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PREFACE

Mathematical Statistics with Resampling and R is a one-term undergraduate statistics textbook for sophomores or juniors who have taken a course in probability (at the level of, for instance, Ross (2009), Ghahramani (2004), and Scheaffer and Young (2010)) but may not have had any previous exposure to statistics.

What sets this book apart from other mathematical statistics texts is the use of modern resampling techniques—permutation tests and bootstrapping. We begin with permutation tests and bootstrap methods before introducing classical inference methods. Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. We are inspired by the textbooks of Waldrop (1995) and Chance and Rossman (2005), two innovative introductory statistics books that also take a nontraditional approach in the sequencing of topics.

We believe the time is ripe for this book. Many faculty have learned resampling and simulation-based methods in graduate school and use them in their own work and are eager to incorporate these ideas into a mathematical statistics course. Students and faculty today have access to computers that are powerful enough to perform resampling quickly.

A major topic of debate about the mathematical statistics course is how much theory to introduce. We want mathematically talented students to get excited about statistics, so we try to strike a balance between theory, computing, and applications. We feel that it is important to demonstrate some rigor in developing some of the statistical ideas presented here, but that mathematical theory should not dominate the text. And of course, if additions are made to a syllabus, then deletions must also be made. Thus, some topics such as sufficiency, Fisher information, and ANOVA have been omitted in order to make room for permutation testing, bootstrap; and other modern computing methods (though we plan to make some of these omitted topics available as supplements on the text web page https://sites.google.com/site/ChiharaHesterberg). This site will also contain R scripts for the text, and errata.

We have compiled the definitions and theorems of the important probability distributions in Appendix B. Instructors who want to prove results on distributional theory can refer to this appendix. Instructors who wish to skip the theory can continue without interrupting the flow of the statistical discussion.

Incorporating resampling and bootstrapping methods requires that students use statistical software. We use R because it is freely available (http://www.rproject.org/), powerful, flexible, and a valuable tool in future careers. One of us works at Google where there is an explosion in the use of R, with more and more nonstatisticians learning R (the statisticians already know it). We realize that the learning curve for R is high, but believe that the time invested in mastering R is worth the effort. We have written some basic materials on R that are available on the web site for this text. We recommend that instructors work through the introductory worksheet with the students on the first or second day of the term, in a computer lab if possible. We also provide R script files with code found in the text and additional examples.

Statistical computing is necessary in statistical practice and for people working with data in a wide variety of fields. There is an explosion of data—more and more data—and new computational methods are continuously being developed to handle this explosion. Statistics is an exciting field, dare we even say sexy?1

1 Try googling “statistics sexy profession.”
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CHAPTER 1

DATA AND CASE STUDIES

Statistics is the art and science of collecting and analyzing data and understanding the nature of variability. Mathematics, especially probability, governs the underlying theory, but statistics is driven by applications to real problems.

In this chapter, we introduce several data sets that we will encounter throughout the text in the examples and exercises.

1.1 CASE STUDY: FLIGHT DELAYS

If you have ever traveled by air, you probably have experienced the frustration of flight delays. The Bureau of Transportation Statistics maintains data on all aspects of air travel, including flight delays at departure and arrival (http://www.bts.gov/xml/ontimesummarystatistics/src/index.xml).

LaGuardia Airport (LGA) is one of three major airports that serves the New York City metropolitan area. In 2008, over 23 million passengers and over 375,000 planes flew in or out of LGA. United Airlines and American Airlines are two major airlines that schedule services at LGA. The data set FlightDelays contains information on all 4029 departures of these two airlines from LGA during May and June 2009 (Tables 1.1 and 1.2).

TABLE 1.1 Partial View of FlightDelays Data

[image: ]

TABLE 1.2 Variables in Data Set FlightDelays




	Variable
	Description





	Carrier
	UA=United Airlines, AA=American Airlines



	FlightNo
	Flight number



	Destination
	Airport code



	DepartTime
	Scheduled departure time in 4 h intervals



	Day
	Day of week



	Month
	September or October



	Delay
	Minutes flight delayed (negative indicates early departure)



	Delayed30
	Departure delayed more than 30 min?



	FlightLength
	Length of time of flight (minutes)





Each row of the data set is an observation. Each column represents a variable— some characteristic that is obtained for each observation. For instance, on the first observation listed, the flight was a United Airlines plane, flight number 403, destined for Denver, and departing on Friday between 4 a.m. and 8 a.m. This data set consists of 4029 observations and 9 variables.

Questions we might ask include the following: Are flight delay times different between the two airlines? Are flight delay times different depending on the day of the week? Are flights scheduled in the morning less likely to be delayed by more than 15 min?

1.2 CASE STUDY: BIRTH WEIGHTS OF BABIES

The birth weight of a baby is of interest to health officials since many studies have shown possible links between this weight and conditions in later life, such as obesity or diabetes. Researchers look for possible relationships between the birth weight of a baby and the age of the mother or whether or not she smoked cigarettes or drank alcohol during her pregnancy. The Centers for Disease Control and Prevention (CDC), using data provided by the U.S. Department of Health and Human Services, National Center for Health Statistics, the Division of Vital Statistics as well as the CDC, maintain a database on all babies born in a given year (http://wonder.cdc.gov/natality-current.html). We will investigate different samples taken from the CDC’s database of births.

One data set we will investigate consists of a random sample of 1009 babies born in North Carolina during 2004 (Table 1.3). The babies in the sample had a gestation period of at least 37 weeks and were single births (i.e., not a twin or triplet).

TABLE 1.3 Variables in Data Set NCBirths2004




	Variable
	Description





	Age
	Mother’s age



	Tobacco
	Mother used tobacco?



	Gender
	Gender of baby



	Weight
	Weight at birth (grams)



	Gestation
	Gestation time (weeks)





In addition, we will also investigate a data set, Girls2004, consisting of a random sample of 40 baby girls born in Alaska and 40 baby girls born in Wyoming. These babies also had a gestation period of at least 37 weeks and were single births.

The data set TXBirths2004 contains a random sample of 1587 babies born in Texas in 2004. In this case, the sample was not restricted to single births, nor to a gestation period of at least 37 weeks. The numeric variable Number indicates whether the baby was a single birth, or one of a twin, triplet, and so on. The variable Multiple is a factor variable indicating whether or not the baby was a multiple birth.

1.3 CASE STUDY: VERIZON REPAIR TIMES

Verizon is the primary local telephone company (incumbent local exchange carrier, ILEC) for a large area of the eastern United States. As such, it is responsible for providing repair service for the customers of other telephone companies known as competing local exchange carriers (CLECs) in this region. Verizon is subject to fines if the repair times (the time it takes to fix a problem) for CLEC customers are substantially worse than those for Verizon customers.

The data set Verizon contains a random sample of repair times for 1664 ILEC and 23 CLEC customers (Table 1.4). The mean repair time for ILEC customers is 8.4 hours, while that for CLEC customers is 16.5 h. Could a difference this large be easily explained by chance?

TABLE 1.4 Variables in Data Set Verizon




	Variable
	Description





	Time
	Repair times (in hours)



	Group
	ILEC or CLEC





1.4 SAMPLING

In analyzing data, we need to determine whether the data represent a population or a sample. A population represents all the individual cases, whether they are babies, fish, cars, or coin flips. The data from Flight Delays Case Study in Section 1.1 are all the flight departures of United Airlines and American Airlines out of LaGuardia Airport in May and June 2009; thus, this data set represents the population of all such flights. On the other hand, the North Carolina data set contains only a subset of 1009 births from over 100,000 births in North Carolina in 2004. In this case, we will want to know how representative statistics computed from this sample are of the entire population of North Carolina babies born in 2004.

Populations may be finite, such as births in 2004, or infinite, such as coin flips or births next year.

Throughout this chapter, we will talk about drawing random samples from a population. We will use capital letters (e.g., X, Y, Z, and so on) to denote random variables and lowercase letters (e.g., x1, x2, x3, and so on) to denote actual values or data.

There are many kinds of random samples. Strictly speaking, a “random sample” is any sample obtained using a random procedure. However, in this book we use random sample to mean a sample of independent and identically distributed (i.i.d.) observations from the population, if the population is infinite.

For instance, suppose you toss a fair coin 20 times and consider each head a “success.” Then your sample consists of the random variables X1, X2, …, X20, each a Bernoulli random variable with success probability 1/2. We use the notation Xi ~ Bern(1/2),i = 1,2, …, 20.

If the population of interest is finite {x1, x2, …, xN}, we can choose a random sample as follows: label N balls with the numbers 1,2, …, N and place them in an urn. Draw a ball at random, record its value X1 = xi1, and then replace the ball. Draw another ball at random, record its value, X2 = xi2, and then replace. Continue until you have a sample xi1, xi2, …, xin. This is sampling with replacement. For instance, if N = 5 and n = 2, then there are 5 × 5 = 25 different samples of size 2 (where order matters). (Note: By “order matters” we do not imply that order matters in practice, rather we mean that we keep track of the order of the elements when enumerating samples. For instance, the set {a, b} is different from {b, a}.)

However, in most real situations, for example, in conducting surveys, we do not want to have the same person polled twice. So we would sample without replacement, in which case, we will not have independence. For instance, if you wish to draw a sample of size n = 2 from a population of N = 10 people, then the probability of any one person being selected is 1/10. However, after having chosen that first person, the probability of any one of the remaining people being chosen is now 1/9.

In cases where populations are very large compared to the sample size, calculations under sampling without replacement are reasonably approximated by calculations under sampling with replacement.



Example 1.1 Consider a population of 1000 people, 350 of whom are smokers and the rest are nonsmokers. If you select 10 people at random but with replacement, then the probability that 4 are smokers is [image: ](350/1000)4(650/1000)6 ≈ 0.2377. If you select without replacement, then the probability is [image: ] ≈ 0.2388.

1.5 PARAMETERS AND STATISTICS

When discussing numeric information, we will want to distinguish between populations and samples.

Definition 1.1 A parameter is a (numerical) characteristic of a population or of a probability distribution.

A statistic is a (numerical) characteristic of data.

Any function of a parameter is also a parameter; any function of a statistic is also a statistic. When the statistic is computed from a random sample, it is itself random, and hence is a random variable.

Example 1.2 µ and σ are parameters of the normal distribution with pdf f(x) = [image: ].

The variance σ2 and signal-to-noise ratio µ/σ are also parameters.

Example 1.3 If X1, X2, …, Xn are a random sample, then the mean [image: ] is a statistic.

Example 1.4 Consider the population of all babies born in the United States in 2004. Let μ denote the average weight of all these babies. Then μ is a parameter. The average weight of a sample of 2000 babies born in that year is a statistic.

Example 1.5 If we consider the population of all adults in the United States today, the proportion p who approve of the president’s job performance is a parameter. The fraction [image: ] who approve in any given sample is a statistic.

Example 1.6 The average weight of 1009 babies in the North Carolina Case Study in Section 1.2 is 3448.26 g. This average is a statistic.

Example 1.7 If we survey 1000 adults and find that 60% intend to vote in the next presidential election, then [image: ] = 0.60 is a statistic: it estimates the parameter p, the proportion of all adults who intend to vote in the next election.

1.6 CASE STUDY: GENERAL SOCIAL SURVEY

The General Social Survey (GSS) is a major survey that has tracked American demographics, characteristics, and views on social and cultural issues since the 1970s. It is conducted by the National Opinion Research Center (NORC) at the University of Chicago. Trained interviewers meet face-to-face with the adults chosen for the survey and question them for about 90 minutes in their homes.

The GSS Case Study includes the responses of 2765 participants selected in 2002 to about a dozen questions, listed in Table 1.5. For example, one of the questions (SpendEduc) asked whether the respondent believed that the amount of money being spent on the nation’s education system was too little, too much, or the right amount.

TABLE 1.5 Variables in Data Set GSS2002




	Variable
	Description





	Region
	Interview location



	Gender
	Gender of respondent



	Race
	Race of respondent: White, Black, other



	Marital
	Marital status



	Education
	Highest level of education



	Happy
	General happiness



	Income
	Respondent’s income



	PolParty
	Political party



	Politics
	Political views



	Marijuana
	Legalize marijuana?



