (see Figure 2-32). This also causes the notification to be dismissed from the status bar.

FIGURE 2-32

[image: image]

How It Works

To display a notification, you first created an Intent object to point to the NotificationView class:

 Intent i = new Intent(this, NotificationView.class);
 i.putExtra("notificationID", notificationID);

This intent is used to launch another activity when the user selects a notification from the list of notifications. In this example, you added a name/value pair to the Intent object so that you can tag the notification ID, identifying the notification to the target activity. This ID will be used to dismiss the notification later.

You also need to create a PendingIntent object. A PendingIntent object helps you to perform an action on your application’s behalf, often at a later time, regardless of whether your application is running or not. In this case, you initialized it as follows:

 PendingIntent pendingIntent =
 PendingIntent.getActivity(this, 0, i, 0);

The getActivity() method retrieves a PendingIntent object and you set it using the following arguments:

	context — Application context

	request code — Request code for the intent

	intent — The intent for launching the target activity

	flags — The flags in which the activity is to be launched

You then obtain an instance of the NotificationManager class and create an instance of the Notification class:

 NotificationManager nm = (NotificationManager)
 getSystemService(NOTIFICATION_SERVICE);

 Notification notif = new Notification(
 R.drawable.ic_launcher,
 "Reminder: Meeting starts in 5 minutes",
 System.currentTimeMillis());

The Notification class enables you to specify the notification’s main information when the notification first appears on the status bar. The second argument to the Notification constructor sets the “ticker text” on the status bar (see Figure 2-33).

FIGURE 2-33

[image: image]

Next, you set the details of the notification using the setLatestEventInfo() method:

 CharSequence from = "System Alarm";
 CharSequence message = "Meeting with customer at 3pm...";

 notif.setLatestEventInfo(this, from, message, pendingIntent);

 //---100ms delay, vibrate for 250ms, pause for 100 ms and
 // then vibrate for 500ms---
 notif.vibrate = new long[] { 100, 250, 100, 500};

The preceding also sets the notification to vibrate the phone. Finally, to display the notification you use the notify() method:

 nm.notify(notificationID, notif);

When the user clicks on the notification, the NotificationView activity is launched. Here, you dismiss the notification by using the cancel() method of the NotificationManager object and passing it the ID of the notification (passed in via the Intent object):

 //---look up the notification manager service---
 NotificationManager nm = (NotificationManager)
 getSystemService(NOTIFICATION_SERVICE);

 //---cancel the notification that we started---
 nm.cancel(getIntent().getExtras().getInt("notificationID"));

SUMMARY

This chapter first provided a detailed look at how activities and fragments work and the various forms in which you can display them. You also learned how to display dialog windows using activities.

The second part of this chapter demonstrated a very important concept in Android — the intent. The intent is the “glue” that enables different activities to be connected, and it is a vital concept to understand when developing for the Android platform.

EXERCISES

1. What will happen if you have two or more activities with the same intent filter action name?

2. Write the code to invoke the built-in Browser application.

3. Which components can you specify in an intent filter?

4. What is the difference between the Toast class and the NotificationManager class?

5. Name the two ways to add fragments to an activity.

6. Name one key difference between a fragment and an activity.

Answers to the exercises can be found in Appendix C.

• WHAT YOU LEARNED IN THIS CHAPTER

	TOPIC
	KEY CONCEPTS

	Creating an activity
	All activities must be declared in the AndroidManifest.xml file.

	Key life cycle of an activity
	When an activity is started, the onStart() and onResume() events are always called.

	
	When an activity is killed or sent to the background, the onPause() event is always called.

	Displaying an activity as a dialog
	Use the showDialog() method and implement the onCreateDialog() method.

	Fragments
	Fragments are “mini-activities” that can be added or removed from activities.

	Manipulating fragments programmatically
	You need to use the FragmentManager and FragmentTransaction classes when adding, removing, or replacing fragments during runtime.

	Life cycle of a fragment
	Similar to that of an activity — you save the state of a fragment in the onPause() event, and restore its state in one of the following events: onCreate(), onCreateView(), or onActivityCreated().

	Intent
	The “glue” that connects different activities

	Intent filter
	The “filter” that enables you to specify how your activities should be called

	Calling an activity
	Use the startActivity() or startActivityForResult() method.

	Passing data to an activity
	Use the Bundle object.

	Components in an Intent object
	An Intent object can contain the following: action, data, type, and category.

	Displaying notifications
	Use the NotificationManager class.

	PendingIntent object
	A PendingIntent object helps you to perform an action on your application’s behalf, often at a later time, regardless of whether or not your application is running.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/images/title.jpg
BEGINNING
Android” 4 Application Development

Wei-Meng Lee

®

iLEY
John Wiley & Sons, Inc.

OEBPS/images/pen.gif

OEBPS/images/b03.jpg
Beginning

Java

OEBPS/images/b02.jpg
Professional

Android 4

‘Application Development

OEBPS/images/f137-01.jpg
1 5554 4ndicid 40

’ Shape the Future of A&D with -
(Z Groundbreaking Innovation w h (

Shape the Future of A&D with Groundbreaking Innovation

4

To: weimenglee@gmail.com

Q Always show pictures from this sender

To view this email as a web page,

OEBPS/images/wrox_cover1.jpg
Programmer to Programmer

Connect with Wrox.

Participate

Take an active role online by participating
in our P2P forums @ p2pwrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

Contact Us.

User Group Program
Become a member and take advantage of all
the benefits

r and be in the know

on the latest news in the world of Wrox

(TS facebook |

Join the Wrox Facebaok page at
facebook.com/wroxpress and get updates
on new books and publications as wel

as upcoming programmer conferences
and user group events

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

OEBPS/images/f132-01.jpg
. Orientations

This is a line in the first EditTex{

OEBPS/images/b04.jpg
Professional
Android Programming

ith Mono for Androkd and NETICH

OEBPS/images/f131-01.jpg
4 &12:38

¥ orientations

This is a line in the first EditText

This is another line in the second
EditText

OEBPS/images/f129-02.jpg
A & 2:46

B Leyouts

Top Left Top Middle Top Right
Middle
Bottom

Bottom Left Middle Bottom Right

©000
oS

@269

OEBPS/images/f328-01.jpg
3 5560, 5558, 5556

5560, 5558, 5556,

Hello my friends!

OEBPS/images/f331-01.jpg
Send SMS
Send S g Inten

SMS from 5556 This is a long SMS
message that is longer than 160
characters. As you can see, | have nothing
much to say here except to type in as.
many useless words as possible so that |
can exceed the 160 characters limit. OK,
looks like | have exceeded the limit. --)
D oo D comae

OEBPS/images/f330-01.jpg
Java Class
Createa new Java class.

Soucefolder: SMS/src

privste) profected
abstract [final [static

javalang Object

Which method stubs would you ke to create?
[public static yoid main(Stringl] args)
Constructorsfrom auperclaze
[7]Inherted abstract methods
Do youwsnt to add comments? (Configure templates and default velue here)

OEBPS/images/f346-01.jpg
Compose

From weimenglee@gmail.com
<someguy@yourcompany.com>,
<anotherguy@yourcompany.com,
<busybody@yourcompany.com>,

Bec

Hello

Hello my friends!

OEBPS/images/f338-01.jpg
B8 that | can exceed the 160 characters

Send SMS

SMS from 5556: This is a long SMS message that
is longer than 160 characters. As you can see, |
have nothing much to say here except to type in
as many useless words as possible so that | can
exceed the 160 characters limit. OK, looks like |
have exceeded the limit. :-)

SMS from 5556: This is a long SMS
message that is longer than 160
characters. As you can see, | have nothing
much to say here except to type in as
many useless words as possible so that |
can exceed the 160 characters limit. OK,
looks like I have exceeded the limit. :-)

OEBPS/images/f353-01.jpg
8] Preferences

type filter text

> General
4 Android

> Install/Update
> Java

> JavaEE

b Java Persistence
» JavaScript

@

Build -~

| Build Settings:
\utomatically refresh Resources and Assets folder on build

Force error when extemal jars contain native ibraries
kip packeging and desing until export or launch. (Speeds up automatic builds on file save)
Build output
© Silent
Normal
i Verbose

T ——

e =
.
o JCcma]

OEBPS/images/f352-01.jpg
8] Jove - Ecipse.
i it Refacor s oS boviga S Boject Wi ek

in-EBe 88 (B4d $-0-%- #G- BB

BE5| e~ 7

sS85
b @
b @ gen [Generated Java Files]
4 m\ Google APIs [Android 4.0]
b B8 androidjar - E\Android 4 0\androig-sdkiplatiorms\android-14.
BB usbiar - EAndroid 40\android-sd\add-onskaddon- google_spis-googie ine-L\lss
1 25 mapsar- E\Android 40\android-sd\addk ons\addon-google_apis-goagle_ine -L4its|
& asets

OEBPS/images/f355-01.jpg
9 Andro igs APL- Tk

€« € | ® www.google.com/gim/mmap/a/api?fp=5C%3A67%3ACE%3A30%3AB2%3ACI%IA5B%3A08%348 T | B A

Google ==

Wape €D s Google Code Home > Google Maps API > Google Maps APt Sign-Up

‘Thank you for signing up for an Android Maps API key!

Your key is:

This key wil work for all 2pos signed with your cetiicate whose fingerprint s:

Here is a sample xmi layout to get you started on your way to mapping glory:

<com.gocgle. android. naps. MapView

Have a ook at the AP1 documentation for more information.

OEBPS/images/f354-01.jpg
Progran Files\Java\jre6\bindkeytool.exe —list -alias androiddebugkey —keystor|
Users\lei-Heng Lee\.android\debug.keystore” —storepass android —keypass an

reation date: Jul 4, 2011
ntry type: PrivateKeyEntry
ertificate chain length: 1
Certificate(1]:
uner: CN-Android Debug, 0=Android, C=US
CN=Android Debug, O=Android, C=US
er: 4e11h37d
Mon Jul B4 20:35:09 SGT 2011 until: Tue Jul B3 20:35:09 SGT 2012

50:EB,
DYTIZTF S TARTBDET A5 TS 4T /ETEYIUS - SF
Signature algorithn nane: SHALwithRSA

s\Progran Files\Java\jre6\hind_

OEBPS/images/f357-01.jpg
& 2:30

| - JEN]

0000
e,

& (=D ®
oy

Ad®O O

North
America

HWP"WFFP”;

T3]
[12-le o lucls Jn ..o
America T I 7 P

OEBPS/images/f260-01.jpg
=

B UsingPreferences

Load Preferences Screen

Display Preferences Values

Madify Preferences Values

[enter a string here]

OEBPS/images/f508-02.jpg
(=13

B[oo $oebg

%5 Debug Fo
&

[Resource u
| Other. J

OEBPS/images/f508-01.jpg
BB +1234567: Hello my frien

OEBPS/images/f263-01.jpg
fle Bt Run Seuce Naigite Srn Pojec Relacor Window Help

(=82 aa BAE $-0-Q~ B9 &'t 45 Debug (G0ONS) ¢S Jmva
@& P Wi -Peee-D-

@ Deices 28 =0 ;vmiuq{iukmrmmnl\-\+"‘=ﬁ
Nome Sie Dae

» @ neleunzdercip Helword ety
> @ nesieamderecpSON Ty
© @ netleam2develop LocationTracker 201114
» @ netlesmdereiop Networking ey
» @ netlesmdereip.ingntent e
4 & netiesmzdereip.UingPreerences o112
> e oz
4 G shued pres 2112
ppPreteencesam 18 2om11-2
5] netlesmadereiop.singPeferences preerencesaml 165 2014122

» @ dontpanic s
o & dm ey

verbose v H &1

Appiication Tag
net.learn2develo... AndroidRuntise

ret.learn2develo... AndroidRuncize [
net.learn2develo... Androidhuncize =

Launching Dislog

OEBPS/images/f509-02.jpg
8] DDMs - BasicViews1/resfvalues/strings i - Ecipse

File Edit Refactor Run Navigate Search Project

G-HEe 88 8,4 Q-

= ==

*|GR0(22(Q|&~

‘Name i

P —T H
system_process. 1
comandroidsystemui 1
comandroidinputmethod.atin 155
comandroid.phone 16
comandroidauncher 183
comandroidsettings 20

android processacore -

e v
@ Emuiator Control 53 =&

Telephony Status
vice [nome <] spees [fun -]
Oat: [nome <] ateny: tene -]

Telephony Actions
Incoming number: +1234567

OEBPS/images/f260-02.jpg
-
B usingPreferences

Load Preferences Screen

Display Preferences Values

Modify Preferences Values

OEBPS/images/f509-01.jpg
18] Open Perspective

B3 CVS Repository Exploring -

G Database Debug

(5 Databsse Development
DOMS

%5 Debug

@ Hierachy View

&

52 Java Browesi

72 Java EE (default)

15! Java Type Hierarchy

& Javascript

& pA

X Pixel Perfect L4

© Planning

< Plug-in Development.