	DeathPenalty
	Death penalty for murder?



	OwnGun
	Have gun at home?



	GunLaw
	Require permit to buy a gun?



	SpendMilitary
	Amount government spends on military



	SpendEduc
	Amount government spends on education



	SpendEnv
	Amount government spends on the environment



	SpendSci
	Amount government spends on science



	Pres00
	Whom did you vote for in the 2000 presidential election?



	Postlife
	Believe in life after death?





We will analyze the GSS data to investigate questions such as the following: Is there a relationship between the gender of an individual and whom they voted for in the 2000 presidential election, are people who live in certain regions happier, are there educational differences in support for the death penalty? These data are archived at the Computer-Assisted Survey Methods Program at the University of California (http://sda.berkeley.edu/).

1.7 SAMPLE SURVEYS

“When do you plan to vote for in the next presidential election?” “Would you purchase our product again in the future?” “Do you smoke cigarettes? If yes, how old were you when you first started?” Questions such as these are typical of sample surveys. Researchers want to know something about a population of individuals, whether they are registered voters, online shoppers, or American teenagers, but to poll every individual in the population—that is, to take a census—is impractical and costly. Thus, researchers will settle for a sample from the target population. But if, say, 60% of those in your sample of 1000 adults intend to vote for candidate Smith in the next election, how close is this to the actual percentage who will vote for Smith? How can we be sure that this sample is truly representative of the population of all voters? We will learn techniques for statistical inference, drawing a conclusion about a population based on information about a sample.

When conducting a survey, researchers will start with a sampling frame—a list from which the researchers will choose their sample. For example, to survey all students at a college, the campus directory listing could be a sampling frame. For pre-election surveys, many polling organizations use a sampling frame of registered voters. Note that the choice of sampling frame could introduce the problem of undercoverage: omitting people from the target population in the survey. For instance, young people were missed in many election surveys during the 2008 Obama-McCain presidential race because they had not yet registered to vote.

Once the researchers have a sampling frame, they will then draw a random sample from this frame. Researchers will use some type of probability (scientific) sampling scheme, that is, a scheme that gives everybody in the population a positive chance of being selected. For example, to obtain a sample of size 10 from a population of 100 individuals, write each person’s name on a slip of paper, put the slips of paper into a basket, and then draw out 10 slips of paper. Nowadays, statistical software is used to draw out random samples from a sampling frame.

Another basic survey design uses stratified sampling: the population is divided into nonoverlapping strata and then random samples are drawn from each stratum. The idea is to group individuals who are similar in some characteristic into homogeneous groups, thus reducing variability. For instance, in a survey of university students, a researcher might divide the students by class: first year, sophomores, juniors, seniors, and graduate students. A market analyst for an electronics store might choose to stratify customers based on income levels.

In cluster sampling, the population is divided into nonoverlapping clusters and then a random sample of clusters is drawn. Every person in a chosen cluster is then interviewed for the survey. An airport wanting to conduct a customer satisfaction survey might use a sampling frame of all flights scheduled to depart from the airport on a certain day. A random sample of flights (clusters) is chosen and then all passengers on these flights are surveyed. A modification of this design might involve sampling in stages: for instance, the analysts might first choose a random sample of flights, and then from each flight choose a random sample of passengers.

The General Social Survey uses a more complex sampling scheme in which the sampling frame is a list of counties and county equivalents (standard metropolitan statistical areas) in the United States. These counties are stratified by region, age, and race. Once a sample of counties is obtained, a sample of block groups and enumeration districts is selected, stratifying these by race and income. The next stage is to randomly select blocks and then interview a specific number of men and women who live within these blocks.

Indeed, all major polling organizations such as Gallup or Roper as well as the GSS use a multistage sampling design. In this book, we use the GSS data or polling results for examples as if the survey design used simple random sampling. Calculations for more complex sampling scheme are beyond the scope of this book and we refer the interested reader to Lohr (1991) for details.

1.8 CASE STUDY: BEER AND HOT WINGS

Carleton student Nicki Catchpole conducted a study of hot wings and beer consumption at the Williams Bar in the Uptown area of Minneapolis (Catchpole (2004)). She asked patrons at the bar to record their consumption of hot wings and beer over the course of several hours. She wanted to know if people who ate more hot wings would then drink more beer. In addition, she investigated whether or not gender had an impact on hot wings or beer consumption.

The data for this study are in Beerwings (Table 1.6). There are 30 observations and 3 variables.

TABLE 1.6 Variables in Data Set Beerwings




	Variable
	Description





	Gender
	Male or female



	Beer
	Ounces of beer consumed



	Hotwings
	Number of hot wings eaten





1.9 CASE STUDY: BLACK SPRUCE SEEDLINGS

Black spruce (Picea mariana) is a species of a slow-growing coniferous tree found across the northern part of North America. It is commonly found on wet organic soils. In a study conducted in the 1990s, a biologist interested in factors affecting the growth of the black spruce planted its seedlings on sites located in boreal peatlands in northern Manitoba, Canada (Camill et al. (2010)).

The data set Spruce contains a part of the data from the study (Table 1.7). Seventy-two black spruce seedlings were planted in four plots under varying conditions (fertilizer-no fertilizer, competition-no competition) and their heights and diameters were measured over the course of 5 years.

TABLE 1.7 Variables in Data Set Spruce




	Variable
	Description





	Tree
	Tree number



	Competition
	C (competition), CR (competition removed)



	Fertilizer
	F (fertilized), NF (not fertilized)



	Height0
	Height (cm) of seedling at planting



	Height5
	Height (cm) of seedling at year 5



	Diameter0
	Diameter (cm) of seedling at planting



	Diameter5
	Diameter (cm) of seedling at year 5



	Ht.change
	Change (cm) in height



	Di.change
	Change (cm) in diameter





The researcher wanted to see whether the addition of fertilizer or the removal of competition from other plants (by weeding) affected the growth of these seedlings.

1.10 STUDIES

Researchers carry out studies to understand the conditions and causes of certain outcomes: Does smoking cause lung cancer? Do teenagers who smoke marijuana tend to move on to harder drugs? Do males eat more hot wings than females? Do black spruce seedlings grow taller in fertilized plots?

The Beer and Hot Wings Case Study in Section 1.8 is an example of an observational study, a study in which researchers observe participants but do not influence the outcome. In this case, the student just recorded the number of hot wings eaten and beer consumed by the patrons of Williams Bar.

Example 1.8 The first Nurse’s Health Study is a major observational study funded by the National Institutes of Health. Over 120,000 registered female nurses who, in 1976, were married, between the ages of 33 and 55 years, and who lived in the 11 most populous states, have been responding every 2 years to written questions about their health and lifestyle, including smoking habits, hormone use, and menopause status. Many results on women’s health have come out of this study, such as finding an association between taking estrogen after menopause and lowering the risk of heart disease, and determining that for nonsmokers there is no link between taking birth control pills and developing heart disease.

Because this is an observational study, no cause and effect conclusions can be drawn. For instance, we cannot state that taking estrogen after menopause will cause a lowering of the risk for heart disease. In an observational study, there may be many unrecorded or hidden factors that impact the outcomes. Also, because the participants in this study are registered nurses, we need to be careful about making inferences about the general female population. Nurses are more educated and more aware of health issues than the average person.

On the other hand, the Black Spruce Case Study in Section 1.9 was an experiment. In an experiment, researchers will manipulate the environment in some way to observe the response of the objects of interest (people, mice, ball bearings, etc.). When the objects of interest in an experiment are people, we refer to them as subjects; otherwise, we call them experimental units. In this case, the biologist randomly assigned the experimental units—the seedlings—to plots subject to four treatments: fertilization with competition, fertilization without competition, and no fertilization with competition, and no fertilization with no competition. He then recorded their height over a period of several years.

A key feature in this experiment was the random assignment of the seedlings to the treatments. The idea is to spread out the effects of unknown or uncontrollable factors that might introduce unwanted variability into the results. For instance, if the biologist had planted all the seedlings obtained from one particular nursery in the fertilized, no competition plot and subsequently recorded that these seedlings grew the least, then he would not be able to discern whether this was due to this particular treatment or due to some possible problem with seedlings from this nursery. With random assignment of treatments, the seedlings from this particular nursery would usually be spread out over the four treatments. Thus, the differences between the treatment groups should be due to the treatments (or chance).

Example 1.9 Knee osteoarthritis (OA) that results in deterioration of cartilage in the joint is a common source of pain and disability for the elderly population. In a 2008 paper, “Tai Chi is effective in treating knee osteoarthritis: A randomized controlled trial,” Wang et al. (2009) at Tufts University Medical School describe an experiment they conducted to see whether practicing Tai Chi, a style of Chinese martial arts, could alleviate pain from OA. Forty patients over the age of 65 with confirmed knee OA but otherwise in good health were recruited from the Boston area. Twenty were randomly assigned to attend twice weekly 60 min sessions of Tai Chi for 12 weeks. The remaining 20 participants, the control group, attended twice weekly 60 min sessions of instructions on health and nutrition, as well as some stretching exercises.

At the end of the 12 weeks, those in the Tai Chi group reported a significant decrease in knee pain. Because the subjects were randomly assigned to the two treatments, the researchers can assert that the Tai Chi sessions lead to decrease in knee pain due to OA. Note that because the subjects were recruited, we need to be careful about making an inference about the general elderly population: Somebody who voluntarily signs up to be in an experiment may be inherently different from the average person.

1.11 EXERCISES


1. For each of the following, describe the population and, if relevant, the sample. For each number presented, determine if it is a parameter or a statistic (or something else).

(a) A survey of 2000 high school students finds that 47% watch the television show “Glee.”

(b) The 2000 U.S. Census reports that 13.9% of the U.S. population was between the ages of 15 and 24 years.

(c) Based on the rosters of all National Basketball Association teams for the 2006-2007 season, the average height of the players was 78.93 in.

(d) A December 2009 Gallup poll of 1025 national adults, aged 18 and older, shows that 47% would advise their member of Congress to vote for health care legislation (or lean toward doing so).

2. Researchers reported that moderate drinking of alcohol was associated with a lower risk of dementia ((Mukamal et al. (2003)). Their sample consisted of 373 people with dementia and 373 people without dementia. Participants were asked how much beer, wine, or shot of liquor they consumed. Thus, participants who consumed 1-6 drinks a week had a lower risk of dementia than those who abstained from alcohol.

(a) Was this study an observational study or an experiment?

(b) Can the researchers conclude that drinking alcohol causes a lower risk of dementia?

3. Researchers surveyed 959 ninth graders who attended three large U.S. urban high schools and found that those who listened to music that had references to marijuana were almost twice as likely to have used marijuana as those who did not listen to music with references to marijuana (Primack et al. (2010)).

(a) Was this an observational study or an experiment?

(b) Can the researchers conclude that listening to music with references to marijuana causes students to use drugs?

(c) Can the researchers extend their results to all urban American adolescents?

4. Duke University researchers found that diets low in carbohydrates are effective in controlling blood sugar levels (Westman et al. (2008)). Eighty-four volunteers with obesity and type 2 diabetes were randomly assigned to either a diet of less than 20 g of carbohydrates/day or a low-glycemic, reduced calorie diet (500 calories/day). Ninety-five percent of those on the low-carbohydrate diet were able to reduce or eliminate their diabetes medications compared to 62% on the low-glycemic diet.

(a) Was this study an observational study or an experiment?

(b) Can researchers conclude that a low-carbohydrate diet causes an improvement in type 2 diabetes?

(c) Can researchers extend their results to a more general population? Explain.

5. In a population of size N, the probability of any subset of size n being chosen is [image: ]. Show this implies that any one person in the population has a n/N probability of being chosen in a sample. Then, in particular, every person in the population has the same probability of being chosen.

6. A typical Gallup poll surveys about n = 1000 adults. Suppose the sampling frame contains 100 million adults (including you). Now, select a random sample of 1000 adults.

(a) What is the probability that you will be in this sample?

(b) Now suppose that 2000 such samples are selected, each independent of the others. What is the probability that you will not be in any of the samples?