8 Remote System Explorer

B Resouree =

T

OEBPS/images/f267-01.jpg
Fle Bt Run Seurce Navigate Search Projec Refactor Window Help

D-Ead B8 BIE $-0-Q- B9 &1 45 Debug (G0ONS) 2 Joa
OO - iPAED B -F-CE-D-

B Deces 2 =108 s s Ao e [e 0,9 = 70
ORI N e
Name - » & comenpics s
o QMH » & fpco.mronsoftopennn 2102
© & nelesnzondep oo, o
 © neleamiilopDaleg o136
s @ nelemniimlopEmis ey
s ofiehontt % & neteunisedopries oz
Smndeinnde prav Py
androdpocessacore] tesfient B
comandiddeskcock o s e oz
- = : . [AR — ey
& neen son o
@ Emulotor Control 51 =i » & netemiderdepocaiontict 2
Vo home——l seees [Far—=) <[

W Logcer 1D omsole]

Swedriters = | Seachformessages Accets Jvaregees. Pefcwth pic app, ageortet o it scope. boze +) H &[0

e " - -
e e
netleamdevopint &6 rec.learn2develo.... Androidhuncize 3

= ,
[1d Launching Dislog

OEBPS/images/f510-02.jpg
8] DDMS - BasicViews1resfvalues/stringsaxm - Eclipse

Eie Edit Refactor Run Nvigate Search Project

D-HR& BiBsd i

- =5

#|emi[z20|&~

Name z

e @emamorss One |2
system process &
com.android.systemui 141
com.android inputmethod atin 155
com.android.phone 16
com.android Jauncher 18
com.android settings 210

android process.acore PR

 —— ’
@ Emulator Control 52 e
= c =

voie [home o] et [fal]
et [pome o] tatency Neone 7]
e

Incoming numbes. 1759567 =

] (reng o)

OEBPS/images/f266-01.jpg
Please enter some text

This is a string

OEBPS/images/f510-01.jpg
e
+1234567

©

OEBPS/images/f272-01.jpg
68 '8
L X-¥ a4

3@ 5 (@70ava) % Debug @ DOMS 2 Java EE
g [

[T

[tetfilent 53

> 8 gen Generated Java Files]
» B Android 40
& assets
v & bin
ares
» @ drawable-hdpi
b @ crawsble-ldpi
> @ crawsble-mdi
+ & layout
3) mainaml
- @ v

b & values
£ AndroidManifestam
1) proguardcfg

The quick brown fox jumps over the lazy dog

B

5L problems [@ Javadoc &3 . [&) Declration| B Console @ LogCat|

=

> 2 |B)

3

[textfile.i - Files/res/raw

OEBPS/images/f512-01.jpg
[E:\Android 4.@\android-sdkyplatforn-toolsdadb.exe pull /data/data/net.learn2devel
[1op.Us ingPreferences /shared_prefs appPreferences.xnl E
o Kit/s (108 bytes in 0.14253

2:\Android 4.0%android-sdk\platforn-tools>

OEBPS/images/f271-01.jpg
{8 ODMS - Fies/sre/net/learn2developFils/FlezActivity java - Ecipse

o-E@s
LA XA

PIvE

Fle Gt fun Souce Navgate Sech Pojedt Reador Vindow Fep
‘68 SHE $-0-Q-

@igvE e eray

25 & 35 Debug (EBDNE) 2 it

@ Do T

=0

G, Thieséz [@ Hesp © Alocation Tracker

%8

CXTES

emator5554
sptem process

comandroid phone

R

FEREEEBEANY

(BN

Neme
> @ data
i mt
> @ asec
b @ obb
prge
s & Asrme
s & oam
» & Downlosd
» @& LOSTOR
> @ Movies
> @ Music
+ & Myfies

[ifiespone i), W@ =]+~ =0

Sie Date
ma112
2m112
2m14121
2m1121
1.2
2112020
2ma11
211020
211020
211020
2111020
amuz

[tedflest

211112

» & Notfications.
» @ Pictures

v
> @ Ringtones
o G secure
£ stem.

==

2111020
2111020

B

‘Search for messages. Accepts Java rege. Prefixwith pi:, apf, tag: ortot to it scope.

Launching Dialog.

OEBPS/images/f511-01.jpg
{8 DDMs - BasicViews1/res/values/strings.xmi - Eclipse
File Edt Refactor Fun Navigate Search Project Window Help

=@ B BAT W iBf/ 0 -F- oo [&' Jva %sDebug 7
@ EmustorCom £ 5 s e © i e i |n&\|—\+ =9
Telephony Sotus Nome

o i == + & netleamadevelop Networking 2114143

> G netleam2develop.Sockets 2114130
Dt pome] Lty (None_7) & netlamidesop Uengintnt 1138
= = 4 & netleamadevelop UsingPreferences o412
e S b & lib 12
Tncoming number. +1234557 4 & shared_prefs o412
) appPreferences.cml 108 011112
) netleam2develop UsingPreferences preferencesaml 165 011-11-22
—_— & dontpanic 11100
Message: Hello myfriendsl e w00
b @ local 2111020

|l]] v

B LogCot [B Console 13 _

Hl=#B-~-ri-=0

Androd

[2611-12-05 15:13:36 - SOX Manager] Found SOK Flatforn Androld 4.0, API 14, revision 1 E
[2611-12-65 15:13:36 - SX Manager] Found AR EABI v7a Systen Inage, Android 4PI 14, revision 1
[2611-12-65 16:13:36 - SOC Manager] Found Samples for SOK AP1 7, revision 1

[2611-12-05 15:13:36 - SOK anager] Found Samples for SDK API 2, revizion 1

[2611-12-05 15:13:36 - SOX Manager] Found Samples for SOK API 9, revision L (obsolete)
[2611-12-65 15:13:36 - SDX Manager] Found Samples for SDK API 10, revision 1

D611 12-05 16113136 - SO Manager] Found Samples for SIK A1 11, revicion 1

[2611-12.05 15:13:36 - SO Manager] Found Samples for SDK API 12, revision 1

[2611-12-95 15:13:36 - SOX Manager] Found Samples for SOK API 13, revision 1

[2611-12-65 15:13:36 - SDX Manager] Found Samples for SDK #PI 14, revision 1

0 Ancoid SOK Contert Losder

OEBPS/images/f274-01.jpg
4 & Databases.
4@ s
4+ 8 netlesm2develop Databases

‘gen (Generated Java Files]
» BA Android 40
& assets

6] AndroidMianifestaan!
progusrd.cty
e

OEBPS/images/f512-03.jpg
q_data/data
cd net.learn2develop.UsingPreferences/shared_prefs
d net.learn2develop.UsingPreferences/shared_prefs

366627 2011-11-29 13:25 NOTICE, txt
app_48 108 2011-11-22 83:13 appPreferences.xnl
app_48 165 2011-11-22 82:52 net.learn2develop.UsingPx|

Feronces _proferences il

OEBPS/images/f273-01.jpg

OEBPS/images/f512-02.jpg
\Android 4.B\android-sdk\platforn—toolsdadb.exe push NOTICE.txt /data/data/met]
 1earn2deve 10p.Us ingPreferences/shared_prefs 3
17" KBS (366627 bytes in 3.853s>

s\Android 4.8\android-sdk\platforn—tools>

OEBPS/images/f280-01.jpg
3 ooms - s dvaiop/Das ivtyjova - Ecipze
Fie Eat fun Souce Navgate Sewch Froect Reactor Window

BE Sa0E $-0-Q- & iy [EONE)E mas
Nef-eerD-

=), gm_& [Hesp| eux..nrmm RE[=[+~=0
DR NESE AT Time Permissons | ~
- & commeterol progammens e e
» & com.svoxpico 2011-20-20 dwor-x-x
+ & pcoomrensoftopenwnn 2111020 ok
) & netleamdevelop Acey101 om1116 dvorxex
4 G netleam2devsiop Ditabases: o
+ & datibases o112
= M8 001-11-22
) WoBjouna pTEE
-y oz
o1
onun
onuz
= o110
| cemandrsipumebedivn > miaw
@ Emulator Control 52 S
~ & necieameveopNevorking o
e » @ netleam2develop Usingintent 211128

amutor 5551
oyt process
comaniroidaptens
comandroidphone
comandroid anche:
comancroid calendar
andrcidprocessacore
comandroia deskciock
comancroid providers. clendar

4
H

ZEEEEE3EBR

@Lorcat B Comsoe].

T i e e ————— HED

T

OEBPS/images/f285-01.jpg
& 5Qlite Database Browser - CA\Users\Wei-Meng Lee\Desktop\mydb (=@

File Edt View Help

DEE- sy e

Database Structre | Arowse Data | Execute SQU

Name [obieet [Toe =

E-Eontacts tuble CREATE TABLE contacts (_id INTEGER PRIMARY KEY, name TEXT, emai TEXT)
Td feld INTEGER PRIMARY KEY
nemefeld TEXT
emsi fld TEXT

OEBPS/images/f281-01.jpg
Hello World, DatabasesActivity!

Mary Jackson
Email: mary@jackson. com

OEBPS/images/f286-02.jpg
4 2 Databases
4 @B sic
4 8 netleam2develop.Databases
» [J) DatabasesActivityjava
» [3) DBAdapterjava
b &8 gen [Generated Java Files]
b = Android 40

A AndroidManifestam!
[proguard.cfg
[project.properties

OEBPS/images/f286-01.jpg
D@ Hw =y oo

Database Structure | Browse Data | Execute SQL

e —

1 1|weienglee |wemengiee@ama.(

] 1202 [[

OEBPS/images/f297-01.jpg
S O *

ALL CONTACTS WITH PHONE NUMBERS

Contacts to display
New contact

Settings

OEBPS/images/f289-01.jpg
fr B A~ S i L™
8] DDMS - Databases/src/net/leam2develop/ Databases/DatabasesActvityjava - Ecipse

Fie £t Run Sowee Nevigate Search Project Refactor Window Help
=k4" B8 BHE B0 Q- E & e Db [GOONE)R e
SC A PHeEE B -G e
8 Devices 57 = 01|, Toeace | @ Heap| @ Alocstion Tracker X1

#5682 2 S]& 7| Nome Size Date Time

[Name 3 » @ com sempleandioid softkeyooard 1020 130

[6 ermstors554 e & commatardla pgmaystem 1020 w2

Frr=rg—— o + & commotrcla programmens i w0
‘ s e > & comsvouico a0 12
[comandroid phone 7 > & ip.coomrenscitopennn 20 w2
o i 5) @ netleam2derelop Actvit 10l 1116 0625
ﬁ com.android.calendar 781 2 et i devslop Dotalses 2011122 0501
ancioid process.acore s 4 ditabaies M2 o6
comndroid.deskclock g [MyDE 302 211112 0686
} comandroid.providerz.calendar 838 51 MyDE-joumal 0 20114122 0546
com android cetings a1 v e lib a2 oo
. comandroid contacts 0 - + G netlcam2éescdopDislog 011116 0z
| e ——— v > G etlcam2deselop Emiik s 023
> @ netlcamzsereiop Fies 222 o

Emulstor Control 57 =%
(ES — » @ netleain2gerelopHeloond 110 256
B @ netlcom2derclapJSON 00

e .~
e

OEBPS/images/f305-01.jpg

OEBPS/images/f297-02.jpg
B Provider

Wei-Meng Lee
1

Linda Chen

2

Joanna Yip

El

OEBPS/images/f324-01.jpg
B 15555215554: Hello my friends!
0

OEBPS/images/f317-01.jpg
B contentProviders
Y

978-1118199541
Tie

Beginning Android 4 Application
Developmi

Add title

Retrieve titles

content://net leam2develop.provider.
Books/hooks/1

OEBPS/images/f233-01.jpg
pics selected

OEBPS/images/f495-02.jpg
1/---Button view-—-
Bucton Etalpen = (Sutton) FindViewByld (R.id.benCpen):

benOpen.setOnClickiistenas (new View.OnClickListenez() {

public vola cnClick(view v) {
String str = "You have clicked the Open button”;

DisplayTeast(stx) s

OEBPS/images/f495-01.jpg
18] Android Device Chooser

Select a device compatible with target Andiroid 3.2.

Choose a running Android device
Serial Number AVD Name Target Debug State
B emulator-5554. Android_4.0 ' Android 40 Yes Online
@ z733e570ED8200EC NA X 235 Online.
B 3c708142001597 NA v 321 Online.

) Launch a new Android Virtual Device

AVD Name Target Name Platform APILevel CPU/ABL Details.
Android_40_Tab... Google APIs (GoogleInc) 40 1 ARM (armeabi- =
Android_40_Wit... Google APls (GoogleInc) 40 1 ARM (armeabi-
Refresh
Manager.

o J(o]

OEBPS/images/f235-02.jpg
Save image

View image

Set as wallpaper
B Green: 5 megawatt
Solar roof, driverless
electric cars and ten of
the world's craziest
Christmas trees
11 201 agS7PM

OEBPS/images/f496-02.jpg
Button brnsave

o

OEBPS/images/f235-01.jpg
New tab

New incognito tab
Save to bookmarks
Bookmarks

Share page

Find on page

% Request desktop site

Save for offline reading

OEBPS/images/f496-01.jpg
BEE $-0 A S5y PDell SEERRON & Phai

= | Vbl Brabpoints 1 Exeasions 15 =5

R0 EN[2DRE|R| LwE+ X%

 Thiad €17 o] Guspended rskpont 1 a7 n Moty = 5
Mancinys

ou havecicked the Open ..

vhwwew--O

17-—suzton view
Butcon btndpen - (Bucton) FindViewById(R.id.ben
bonopen. secCaCL1oKE 1aTener (now Vaew.OnCLICKLAST

pubiic vaid onclick(View v) ¢
String stx = "iou have clicked the Open

17-—suzton viaw
Butcon bralave = (Buvton) EindViewdyTd(R.id.bbn
bensave . 3ec0aCl1okLstenes (now Vaew.OnClickLisT

i] v

 Concol 1 21 Tane) B [4 B+ [~ = O [Logcm 20 _ ®OO0O+« |87 70|
ldcid

[2010-11-25 22:44:5¢ — BasicViensi)
[2010-21-20 22:44:5¢ - Basacaensi) Anroid Launont

3

OEBPS/images/bm01.jpg
o/

Try Safari Books Online FREE
for 15 days + 159% off
for up to 12 Months*

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

7

3
%
i
|

o =

1
AN

Beginnind

Applicaﬁn

ment
evel(‘lmpm il

WithSafal Books Onlne, you can experence
searchable, unlmied acces o thousas of
technology,dita mecla and professonal
development books and videos fom dozensf
leating publishers Wt one ow morthyor yeary
subsrpton price, you get:

 Access to hundreds of expert-ted nstructonal
videoson toda'shottest topis.