(c) How many samples must be selected for you to have a 0.5 probability of being in at least one sample?




CHAPTER 2

EXPLORATORY DATA ANALYSIS

Exploratory data analysis (EDA) is an approach to examining and describing data to gain insight, discover structure, and detect anomalies and outliers. John Tukey (1915-2000), an American mathematician and statistician who pioneered many of the techniques now used in EDA, stated in his 1977 book Exploratory Data Analysis (Tukey (1977)) that “Exploratory data analysis is detective work—numerical detective work—counting detective work—or graphical detective work.” In this chapter, we will learn many of the basic techniques and tools for gaining insight into data.

Statistical software packages can easily do the calculations needed for the basic plots and numeric summaries of data. We will use the software package R. We will assume that you have gone through the introduction to R available at the web site https://sites.google.com/site/ChiharaHesterberg.

2.1 BASIC PLOTS

In Chapter 1, we described data on the lengths of flight delays of two major airlines flying from LaGuardia Airport in New York City in 2009. Some basic questions we might ask include how many of these flights were flown by United Airlines and how many by American Airlines? How many flights flown by each of these airlines were delayed more than 30 min?

A categorical variable is one that places the observations into groups. For instance, in the FlightDelays data set, Carrier is a categorical variable (we will also call this a factor variable) with two levels, UA and AA. Other data sets might have categorical variables such as gender (with two levels, Male or Female) or size (with levels Small, Medium, and Large).

A bar chart is used to describe the distribution of a categorical (factor) variable. Bars are drawn for each level of the factor variable and the height of the bar is the number of observations in that level. For the FlightDelays data, there were 2906 American Airlines flights and 1123 United Airlines flights (Table 2.1). The corresponding bar chart is shown in Figure 2.1.


FIGURE 2.1 Bar chart of Carrier variable.

[image: ]


TABLE 2.1 Counts for the Carrier Variable




	
	Carrier



	
	American Airlines
	United Airways





	Number of flights
	2906
	1123





We might also be interested in investigating the relationship between a carrier and whether or not a flight was delayed more than 30 min. A contingency table summarizes the counts in the different categories.

From Table 2.2, we can compute that 13.5% of American Airlines flights were delayed more than 30 min compared to 18.2% of United Airlines flights. Is this difference in percentages statistically significant? Could the difference in percentages be due to natural variability, or is there a systematic difference between the two airlines? We will address this question in the following chapters.

TABLE 2.2 Counts of Delayed Flights Grouped by Carrier

[image: ]

With a numeric variable, we will be interested in its distribution: What is the range of values? What values are taken on most often? Where is the center? What is the spread?

For the flight delays data set, although we can inspect the distribution of the lengths of the delays with a table by partitioning the values into nonoverlapping intervals (Table 2.3), a visual representation is often more informative.

A histogram corresponding to Table 2.3 is shown in Figure 2.2. Note that the height of each bar reflects the frequency of flights whose delays fall in the corresponding interval. For example, 722 flights departed on time or earlier than scheduled, while 249 flights were delayed by at most 50 min. Some software will give users the option to create bar heights equal to proportions or percentages.


FIGURE 2.2 Histogram of lengths of flight delays for United Airlines. The distribution is right skewed.

[image: ]


TABLE 2.3 Distribution of Length of Flight Delays for United Airlines




	Time Interval
	Number of Flights





	(−50, 0]
	722



	(0, 50]
	249



	(50, 100]
	86



	(100, 150]
	39



	(150, 200]
	14



	(200, 250]
	7



	(250, 300]
	3



	(350, 400]
	2



	(400, 450]
	1





We describe this distribution as right skewed. Most of the flights departed on time (or were early) and the counts of late departures decrease as time increases.

Average January temperatures in the state of Washington follow a left-skewed distribution (Figure 2.3): in most years, average temperate fell in the 30-35 °F interval, and the number of years in which temperatures were less than 30 °F decreases as temperature decreases.


FIGURE 2.3 Histogram of average January temperatures in Washington state (1895-1999). The distribution is left skewed.

[image: ]


Remark The exact choice of subintervals to use is discretionary. Different software packages utilize various algorithms for determining the length of the subintervals; also, some software packages may use subintervals of the form [a, b) instead of (a, b].

For small data sets, a dot plot is an easy graph to create by hand. A dot represents one observation and is placed above the value it represents. The number of dots in a column represents the frequency of that value.

The dot plot for the data 4, 4.5, 4.5, 5, 5, 5, 6, 6, 6.5, 7, 7, 7 is shown in Figure 2.4.


FIGURE 2.4 Example of a dot plot.

[image: ]


2.2 NUMERIC SUMMARIES

It is often useful to have numerical descriptions of variables. Unfortunately, the old adage “a picture is worth a thousand words” cuts both ways—doing without a picture limits what we can say without thousands of words. So we focus on key characteristics—center, spread, and sometimes shape.

2.2.1 Center

First consider center. By eyeballing the histogram (Figure 2.2) of flight delay times, we might put the center at around 0. Two statistics commonly used to describe the center of a variable include the mean and median.

If x1, x2, …, xn are n data values, then the mean is

[image: equation]

The median is the middle value in a sorted arrangement of the values; that is, half the values are less than or equal to the median and half are greater. If y1 ≤ y2 ≤ ··· ≤ yn denotes a sorted list of values and n is odd, the median is the middle value y(n+1)/2. If n is even, then the median is the average of the two middle values, (1/2)(yn/2 + y(n/2+1)).

A compromise between the mean and the median is a trimmed mean. The mean is the average of all observations, while the median is the average of the middle one or two observations. For a 25% trimmed mean, for example, you sort the data, omit 25% of the observations on each side, and take the mean of the remaining middle 50% of the observations. The 25% trimmed mean is also known as midmean.

Example 2.1 The mean of the 12 values 1, 3, 3, 4, 4, 7, 8, 10, 14, 21, 24, 26 is 10.42, the median is the average of the sixth and seventh values, (7 + 8)/2 = 7.5, and the midmean is the average of fourth through ninth values, 7.83.

The mean of the 15 values 1, 3, 3, 4, 4, 7, 8, 10, 14, 21, 24, 28, 30, 30, 34 is 14.73, the median is the 8th value, 10, and the midmean is the average of the 4th through 12th values, 13.33.

Example 2.2 The mean length of a departure delay for United Airlines was 15.9831 min. The median length of a departure delay was − 1.00 min; that is, half of the flights left more than 1 min earlier than their scheduled departure time.

Remark Software may differ in how it calculates trimmed means. In R, mean (x, trim = 0.25) rounds 0.25n down; thus, for n = 15, three observations are omitted.

2.2.2 Spread

To describe spread, three common choices are the range, the interquartile range, and the standard deviation.

The range is the difference between the largest and smallest values.

The interquartile range (IQR) is the difference between the third and the first quartiles. It gives a better measure of the center of the data than does the range and is not sensitive to outliers.

The sample standard deviation, or standard deviation, is

(2.1) [image: equation]

To motivate the standard deviation, we begin with a less common measure of spread, the mean absolution deviation (MAD), (1/n) [image: ]. This is the average distance from the mean and is a natural measure of spread. In contrast, the standard deviation is roughly the average squared distance from the mean, followed by a square root; the combination is roughly equal to the MAD, though usually a bit larger. The standard deviation tends to have better statistical properties.

There are a couple of versions of standard deviation. The population standard deviation is the square root of the population variance, which is the average of the squared distances from the mean, (1/n) [image: ]. The sample variance is similar but with a divisor of n−1,

(2.2) [image: equation]

and the sample standard deviation is its square root. The population versions are appropriate when the data are the whole population. When the data are a sample from a larger population, we use the sample versions; in this case, the population versions tend to be too small—they are biased; we will return to this point in Section 6.3.1. For n large, there is little practical difference between using n − 1 or n.

Example 2.3 The standard deviation of the departure delay times for United Airlines flights is 45.119 min. Since the observations represent a population (we compiled all United Airlines flights for the months of May and June), we use the definition with the 1/n term rather than the 1/(n − 1) term. Using Equation 2.1 gives 45.139.

2.2.3 Shape

To describe the shape of a data set, we may use skewness and kurtosis (see page 28.) However, more common and intuitive is to use the five-number summary: the minimum, first quartile, median, third quartile, and maximum value.

Example 2.4 Consider the 15 numbers 9, 10, 11, 11, 12, 14, 16, 17, 19, 21, 25, 31, 32, 41, 61.

The median is 17. Now, find the median of the numbers less than or equal to 17. This will be the first quartile Q1 = 11.5. The median of the numbers greater than or equal to 17 is the third quartile Q3 = 28. Thus, the five-number summary is 9, 11.5, 17, 28, 31.

Remark Different software packages use different algorithms for computing quartiles, so do not be alarmed if your results do not match exactly.

2.3 BOXPLOTS

A boxplot is a type of graph that can be used to visualize the five-number summary of a set of numeric values.

Example 2.5 Consider the following set of 21 values (Table 2.4).

TABLE 2.4 A Set of 21 Data Values

[image: ]

The five-number summary for these data is 5, 11, 19, 23, 48 and the interquartile range is 23−11 = 12. The corresponding boxplot is shown in Figure 2.5.


FIGURE 2.5 Boxplot for Table 2.4.

[image: ]


To create a boxplot


	Draw a box with the bottom placed at the first quartile and the top placed at the third quartile. Draw a line through the box at the median.

	Compute the number Q3 + 1.5 × IQR, called the upper fence, and then place a cap at the largest observation that is less than or equal to this number.

	Similarly, compute the lower fence, Q1 − 1.5 × IQR, and place a cap at the smallest observation that is greater than or equal to this number.

	Extend whiskers from the edge of the box to the caps.

	The observations that fall outside the caps will be considered outliers and separate points are drawn to indicate these values.



In the above example, the upper fence is 23 + 1.5 × 12 = 41. The largest observation that falls below this fence is 40, so a cap is drawn at 40. The lower fence is 11 − 1.5 × 12 = −7. The smallest observation that falls above this fence is 5, so a cap is drawn at 5. The outliers are 43 and 49.

Example 2.6 For the length of United Airlines flight delays, the five-number summary is −17.00, −5.00, −1.00, 12.50, 377.00. Thus, the interquartile range is 12.50 − (−5.00) = 17.50 and half of the 1123 values are contained in an interval of length 17.50.

Boxplots are especially useful in comparing the distribution of a numeric variable across levels of a factor variable.

Example 2.7 We can compare the lengths of the flight delays for United Airlines across the days of the week for which the departure was scheduled.

For instance, we can see that the most variability in delays seems to occur on Thursdays and Fridays (Figure 2.6).


FIGURE 2.6 Distribution of lengths of the flight delays for United Airlines across the days of the week.

[image: ]


2.4 QUANTILES AND NORMAL QUANTILE PLOTS

For the random sample of 1009 babies born in North Carolina in 2004, the distribution of their weights is unimodal and roughly symmetric (Figure 2.7). We introduce another graph that allows us to compare this distribution with the normal distribution.


FIGURE 2.7 Distribution of birth weights for North Carolina babies.

[image: ]


Definition 2.1 Let X denote a random variable. For 0 ≤ p ≤ 1, the pth quantile of X is the value qp such that P(X ≤ qp) = p. That is, qp is the value at which the amount of area under the density curve (of X) to the left of qp is p, or p × 100% of the area under the curve is to the left of qp.

Some books may use the term percentile rather than quantile. For instance, the 0.3 quantile is the same as the 30th percentile.

Example 2.8 Let Z denote the standard normal distribution. Let p = 0.5. Then, the 0.5 quantile of Z is 0 since P(Z ≤ 0) = 0.5. That is, 0 is the 50th percentile of the standard normal distribution.

Let p = 0.25. Then, q0.25 = −0.6744 since P(Z ≤ −0.6744) = 0.25. That is, −0.6744 is the 25th percentile of the standard normal distribution.

Example 2.9 Let X be a normal random variable, N(3, 52). Find the p = 0.6 quantile.

We want qp such that P(X ≤ qp) = 0.6. The desired value is qp = 4.3 (see Figure 2.8).


FIGURE 2.8 Density for N(3, 52) with P(X ≤ 4.27) = 0.6.

[image: ]



R Note:

Use the qnorm command to find normal quantiles:

> qnorm(.25)   # standard normal
 [1] −0.6744898
> qnorm(.6, 3, 5)   # N(3,5ˆ2)
 [1] 4.266736



We can also formulate quantiles in terms of the cumulative distribution function F of a random variable X since

[image: equation]

Example 2.10 Let X be an exponential random variable with λ = 3. The cdf of X is given by F(x) = 1 − e−3x. Since F−1(y) = (−1/3)ln(1 − y), the pth quantile is given by qp = (−1/3)ln(1 − p).

Alternatively, since we know the pdf of X is f(x) = e−3x, x ≥ 0, we could also solve for qp in

[image: equation]

Suppose the (sorted) data are x1 ≤ x2 ≤ ··· ≤ xn and we wish to see if these data come from the normal distribution, N(0, 1). The normal quantile plot for comparing distributions is a plot of the x’s against (q1, x1), (q2, x2), …, (qn, xn), where qk is the k/(n + 1) quantile of the standard normal distribution. If these points fall (roughly) on a straight line, then we conclude that the data follow an approximate normal distribution. This is one type of quantile–quantile plot, or qq plot for short, in which quantiles of a data set are plotted against quantiles of a distribution or of another data set.

Example 2.11 Here, there are n = 10 points. We will look at the i/(n + 1) = i/(11th) quantiles, i = 1, …, 10, of the standard normal.

[image: ]

For instance, the qp entry corresponding to p5 = 5/11 = 0.455 (the 45.5th percentile) is

[image: equation]

To create a normal quantile plot, we graph the pairs (qp, x). A straight line is often drawn through the points corresponding to the first and third quartiles of each variable (see Figure 2.9).


FIGURE 2.9 (a) Example of normal quantile plot for data in Example 2.11. (b) Normal quantile plot for weights of NC babies.

[image: ]



R Note:

The commands qqnorm and qqline can be used to create normal quantile plots:

x <- c(21.7, 22.6, 26.1, 28.3, 30, 31.2, 31.5, 33.5, 34.7, 36)
qqnorm(x)   # plot points
qqline(x)   # add straight line

qqnorm(NCBirths$Weight)
qqline(NCBirths$Weight)

The qqnorm command plots the quantiles of the standard normal on the × axis. The qqline command adds a straight line through the first and third quartiles of the data.



Recall that the distribution of the flight delay times for United Airlines is strongly right skewed (Figure 2.2). The normal quantile plots for these data and for the left-skewed distribution of average January temperatures in Washington state (Figure 2.3) are shown in Figure 2.10.


FIGURE 2.10 (a) Normal quantile plot for average January temperatures in Washington state. (b) Normal quantile plot for flight delay times for United Airlines.

[image: ]


Remark Even for samples drawn from a normal distribution, the points on a normal quantile plot do not lie exactly on a straight line. See Exercise 14.

2.5 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTIONS

The empirical cumulative distribution function (ecdf) is an estimate of the underlying cumulative distribution function (page 363) for a sample. The empirical cdf, denoted by [image: ], is a step function

[image: equation]

where n is the sample size.

For instance, consider the set of values 3, 6, 15, 15, 17, 19,24. Then, [image: ](18) = 5/7 since there are five data values less than or equal to 18.

More generally,

[image: equation]

Figure 2.11 displays the empirical cdf for this example as well as the ecdf for a random sample of size 25 from the standard normal distribution. The graph of the cdf for the standard normal Φ(t) is added for comparison.


FIGURE 2.11 (a) Empirical cumulative distribution function for the data 3, 6, 15, 15, 17, 19, 24. (b) Ecdf for a random sample from N(0, 1) with the cdf for the standard normal.

[image: ]


The empirical cumulative distribution function is useful for comparing two distributions. Figure 2.12 shows the ecdf’s of beer consumption for males and females from the Beer and Hot Wings Case Study in Section 1.8. With the vertical line at 25 ounces, we can see that about 30% of the males and nearly 70% of the females have consumed 25 or fewer ounces of beer.


FIGURE 2.12 Ecdf’s for male and female beer consumption. The vertical line is at 25 ounces.

[image: ]



R Note:

The command plot.ecdf plots the empirical cumulative distribution function.

x <- c(3, 6, 15, 15, 17, 19, 24)
plot.ecdf(x)
x <- rnorm(25)   # random sample of size 25 from N(0,1)
plot.ecdf(x, xlim = c(−4, 4))   # adjust × range
curve(pnorm(x), col = “blue”, add = TRUE)   # impose normal cdf
abline(v = 25, col = “red”)   # add vertical line

For the Beer and Hot Wings Case Study, we first create vectors that hold the data for the men and women separately.

beerM <- subset(Beerwings, select = Beer, subset = Gender == “M”, drop = T)

beerF <- subset(beerwings, select = Beer, subset = Gender == “F”, drop = T)

The subset command creates a new vector from the data set Beerwings by selecting the column Beer and extracting those rows corresponding to the males (subset=Gender==“M”) or females (subset=Gender==“F”). The drop=T argument ensures that we have a vector object (as opposed to a data frame).

plot.ecdf(beerM, xlab = “ounces”)
plot.ecdf(beerF, col = “blue”, pch = 2, add = TRUE)
abline(v = 25, Ity = 2)
legend(c(5, .8), legend = c(“Males”, “Females”), col = c(“black”, “blue”), pch = c(19, 2))

In the last plot.ecdf command above, the pch=2 changes the plotting character while the add=TRUE adds this plot to the existing plot.



2.6 SCATTER PLOTS

In the Beer and Hot Wings Case Study in Section 1.8, one question that the student asked was whether there was a relationship between the number of hot wings eaten and the amount of beer consumed. A way to visualize the relationship between two numeric variables is with a scatter plot (see Figure 2.13).


FIGURE 2.13 A scatter plot of Beer against Hotwings.

[image: ]


Each point in the scatter plot represents a single observation—that is, a single person who took part in the study. From the graph, we note that there is a positive, roughly linear, association between hot wings and beer: as the number of hot wings eaten increases, the amount of beer consumed also increases.

Remark In statistics, the convention is to put the variable of primary interest on the y-axis, and the variable that may help predict or explain that variable as x, and to “plot y against x.”

Further examples are shown in Figure 2.14. In general, when describing the relationship between two numeric variables, we will look for direction, form, and strength.


FIGURE 2.14 Examples of scatter plots.

[image: ]


In Chapter 9, we will investigate the relationship between two numeric variables in more detail.


R Note:

For scatter plots, use the plot command:

plot(Beerwings$Hotwings, Beerwings$Beer, xlab = “Hot wings eaten”,
ylab = “Beer consumed”)



2.7 SKEWNESS AND KURTOSIS

Asymmetry and peakedness are often measured using skewness and kurtosis, which are defined using third and fourth central moments (Section A.7).

Definition 2.2 Let X be a random variable with mean µ and standard deviation σ. The skewness of X is

(2.3) [image: equation]

and the kurtosis of X is

(2.4) [image: equation]

A variable with positive skewness typically has a longer or heavier tail on the right than on the left; for negative skewness, the opposite holds. A variable with positive kurtosis typically has a higher central peak and a longer or heavier tail on at least one side than a normal distribution, while a variable with negative skewness is flatter in the middle and has shorter tails. Figure 2.15 shows some examples.


FIGURE 2.15 Examples of skewness and kurtosis for four distributions, including the standard normal (top left).

[image: ]


Example 2.12 Let Z be the standard normal variable with µ = 0 and σ = 1. Then the skewness of Z is

[image: equation]

and the kurtosis is

[image: equation]

Example 2.13 Let X be an exponential random variable with parameter λ = 1. Then µ = 1 = σ, the skewness of X is

[image: equation]

and the kurtosis is

[image: equation]

Example 2.14 Let X be the standard uniform random variable, f(x) = 1 for 0 < x < 1. Then µ = 0.5, σ2 = 1/12, the skewness is zero, and the kurtosis is

[image: equation]

2.8 EXERCISES


1. Compute the mean [image: ] and median m of the six numbers 3, 5, 8, 15, 20, 21. Apply the logarithm to the data and then compute the mean [image: ] and median [image: ] of the transformed data. Is ln([image: ]) = [image: ]? Is ln(m) = [image: ]?

2. Compute the mean [image: ] and median m of the eight numbers 1, 2, 4, 5, 6, 8, 11, 15. Let f(x) = [image: ]. Apply this function to the data and then compute the mean [image: ] and the median [image: ] of the transformed data. Is f([image: ]) = [image: ]? Is f(m) = [image: ]?

3. Let [image: ] and m denote the mean and median, respectively, of x1 < x2 < ··· < xn. Let f be a real-valued function.

(a) Is f([image: ]) the mean of f(x1), f(x2), …, f(xn)?

(b) Is f(m) the median of f(x1), f(x2), …, f(xn)?

(c) Are there any conditions that would ensure that f([image: ]) is the median of the transformed data?

(d) Are there any conditions that would ensure that f(m) is the median of the transformed data?

4. Import data from the Flight Delays Case Study in Section 1.1 data into R.

(a) Create a table and a bar chart of the departure times (DepartTime).

(b) Create a contingency table of the variables Day and Delayed30. For each day, what is the proportion of flights delayed at least 30 min?

(c) Create side-by-side boxplots of the lengths of the flights, grouped by whether or not the flight was delayed at least 30 min.

(d) Do you think that there is a relationship between the length of a flight and whether or not the departure is delayed by at least 30 min?

5. Import data from the General Social Survey Case Study in Section 1.6 into R.

(a) Create a table and a bar chart of the responses to the question about the death penalty.

(b) Use the table command and the summary command in R on the gun ownership variable. What additional information does the summary command give that the table command does not?

(c) Create a contingency table comparing responses to the death penalty to the question about gun ownership.

(d) What proportion of gun owners favor the death penalty? Does it appear to be different from the proportion among those who do not own guns?

6. Import data from the Black Spruce Case Study in Section 1.9 into R.

(a) Compute the numeric summaries for the height changes (Ht. Change) of the seedlings.

(b) Create a histogram and normal quantile plot for the height changes of the seedlings. Is the distribution approximately normal?

(c) Create a boxplot to compare the distribution of the change in diameters of the seedlings (Di. change) grouped by whether or not they were in fertilized plots.

(d) Use the tapply command to find the numeric summaries of the diameter changes for the two levels of fertilization.

(e) Create a scatter plot of the height changes against the diameter changes and describe the relationship.

7. Let x1 < x2 < ··· < xn and y1 < y2 < ··· < yn be two sets of data with means [image: ], [image: ] and medians mx, my, respectively. Let wi = xi + yi for i = 1, 2, …, n.

(a) Prove or give a counterexample: [image: ] + [image: ] is the mean of w1, w2, …, wn.

(b) Prove or give a counterexample: mx + my is the median of w1, w2, …, wn.

8. Find the median m and the first and third quartiles for the random variable X having

(a) the exponential distribution with pdf f(x) = λe−λx.

(b) the Pareto distribution with parameter α > 0 with pdf f(x) = α/xα+1 for x ≥ 1.

9. Let the random variable X have a Cauchy distribution with pdf f(x) = 1/(π(1 + (x − θ)2)) for -∞ < x < ∞. Show that θ is the median of the distribution.

10. Find

(a) the 30th and 60th percentiles for N(10, 172).

(b) the 0.10 and 0.90 quantile for N(25, 322).

11. Let X be a random variable with cdf F(x) = x2/a2 for 0 ≤ x ≤ a. Find an expression for the α/2 and (1 − α/2) quantiles, where 0 < α < 1.

12. Let X be a random variable with cdf F(x) = 1 − 9/x2 for x ≥ 3. Find an expression for the pth quantile of X.

13. Let X ~ Binom(20, 0.3) and let F denote its cdf. Does there exist a q such that F(q) = 0.05?

14. In this exercise, we investigate normal quantile plots using R.

(a) Draw a random sample of size n = 15 from N(0, 1) and plot both the normal quantile plot and the histogram. Do the points on the quantile plot appear to fall on a straight line? Is the histogram symmetric, unimodal, and mound shaped? Do this several times.