 Sample ot to help accekrate a wide varety
of softuare pojects

 Robust orgaridng festures Including favortes,
Tghights,tags, notes, mast-ups an more.

 Mobile acess using any device with a browser

 Rough Cutspre-published manuscrpts

START YOUR FREE TRIAL TODAY!

Vit wansafarbooksonline.comfwroxs3 to et e,

P S——
e —"—

OEBPS/images/f239-02.jpg
Hello World, MenusActi

OEBPS/images/f497-01.jpg
h= BiBFE $-0 - ide
Briveard

B Debug 53l seves = 55 0 variales 73 %% Breakpores] H4B--0
>0 W2 R @ | name Vatse
5 T >] Guspmaen ocepon seurtoeer = | a e ImSStubsProry (4=830067732648] El
le(Sting, Sting, Seing Penc || © _gata Parcel (d=E06T651760)
Smitenager.sendTexMesszgeGirg. Siring Sting | © Teoly Parcel (d=B30067651784) d

SendSMSLab.sendSMS(String String) ne: 3

) sendsMSLobjove. (=5 D = O] 2 owtie 5 ==
bource not found. |An outline s not available.

| |
D comae 27" s G 2B -r-0fucas___ @OOOO +¥ -[B"-C
e

L
(2010-11-30 11:18:11 - SendSWSLab] Aucomatic Target 4 | |~
[2010-11-30 11:18:13 - SendSMSTab] ipplication alrs * || Fines
‘ F—] y

= e

OEBPS/images/cross.gif

OEBPS/images/f239-01.jpg

OEBPS/images/f496-03.jpg
//---Button view-—
Batton btrOpen = (Button) findViewById (R.id.btnOpen);
btnopen. setCnClicklistener (new View.OnClickListener() {
public void onClick(View v) {
String str = "You have clicked the Open button':

4O str— "Vou have cicked the Open button (d-830067775576]
of count=32
& heshCode= 551681161
of offset=0
> of value= (4=830067780008]

[You have clicked the Open button

OEBPS/images/f243-01.jpg

OEBPS/images/f500-01.jpg
Android Virtual Device Manager

List of existing Android Virtual Devices located at C:\Users\Wei-Meng Lee\.androici\avd

AVD Name
~ Android2.2
 Android2.2HVGA

~ Android3.2

~ Android 40
 Android_4.0_Tablet

~ Android_4.0_WithMaps

e
 Avalid Android Virtual Device. £ A
X An Android Vitual Device tht faled

Target Name
Android 22
Android 22
Android 32
Android 40
Google APIs (Google Inc)
Google APIs (GoogleInc)

Platform
22
22
32
40
40
40

] Launch Options

Skin: WVGAB00 (480x800)
Density: High (240)
Scale displayto eal sze

Scale: 045

) Wipe userdata
Launch from snspshot

Save to snapshot

Screen Size (in): 4
Monitor dpi: 105

0

1ii

Repair.

OEBPS/images/f242-01.jpg

OEBPS/images/f498-01.jpg
BIBAE PO s :
B B0 R @B P S d () ous @

H#E~- -0

OEBPS/images/f007-01.jpg

OEBPS/images/f246-01.jpg
& 608

B8 webview

OEBPS/images/f502-01.jpg
8] Create new Android Virtual Device (AVD)

Name: Androidd0

T [Andid a0 AoiLeeis

CPU/ABE | ARM (armeabi-172)
D Carck

Browse.

Propey vaue ==

Abstracted LCD density 240
MaxVM application hea... 24
Device ram size s12

Delete

Override the exsting AVD with the same name

=

OEBPS/images/f007-02.jpg

OEBPS/images/f245-01.jpg
606
B webview

OEBPS/images/f501-01.jpg
@] Run Configurations

Create, manage, and run configurations

ndieid Applicsion
CEX[B3- Name: Basicliewsl.
type fitter text (=] Android (B3 Target . = Commen|
[Basiciewst * | | Deployment Target Selection Mode E
5] Databases ©Manual
5 Dislog .
5 Emaie .
e Stlect a pifered Andrcid Vitua Devic or deployment
30 Frogmerts AVDNome TorgetNome Plaforn APlLerel | CPUAB] Detate. |
] Hellortd 7] Ancreid 40 Andecia 0 a0 u e |
g mogeSwitcher (9] Ancecid 4. Google &0% (Googlel.. 40 u 88U armes.. L
1 b Andrcid 1. Google APk (GoogleL. 40 u -
&t
5] LocatenTracker
[Networking Refresn.
5] Passingbata
@ sus Warager.
B Sectas Emulator launch parameters:
(5] Usingintert
0 Usngbrfrsces Newerk e [Fall__]
57 Android it Test ey
5 Apache Tomeat - 3
 idipse Applcation ~
g R
itermatchd 3138 kems [

()

I -

OEBPS/images/f005-01.jpg
[wewsomuen ooy | [sewaopny | [ewaum | [sevapeaser |

TN XONIT

L= JC= L=

IWLINNY QICHANY sawvaan

[wassman | [seooruemos | [eomenmopum | [sepeuen ey |

SUOMINVE NOLLYOIddV

_ (o) [o) [][=)

SNOILVOIddY

OEBPS/images/f006-01.jpg
Soa e bac]

i 41NINOo
-
Pha o

OEBPS/images/f246-02.jpg
B www.wrox.com/WileyCDA =

OEBPS/images/f008-03.jpg

OEBPS/images/f008-01.jpg

OEBPS/images/f008-02.jpg
Jesntsh et e 3¢9 vy

isode of Community on
NaCkr:

Jeaytush o ce ream. Ao kin. Bring it

St Sveser ot
S ik

) s s

OEBPS/images/f502-02.jpg
{8 Launch Options =)

Skin: WVGAS00 (480,800)
Density: High (240)
[Scale display to realsize:

Sereen Size (in): 3

Manitor dpir (105 ?
Scale defalt
[Wipe user data
Launch from snapshot
Save to snapshot

OEBPS/images/f248-01.jpg
E WebView

A simple HTML page

The quick brown fox jumps over the lazy

dog

OEBPS/images/f503-02.jpg
- Android 4.0Nandroid-sdkntools suksdeard 2048M sdcard. iso

Android 1.8Nandroid sdiceools>

OEBPS/images/f247-01.jpg
B webview

Home!| Bookstore/E-Books

Wrox Titles

Browse by Topic:

Search Titles:
Eriekepword.shor o 5%

P2P Programmer

OEBPS/images/f503-01.jpg
8] Create new Ancroid Vinual Device (AVD)

Nams: Android 4

Taget: [Android40 - APl Level 14 -]
CPU/ABE | ARM (ammesbi-iTa) -
D Card:

Browse,

Prpety vaue ==

Abstracted LOD densty 210
Ma> Wi appiication hes.. 24
Devce ram size 512

Delete

Overide the eisting AVD with the same name

[Ccrean] [cocel]

OEBPS/images/f249-01.jpg
5554Android 40

. WebView

A simple HTML page

The quick brown fox jumps over the lazy
dog

Gox)816”

OEBPS/images/f505-01.jpg
8] Create new Android Virtual Device (AVD)

Name: Android 4

Toger [Anarato ApiLevtt

CPU/ABE | ARM (armeabi-172)
D Card:

Browse.

Propery Vo =)

Hosrces <D sy 160
Nachsplcaiones. 24
vuicermae 26

Override the exsting AVD with the same name

OEBPS/images/f248-02.jpg
8] Jova - Webliew/assets/Index bt - Eci

File Edit Refoctor fun Source Navigste Search Project Window Help

AR 1R A

H-ERE 80 BAE ¥-0-Q- £5 (@3] %5 Debug @ DOMS 58 JovaEE
vl ooy

1% Package Explorer 51 =

EEIEN

e
B netiesm2developWebiiew
1) Webliewaciviyjava
5 gen [Gencrated Jova Fis]

TS WetView ~|

<HL>A simple HTML page</H1>
5 <hody>
<6The quick brown fox Jumps over the Lazy doge/p>
CEng sresthttp/Jumm. googie. cond ogos/Loge COuRE.4if />
oy

OEBPS/images/f504-01.jpg
18 Create new Android Virtual Device (AVD),

Name:
Targer:

chuast
D Cord:

(7] Overice th isting AVD with the same name.

Androic &
[Android 40 - AP Levei 14 =

Osee 0 3

e Endoidandrotsdoos

Propery vae ()

Abstacted LCDdencity 240
Max VM sppiication hes... 24
Deviceramsize 512

OEBPS/images/f255-01.jpg
=
. UsingPreferences

. UsingPreferences

Load Preferences Screen

Display Preferences Values

Modify Preferences Values

CATEGORY 1

Checkbox

True or False

CATEGORY 2

Edit Text

Enter a string

Ringtones
Select a ringtone

Second Preference Screen

Click here to go to the second Preference.
Screen

OEBPS/images/f505-03.jpg

OEBPS/images/f252-01.jpg
4 & UsingPreferences
b @ src
b 88 gen [Generated Java Files]
» = Android 40
& assets

» & bin
aBres

> & drawable-hdpi

b G drawable-Idpi

> G drawable-mdpi

> & layout

OEBPS/images/f505-02.jpg
18] Create new Android Virtual Device (AVD)

Name: | Samsung_Galaxy_Tab_ 101

T [Anaas2 AL

CPU/ABE | ARM (armeabi)

SD Card:
Browse.
Snapshot:
[CJEnabled
Skin:
Default (WXGA)
1280 x 800
Hardware:

Propey Vo)

Hosred <Dy 145
Kepomid g 0
e spicaiontes. 45
vuicerme 26

Override the exsting AVD with the same name

e

OEBPS/images/f256-02.jpg
=
B usingPreferences

Checkbox

Ringtones

Default ringtone
silent

Cancel

OEBPS/images/f506-02.jpg
Property
Keyboard lid support
Max VM applicaion hea..
Device ram size
Touch-screen support

] Override the exsting AVD with the same name

OEBPS/images/f256-01.jpg
=
B usingPreferences

Checkbox
1

Edit Text

Enter a string here]

Cancel

OEBPS/images/f506-01.jpg
@] Create new Android Viriual Device (AVD]
[
Taroet
B
pye
=

Snapshot

S
S

]

e

Propery Voo] || Provet:

Abstraced LCD densty 180 T

Koo lispon 0

Mac VN spplcston ez, 18

7] Override the eisting AYD vith the same name

Device lam size. s12

GresieAD

Ideal size of data partition
Tdeal size of system partition

Description: | Accelerometer

‘Audio recording support
Audio playback support
Battery support

Maximum vertical camera pixels
DPad support

GPS support

GPU emulation
GSMmodem support
Keyboard zupport

LCD backight

LD color depth

LD pixel height

LCD pixel wickh

Hardware Back/Home keys
5D Card suppart

Proximity suf

Track-bal zupport
Wi ol vl ol i

OEBPS/images/f257-01.jpg
Seweh o s Acapts s Pt o s rt o e

sopictin

OEBPS/images/f256-03.jpg
= 4 1:58

B second Preference Screen

Edit Text (second Screen)
Entera sring

OEBPS/images/f507-01.jpg
7 5554Android_40

P et e e ey s ¢
[als {o.|e o fu Ly [|e (@]
Y o e e
P —

Lol s

OEBPS/images/f192-01.jpg
B Basicviewss

Dwight D. Eisenhower
John F. Kennedy
Lyndon B. Johnson
Richard Nixon

Gerald Ford

Jimmy Carter

Ronald Reagan
George H. W. Bush

Bill Clinton

OEBPS/images/f485-01.jpg
b & AdditionalViews
4 55 BasicViewsl
o @ s
4 netleam2develop BasicViewsl
> ([B) MainActiviyjava)
» @ gen [Generated Java Files]
» B Android 22
& assets
> Sres
) AndroidManifestaml
B default properties
b € BasicViews2
b &3 BasicViews3
b 55 BasicViewsd
b &3 BasicViewss
b & BasicViewss
b & Gallery
» & Grid
b & ImageSwitcher

OEBPS/images/f484-02.jpg
Java - BasicViewsLsre/net/leam2develop/EasicVisws MainActvityjava - Eclpse.