R Note:

x <- rnorm(15) # draw random sample of size 15 from N(0, 1)
par(mfrow=c(2, 1)) # set up plot area to place 2 graphs on one sheet
qqnorm(x)
qqline(x)
hist(x)



(b) Repeat part (a) for samples of size n = 30, n = 60, and n = 100.

(c) What lesson do you draw about using graphs to assess whether or not a data set follows lesson a normal distribution?

15. Plot by hand the empirical cumulative distribution function for the set of values 4, 7, 8, 9, 9, 13, 18, 18, 18, 21.

16. The ecdf for a data set with n = 20 values is given in Figure 2.16.


FIGURE 2.16 Empirical cdf for a data set, n = 20.

[image: ]


(a) How many values are less than or equal to 7?

(b) How many times does the value 8 occur?

(c) In a histogram of these values, how many values fall in the bin (20, 25]?

17. Compare the ecdf’s for United Airlines and American Airlines lengths of flight delays in the Flight Delays Case Study in Section 1.1.




CHAPTER 3

HYPOTHESIS TESTING

3.1 INTRODUCTION TO HYPOTHESIS TESTING

Suppose scientists invent a new drug that supposedly will inhibit a mouse’s ability to run through a maze. The scientists design an experiment in which three mice are randomly chosen to receive the drug and another three mice serve as controls by ingesting a placebo. The time each mouse takes to go through a maze is measured in seconds. Suppose the results of the experiment are as follows:

[image: ]

The average time for the drug group is 25 s and the average time for the control group is 20.33 s. The mean difference in times is 25 – 20.33 = 4.67 s.

The average time for the mice given the drug is greater than the average time for the control group, but this could be due to random variability rather than a real drug effect. We cannot, however, tell for sure whether there is a real effect. What we do instead is that we estimate how easily pure random chance would produce a difference this large. If that probability is small, then we conclude there is something other than pure random chance at work, and hence there is a real effect.

If the drug does not really influence times, then split of the six observations into two groups was essentially random. The outcomes could just as easily be distributed:

[image: ]

In this case, the mean difference is ((30 + 25 + 18)/3) − ((20 + 21 + 22)/3) = 3.33.

There are [image: ] = 20 ways to distribute six numbers into two sets of size 3, ignoring any ordering with each set. Of the 20 possible differences in means, 3 are as large or larger than the observed 4.67; so the probability that pure chance would give a difference this large is 3/20 = 0.15.

The value of 15% is small, but not small enough to be remarkable. It is plausible that chance alone is the reason the mice in the drug group ran slower (had larger times) through the maze.

For comparison, suppose a friend claims that she can control the flip of a coin, producing a head at will. You are skeptical; you give her a coin, and she indeed flips a head, three times. Are you convinced? I hope not; that could easily occur by chance, with a 12.5% probability.

This is the core idea of statistical significance or classical hypothesis testing—to calculate how often pure random chance would give an effect as large as that observed in the data, in the absence of any real effect. If that probability is small enough, we conclude that the data provide convincing evidence of a real effect.

If the probability is not small, we do not make that conclusion. This is not the same as concluding that there is no effect; it is only that the data available do not provide convincing evidence that there is an effect. In practice, there may be just too little data to provide convincing evidence. If the drug effect is small, it may be possible to distinguish the effect from random noise with 60 mice, but not 6. More flips might make your friend’s claim convincing, though it would be prudent to check for a two-headed coin. (One of the authors had such a coin, and also had a professor who could reliably flip a coin as desired; he had earlier been a professional magician; see http://news-service.stanford.edu/news/2004/june9/diaconis-69.html.)

3.2 HYPOTHESES

We formalize the core idea using the language of statistical significance testing, also known as hypothesis testing.

Definition 3.1 The null hypothesis, denoted H0, is a statement that corresponds to no real effect. This is the status quo, in the absence of the data providing convincing evidence to the contrary.

The alternative hypothesis, denoted HA, is a statement that there is a real effect. The data may provide convincing evidence that this hypothesis is true.

A hypothesis should involve a statement about a population parameter or parameters, commonly referred to as θ; the null hypothesis is H0: θ = θ0 for some θ0. A one-sided alternative hypothesis is of the form HA: (j > θ0 or HA: θ < θ0; a two-sided alternative hypothesis is HA: θ ≠ θ0.

Example 3.1 Consider the mice example in Section 3.1. Let μd denote the true mean time that a randomly selected mouse that received the drug takes to run through the maze; let μc denote the true mean time for a control mouse. Then, H0: μd = μc. That is, on average, there is no difference in the mean times between mice who receive the drug and mice in the control group.

The alternative hypothesis is HA: μd > μc. That is, on average, mice who receive the drug have slower times (larger values) than the mice in the control group.

The hypotheses may be rewritten as H0: μd − μc = 0 and HA: μd − μc > 0; thus, θ = μd − μc (any function of parameters is itself a parameter).

The next two ingredients in hypothesis testing are a numerical measure of the effect and the probability that chance alone could produce that measured effect.

Definition 3.2 A test statistic is a numerical function of the data whose value determines the result of the test. The function itself is generally denoted T = T(X), where X represents the data, for example, T = T(X1, X2, …, Xn) in a one-sample problem, or T = T(X1, X2, …, Xm, Y1, …, Yn) in a two-sample problem. After being evaluated for the sample data x, the result is called an observed test statistic and is written in lowercase, t = T(x).

Definition 3.3 The P-value is the probability that chance alone would produce a test statistic as extreme as the observed test statistic. For example, if large values of the test statistic support the alternative hypothesis, the P-value is P(T ≥ t).

Definition 3.4 A result is statistically significant if it would rarely occur by chance. How rarely? It depends on the context, most common is a 5% threshold but 1% or 10% are also common. It is more informative to give the P-value, for example, a result is statistically significant (p = c) if the P-value is c. Other common terminology is to declare a result statistically significant at the 5% level if the P-value is less than 0.05; however, this is less informative than giving the P-value, as it does not distinguish between, say, p = 0.049 (barely significant) and p = 0.0001 (extremely unlikely to occur by chance alone).

The symbol α is used to denote the significance level.

Example 3.2 In the mice example (Section 3.1), we let the test statistic be the difference in means, T = T(X1, X2, X3, Y1, Y2, Y3) = [image: ] − [image: ] with observed value t = [image: ] − [image: ] = 4.67. Large values of the test statistic support the alternative hypothesis, so the P-value is P(T ≥ 4.67) = 3/20.

Rather than just calculating the probability, we often begin by answering a larger question—What is the distribution of the test statistic when there is no real effect?

TABLE 3.1 All Possible Distributions of {30, 25, 20, 18, 21, 22} into Two Sets

[image: ]

For example, Table 3.1 gives all values of the test statistic in the mice example; each value has the same probability if there is no drug effect.

Definition 3.5 The null distribution is the distribution of the test statistic if the null hypothesis is true.

You can think of the null distribution as a reference distribution; we compare the observed test statistic with this reference to determine how unusual the observed test statistic is. Figure 3.1 shows the cumulative distribution function of the null distribution in the mice example.


FIGURE 3.1 Empirical cumulative distribution function of the null distribution for difference in means for mice.
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There are different ways to calculate exact or approximate null distributions and P-values. For now, we focus on one method—permutation tests.

3.3 PERMUTATION TESTS

In the mice example in Section 3.1, we compared the test statistic to a reference distribution using permutations of the observed data. We investigate this approach in more detail.

Recall the Beer and Hot Wings Case Study in Section 1.8. The mean number of wings consumed by females and males were 9.33 and 14.53, respectively, while the standard deviations were 3.56 and 4.50, respectively. See Figure 3.2 and Table 3.2.


FIGURE 3.2 Number of hot wings consumed, by gender.
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TABLE 3.2 Hot Wings Consumption

[image: ]

The sample means for the males and females are clearly different, but the difference (14.33 – 9.33 = 5.2) could have arisen by chance. Can the difference easily be explained by chance alone? If not, we will conclude that there are genuine gender differences in hot wings consumption.

For a hypothesis test, let μM denote the mean number of hot wings consumed by males and μF denote the mean number of hot wings consumed by females. We test

[image: equation]

or equivalently

[image: equation]

We use T = [image: ]M − [image: ]F as a test statistic, with observed value t = 5.2.

Suppose there really is no gender influence on the number of hot wings consumed by bar patrons. Then, the 30 numbers come from a single population, and the way they were divided into 2 groups (by labeling some as male and others as female) was essentially random, and any other division is equally likely. For instance, the distribution of hot wings consumed might have been as below:

[image: ]

In this case, the difference in means is 12.4 − 11.47 = 0.93.

We could proceed, as in the mice example, calculating the difference in means for every possible way to split the data into two samples of size 15 each. This would result in [image: ] = 155117520 differences! In practice, such exhaustive calculations are impractical unless the sample sizes are small, so we resort to sampling instead.

We create a permutation resample, or resample for short, by drawing m = 15 observations without replacement from the pooled data to be one sample (the males), leaving the remaining n = 15 observations to be the second sample (the females). We calculate the statistic of interest, for example, difference in means of the two samples. We repeat this many times (1000 or more). The P-value is then the fraction of times the random statistic exceeds1 the original statistic.

We follow this algorithm:


TWO-SAMPLE PERMUTATION TEST

Pool the m + n values.

repeat

    Draw a resample of size m without replacement.

    Use the remaining n observations for the other sample.

    Calculate the difference in means or another statistic that compares samples.

until we have enough samples

Calculate the P-value as the fraction of times the random statistics exceed the original statistic. Multiply by 2 for a two-sided test.

Optionally, plot a histogram of the random statistic values.



The distribution of this difference across all permutation resamples is the permutation distribution. This may be exact (calculated exhaustively) or approximate (implemented by sampling). In either case, we usually use statistical software for the computations. Here is the code that will perform the test in R.


R Note:

We first compute the observed mean difference in the number of hot wings consumed by males and females.


> tapply(Beerwings$Hotwings, Beerwings$Gender, mean)
      F        M
   9.333333 14.533333
> observed <- 14.5333 − 9.3333    # store observed mean difference
> observed
[1] 5.2

Since we will be working with the hot wings variable, we will create a vector holding these values. Then, we will draw a random sample of size 15 from the numbers 1 through 30 (there are 30 observations is total). The hot wing values corresponding to these positions will be values for the males and the remaining ones for the females. The mean difference of this permutation will be stored in result. This will be repeated many times.

hotwings <- Beerwings$Hotwings
# Another way:
# hotwings <- subset(Beerwings, select = Hotwings, drop = T)
N <- 10ˆ5 − 1    # number of times to repeat this process
result <- numeric(N)    # space to save the random differences
for (i in 1:N)
{ # sample of size 15, from 1 to 30, without
replacement index <- sample(30, size = 15, replace = FALSE)
result[i] <- mean(hotwings[index]) − mean(hotwings[-index])
}

We first create a histogram of the permutation distribution and add a vertical line at the observed mean difference.

hist(result, xlab = “xbarl − xbar2”,
   main = “Permutation Distribution for hot wings”)
abline(v = observed, col = “blue”)
# add line at observed mean diff.

We determine how likely it is to obtain an outcome as large or larger than what we observed.

> (sum(result >= observed) + 1)/(N + 1)    # P-value
[1] 0.000831          # results will vary

The code snippet result >=observed results in a vector of TRUE’s and FALSE’s depending on whether or not the mean difference computed for a resample is greater than the observed mean difference.

sum(result >= observed) counts the number of TRUE’s. Thus, the computed P-value is just the proportion of statistics (including the original) that are as large or larger than the original mean difference.



From the output, we see that the observed difference in means is 5.2. The P-value is 0.00083. Of the 105 – 1 resamples computed by R, less than 0.1% of the resampled difference in means was as large or larger than 5.2. There are two possibilities—either there is a real difference or there is no real effect, but a miracle occurred giving a difference well beyond the range of normal chance variation. We cannot rule out the miracle, but the evidence does support the hypothesis that females in this study consume fewer hot wings than males (Figure 3.3).


FIGURE 3.3 Permutation distribution of the difference in means, male – female, in the beer and hot wings example.

[image: ]


The participants in this study were a convenience sample: they were chosen because they happened to be at the bar when the study was conducted. Thus, we cannot make any inference about a population.

3.3.1 Implementation Issues

We note here some implementation issues for permutation tests. The first (choice of test statistic) applies to both the exhaustive and sampling implementations, while the final three (add one to both numerator and denominator, sample with replacement from null distribution, and more samples for better accuracy) are specific to sampling.

Choice of Test Statistic In the examples above, we used the difference in means. We could have equally well used [image: ] (the mean of the first sample), m[image: ] (the sum of the observations in the first sample), or a variety of other test statistics. For example, in Table 3.1, the same three rows have test statistics that exceed the observed test statistic, whether the test statistic is difference in means or [image: ]D (the mean of the sample in the drug group).

Here is the result that states this more formally:

Theorem 3.1 In permutation testing, if two test statistics T1 and T2 are related by a strictly increasing function, T1(X*) = f(T2(X*)) where X* is any permutation resample of the original data x, they yield exactly the same P-values, for both the exhaustive and resampling versions of permutation testing.

Proof For simplicity, we consider only a one-sided (greater) test. Let X* be any permutation resample. Then,

[image: equation]

Furthermore, in the sample implementation, exactly the same permutation resamples have T2(X) ≥ T2(x) as have T1(X) ≥ T1(x), so counting the number or fraction of samples that exceed the observed statistic yields the same results.

Remark One subtle point is that the transformation need to be strictly monotone only for the observed data, not for all possible sets of data. For example, in the mice example, we used p = P([image: ]1 − [image: ]2 ≥ [image: ]1 − [image: ]2). Let T1 = [image: ] = [image: ]1 − [image: ]2 denote the mean difference and let T2 = [image: ]1 denote the mean of just the treatment group. Let S1 = 3[image: ]1 and S2 = 3[image: ]2 be the sums in the two samples, and S = S1 + S2 = 136 the overall sum; this is the same for every resample (it is the sum of the same data, albeit in a different order), so we can rewrite

[image: equation]

and

[image: equation]

Hence, the transformation is f(T2) = 2T2 − 136/3. This is linear in T2 and hence monotone (increasing). For these data, it is true that [image: ]1 − [image: ]2 ≥ 4.67 if and only if [image: ]1 ≥ 25, but that is not true for every possible set of data.

In other words, the transformation may depend on the original data: T1(X*) = f(T2(X*);x).

Add One to both Numerator and Denominator When computing the P-value in the sampling implementation, we add one to both numerator and denominator. This corresponds to including the original data as an extra resample. This is a bit conservative, and avoids reporting an impossible P-value of 0.0—since there is always at least one resample that is as extreme as the original data, namely, the original data itself.

Sample with Replacement from the Null Distribution In the sampling implementation, we do not attempt to ensure that the resamples are unique. In effect, we draw resamples with replacement from the population of [image: ] possible resamples, and hence obtain a sample with replacement from the [image: ] test statistics that make up the exhaustive null distribution. Sampling without replacement would be more accurate, but it is not feasible, requiring too much time and memory to check that a new sample does not match any previous sample.

More Samples for Better Accuracy In the hot wings example, we resampled 99,999 times. In general, the more the resamples, the better the accuracy. If the true P-value is p, the estimated P-value has variance approximately equal to p(1 − p)/N, where N is the number of resamples.

Remark Just as the original n data values are a sample from the population, so are the N resampled statistics a sample from a population (in this case, the null distribution).

The next example features highly skewed distributions and unbalanced sample sizes, as well as the need for high accuracy.

Example 3.3 Recall the Verizon Case Study in Section 1.3. We wish to compare the repair times for ILEC and CLEC customers. This is determined using hypothesis tests under an agreement with the local Public Utilities Commission (PUC). There are thousands of significance tests performed, to compare the speed of different types of repairs, over different time periods for different competitors. The tests are performed at a 1% significance level; if substantially more than 1% of the tests come up positive, then Verizon is deemed to be discriminating.

Figure 3.4 shows the raw data for one of these tests. The mean of 1664 repairs for ILEC customers is 8.4 h, while the mean for 23 repairs for CLEC customers is 16.5 h. Could a difference that large be easily explained by chance? There appears to be one outlier in the smaller data set; perhaps that explains the difference in means. However, it would not be reasonable to throw out that observation as faulty—it is clear from the larger data set that large repair times do occur fairly frequently. Furthermore, even in the middle of both distributions, the CLEC times do appear to be longer (this is apparent in the right panel). One curious aspect of these data is the bends in the normal quantile plot due to 24 h cycles.


FIGURE 3.4 Distribution of repair times for Verizon (ILEC) and competitor (CLEC) customers. Note that the Y-axis scales are different.

[image: ]


Let μ1 denote the mean repair time for the ILEC customers and μ2 the mean repair time for the CLEC customers. We test

[image: equation]

We use a one-sided test because the alternative of interest to the PUC is that the CLEC customers are receiving worse service (longer repair times) than the ILEC customers.


R Note:

> tapply(Verizon$Time, Verizon$Group, mean)
   CLEC    ILEC
16.50913 8.411611

We will create three vectors, one containing the times for all the customers, one with the times for just the ILEC customers, and one for just the CLEC customers.

Time <- Verizon$Time
#Alternatively
#Time <- subset(Verizon, select = Time, drop = TRUE)
Time.ILEC <- subset(Verizon, select = Time,
      subset = Group == “ILEC”, drop = T)
Time.CLEC <- subset(Verizon, select = Time,
      subset = Group == “CLEC”, drop = T)

Now we compute the mean difference in repair times and store in the vector observed

> observed <- mean(Time.ILEC) − mean(Time.CLEC)
> observed
[1] −8.09752

We will draw a random sample of size 1664 (size of ILEC group) from 1, 2, …, 1687. The times that correspond to these observations will be put in the ILEC group; the remaining times will go into the CLEC group.

N <- 10ˆ4-1
result <- numeric(N)
for (i in 1:N)
{
   index <- sample(1687, size = 1664, replace = FALSE)
   result[i] <- mean(Time[index]) − mean(Time[-index])
}

First, plot the histogram

hist(result, xlab = “xbar1-xbar2”,
      main = “Permutation distribution for Verizon times”)
abline(v = observed,,lty = 2, col = “blue”)

Note here that we will want to find the proportion of times the resampled mean difference is less than or equal to the observed mean difference.

(sum(result <= observed) + 1)/(N + 1) # P-value
[1] 0.0165



The P-value of 0.0165 indicates that the observed difference in means is not significant at the 1% level (though it is at the 5% level).

In the above simulation, we used 104 − 1 resamples to speed up the calculations. For higher accuracy, we should use a half-million resamples; this was negotiated between Verizon and the PUC. The goal is to have only a small chance of a test wrongly being declared significant or not, due to random sampling.

The permutation distribution is shown in Figure 3.5. The P-value is the fraction of the distribution that falls to the left of the observed value.


FIGURE 3.5 Permutation distribution of [image: ]1 − [image: ]2 for the Verizon repair time data.

[image: ]


This test works fine even with unbalanced sample sizes of 1664 and 23, and even for very skewed data. The permutation distribution is skewed to the left, but that does not matter; both the observed statistic and the permutation resamples are affected by imbalance and skewness in the same way.

In contrast, t-tests for comparing two means (we discuss these in Chapter 8) assume normal populations and are not accurate with skewed populations and imbalanced sample sizes; the pooled-variance t-test claims a P-value of 0.0045, about four times too small. This test would claim a result is significant at the 1% level about 4% of the time.

3.3.2 One-Sided and Two-Sided Tests

For the hypothesis test with alternative HA: μ1 − μ2 < 0, we compute a P-value by finding the fraction of resample statistics that are less than or equal to the observed test statistic (or greater than or equal to for the alternative μ1 − μ2 > 0.)

For a two-sided test, we calculate both one-sided P-values, multiply the smaller by 2, and finally (if necessary) round down to 1.0 (because probabilities can never be larger than 1.0).

In the mice example with observed test statistic t = 4.67, the one-sided P-values are 3/20 for HA: μd − μc > 0 and 18/20 for HA: μd − μc < 0. Hence, the two-sided P-value is 6/20 = 0.30 (recall Table 3.1).

Two-sided P-values are the default in statistical practice—you should perform a two-sided test unless there is a clear reason to pick a one-sided alternative hypothesis. It is not fair to look at the data before deciding to use a one-sided hypothesis.

Example 3.4 We return to the Beerwings data set and the comparison of the mean number of hot wings consumed by males and females. Suppose prior to this study, we had no preconceived idea of which gender would consume more hot wings. Then, our hypotheses would be

[image: equation]

We found the one-sided P-value (for alternative “greater”) to be 0.00111 (page 42), so for a two-sided test, we double 0.00111 to obtain the P-value 0.00222.

If gender does not influence average hot wings consumption, a difference as extreme as what we observed would occur only about 0.2% of the time. We conclude that males and females do not consume, on average, the same number of hot wings.

To Obtain P-Values in the Two-Sided Case We Multiply by 2 We multiply the smaller of the one-sided P-values by 2, using the observed test statistic. Multiplying by 2 has a deeper meaning. Because we are open to more than one alternative to the null hypothesis, it takes stronger evidence for any one of these particular alternatives to provide convincing evidence that the null hypothesis is incorrect. With two possibilities, the evidence must be stronger by a factor of 2, measured on the probability scale.

3.3.3 Other Statistics

We noted in Section 3.3.1 the possibility of using a variety of statistics and getting equivalent results, provided the statistics are related by a monotone transformation.

Permutation testing actually offers considerably more freedom than that; the basic procedure works with any test statistic. We compute the observed test statistic, resample, compute the test statistics for each resample, and compute the P-value (see the algorithm on page 40.) Nothing in the process requires that the statistic be a mean or equivalent to a mean.

This provides the flexibility to choose a test statistic that is more suitable to the problem at hand. Rather than using means, for example, we might base the test statistic on robust statistics, that is, statistics that are not sensitive to outliers. Two examples of robust statistics are the median and the trimmed mean. We have already encountered the median. The trimmed mean is just a variant of the mean: we sort the data, omit a certain fraction of the low and high values, and calculate the mean of the remaining values. In addition, permutation tests could also compare proportions or variances. We give examples of each of these cases next, then turn in the next section to what appears at first glance to be a completely different setup but is in fact just another application of this idea.

Example 3.5 In the Verizon example we observed that the data have a long tail—there are some very large repair times (Figure 3.4). We may wish to use a test statistic that is less sensitive to these observations. There are a number of reasons we might do this. One is to get a better measure of what is important in practice, how inconvenienced customers are by the repairs. After a while, each additional hour probably does not matter as much, yet a sample mean treats an extra 10 h on a repair time of 100 h the same as an extra 10 h on a repair time of 1 h. Second, a large recorded repair time might just be a blunder; for example, a repair time of 106 h must be a mistake. Third, a more robust statistic could be more sensitive at detecting real differences in the distributions—the mean is so sensitive to large observations that it pays less attention to moderate observations, whereas a statistic more sensitive to moderate observations could detect differences between populations that show up in the moderate observations.


FIGURE 3.6 Repair times for Veri zon data. (a) Permutation distr ibution for difference in medi ans. (b) Permutation dist ribution for difference in 25% trimmed means.
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Here is the R code for permutation tests using medians and trimmed means.


R Note for Verizon, Continued

observed <- median(Time.ILEC) − median(Time.CLEC)
N <- 10ˆ4-1
result <- numeric(N)
for (i in 1:N)
{
   index <- sample(1687, size = 1664, replace = FALSE)
   result[i] <- median(Time[index]) − median(Time[-index])
}
(sum(result <= observed) + 1)/(N + 1) # P-value

To obtain the results for the trimmed mean, you will add the option trim=.25 to the mean command. Substitute the following in the above:

observed <- (mean(Time.ILEC, trim = .25) −
             mean(Time.CLEC, trim = .25))
result[i] <- (mean(Time[index], trim = .25) −
             mean(Time[-index], trim = .25))



It seems apparent that these more robust statistics are more sensitive to a possible difference between the two populations; the tests are significant with estimated P-values of 0.002 and 0.001, respectively. The figures also suggest that the observed statistics are well outside the range of normal chance variation.