e £t & Souce oigae Seach Bt Refocor Yindow bl
[=Rd" B $-0-Q%- WG i@S P~ £ %5 Debug 15 00MS (ETT) 58 Jov EE
PAEN iH-F oo
[rrre——. = 5@ aacuiyjovs SN = 58 outne 57 =g
B & & 7|/ package nec.1camnzasverop masieviewsi: = vhRN e X~
i g“""""“”ﬂ #smpore anazota. spp.Aeszvizys e
433 bosclional . & impertdeclrtions
“Ba , public clase Maimhcsivicy extends Activity e
e J<+ Caliea unen the sstivicy s firet czesce S=oacmliindly il
» [0 Minhciviyavs) S Goverriae h @ new OnCliedisensr) (.}
> 8 gen Genersted lave Files] = Dublic void onCreate (Bundle savedInstanceSte @ new OnClieListen=i0 .}
> Bh Android 22 ‘super.onCreate (savedlastanceState) ; @ new OnCiiclistener0 (.}
& assets secContentView (R.layout.main) ; @ new OnCheckedChangelist
> @ e OnClekitene) [}
8ttt P — & DiployTosstrng) v
cotat proparies Suceon brnopen = (Surton) finviessyIals
| sameven2 s Eenopen. setinci1oxsstaner (naw Vasw,oncl
18 B A peblic void onClick(iew v) |
{3 BascVinss DisplayToast ("You nave clicked ¢
s & Bascvinss y
1 1 BescVensh
8 Gellry
N o //——Bteen view
e Sl ey
b & Menus & B :
© 8 Webiew = & public vola onClick(view v) {
DiepiayToast (you nave ciicxea ¢
([Problems | @ Javadoc 2, Decration | & Console 51 BeEE[ef B-r9-=
0 netlernzcersopSunviessl Mamactviyjovs - Ssaciiencl/rc

OEBPS/images/f195-01.jpg
B Basicviewss

John F. Kennedy

Lyndon B. Johnson

OEBPS/images/f486-01.jpg
[FES sEcktom R Navigatar Saave v Projact s Rafactos s WindewsHalp

New AtshiteN> o @ g e Qv
Open File...
Close Ctriew. g
Close All Cir Shifte W
Save Cries.
Save ..
Sove All CerShife S
Revert
2
& s
»
criep
Switch Workspace »| CUser\Wei-MengLeelworkspace
Restart C:\Users\Wei-Meng Leelworkspace2
C:\Users\Wei-Meng Leelworkspace
o Al Leel
w4 Expert.. Other..
Properties Al+Enter

OEBPS/images/f194-01.jpg
¥ Basicviewss

Dwight D. Eisenhower

John F. Kennedy

Lyndon B. Johnson

Richard Nixon

Gerald Ford

Jimmy Carter

Ronald Reagan

Geol' yoy have selected Jimmy Carter

Bill Clinton

OEBPS/images/f485-02.jpg
Java - BasicViews1/src/net/learn2develop/BasicYiewsl/MainActivityjova - Edipse

Ele Edt Bun Source Nevigate Search Project Refactor Window Help
B-BE& BhAE -0 Q- #HEG- OB~ [35 De
» A iE-H-ee D
L T L)
5| o 7|7 package nec.leamzdsvelop.Basicviensis -
#import ancroid app.Activicy:
s public cless Maimhctivicy extends Activiey (|
") MainActiviy] New v [& JavaProject
» 8 genGeremtea o] Golmto & Andridproject
Android22 -
B P — & o
s Open Type Hierechy f |8 Package
i AndroidMenifestar Showln AtsShFtsW» | @ Class
2 aetauttproperies =
» € Bascliens2 Copy arc @
o & Basickiews3 B Copy Quaffied Name (=D
pghﬂm & paste ey | @ Annctation
» & pasicviewss &9 Source Folder
>/ BaicViewss " 440 Java Working Set
> & Gallry e e CuteatesiteDoun | ryaer
» @ Grd Build Path »
» & mageSmitcher [Fie
e - Ay | e
> 53 WebView Refacter ASTY B pgenaion e
& Import.. [JunitTest Case
& Bport. o Tk
e + |55 Bampie..
Dechrsions
& Refreh
Aign Werking Set..

OEBPS/images/f201-01.jpg
B Basicviewss

Jimmy Carter

Duight D. Eisenhower
John F. Kennedy
Lyndon B. Johnson
Richard Nixon

Gerald Ford

Jimmy Carter

Ronald Reagan
George H. W. Bush

4

Barack Obama

George W. Bush

OEBPS/images/f487-02.jpg
] import

Import Projects
Select a directory to search for existing Eclipse projects.

Selectroot directory: C:\Users\Wei-Meng Lee\workspace

© Selectarchive file:

Browse.

Projects:

[ActivityLeb (C\Users\Wei-Meng Lee\workspace\Aci ~ | [Select Al

] BesicUlLab (C\Users\Wei-Meng Les\workspace\Bas| |
] Databaselab (CAUsers\Wei-Meng Lee\workspace\D)
7] DiclogsLeb (C\Users\Wei-Meng Lec\workspacelDia
] FiesIDLab (C:AUsers\Viei-Meng Lee\werkspace Fle:

] HelloWoild (CA\Users\Wei-Meng Lee\workspace\He ‘
] HitpLab (C\UsersiWe-Meng Lecworkspace\HitpL

] IntentLab (C\Users\Wei-Meng Leclworkspace\lnter

7] Copy projects into workspace:

Working sets

[EJAdd prjectto working sets

Working et][sdect
<hack Vot || Dk G

OEBPS/images/f198-01.jpg
B sasicviewss

Show selected items
Dwight D. Eisenhower v/
John F. Kennedy
Lyndon B. Johnson
Richard Nixon v/

Gerald Ford

Selected items:
Jimmy C pyight p. Eisenhower
Richard Nixon

George H. W. Bush
Ronald f S°1de - BLs!

George H. W. Bush v/

OEBPS/images/f487-01.jpg
8 1mport
Select
Creste new projects fiom on erchive il or directory.

Select an importsource:

type filtr ted.

4 & General
5, Archive File
|5 iting Projects o Workspace|
3, File ystem
I, Preferences

b & Vs

v e us

b & avake

@ Plug-in Development

b @ Remote Systems

b & Run/Debug

» @ Tasks

b = Team

b @& Web

o = Wb conicec

OEBPS/images/f021-02.jpg
(8 Java EE - Ecipse

[Fle_E3t_Reactor Fun Naveste Seach Projest_Wndow _Hep

(@ wecome 23

booraB

Samples

‘Workbench
Eclpse workb

. Multi-page editor
Snows how to reate an

o property sheet and
Demonstrates how to us

' Readme tool |
sromshowtacsterll

e it

e s el | G

3 love Pt from Eiting At Buldle
G Plugin Prject

» & Genesl

1+ & Anirod

| ez andwamoe

(& AndrcidSampleProject

7 Andicid TetProjct

e

| S st
=)

[2

@

OEBPS/images/f205-01.jpg
4 247

B ListFragmentExample

Dwight D.
Eisenhower

John F. Kennedy

Lyndon B.
Johnson

Richard Nixon

Dwight D.
Eisenhower

John F. Kennedy

Lyndon B.
Johnson

Richard Nixon
Gerald Ford

Jimmy Carter

OEBPS/images/f488-02.jpg
ic_launcher.pg - Windows Photo Viewer [BRE

File v Print v

E-mail

Bum ~ Open ~)

k]

OEBPS/images/f021-01.jpg
B ke Ecipre

Ede_ Refactor_Run

Searen_pro

New
Openie..
Coze

AltShite v

cuewt
Coshtzew

s

Coneshiees

Session Bean (583
Message-Driven Bean (£83:)
Web Sevice.

Fie

Bample..
Other.

Q2 UBkAAQ DuERRaNB

23

N

e

Sheat and outing viaws

kension points

@ i

OEBPS/images/f202-01.jpg
B Basicviewss

Ronald Reagan

Richard Nixon
Gerald Ford
Jimmy Carter
Ronald Reagan
George H. W. Bush
Bill Clinton
George W. Bush

Barack Obama

OEBPS/images/f488-01.jpg
{8} Java - BasicViews /src/neiearn2develop/BasicViews1 MainActiity ave - Eclipse.
Ele Edit Run Source Nangate Search Project Refactor Window Help.
NrEEe 8 iBdE B-0-Ar WG @A 5 45 Debug 155 0w [
PEAED H-FH-we-D-

package nes.lessazdsvelop.Basiovicwsl =

 inport sndzaid.app.hetivity
import enaroid.os.sundle;

8 netleam2éevelop Bsicliensl

import android.view.View;

) vainaciviyjacs Ammort andzoid. vidgar Betton:
& geniGencatea e i i e bl o
B Ancroid 22 P ————
& mes Suport androidvidger RadicCroups
B Inpore snazora wiaser Tomse:

inport android.widget.ToggleBusten;
mport android.widget.RadicGrou.OnCheckedchangeListener;

© Bt
& pasctiewss Public class Meimacrivicy cxtends Activity (

53 Basiciewt /*x Called vhen the activity s firet created. */
- B

i Dapite Y010 oncreate (sumale savearnstancestate) ¢
- super. caCaste (savecInatancestase) ;

& secContencview (. 1ayouc main) |

© ImascSicher P

& Rt on vie

S Butcon beatpen = (Btton) finaVievEYIS (3. 29 bnoper)

- beadpen. 5250nC1i oKL svener [new View.OnClickListensx () [
° papiic vola onclick(view v) ¢
DisplayToast "Yau have clicksd the Open butten)s -
‘ i]

OEBPS/images/f020-01.jpg
Make yourself at home
YYou can put your favorite apps here.

OEBPS/images/f209-01.jpg
B pialogFragmentexample

Are you sure you want
to do this?

Cancel

OEBPS/images/f489-02.jpg
2@ (68 8HFiw-0-Q%-iHE- 5 (@) %5 Debug G 0OMS 72 e EE
BoF- B8 B-prve-o-

2 Pactageplrer 17 =
- <oml version-TL
Ll = <LinearLayout mlns:android="http://schemas. android. com/apk/res/cndroid”

oyt vadtho" Ll parert-

oo heighe= L parent”

Rerticar-

3 gen [Genereted Java Files]

bcnsave”

<Button endroid:id="@rid/bendpen
droid: Layout_idth="urop_content"
eent

Sndrcaditext-Open

consgebstion androl o0t /benings”
Sdrcid:Layout width=-fiLl_parent
android: Layout e lght="araf content®
Sndrold:sre="girachle/lc_Luncher”

<EditText android:id="G+id/trthone"
android: Layout beight"arap content”

<CheckBox android:id="8+id/chifutosave’”

OEBPS/images/f019-01.jpg
Android Virtual Device Manager

List of existing Android Virtual Devices located at C:\Users\Wei-Meng Lee\ android\avd

AVD Name Target Name Platform APILevel
Android 40 40 14
) Wit... Google APIs (GoogleInc.) 40 14

8] Lounch Options

Scale display to real size-

Screen Size (n): &
Monitordpic 96 B]

Scale: 082

) Wipe userdata

[Launch from snapshot
[JSave to snapshot

CPU/ABL
ARM (srmeabi-y73)
ARM (srmeabi-y7a)

fekiesh

< A vald Android Vitual Device. 1 A g

X An Android Virtual Device that failed

[Ctownen][conca]

OEBPS/images/f205-02.jpg
B ListFragmentExample

Dwight D. Dwight D.
Eisenhower Eisenhower

John F. Kennedy John F. Kennedy

Lyndon B. Lyndon B.
Johnson Johnson

Richard Nixon Richard Nixon
Gerald Ford

Jimmy Carter

You have selected John F. Kennedy.

OEBPS/images/f489-01.jpg
18] 1212 - Basicliens res/leyoutmainam - Elipse

T e Sowcs T e
o- 88 8@
S P H-F oo

=8

2%
peyeTy -
« 3 Bsic¥ienal
@
95 gen (Genersted Jova Fies
B Ancicia 22
8o assets
& bin
B
& drawable hdpi
& draable-dgi
& dravatle-mepi
< 5 ot
2 mainarr
& vaues
i Andrcidhenifestami
) progueracy
2 project properties
S Datsbases.

12 Frgmerts
* 55 Hlotona
& imagesaiche
5 btrts
5= on .

T mainami- Bascvienst e layout

Sewen roject Vindow Fzp

#-0-Q- HE- 4 @TTm) %5 vewa @ 0OMS 4 et
5 ot 5 -
[rp— [Eomiocien) iz) [c

VG e e =] o) Nomal = Beyime <] e

save

Y]

= Graphical ayout]| = mainammi
2 Problems @ Javado [, Dectartion) Console 8B LogCat 2
Android SOK Content Losder

OEBPS/images/f018-02.jpg
8] Create new Android Virtual Device (AVD)

= o=
-
e

o

I E—

Browse

bropery Vive (o)

Abstracted LCD densty 240
MaxM application hea... 24
Device ram size: 12

Delee

Overiide the exizting AVD with the zame name

(o] [Gorea

OEBPS/images/f018-01.jpg
3 Android Virtual Device Manager

Listof visting Android Virtual Devices located at C\UsessiWiei-Meng Les\android\avd

AVD Name Target Name Platform #PlLevel
= No AVD avilable = =

cou/aBL

Deleze.