One caveat is in order—it is wrong to try many different tests, possibly with minor variations, until you obtain a statistically significant outcome. If you try enough different things, eventually one will come out significant, whether or not there is a real difference. To guard against this, you can apply a Sidak correction or Bonferroni correction (see Section 8.3.2.)

One can also apply permutation tests to questions other than comparing the centers of two populations. For example, we might consider the difference between the two populations in the proportion of repair times that exceed 10 h or the ratio of variances of the two populations. Using the R code below, it appears that the proportions do differ (p = 0.0008, one-sided), while the variances do not (p = 0.258, two-sided). The permutation distributions are very different (see Figure 3.7), but this does not affect the validity of the method.


FIGURE 3.7 Repair times for Verizon data. (a) Difference in proportion of repairs exceeding 10 h. (b) Ratio of variances (ILEC/CLEC).

[image: ]



R Note for Verizon, Continued

We will first create two vectors that will contain the repair times for the ILEC and CLEC customers, respectively. The command mean (Time.ILEC > 10) computes the proportion of times the ILEC times are greater than 10.

> observed <- mean(Time.ILEC > 10) − mean(Time.CLEC > 10)
> observed
[1] −0.336852

Thus, about 33.7% fewer ILEC customers had repair times exceeding 10 h.

To run the simulation, reuse the code at the top of page 50 but with the following modification:

result[i] <- mean(Time[index]>10) − mean(Time[-index] > 10)

To perform the test for the variance, substitute

observed <- var(Time.ILEC)/var(Time.CLEC)
result[i] <- var(Time[index])/var(Time[-index])



3.3.4 Assumptions

Under what conditions can we use the permutation test? First, the permutation test makes no distributional assumption on the two populations under consideration. That is, there is no requirement that samples are drawn from a normal distribution, for example.

In fact, permutation testing does not even require that the data be drawn by random sampling from two populations. A study for the treatment of a rare disease could include all patients with the disease in the world. In this case, it does require that subjects be assigned to the two groups randomly.

In the usual case that the two groups are samples from two populations, pooling the data does require that the two populations have the same distribution when the null hypothesis is true. They must have the same mean, spread, and shape. This does not mean that the two samples must have the same mean, spread, and shape. There will always be some chance variation in the data.

In practice, the permutation test is usually robust when the two populations have different distributions. The major exception is when the two populations have different spreads and the sample sizes are dissimilar.

This exception is rarely a concern in practice, unless you have other information (besides the data) that the spreads are different. For example, one of us consulted for a large pharmaceutical company testing a new procedure for measuring a certain quantity; the new procedure was substantially cheaper, but not as accurate. The loss of accuracy was acceptable, provided that the mean measurements matched. This is a case where permutation testing would be doubtful, because it would pool data from different distributions. Even then, it would usually work fine if the sample sizes were equal.

Example 3.6 We investigate the extreme case in more detail. Suppose population A is normal with mean 0 and variance σ2A = 106, and population B is normal with mean 0 and variance σ2B = 1. Draw a sample of size nA = 102 from population A and a sample of size nB = 106 from population B. Thus, we have that the null hypothesis is true with both populations having mean 0. Let the test statistic be T = [image: ]A. When drawing the original sample, T has variance σ2A/nA = 104 (by Theorem A.5). What is the probability that this statistic T is greater than, say, 5? By standardizing, we find

[image: equation]

Thus, with its huge variance of 104, there is nearly a 50% chance of T being greater than 5.

When we pool the two samples, it turns out that the variance of the permutation distribution of T is around [image: ] (plus or minus random variation). Thus, when we perform the permutation test, the resampled T’s have variance around 101/nA ≈; 1.01, or equivalently, a standard deviation about 1.005 (again, by Theorem A.5). So almost none of the permutation T’s will be larger than 5:

[image: equation]

Thus, there is nearly a 50% chance of reporting a P-value near 0 and erroneously concluding that the means are not the same.

3.4 CONTINGENCY TABLES

We now turn to a class of problems that appears at first glance to be very different. Yet the core ideas are the same.

As a start, we address the question of why the two-sample permutation test above is called permutation testing. It seems like all we are doing is splitting the data into two samples, with no hint of a permutation. Well, imagine storing the data in a table with two columns and m + n rows; the first column contains labels, for example, m copies of “M” and n copies of “F”, while the second contains the numerical data. We may permute the rows of either column, randomly; this is equivalent to splitting the data into two groups randomly.

Table 3.3 illustrates one such permutation of one of the columns in the beerwings data.

TABLE 3.3 Partial View of Beerwings Data Set

[image: ]

The idea of permuting the rows of one column generalizes to other situations, including, in this section, the analysis of contingency tables.

In the General Social Survey Case Study in Section 1.6, one question asked to the participant was whether he or she favored or opposed the death penalty for murder. A 5 × 2 contingency table summarizing the responses by education is given in Table 3.4.2

TABLE 3.4 Counts of Death Penalty Opinions Grouped by Education

[image: ]

We see that a larger percentage of those who had a degree from a junior college favor the death penalty compared to those with a bachelors degree, 81.6% versus 65%. There are other large differences between education groups. Can these differences easily be explained by chance variation, or do these data suggest that support for the death penalty depends on education?

In order to test this question, we need a test statistic and a reference distribution. We begin with the test statistic. First, what kind of results would we expect if opinions and education were independent? Of the 113 people with graduate degrees, we would expect 68.7% to favor the death penalty and 31.3% to oppose, the same proportions as the whole sample. Similarly for the other cells. Let Nij be the number of people in row i and column j, let Ri be the total for row i, Cj the total for column j, and n the overall total. The expected count Eij for any cell is the row total times the column proportion, which is equivalent to the column total times the row proportion:

[image: equation]

For instance, the expected count for the (4, 2)-cell is 87 × 409/1307 = 222.4935 (see Table 3.5).

It seems intuitive that the observed and expected counts should be similar if education and support for the death penalty are independent. Thus, it seems plausible to look for a test statistic that takes into account the differences observed count – expected count for all cells. But just adding the differences does not work; the differences always add to zero (check this!). And both positive and negative differences should contribute to the test statistic in the same way—both large positive and large negative differences suggest dependence. So it would be reasonable to let the test statistic be the sum of absolute values of the differences or the sum of squared differences. These are legitimate test statistics, but are not ideal—they do not take size into account. A difference of say 20 in a cell with an expected count of 10 is a bigger deal than a difference of 20 in a cell with an expected count of 2000.

TABLE 3.5 Expected Counts of Death Penalty Opinions Grouped by Degree



	 
	Death Penalty?



	Education
	Favor
	Oppose



	Bachelors
	141.5363
	64.4637



	Graduate
	78.3259
	35.6741



	HS
	488.5065
	39.1675



	JrColl
	59.7751
	222.4935



	Left HS
	129.8562
	59.1438




There is a standard test statistic in this setting that does take cell size into account. In the 1900s, Karl Pearson proposed the statistic

(3.1) [image: equation]

This turns out to be effective, and to have some other nice properties we will see later; we will use this statistic. This statistic is common enough to merit a name, the chi-square test statistic.

For the GSS example, the value of the statistic is

[image: equation]

Next, we need a reference distribution to which we compare the observed test statistic. We will consider two approaches—permutation testing and the use of chi-square distributions.

3.4.1 Permutation Test for Independence

To do permutation testing, we create a table with two columns, education and opinion, and n = 1307 rows. If the null hypothesis that education and opinion are independent is correct, then we could permute the opinion (or education) values, and any other permutation would be equally likely. For each such permutation resample, we can cross-tabulate to obtain a table of observed values like Table 3.4 and compute the chi-square test statistic for the resample. Note that for every resample, the row and column totals in the contingency table are the same; only the counts in the table change. By forming many such resamples, we obtain the permutation distribution of the chi-square test statistic. We follow this algorithm:


PERMUTATION TEST FOR INDEPENDENCE OF TWO VARIABLES

Store the data in a table with one row per observation and one column per variable.

Calculate a test statistic for the original data. Normally large values of the test statistic suggest dependence.

repeat

    Randomly permute the rows in one of the columns.

    Calculate the test statistic for the permuted data.

until we have enough samples

Calculate the P-value as the fraction of times the random statistics exceed the original statistic.

Optionally, plot a histogram of the resampled statistic values.



For instance, in the GSS2002 data set, one permutation of the values in the DeathPenalty column while leaving the Education column fixed results in the contingency table below.



	 
	Death Penalty?



	Education
	Favor
	Oppose



	Bachelors
	142
	59



	Graduate
	77
	39



	Jr Col
	69
	36



	HS
	484
	219



	Left HS
	127
	56




The corresponding chi-square statistic (from Equation 3.1) is c = 1.128825. Repeating this permutation many times and computing the chi-square statistic each time gives the permutation distribution of this statistic.

The permutation distribution for this example is shown in Figure 3.8. The estimated P-value, based on 105 − 1 replications, is 0.00012. Thus, we conclude that there is an association between the education level of a person and his/her support for the death penalty.


FIGURE 3.8 Null distribution for chi-square statistic for death penalty opinions; the overlaid density is a chi-square distribution with 4 degrees of freedom.

[image: ]


The General Social Survey (GSS) draws a random sample of participants for its surveys, so we can draw an inference about a population. However, in this example, we did exclude all people who did not provide a response to the education question (5 people) or to the death penalty question (1457 people). Do you think this affects the results in any way?


R Note:

Here is code to perform the permutation test in R.

We first define a function that computes the test statistic C.

chisq <- function(Obs) { # Obs is the observed contingency table
   Expected <- outer(rowSums(Obs), colSums(Obs)) / sum(Obs)
   sum((Obs − Expected)ˆ2 / Expected)
}

We use this function on the contingency table for Education and DeathPenalty


> Education >- GSS2002$Education
> DeathPenalty >- GSS2002$DeathPenalty
> observed >- chisq(table(Education, DeathPenalty))
> observed
[1] 23.45093


Now, there were over 1000 people who declined to respond to either the education or death penalty question, so we will remove them from our analysis.

We first find the rows where a missing value (NA) occurs and store those row numbers in index and then create new objects that contain the complete responses.

index >- which(is.na(Education) | is.na(DeathPenalty))
Educ2 >- Education[-index]
DeathPenalty2 >- DeathPenalty[-index]


The sample(DeathPenalty2) command below will permute the values in DeathPenalty2.

N <- 10ˆ4-1
result <- numeric(N)
for (i in 1:N)
{
   DP.permuted <- sample(DeathPenalty2)
   GSS.table <- table(Educ2, DP.permuted)
   result[i] <- chisq(GSS.table)
}
hist(result, xlab = “chi-square statistic”,
      main = “Distribution of chi-square statistic”)
abline(v = observed, col = “blue”)


Check the distribution of the test statistics to help in determining the direction of the inequality when computing the P-value

(sum(result >= observed) + 1)/(N+1)

If you have a slow computer, change the number of replications N to 103 − 1.



3.4.2 Chi-Square Reference Distribution

The permutation test approach is easy now, with fast computers, but was not easy in Pearson’s day. Work in the 1920s by Pearson (1900, 1922, 1923) and Fisher (1922) led to a shortcut—if the expected counts are all reasonably large, then the null distribution is approximately equal to a chi-square distribution, with (I − 1)(J − 1) = 4 degrees of freedom, where I and J are the number of rows and columns, respectively. This is apparent in Figure 3.8 where the overlaid chi-square distribution is a close match to the permutation distribution.

If the chi-square statistic has a chi-square distribution with 4 degrees of freedom, then the P-value, the probability of exceeding c = 23.45, is 0.00010. We conclude that education and support for the death penalty are not independent.

The chi-square distribution approximation is half of the value 0.0002 estimated from simulation. The difference could be random variation in the simulation estimate or it could be that Fisher’s approximation is not accurate here—while the cell sizes are large enough for the chi-square distribution to be accurate in the center of the null distribution, it may not be as accurate in the tail. In any case, the P-value is small enough for the result to be statistically significant.