Repair
Deails

Start,

< Al Anceoid Vil Device. £ A repaiable Anid Vil Dvic,
X Andeoid Vil Devic the e ool Click Deta o s the ror

OEBPS/images/f211-01.jpg
4 22 Preferencefragmentbample
4@
4 8 netlesm2develop PreferenceFragmentErample
b) PreferenceFragmentEampleActivityjava
5 B8 gen [Genersted Java Files]
b B Android 40
& assers
&

bin

b

B
o @ druable-hdpi
b (> drawable-ldpi
b & drawablemdpi
v & layout
b & values
4

OEBPS/images/f017-01.jpg
Samples

‘Workbench
he following samples demonstrata how to
Edibse workbanch.

Multl-page editor
Shows how to craste an sdtor with

Property sheet and outline

emonstrates how to use and outine views ot
e L Run SWT samples using efther the standalons SWT launcher or 35 an
intagrated workbench vet.

. Workbench views and standalone applications
The ST Example launcher il o you o unch a

‘avaiable 23 views inside the warkbench.

OEBPS/images/f023-01.jpg
Fie Eoic Refacor fun

-
 prcage gt 5

Nevgne Sexch_ ot Window
68 BAE $-0-A- FE- D~
== EEICE®TE

~ - @]

Creowed |

Qb Al b Acvae

@ Conmect Mylyn B

Comnect oyourtack nd AL ocke
o cueste loca tak.

(2 Probkoms 15 @ Jovdoe B Decration]
Oiems

OEBPS/images/f022-02.jpg
B New Androd Project izl

Application Info
Configure the new Android Project

Appication Name: Felloord
PactageNome: netleaminscopFaloWord]
FCresie Acuity Hellorkdaciiy

Momumso 14 5

) Create s Test Proct
Test Prcjct Name: | HeloWorkdTest]

TestAppicaion: [eloorTe]

TetPaciages [neleamieaopHeloWoriiet]

OEBPS/images/f022-01.jpg
8 New Android Project

=l
Create Android Project
Select project name and type of prcject

Prject Nome: Felord]]

Lacatian,

C:/Users/Wei-Meng Lee/Desktop/Book Projects/Beginning And | | Browse..

Working sets
[71Add projectto werking sets:

waskng s |) s

@ PR T T

OEBPS/images/f490-01.jpg
5 %5 Debug 15 00Ms (ETTRE) 58 hovetE

=i =

OEBPS/images/f213-02.jpg
& 510

[PreferenceFragmentExample

X et
ekt

Checkbox

Edit Text

[Enter a string here]

Cancel

OEBPS/images/f491-01.jpg
package net.learndevelop.BasicViewsl;

@ import android.app.Activit:

public class MainActivity extends Activity {

/%% Called when the activity is first created. =/

Goverride

public void onCreate (Sundle savedInstanceState) {

super. onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;

//---Button view--—-

Button btnOpen = (Butron) findViewById (R.id.btnOpen):

(g Burtton cannot be recolved to type

7 quick fixes available:
+— Import ‘Button’ (android.widget]

© Create class ‘Button’

© Creste interface ‘Button’

© Add type parameter Button' to ‘MainAdtivity'

© Create enum Button
@ Fix project setup.

o Add type parameter Button'to ‘onCreate(Bundlel!

Press 2 for focus

ckListener() {

e Open button”!

1d.ptnsave) ;
cKListener ()

e Save button”!

OEBPS/images/f213-01.jpg
4 & 509

[B PreferenceFragmentexample

HellgAYggbRveferenceFragmentExampleActviy!

Checkbox =
True of False

CATEGORY 2

Edit Text

Entera string

Ringtones
Select a ringtone

Second Preference Screen

Click hereto go to the second Preference
Screen

OEBPS/images/f490-02.jpg
'_Tg‘a;m.g 1! DDMS.

Toa)s® hna

T ooms

35 Debug

§¢ Java Browsing

& JavaScript
Other.

OEBPS/images/f213-04.jpg
Fie Edt Refactor Source Run Nevgate Search Project Window Help

B-ER& 68 B4 $-0-Q-

PO A PIvEN D T Ce-D-

5 & o 5 Debug (G00E) 2 it

(@ Ermtator Conti| @ Drvis 5= 5
e
B emulator-3534.
e

%, Tves @ e © Aloction T sl 1, WA[=[+°°F

Name

& netleara2deelop Networting
© & netlearnzdevelop Notfications
© 2 netleamzdevelop PesingDita
4+ (netlearzdevelop Prefeencefragmentample

Euﬂ\ga~n-=aw

* Android DK Centent Loacr

OEBPS/images/f492-01.jpg
public void onCreate(Bundle savedInstanceState) {
super.onCresta (ssvadInstancestacs) s
setContentView (R.layout.main) ;

Toast.,

[lass: Class<android widget Toast>
& LENGTH_LONG: int - Toast
G LENGTH SHORT int - Toast

 makeTex(Contes contr, CharSequence ted, int duratin)

& makeText(Context context, int resld,int duration) Toast - T
i

'
Press c

Space’ to show Template Proposals

OEBPS/images/f213-03.jpg
4 & 510

I second Preference Screen

Edit Text (second Screen)
Entera sting

OEBPS/images/f491-02.jpg
public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.nain) ;

//-~-Button view-
Bucton benOpen = £in
© findViewByld(int ic) : View - Actiity
© finalize0): void - Object
© finisk(:void - Activty
© finiskActivity(int requestCode) void - Actiity
© finiskActivityFromChild(Activity child,int requestCode) : voiy
© finiskFromChild(Actvity child) void - Actvty

v
Press Ctrl-Space to show Template Proposals

OEBPS/images/f221-01.jpg

OEBPS/images/f492-03.jpg
public class Mainkctivity extends Activity {
/%% Called vhen the activity is first created. */
Goverride

public void orCreate(Sundle savedinstancestace) {

super.onCreate (savedInstanceszater Rename.. AkShitR |
secconcencvie ¢ Undo Typing @z | Move. AbesniteeV
fi—suszes o IR E Change Method Sgrature... AkaShiteeC
Batcon swe T —, Aeshitt-
BERORER-3€CON Gpen pectaraton B | Btrectlocl Varisle.. proceny
PPl OpenTupetiercy o
) Open Coll Hienrehy ottt | Tnine.. Aeshiet
ns ShowinBreadcrumb Astes || e
Jctieen | QKO aro |
Buccon bensay QuickTypeHierarchy T ®
bensave.secon Showln irismame|| B
« Use Superype Where Pose...
pupic at Gl () ey
Displ copy o] e
wa’ Copy QualiedNeme. -
Paste cuv
e I | s e ot
promioles| | gy | b
« Refactor AeShiteT» | Generaze Decred ype..
=T Aoz
S ,

OEBPS/images/f220-01.jpg

OEBPS/images/f492-02.jpg
J/=—Button view
Butcon bendpkn = (Button) findViewSyld (R.id.bnopen):
btnOpen. seOnClickListener (new View.OnClickiistener()

public void enClick(View v) {
DisplayToast("You have clicked che Open button”)

OEBPS/images/f014-01.jpg
8 Choose Packages tonsiall.

Package:
~ Anchoid SDK Pltformr-tacls, reison ..
~ Documentation for Anckcid SO, APIL

 SOK Platform Android 40, API14,revi
 Samples for SDK AP1 4, revision .

" ARM EABIVTa SysemImage, Anccid
~ Goagle APs by Google nc, Andrd A.
~ Ancroid Support packags,resion 4

 Google Admob Ads Sk package.revi.
 Google Market Eiling package, reviic..
~ Google Marke Licensing package,revi

1] Samething dapends an th: package

Package Descrption & License:

Padkage Description
Android SDK Pltiorm-tools.revision 8 M

‘Dependendies
This package i s dependncy for L
=|| - Android SDK Tooks, revision 1¢

e
Avchivefor Windows

St 01 MR

SHAL 1147979468321 cA0354SededT ST 763 5T

OEBPS/images/f224-01.jpg
B calley

images of San Francisco

pics selected

OEBPS/images/f493-02.jpg
R oo Socrcam et Swarchmrojct mWindowmstidp
Change Widget Type...
SE A~ 25D ([Chngelaou.

Elz

87>

UL perent
. AL parent
atsieAs |Por

88 gen [Generated Java Files]

reical” >
<Button android:id="@+id/btnsave”
endroid: Layout_width-"fiLl_parcnt”
android: layout_height="urap_content”
»

<Button android:id="@+id/btropen”
android: Layout_width="wrap_content’

android:Layout height="wrap. content"
narodizexte gpen />

‘http://schenas.

OEBPS/images/f013-01.jpg
Android SDK Manager

Packages Tools
SDK Path: E\Anroid 40\android-sdk

+ [0 Tools
1% Android SDK Tocls 14 @instaled
18§ Android SDX Platform-tools § Not instalied
4 [9) (2 Android 40 (AF114)
1) Documentation for Android SDK 1 & Not instalied
i SOK Platform u § Not instalied
&y samples for oK 1 § Not instaliea
& ARM EABI v7a SystemImage 14 & Not instalied
& Google AP by Google Inc. 14 § Notinstalied

b [Gl Android 32 (APL13)
» [Android 31 (API12)

» [F1(Android 30 (API11)
b 1) Android 23.3 (API10)
& [Android 22 (A1)
» [F1(22 Android 21 (APL7)
» [(& Android 16 (APL4)
© [Android 15 (API3)
4 @01 Butras
@ Android Support package § Not installed.
@8 Google Admob Ads Sck package § Not installed
8 Google Marcet Biling package § Not instalied
8 Google Martet Licensing package § Not instalied
88 Google USB Driver package § Not installed
8 Google Webdriver pactage § Not instalied
|Updates/New Z]Installed [7] Obsolete Select New/Updates Instell 12 packages...
APlleel O Reposiory Deselect A1 Dekte packages

B

OEBPS/images/f221-02.jpg
4 & Gallery
b @ s
b 8 gen [Generated Java Files]
» B Android 40
& assets
b & bin
4B
» & drawable-hdpi
b & drawable-ldpi
4 & drawable-mdpi
W ic_louncher.png
icl

[X) mainsmi

OEBPS/images/f493-01.jpg
(Batton) findViewById (R.id.btnOpen);
OnClickListensz() (

OEBPS/images/f012-02.jpg
@ Android SDK Tools Setup.

Completing the Android SDK Tools
Setup Wizard

‘Ancoid SDK Tools has been intalled on your computer,

Clck Finsh to dose tis wizard

IS e G ioed e e, <)

Fiish

OEBPS/images/f230-01.jpg
B imageswitcher

images of San Francisco

OEBPS/images/9781118240670.jpg
COVERS ANDROID 4

| @
»
1 \x
e B e
Beginning

Android 4

Application Development

IN FULL COLOR

OEBPS/images/f012-01.jpg
@ Android SDK Tools Setup

p——
e B

Setup wil nstall Android SDK Tools n the folonng foder. To instal n a different flder, cick
Browse and select another fider. Cck Next to confinue.

Destinatin Folder

\Android 4.0landroid-sdk

Space avaisble: 663,868

Nulsoft Instal System v17-0ct-2011.cvs

OEBPS/images/f225-01.jpg

OEBPS/images/f494-01.jpg
8} Extract Android Sting

String Replacement.
Sting Save

XML resource to edit
Configuration:

Available Qualifiers o
48 Country Code

o Screen Wik
T screen Height
asize

Chesen Qualifiers

Resource file: /res/values/stringsami

1] Replace ina Java fles
1] Replace in a8 XML e fordifferent configurston

OEBPS/images/f011-01.jpg
Android SDK Tools Setup SR)

Java SE Development Kit %

Detect whether Java SE Development Kitis instalied.

Java SE Development it (D) not found.
‘Ancroid SDK reles on the Java SE Development Kt (IDK).

Go to hipsffava.orade.com > Downloads > Java SE > JDK to download and instal a JOK.
before continuing.

Note: A Java Runtime (JRE) s not enouh to develop for Android.

i youbsier you have DXinstledandit vos ot roerty ecognce,pese e he
‘Report Error button. This il also enable the Text button.

Reporterror

Nulsoft InstallSystem v17-0ct-2011.cvs

OEBPS/images/f010-01.jpg
Cl Android DK Ancrond e <

& & € |© developerandroid.com/sok/indexntm |

developers CFEETITETS

me (R oo | e | s | s | g

Anarold SOK Starter Package

Download the Android SDK

Instaling he SDK
owunloadablo SOK Compon

bt bl v Fyoure siesdy using the Ancrid SOK, you shouid updte 1o th ltest tools or pltform using the Anciod SDK sncd AVD
‘Ading SDK Companents.

» ancrola .0 patorm = Mansger. rathe then Gourloading a new SDK starer package. Sec
+ Anceoid 32 Pitorm i i i

+ anctola 31 Piarorm
+ Anceoid 30 Pitorm Plationm Package D5 Checksum

Arcrola 234 Platom
Windous andeoid e isindous zip TG bytes 48diandcioadacdebBG21achcazsdD

Wielcome Developer I you are new 10 the Andri SDK. please read th steps beow. for an ovniew of o 10 set p the SDK

+ Anceoid 233 Platform
+ Ancroid 22 Pitorm
+ ancroia 2.1 Piatorm

1326¢26202905031
' Other Piaiorms nstallr 114 uindows sxa (Rocommsndod) 33853391 bytos 411cb329341: 1206

DK Tools,r14mew

b Mac 0 X (mis) ancioidadi ridmacose 5 U7 bytes B1288701B4 53026426
SupprtPackage. 147
anciodsd ribinucicz
P——— Linux (336) andoidsdkridinuct 25075938 bytes 35C3B9MBT 1847654496051 30d8ab5
OTH00) Hord's an ovenion of ho staps you mus ol 1 ot up the Andiid SDK-
Native Development Tools

1 Prepare your devslopment computer and ensure it meets he system requiements
2. Intal the SDK startr package fomthe table above. (f youe on Viindows, Gounload the mstalerfor help wihthe ntial
setup)
3. Insall the ADT Puginfor Eclpss (7 you'l e developing i Eclios).
0w USa Dibers - -

Sncoid NOK,
natis me NOK? L

Hors nformation

OEBPS/images/f016-02.jpg
Welcome to Android Development
Corfigure SOK

To develop for Android you need an Android SDK.and st one version of the Android APlsto compile
ageinst You ay slzo want sdditions|versions o Android totest with.
© Tnstal e SOK

(vl he st svailsbleversion of Android APl (supporte sl the lstctfstures)

I sll Ancoid 21, version whih s supported by ~07% phones and tablet:
(fou con 24 aditionalpitforms using the SOK Marager)

Target Location: | CA\UsersiWie-Meng Les\androisds

|os)

© Useedsting 5DKs.

Bisting Location:

\Android & 0\android-sdc Browse..

@

- |

OEBPS/images/f016-01.jpg
& sl
Available Software
Check the tems that you wish to nsal.

Work with: _ htps/dF-ss\google comy/android/eciipse/

- e

Find mre software by working with the "Avaicbie Softwre Stes” preferences.

[iypefiter et

Neme

Verion

+ (2110 Developer Tools

Jr—

Detsiz

(7 Show enly theltsst versions o avilble scftware
191 Group tems by categery
111 Show cnly scftware applcableto target environment

I Cortact all update sites durng instaltofind required software:

S1%- Anchoid DOMS. 14002201110071975- 205984
919 Anchid Developmert Tools 1400,20110:71935- 205984
7] % Android Hierarchy Viewer 140042011101 71935-205964.
1% Ancroid Tracaview 4002055 20595

ide ke that are already installed
Whtic sheady inctalled?

@

o =l

OEBPS/images/f015-01.jpg
Fle B Novigate Seorch Project Rurn Window

[—

Eclipse Java EE IDE for Web Developers

grE—

OEBPS/images/f014-02.jpg
u 13items.

OEBPS/images/f059-02.jpg
(]
App info

L 4 337
App info

Usinglntent

version 1.0
Force stop

SToRAGE
Total

App

USB storage app
Data

SD card

CACHE

Cache

Uninstall

20.00KB
20.00KB
0.008
0.008
0.008

Move to
card

Total 20.00KB
App 20.00KB
USB storage app 0008
Data 0.008
SD card 0.00B

Move to SD
card

ear data

0.008

LAUNCH BY DEFAULT

Yourve chosen o launch this app by
default for some actions.

Clear defaults

OEBPS/images/f059-01.jpg
Complete action using

B secondaciviy

p Third Activity

Use by default for this action.

Clear default in Home Settings >
Applications > Manage
applications.

OEBPS/images/f150-01.jpg
B uiactivity
Your Name

i-Meng Lee

0K

Down arrow was clicked

OEBPS/images/f468-03.jpg
8] Export Android Application =N

Keystore sclection ‘

© Use eisting keystore
© Createnew kepstore

LocaonChUse\NerHeng LeeDeskon WytewCatkersiore |

Pacsacict sesassssessnsrese

Confirm: sssssssssssnsssse

@ Bk [Wetr [g | [Concd

OEBPS/images/f468-02.jpg
Export Android Application

Project Chacks
Performs a et o checks to make surethe appiicatin can be exported.

Slectthe projectta erpert:

Project LBS
No erors found. Click et

i @

[©) i] o

J

OEBPS/images/f155-01.jpg
B uiactivity

Your Name

2131034112 has focus - true

OEBPS/images/f469-02.jpg
8] Export Android Application

Destination and key/cartificata chacks

Destination APKfle:C:\Users\Wei-Meng Lee\Desktop L85.2pk.

Certficate expires in30 years.

T©)

[©) Bk) e | [CEmwn][

OEBPS/images/f154-01.jpg
B viactivity

Your Name

OK was clicked

OEBPS/images/f469-01.jpg
Export Android Application

Key Creation

sz DistibutionKeyStorcAls:

Valdiy (earsx 3

Fitand Last Name: Vie-Meng Lee

Organizational Uni:

Organization:

City o Locaiity:

State orProvince:

‘Country Code (0

@ PNON S

Finish

J

OEBPS/images/f055-01.jpg
4 [Usingintent.
4@ sc
4 8 netleam2develop Usinglntert
» [0 SecondActivityjova
» [3) UsinglntentActvityjave
b 8 gen [Generated Java Files]
b B\ Androidd.0
@ assets
v & bin
B
@ drawable-hdpi
I @ drawable-lopi
b G drawable-mpi
4 & ot
) msinsent
() sscondactivity.ml
b @ values
5 AndroidMianifetaml
[proguard.cfy
B project.properties

OEBPS/images/f163-02.jpg
B sasicviews

Save

¥ Autosave

*

Option 1
& Ooption 2

ON

OEBPS/images/f470-01.jpg
{8 Export Android Application

Location: C:\Users\Wei-Meng Lee!DesktopyNewCert keystore

Password:

Confirm:

P s s | [m—

OEBPS/images/f054-01.jpg
« & Usinglntert
8 e

o 8 gen Generate|
o = Andoid 40
B sssets
b & bin
b
0 AndoidManid

2 proguaracig

£ prejctpropet

PEYT
g
i
H

Remove from Context
Buld Path

Source

Refacter

b E

Impert...
Export..

Ctl-Alt-Shit- Down.
Al ShiftsS >
A Shifts >

Java Working Set

Untited Text File
Android XML File
Uit Test Case:
Task

N

OEBPS/images/f163-01.jpg
B Basicviewst

Save

Autosave

*

Option 1
Option 2

OFF

OEBPS/images/f469-03.jpg
Progran Files\Java\jre6\bin>keytool.exe -list -alias DistributionKeyStoreAlial
“keystore "C:\Users\iei-Meng Lee\Desktop\MyNeuCert.keystore” —storepass keysto
repassuord —keypass keypassword —u
filiag nane: DistributionkeyStorenlias
reation date: Nov 28,
S el
ertificate chain length: 1
ertificate (1
Ounex: CN=lei-Heng Lee
CN-iieiteng Lee

:33:35 SGT 2041

:86:DE:80:26 : 7E:0F:12
95:01:88:8B:00:7B:AC:88:FD:0C:6A

Signature. algorithn nane: SHALWCHRSA

Uersion: 3

Progran Files\Java\jre6\bin>

OEBPS/images/f053-01.jpg
. Downloading files...

36% 36/100

Cancel oK

OEBPS/images/f165-01.jpg
Option 1 Option 2

£

OEBPS/images/f471-01.jpg
{8 Expor: Android Application

Destination and key/certficate checks
/by Destinstion fleshesdy aicts

Destination APK il C:Users\Wei-Meng Les\Desktop\LES.spk

Eeiiicate expives on ied Hioy 30 19733035 SGT 3041
» WARNING: destination fic already cxists

Cencel

OEBPS/images/f052-01.jpg
I bialog

Click to display a dialog

Click to display a progress dialog

. Downloading files...

OEBPS/images/f164-01.jpg
This is a long sentence that spans
across multiple lines..,

+ Autosave

OEBPS/images/f470-02.jpg
{8 Expor: Android Application

Key alias selection .

© Use existing key.
Aias: [disributionkeystorealizs 5
Password: | eesessenass]]
Create newkey

<Bock [Neaz][fineh Cancel

OEBPS/images/f049-01.jpg
B pialog

Click to display a dialog

Click to display a progress dialog

Doing something

OEBPS/images/f166-02.jpg
S & @ o+ @A = MEI1S8:

OEBPS/images/f473-02.jpg
8] DDMS - LBS/res/layout/mainxmi - Ecips=

in-EBe &
B -f-ewe--
B oevces T =5
_ #limo[zioim~
Name | 4 ome D
(@ emulstor-ss5¢ T > @ anr D1-11-20
system_process. &7 4@ app 211-11-28
comandroidsysiemui w ' ApDemosapc 0 e
com.android.inputmethodlatin 154 @ CubeliveWallpapersapkc 19999 2011-10-12
comancroidghone o 260 11022
‘com.android.Jauncher 18 @ Softeyboard apk AU M11-10-12
Q@ Vidgabresenapk ot o2
» @ app-private D11-11-11
» @ backup 011-11-28
+ & dabikeache Dis
= Diis
» (& dentpanic 20111111
L& dm o
=g o
Telephony Status & @ lost+found 0111111
Vaice [homa) ot [a KN’ m

) Logcat [B Console 23

Doms.

-
at com. ancroid. ddnlib. AdbreLper. executekenoteContand Adbrelper. Java:

S e i S e e oV ol (05 2 S 19
i

-

OEBPS/images/f044-01.jpg
Click to display a dialog

This is a dialog with
some simple text

Google

Apple
Microsoft

Cancel

Google checked!

OEBPS/images/f166-01.jpg
)
(©)option 1

@
() option 2

OFF

OEBPS/images/f473-01.jpg
Apps
DOWNLOADED ON 5D CARD RUNNING

28,00k

Example Wallpapers
20,006

Intents
20.00KB

Sample Soft Keyboard
36.00KB

32.00kB

Widget Preview
20.00kB

mlmum stor

OEBPS/images/f042-01.jpg
ctivity 101 Act

826

OEBPS/images/f041-01.jpg
| Activity101

Hello World, Actvity101 Acivty!|

Camera

OEBPS/images/f167-01.jpg
Auosave

*

option 1

option2

® Stretehtofil sereen

Zoomto il screen

pid 11:H0: ¥

OEBPS/images/f056-01.jpg
B Usingintent I second Activity

This s the Second Activity!

Display second activity

OEBPS/images/f039-01.jpg
8] DM - Actwit/L0L/srcneieam2develop/Actity 0L/ Actity 01Actityiava - Ecipse
Fle ot Run Souce Nasgets Sewch ot Aefactor Windon

o-EE 88 BAE $-0-Ar &5~

P S [E B~F-we~-

B Devices 70 =5 |[% Theade 21 B Hesp| @ Allocation Tracker 1 File Explorer| =l
*#land|z2(0[d” T

Name
@ cmutor 55

S5
s Pt i, . 1 r st o e, e
" sgpicon s T -
[T e re— ey ey Y
e Ehaiey s e
e et om it s csiont s ettt
e i —
e ——
e s o e —
ot Msmaa . | getion guliFich: | Pmiasce sathoee CYY eminpio scmd:
e e e
FORF ey e g [ey e e ey
229 android.process... dalvikvm GC_CONCURRENT freed 312K, S% free 10356k/10823K, p(ll
s i feocems [meiascsir | Reoee opening cammecosp e/mcecer anerei el

OEBPS/images/f475-01.jpg
DEVICE ADMINISTRATION

Device administrators

View or deactivate device administrators.

Unknown sources
Allow installation of non-Market
apps

CREDENTIAL STORAGE

Trusted credentials
Display trusted CA certificates

Install from SD card
Install certificates from SD card

Clear credentials
Remove all certifica

Cag

OEBPS/images/f173-01.jpg
i & 3:23

P Basicviews2

O

OEBPS/images/f476-01.jpg
7 Developes Signup x
€ 3 C | ® marketandroid.com/publish/signup

weimenglee@gm:

ans30D

D market

Getting Started

Before you can pubish software on the Android Markst, you must co three things:
+ Create a davslopar profle
+ Pay a registration fee (825.00) ith your credt card (using Google Checkout)
+ Agroo to the Ancroid Market Doveloper Distnbution Agroemsnt

Listing Details
Your developer profie wil determine how you appar to custorers in e Android Market

Developer Name | Devsloper Leaming Soluti]

Vi appearto users undor thename ofyour appliction £
Email Address weimenglee@qmal.com
\Website URL.hitg: /o leam2develop. |

Phone Number
Incluce plus sign, country cods and area cods. For example, +1-650-253-0000. why do we ask for this?

Email Updates (7] Contact me occasionally sbout development and Market cpporturitss

©2010 Google - Android Maric: Developer Distibution Agreement - Goagle Tems of Senice - Privacy Policy.

OEBPS/images/f167-02.jpg
Autosave

Stretch o il screen
Zoomto il screen

~
(i

b4 11:41: ¥

Q

OEBPS/images/f475-02.jpg
M 192.168.1.142/index.htm|

Download the Where Am | application

OEBPS/images/f178-01.jpg
B Besicviewss
Name of President
Bush

George H. W. Bush

George W. Bush

OEBPS/images/f478-01.jpg
5 Developer Console x

€ - C | © marketandroid.com/publish/Home#EDIT_APPLICATION

Y

D market

weimenglee@gmall.com | Home | Help | Android com | Sign out

Upload an Application

Upload assets.

Deaft application apk file
clck the publish button
to publsh cref ap e

Sereenshots.
atleast 2

High Resolution Application

Icon
Learn Nore]

Promotional Graphic
optonal

Feature Graphic
optonal

Promotional Video.
optonal

Marketing Opt-Out

Your Registration to the Android Markst is approved!

You can now uplaad and publish softnare 1o the Andioid Marke!

Uplead an_spk fle
No i chosen

Add a screensho:
No fls chosen

Add a hires applcation icon

[{Ghoose Fila | o i chosen

Add a promotional graphic:

(Ghoose Fie] o i chosen

Add a feature grashic:

[Ghoosa Fila] o fre chosen

Add a promotional ideo ink:
hitp

£

§

§

i

Screenshos:
‘320w x 430, 480w x 800h,

or 480w x 854

24 61 PNG or JPEG [no slpha)
Full bloed. no border in art
Landscaps thumbnais are cropped

High Resolution Applicstion lcon:
512w x 5120

2451 PG or JPEG [no alpha)
Iasemum 1024 K8

Promo Graphic:
180w x 120h

24 B PNG or JPEG [no alpha)
Full lsed. no border in art

Feature Graphic:
1024w x 5000

24 B PNG or JPEG [no alpha)
Wil bo dovnsized to min or micro

Promotional Video:
Enter YouTube URL

71D ot promote my application sxcagt in Ancicid irket and in any Googie-onned cnlnsor kil
ropeties. | nderstan that ny changes tothis preference ay ske sixty days to take sect

OEBPS/images/f176-01.jpg
4 & 3:53

¥ Basicviews2

[]

OEBPS/images/f477-01.jpg
5 Developer Console x
€ & € © marketandroid.com/publish/Home

Y

D market

weimenglee@gmall.com | Home | Help | Androie com | Sign out 3

Your Registration to the Android Markst is approved!
You can now upload and publish sofware to the Andicid Markst.

Developer Learning Solutions
wermergiesgonatcom

Edtpicr

All Android Market listings

Devslopment phones.
75 a ragitarad developer, you can purchase an unlockad.

phons.
Buy now»

Google checkout =

Wan to sell applications in the Android Market?

et up a Merchant account with Google Checkoutl You il
need to enter addfional mformation I your bank account
information and Tax .

Setup Merchant Account »

o applications uploadad

(e

OEBPS/images/f029-01.jpg
4 & HelloWorld.
=y
2 8 netleamadevelop HeloWorld
» [HeloWerldActvityjava
4 8 gen [Generated Java Files]
+ 6 neticamadevelop.HeloWorld
> [Rjva
4 =) Android 40
> (@ androidjar - CA\Users\Wei-Mieng LeelD
& assets

AndroidManifestani
proguarddg
B project proprties

e

ic_launcher.png - HelloWorld/res/drawable-

OEBPS/images/f181-01.jpg
B Basicviews4

- -

I'am all set!

Time selected:5:30

OEBPS/images/f479-02.jpg
€ & C © marketandroid.com/publish/Home#EDIT_APPLICATION

Listing details

Language
ad language

Tite (en)

Description (en)

Recent Changes (en]
Versiontlame: 1.0
Lear Mo

Promo Toxt fon]

Application Type.
Category

Price

| English (en) |
Star sign () ndicates the cefaut anguage.

Where Am 1
10 charactors (30 max)

[Tais applicasion allows you vo view visually vhere you are
locates ssing the Geogle Maps on yeur Andreid device. You san
2ls0 know the address of 3 losazicn on the mep by swply
couching on it.

224 characters (4000 max)

This is che fizss version of this application.

46 characters (500 max)

Frse Wanttoselsplcatons? Setp s arcnant Acsount st Goege Crisclout

OEBPS/images/f028-01.jpg
Android Device Chooser

Select a device compatiole with torget Android 4.0.
© (Choass 3 ranring Android deicd

SeraiNumbes AYD Name Target Devug_site
@ emusorssse Ao 40 v mnamidso ve omine
B emuscor5554 AndGid 4O MilnMaps + GoogleAPs (.. Yes Onine
) Launch s new Ancroid Virual Device
ADNeme Tagethome Putom Aol GUA Deti
= o AVD avaiable = = —
Refioh
=

OEBPS/images/f180-01.jpg
B Basicviewsa

- 75

I'am all set!

OEBPS/images/f479-01.jpg
Devdoper Console x

s A | 7 Welcome to Developer L. |

€ = € © marketandhoidcom/publishyHome#EDIT_APPLICATION pkg=net leam2develop L8

Upload assets.

Deaft application apk e
chck the putlih button
o publih draf 2pk e

et a2 deveop LBS (10483 Saved it
re fim

o
nv.;.....m "

VorsionCode: 1

Localized to: defaut

S This apk requests 3 permissions that users will be wamed about
‘andioi pormission INTERNET

andioid permission ACCESS_FINE_LOCATION

andioid permission ACCESS_COARSE_LOCATION

EThis apk roquosts A featuros that il b used for Android Warke ikerng
andio hardware fcaton networ

[remone]

OEBPS/images/f027-02.jpg
Apps

Browser

©

Clock

B

Email

©

Music

it

settings

P

Widgets

Ly
o

Calculator ~ Calendar Camera
g P B
G <

CustomLacal DevTools Downloads

Gallery || HelloWorld || Messaging
People Phone Search

‘Speech Reco

OEBPS/images/f185-01.jpg
. BasicViews4

I am all set!

S M TWT F S
27 28 29 30 1 2 3
45 6 7 8 910
1112 13 14 15 16 17
18 19 20 21 22 23 24

25 26 27 28 29 30 31

OEBPS/images/f481-01.jpg
€ > € © marketandroidcom/publish/Home#LISTING CONSOLE %)

weimenglee@gmail.com | Home | Help | Android com | Sign out

D market

Developer Learning Solutions.
weergieegamatzon

Eetonoics

All Android Market listings

™ Where Amiv1.0 Ot rirr sy D total Free Enos Published
L@ Applcations: Liestyle Comments 0 actie instals (0%)

(B urtocd appication

Development phones

A aragistred cvolopsr, you can purchase an unlocked
phono.

Buy now»

Google checkout 2

Want to sell applications in the Android Warket?

Set up a Merchant accourt with Google Checkoutl You il
nead to enter addtionsl information ke your benk accourt
information and Tax ID.

Sotup Merchant Account »

©2010 Google - Andicid Market Dvelopar Distibution Agreameni - Googls Terms of S - Prvacy Policy

OEBPS/images/f027-01.jpg
[condte ; \

OEBPS/images/f183-01.jpg
BasicViews4

Set time

OEBPS/images/f480-01.jpg
5 Developer Console x

€ - C | © marketandroid.com/publish/Home#EDIT_APPLICATION

Publishing options
Copy Protoction

Contont Rating
ILoarn Mora

Contact information
Website

Email

Consent

Publish Save

@ Of (Appication can bo copiad from tho dovice)
© On (Holps pravent copying ofthis appication fom the dovico. Increases tho amount of

memory on the phans fequired o intal the agplicaton.)
The copy protaction fature Wil ba daprecatza soon, lsass use licansing sarvica insieac

©Maturo
©Toen
@ ProTeon

Al i ating o e bosndisiod by e Andid Mo i

Soloct locations to st in:

1A locations
{inclutes mors couniries than thass fsted below: As the developer, you are responsibie or complying
with county-spaciic laws relted to the distibetion or sle of your apphicaion info hat conry,

nciucing your home country)

e esmsevop et |

9] Tris spplicaion meets Andrcd Content Gidlngs

[| acknouiedge that my software appiication may be subject to United Sttes exort aws. regardiess of my location o natinalty. | agree that |
hane complied wih all such laws. including any requirements for softare ‘authonzed
for xport Fom the Unted States under hese lews. [Leam Morc)

with encrypton functions. | hereby ceriy that my application is

OEBPS/images/f026-01.jpg
A &:23

. HelloWorld

Hello World, HelloWorldActivity!
This is my first Android Applicatior

And this is a clickable button! D000
= o
& D &) ¢
5 16 |7
v v
G |H |J
B [N |y

|sm|@ o

OEBPS/images/f190-01.jpg
r' BasicVie
- — Set date

lam all set!

a 910

15 16 17

22 23 24

3 29 30 31

OEBPS/images/f025-01.jpg
File Edit Refactor Run Source Navigate Search Project Window Help.
B BN $-0-Q-HE- dES-
Eglw o)

AeShifte W >

e

sy

Dee

AL ShiftsDown.

Attt »
At Ty
3
» [1 Android Appication]
»| 8 2Andoi it Test
» (B8 3sevs posict AeShiteX A
[4Jovs Appiicaton anshinex) |-
vl smitTes Aeshix T | |

OEBPS/images/f187-01.jpg
. BasicViews4

I am all set!

S M T W
27 28 29 30

i
Date selected:12/10/2011

Time selected:6:40 2 13 14

18 19 20 21
25 26 27 28

8 910
15 16 17
22 23 24

29 30 31

OEBPS/images/f484-01.jpg
8] Workspace Launcher

Selact a workspace

Eclpse storesyour projects n a older called workspace.
Choose 3 orkspace faldr to uea for this escion.

7] e thiz = the detauit znc do not ek again

OEBPS/images/f024-02.jpg
{8 Jove - Hellowordresfeyout/mainux - Ecipse.
Fle Edi refacor Bon Neigws Seach Broje Window e
=04 A8 BAE -0 Q- EG- SS N

55 [& ” = 0| Cham

1% PaciageBpiorer
Helloord

Edking coni defutt

@
B netlsmadesslop Helodd (52m WA tiems = pori =] [erm <[eyt < Thame =
13 Helordictiyjove
88 gen Geneste ova i) = patene - nE EE
& netleamadesclop Helord

D&
= ancrot 0 [r—] [
9 S cue et sososer coactosse | R

&b
s

[pT——
i Jncherng
& chomabie-ipi
s icJauncherong
& domablemp
) icJaoncherong
& layout
 mainami
& s
2 singesm
j Andudbanitetnt
- proguiricty
B proect propmtios

(Couldnt esove rsoutce Eetnng/asp name.
(Couldit esche reource Batnng/ vl

Slarphice Lo} = manst
2 probiems | @ v T Beston @ Consle Bgl|AB-ri--0
aoia

[2011-10-30 05:19:39 - SOK Monager] Deleting file Gi\Users\iei-Heng Les\androidvavd\r »
[2011.1056 05:19:39 - SOK Hanager] Delating folder C:\bsars\wel teng Lo\ androld\avd _

OEBPS/images/f024-01.jpg
8 Java - clipse.

Fe E Rescor Bun Souce Navgwe Search Erciect Wndow Hop
=]

BE BAE $-0-Q%° 67 OS54~

ppe——
85 i auncherpng

W E68[e7""0 = 5 s 30
Vet = = =
e |5\ ACIRNEIE]
PRI [Fd Q] b AL D Adhate
© [0 HeloWorananiy
+ 8 gentGeneed o]
+ 8 et dop Heloord
S Wtin © Connect Myiyn o
8 Andia 0 Comecttovourtak snd btk
wroidjor - CAUsrs e Heng LeeDesit el
o b
o
pras

OEBPS/images/f037-01.jpg
onCreate()

l

User navigates
back to the

activty onstart) onRestart()

!

onResume()

The actvity
comes o the
foreground

(Another activity comes|
In front of the activity

The actviy
comes to the
Other appiications =) foreground
need memory

(e aciiiy s no fonger i)

onstopy

l

onDestroy)

IMAGE REPRODUCED FROM WORK CREATED AND SHARED BY THE ANDROID OPEN
SOURCE PROJECT AND USED ACCORDING TO TERMS DESCRIBED IN THE CREATIVE
COMMONS 2.5 ATTRIBUTION LICENSE. SEE http: //developer . android

. com/reference/android/app/Activity.html

OEBPS/images/f030-01.jpg
B8 844 %»-0-u- e~ @83+~ ED

<l versic " encoting="atf 871

By 6 Coraares |

1=
<string name=app_nome">HelldkorLde/string:

% s |||
o e Tl
W Bookmark: |
‘ B Index

o] s + Searchexp.

<resources>

(B pobls [@ savadoc 9 Decteaon| B conso 72 B bl B0 o

[iaie | snarn

OEBPS/images/f110-01.jpg
7 AVD details

Name: Gelaxy Nexus S_dpi 235
CPU/ABE ARM (armeabi)
Path C:User\Wei-Meng Lee\.ondroidhaveh Gelery_Nexus.5_dpi 235.avd
Target: Android 233 (APl level 10)
Skin: 480,800

hulcd.densiy: 235

vmheapSize: 24
huamSize: 256

OEBPS/images/f109-01.jpg
Screen size
2.08 inches pixeldensity -
430 poeels 480/2.04=235

300 pixels

OEBPS/images/f102-01.jpg
" Reminder: Meeting starts in 5

OEBPS/images/f101-03.jpg
A 2:42

¥ Details of notification

Here are the details for the notification...

OEBPS/images/f380-01.jpg
- .
(200 scinecam2ie cop MBS BSAciy e Eoprc

Fie Edt Reacor Sowce Fun Navgwe Search Project Wina

r BE B84 %~

5554 Andicid 40 WithMaps

(T

Home

B emuleor-s3st onine.
eyt proces 89
com android syt 143
com androidingutn 157

@ Ernistorcontrol 17

Telephony Siatus -
Veice [nome_v| Speees [+
Dxs [nome | Laency [None +

Tlephony Actions

—— ‘

Locaton Cortrle

s oK i
] o oecima

Location changed : Lat: 37.422005 Lng: Soageima

-122.084095 Longitude 122084035

Latiuds 7422006

send

® Logea 51

OEBPS/images/f379-01.jpg
85 DDMS - LBS erc/net/leam3develop/|BS/LBS Activityjava - Ecipsa
Fie Edt Refactor Fun Source Nevigate Seach Project

in-g® B8 844
I PAVEM B-F-ee-D-

=5

*|3®a|322(O|@"

B!

e
o
® Decimal

o
Lotitude 7422006

OEBPS/images/f388-01.jpg
= M1-3GSM T 2:02PM 7 3 37% =

call || FaceTime Add Contact |

Text Message
14 Nov, 2011 2:02 PM

e

OEBPS/images/f101-02.jpg
B 24

December 8,2011 T X
System Alarm
Meeting with customer at 3pm.
Android

o

OEBPS/images/f386-01.jpg
4 32 LocationTracker

. @@ s

4 £ netleam2develop LocationTracker

» [LocationTrackerActivityjava
» [) SMSReceiverjava
‘gen [Generated Jova Fles]

o 8 netleam2develop LocationTracker
o = Android 40

OEBPS/images/f101-01.jpg
¥ Reminder: Meeting starts in 5

¥ Notifications

Display Notification

OEBPS/images/f398-01.jpg
G R S il B 935

OEBPS/images/f095-03.jpg
Open URL using...

No applications can perform
this action.

OEBPS/images/f388-02.jpg
= M1-3GSM T 2:03PM A 3 37% @

Q 37.422006,-122.084095

oogle
ing 1950

o vain
»
oagar 7 Sand o A
foots Charesion
£
Googe Google
Bidg 1098, Google Bidg 45
oo 44
¢t s
foogle > = oo g

7 Search Directions =

OEBPS/images/f095-02.jpg
Open URL using...

% Browser
. Intents

OEBPS/images/f407-01.jpg
TN NETTT, b

(Heb. tappuah, meaning "fragrance").
Probably the apricot o

quince s intended by the word, as
Palestine was too hot for the

growth of apples proper. It is
enumerated among the most

valuable trees of Palestine (Joel 1:12),
and frequently referred

toin Canticles, and noted for its beauty
(2:3,5; 8:5). There .

is nothing to show that it was the "tree of
the knowledge of

good and evil." Dr. Tristram has
suggested that the apricot has

better claims than any other fruit-tree to

RpBiE apple of

d
H

<language> A revision of {APL} for the
{lliac 1V},

[QEEER L)

OEBPS/images/f095-01.jpg
B ntents
Web Browser

Make Calls

Complete action using

B oo

. Intents.

|| Use by default for this action.

OEBPS/images/f403-01.jpg
TR NPT G UTE—

g g,
<xml verslun"1 0"

wor

encoding='UTF-8'7><>xml-stylesheet
type="text/xsI' href="http://appleinsider.
com.feedsportal.com/xsl/eng/rss.xs|?>
<rss xmins:ftunes="http://www. ftunes.
com/dtds/podcast-1.0.dtd" xmins:
ic="http://purl.org/dc/elements/1.1/"
xmins:taxo="http://purl.org/rss/1.0/
modules/taxonomy/" xmins:rdf="http://
Www.w3.0rg/1999/02/22-rdf-syntax-ns#"
version="2.0"><channel><title>AppleInsid
er</title><link>http://www.appleinsider.
com/</link><description>Applelnsider
has been the leading source of insider
news and rumors on Apple Computer
since 1997.</description><language>en-
us</language><pubDate>Mon, 21 Nov
2011 13:30:02 GMT</
pubDa(e)(\astBul\dDa(e)Mon, 21 Nov

GM

P

OEBPS/images/f094-01.jpg
Kindle Fire
Available
Now

Shop All Departments.

OEBPS/images/f413-01.jpg
ello World, JSONActivity!

OEBPS/images/f087-03.jpg
1 Maps

OEBPS/images/f408-01.jpg
v <Definition>
<ord>apple</word>
» <Dictionary>.</Dictionary>
» <HordDeFinition>.< /WordDefinition>
</Definition>
v <Definition>
<ord>apple</word>
» Dictionary>.</Dictionary>
» <HordDeFinition>.< /WordDefinition>
</Definition>
» <Definition>.</Definition>
» <Definition>.</Definition>
> <Definition>.</Definition>
</Definitions>
</WordDefinition>

OEBPS/images/f087-02.jpg
N~
Yo
(Yol
<
(3¢
~N
—
Yol
o
+

OEBPS/images/f087-01.jpg
5 55360 40 With Mo

www.amazon.com/gp/aw I

amazoncom
L]

(Gearch Amazon.com [co)

i-f,:' t Price Check

Kindle Fire

 Holiday Toy List

Shop All Departments

OEBPS/images/f084-01.jpg
p Fragments

d & 4:43

This is fragment #1

2. ﬂ
EI EEIEEE 0000

OEBPS/images/f416-01.jpg
lello World, JSONActivity!

OEBPS/images/f138-01.jpg
& 2:56

Hello World, MyActionBarActivity!

OEBPS/images/f422-02.jpg
Users\Wei-Heng Lee\Desktop\Book Projects\Beginning Android 4\Workspace>Server)
Cexe 192.168.1.142
lei-Meng has

ei-Meng>He1lo everyone!

OEBPS/images/f137-02.jpg
*d i 2:52

B MyActionBar

Hello World, MyActionBarActivity!

OEBPS/images/f422-01.jpg
oW
 Hello everyonel

Wei-Meng has joined the chat.
Wei-Meng>Hello everyone!

Pl S S B T
« ARENERR

s § | <=

OEBPS/images/f075-02.jpg
his is fragment #1

OEBPS/images/f141-02.jpg
B MyActionBar

Hello World, MyActionBarActivity!

OEBPS/images/f435-01.jpg
B services

Start Service

Stop Service

Downloaded 100 bytes

OEBPS/images/f075-01.jpg
[Fragments

OEBPS/images/f141-01.jpg
YRR

B myActionBar . .

Hello World, MyActionBarActivity!

OEBPS/images/f432-01.jpg
Start Service

Stop Service

Service Started

OEBPS/images/f072-01.jpg
Fragments

This is fragment #1 This s fragment #2

OEBPS/images/f141-04.jpg
id & 4:50

B MyactionBar . .

Hello World, MyActionBarActivity!

‘You clicked on Item 2.

OEBPS/images/f447-01.jpg
B services

Start Service

Stop Service

File downloaded!

OEBPS/images/f071-01.jpg
4 53 Fragments
4@
4§ netleam2develop Fragments
» [5] Fragmentl javal

>
> [0 FragmentsActivtyjave
> 88 gen [Genersted Jova Fils]
» A Android 40
& assets

OEBPS/images/f141-03.jpg
< [wmcroonac W Woez s

Am10M2

OEBPS/images/f438-01.jpg
private class DdackgroundTask extends AsyncTasicURL) g ¢
protected Long dotnBackground(URL. .- urls) E
o - mlaeth
long totalsytesdomnloaded = 03
ffor (T T ety
Sotal8ytesbonnlosded 1= DownlosdFile(y

//---caleulate percentage donnloadd 4
/1 report its progress

¥
Feturn totalBytesDownloaded;

protected void onProgressUpdate (Integer. ..
Log.d("Downloading files”,
String.valueof(progress[e])/4 "% downloaded");
Toast.makeText (getBaseContext(),
String.valueof(progress[0])
Toast.LENGTH_LONG) .show();

"% downloaded”,

protected void onpostexecute(Long result) {
Tosst.makeText (getsaseContext(),
“Dounloaded * + result + * bytes”,
Tosst. LENGTH_LONG). show() 3
stopself();

OEBPS/images/f069-03.jpg
Fragment 1 Fragment 2

Activity 1

OEBPS/images/f144-01.jpg
“d & 4:59

” MyActionBar r TEM1 p TEM 2 m ITEM 3

Hello World, MyActionBarActivity!

OEBPS/images/f467-01.jpg
8] Preferences

type filter text

b General
4 Android

» DataManagement
b Help

> Install/Update

> Java

b JavaEE

b Java Persistence

b Javascript

> Myln

Build TR

Build Settings:

\utomatically refresh Resources and Assets folder on build

Force error when extemal jars contain native libraries

Skip packaging and dedng until eport or launch. (Speeds up automatic builds on file save)

Default debug keystore: C:\Users\Wei-Meng Lee\ android\debug keystore

e

@

o J[Ccoma]

OEBPS/images/f069-02.jpg
Fragment 1 Fragment 2

Activity 1 ‘Activity 2

OEBPS/images/f142-01.jpg
E MyActionBar

Hello World, MyActionBarActivity!

OEBPS/images/f456-01.jpg
Threading is not responding.
Would you like to close it?

Wait 0K

OEBPS/images/f069-01.jpg
FERgORGE 3 FIRETSEE

OEBPS/images/f147-01.jpg
B uicode

This is a TextView

This is a Button

OEBPS/images/f062-01.jpg
I second Activity B usingintent

This s the Second Actvty! : o
Please enter your name Display second activity

Meng Lee

Wei-MengLee

OEBPS/images/f145-01.jpg
MyActionBar

Hello World, MyActionBarActivity!

You clicked on the Application icon

OEBPS/images/f468-01.jpg

OEBPS/images/f129-01.jpg
Top Right

Middle

Bottom Left

OEBPS/images/f127-01.jpg
4 &5 Layouts
> @ s
b &3 gen [Generated Java Files]
» A Android 40
& assets
> & bin
P
» & drawsble-hdpi
» & drawsble-Idpi
b (> drawable-mdpi
4 & layout
5] mainaanl
4 & layout-iand
[0 mainami)
> G values
6 AndroidMinitestarml
proguard.fg
et propts

OEBPS/images/f126-02.jpg
4 & 2:28

p Layouts

Top Left Top Right

Middle

Bottom Left Bottom Right

OEBPS/images/f126-01.jpg
B Loyouts

Top Left Top Right

Bottom Right

OEBPS/images/f124-01.jpg
. Layouts

User Name:
Password:

|| Remember Password

Log In

OEBPS/images/f123-01.jpg
. Layouts

OEBPS/images/f122-01.jpg
. Layouts

OEBPS/images/f121-01.jpg
132

P Layouts
Hello, Android!

OEBPS/images/f119-01.jpg
B Layouts

Hello, Android!

OEBPS/images/f118-01.jpg
B Leyours

Comments

OEBPS/images/f117-02.jpg
4 & 2:20

B Layouts

User Name:
Password:

|| Remember Password

Log In

OEBPS/images/f117-01.jpg
B Layouts
User Name:

Password:

Remember Password

Log In

OEBPS/images/f115-02.jpg
B Layouts

OEBPS/images/f115-01.jpg

OEBPS/images/f114-02.jpg
B Layous

But Button
ton

OEBPS/images/f114-01.jpg
B Layouts

Button

OEBPS/images/f359-01.jpg
s

North
America

America

& 2:33

0000

o=
% e &
<
000

il ol el o
o e Ja v [u-lu-Jor[e]
s Io Je-Jo o [y o 1]
[0 b |c v o lu e | |
e

OEBPS/images/f363-01.jpg
(=

& 24

OEBPS/images/f362-01.jpg
& 2:39

1 P

Pacific.
Ocean

glle

OEBPS/images/f113-01.jpg
. Layouts

Hello World,
LayoutsActivity
|

OEBPS/images/f366-01.jpg
e L8s
PES
4 £ netleam2develop LBS

b [LBSActivityjava

gen [Generated Java Files]

4 i Google APIs [Android 4.0]
b @ androidjar - E\Android 40\android-|
b @ usbjar - E\Android 4.0\android-sdk
b @ mapsijar - E\Android 4.0\android-sd

classes.dex
LBS.apk
resources.ap_

4B

b @ drawable-hdpi

b @ drawable-Idpi

4 & drawable-mdpi
| R ic_launcher.png

b & values
3 AndroidManifestaami
proguerd.cfg
project properties

OEBPS/images/f112-02.jpg
L
M @ 2:56em

Hello world,
Layoutsactivity!

Butto

OEBPS/images/f365-01.jpg
4 & 2:45

=g
Kranj [
Zservor,

OEBPS/images/f112-01.jpg

OEBPS/images/f369-01.jpg
Point to draw image
screenPts.x, screenPts.y-50

screenPts.x, ScreenPua.y
Location of point

OEBPS/images/f110-04.jpg
Hello World,
LayoutsActivity!

OEBPS/images/f368-01.jpg
4 & 2:56

OEBPS/images/f110-03.jpg
[Hello World,

Ed

il @ 2:20

OEBPS/images/f373-01.jpg
& 6:03

OEBPS/images/f110-02.jpg
7 AVD details

Name: Hero_dpi 18
CPU/ABE: ARM (armeabi)
Pathy CiUser\Wei-Meng Lee\.androidhavehHero_dpi 180.avd
Target: Android 22 (APl level§)
Skin: 32480
hwled densiy: 180
v heapSice: 24

OEBPS/images/f371-01.jpg
& 3:01

OEBPS/images/f375-01.jpg
% & 6:22

Y 7 Kenya
y /a Airways

helKing SYeu
<:éuegeg &