The reference distribution—the chi-square distribution—that we have been discussing is described more fully in Section B.10. The pdf for a chi-square random variable is given by

[image: equation]

Like exponential distributions, chi-square distributions are a family of distributions parameterized by a number m, which is called the degree of freedom. We will write X ~ χ2m to denote random variables that follow this distribution. Some are shown in Figure 3.9.


FIGURE 3.9 Densities for the chi-square distribution.

[image: ]



R Note:

The command pchisq computes cumulative probabilities for the chi-square distribution: the syntax pchisq(x, m) gives P(χ2m ≤ x).

For the death penalty example above,

> 1 − pchisq(23.45, 3)
[1] 0.0001029331



3.5 CHI-SQUARE TEST OF INDEPENDENCE

Here, we describe the chi-square test of independence for a two-way table more formally.

Consider two categorical variables A and B with I and J levels, respectively. We use A1, A2, …, AI, B1, B2, …, BJ to denote the levels of A and B, respectively. For example, in the GSS Case Study, the education variable has I = 5 levels and the death penalty variable has J = 2 levels. A1 would be those who have a graduate degree, while B1 would be those who favor the death penalty.

From a sample of n randomly selected individuals, let the random variable Nij denote the number classified by the ith level of A and the jth level of B, respectively, with observed value nij. Also, let pij denote the probability that a randomly selected individual from some population is classified by the ith level of A, and the jth level of B. The Nij are multinomial random variables with E[Nij] = npij. (See Section B.2 for more information on the multinomial distribution).

The row and column sums of the contingency table (Table 3.6) are

[image: equation]

In addition, let

[image: equation]

denote the marginal probabilities; for example, p1· is the population proportion in the first row. Clearly,

[image: equation]

The hypotheses to test whether or not the categorical variables are independent is given by

(3.2) [image: equation]

Now, pi· and p·j, i = 1, 2, …, I; j = 1, 2, …, J, are unknown, but it seems reasonable to estimate them by the sample proportions

[image: equation]

Thus, an estimate of the expected value of Nij is

[image: equation]

The random test statistic is

(3.3) [image: equation]

with observed value

(3.4) [image: equation]

In 1924, R. A. Fisher proved that under the assumption of independence, pij = pi·p·j for all i and j, the distribution of T approaches a chi-square distribution with (I − 1)(J − 1) degrees of freedom as the sample size goes to infinity. In practice, this means that if the expected counts are large, then the chi-square approximation is reasonably accurate, except in the tails of the distribution.

Example 3.7 Two researchers studied whether or not being bullied in school was associated with being short. The table below summarizes their findings for 209 pupils, from “Bullying in school: are short pupils at risk? Questionnaire study in a cohort” (Voss and Mulligan (2000)).



	 
	Bullied?



	Height
	Yes
	No



	Short
	42
	50



	Not short
	30
	87




The hypotheses to be tested are as follows:

H0: Being bullied is independent of height (there is no association between being bullied and height).

HA. Being bullied is not independent of height (there is an association between being bullied and height).

Here are the expected counts.



	 
	Bullied?



	Height
	Yes
	No



	Short
	31.7
	60.3



	Not short
	40.3
	76.7




Thus, the test statistic is

[image: equation]

We compare this value to a chi-square distribution with (2 − 1)(2 − 1) = 1 degree of freedom. The P-value is 0.0025, so the data support the hypothesis that being bullied and height are not independent!

Remark For a test of independence, the hypotheses are usually stated in the form of the above example as opposed to Equation 3.2.


R Note:

The command chisq. test will compute the chi-square test statistic and compare to a χ2 distribution to find the P-value when given two factor variables.

Using the vectors Education and DeathPenalty created earlier,

> chisq. test (Education, DeathPenalty)
   Pearson’s Chi-squared test


data: Education and DeathPenalty
X-squared = 23.4509, df = 4, p-value = 0.0001029



Remark


	The chi-square test statistic has an approximate chi-square distribution if the null hypothesis is true. There are various rules of thumb that give conditions under which usage of this test is appropriate. One rule suggests that all the expected cell counts should be larger than, say, 5. Another recommends that no more than 20% of the cells have expected count less than 5 (Cochran (1954)).

	In R, the chisq. test can also compute P-values by simulation. For instance, chisq. test(X, Y, simulate.p.value=TRUE)



3.6 TEST OF HOMOGENEITY

In the death penalty example in the previous section, we drew a sample from a single population, created a contingency table based on values of two-factor variables, and tested for independence between the factors. In other situations, we may instead draw samples from two or more different populations, classify the observations by the levels of a single-factor variable, and test whether that factor has the same distribution in each population.

For example, suppose a candy company wants to know whether boys or girls differ in their taste preferences for three new candy flavors that will be sold next year (Table 3.7). The company obtains a random sample of 100 boys and a random sample of 110 girls, gets each child to taste the three flavors, and asks them to name their favorite. We want to know if boys and girls have the same distribution of favorites.

TABLE 3.7 Counts of Candy Preferences

[image: ]

This seems very similar to the death penalty example, except that here the number of boys and girls is fixed in advance; in the death penalty example, the number of people in each education level depended on the original random survey (in other words, a different random sample would have resulted in a different number of people in each education level). This distinction turns out not to matter—we will use exactly the same test statistic and procedures for computing P-values and null distributions.

There is a second difference, that we may express the parameters and hypotheses differently. In the earlier example, we worked with a matrix of parameters pij that added to 1 for the whole table. Here we work with parameters for each population.

Let πij denote the proportion of gender i that prefer candy j, where i = B, G; j = 1, 2, 3; within each row, these probabilities add to 1. We test

[image: equation]

If the null hypothesis is true, there is a single set of preferences π1 = πB1 = πG1, π2 = πB2 = πG2, and π3 = πB3 = πG3. We estimate these probabilities using the sample proportions

[image: equation]

The estimated expected counts of the six cells are obtained by multiplying these proportions by 100 (for the boys row) or 110 (for the girls) row.

In spite of the different parameterization, the expected counts are the same as using RiCj/n. For example, the expected number of boys who like flavor 1 is [image: ]1 × 100 = (75/210) × 100 = R1C1/n = 35.71. We use the same test statistic:

(3.5) [image: equation]

As before, we may compare this statistic to a permutation distribution, or a χ2 distribution with (2 − 1)(3 − 1) = 2 degrees of freedom. The P-value using the χ2 approximation is 0.193; so if the null hypothesis is true, then about 19.3% of samples from the same two populations would result in a test statistic as large or larger than this one. We conclude that the two populations could well be the same in their preferences for the three flavors. If there are differences, they are not large enough to distinguish from the random noise of sampling, with samples this small.

More generally, consider samples of size Ri, i = 1, 2, …, I from I independent populations. Suppose each individual can be classified as one of J different types and let Nij denote the number of individuals from population i of type j. The data can be summarized as in Table 3.6.

TABLE 3.6 Observed Counts

[image: ]

Let πij be the probability that an observation from population i falls in column j (like the conditional probability of column j given row i). We test

[image: equation]

using the test statistic

[image: equation]

If the null hypothesis is true and sample sizes are large, then the test statistic has an approximate χ2 distribution with (I − 1)(J − 1) degrees of freedom.


R Note:

The chisq. test command also accepts a contingency table as an argument. Use the rbind command to bind the values in Table 3.7 by row.

> candy.mat <- rbind (c (42, 20, 38), c(33, 27, 50)) # create matrix
> candy.mat # check output
   [,1] [,2] [,3]
[1,] 42 20 38
[2,] 33 27 50
> chisq. test (candy.mat)
Pearson’s chi-square test without Yates’ continity correction


data: candy.mat
X-square = 3.2902, df = 2, p-value = 0.193



3.7 GOODNESS-OF-FIT: ALL PARAMETERS KNOWN

The chi-square statistic is useful in other situations to compare differences between observed and expected counts, including goodness-of-fit tests, to check whether the data fit a probability model.

Example 3.8 Barnsley et al. (1992) investigated the relationship between month of birth and achievement in sport. Birth dates were collected for players in teams competing in the 1990 World Cup soccer games.

[image: ]

We wish to test whether these data are consistent with the hypothesis that birthdays of soccer players are uniformly distributed across the four quarters of the year.

Let pi denote the probability of a birth occurring in the ith quarter; the hypotheses are as follows:

[image: equation]

There were a total of n = 528 players considered for this study, so the expected count for each quarter is 528/4 = 132. Thus, the test statistic is

[image: equation]

We cannot use permutation resampling to obtain a null distribution (there is nothing to permute, we are not testing the independence of two variables), so we will use a chi-square approximation, with 4 − 1 = 3 degrees of freedom (we will discuss this below). The resulting P-value P(C ≥ 10.97) = 0.012 supports the hypothesis that birthdays are not uniformly distributed across the four quarters. One explanation is that players born shortly after the yearly cutoff for school enrollment are relatively old for their grade and competing against younger classmates. They enjoy more success early, and ultimately do better in the sport.


The degree of freedom for a goodness-of-fit test with k cells and no parameters estimated from the data is k − 1.



Here is an explanation of the degrees of freedom. If no parameters are estimated from the data, the degrees of freedom would be k − 1: pick any k − 1 cells and numbers may be placed in these cells freely, but the number in the final cell must make the sum equal to the sample size, so there is no freedom in what number goes in that cell.

Example 3.9 Suppose you draw 100 numbers at random from an unknown distribution. Thirty values fall in the interval (0, 0.25], 30 fall in (0.25, 0.75], 22 fall in (0.75, 1.25] and the rest fall in (1.25, ∞). Your friend claims that the distribution is exponential with parameter λ = 1. Do you believe her?

Solution The hypotheses we wish to test are as follows:

[image: equation]

Let X ~ Exp(1). The probabilities for each interval are as follows:

[image: equation]

Then, for a sample of n = 100 numbers, the expected counts are

[image: ]

Thus, the chi-square test statistic is

[image: equation]

Under the null hypothesis, the test statistic comes from a chi-square distribution with 4 − 1 = 3 degrees of freedom, so the P-value is P(c ≥ 8.43) = 0.038. Thus, there is evidence that your data do not come from Exp(1).

Example 3.10 Is it possible that the following 50 numbers are a random sample from a chi-square distribution with 10 degrees of freedom?

[image: ]

Solution We will use R to compute 0.2, 0.4, 0.6, and 0.8 quantiles of the chi-square distribution with 10 degrees of freedom—that is, those points that mark off probabilities (areas) equal to 0.2.


R Note:

The command qchisq computes quantiles of the chi-square distribution.

> qchisq (c(.2, .4, .6, .8), 10)
[1] 6.179079 8.295472 10.473236 13.441958



Thus, we expect to see 20% of the 50 values fall into each subinterval determined by the above quantiles. We will compare the expected count of 10 for each interval with the observed number of values that fall into each of the subintervals.

[image: ]

The chi-square test statistic is

[image: equation]

If the data are from a chi-square distribution with 10 degrees of freedom, then the test statistic c = 4.4 comes from a chi-square distribution with 5 − 1 = 4 degrees of freedom, so the P-value is P(c ≥ 4.4) = 0.355. We cannot rule out the possibility that the data are a random sample from a chi-square distribution with 10 degrees of freedom.

3.8 GOODNESS-OF-FIT: SOME PARAMETERS ESTIMATED

In other situations, some parameters must be estimated from the data. The testing procedure is similar, but with adjusted degrees of freedom.

Example 3.11 A home run in baseball is an exciting event, a majestic flight that can dramatically alter the course of a game, driving in as many as four runs with one swing of a bat. Table 3.8 displays a summary of the home run data for the Philadelphia Phillies in their 2009 season. For instance, the Phillies hit 2 home runs in 40 of the 162 games played, but 5 home runs in only 1 game.

TABLE 3.8 Counts of Home Runs (in 162 Games)



	Number of Home Runs x
	Number of Games
	Proportion of Games



	0
	43
	0.2653



	1
	52
	0.3209



	2
	40
	0.2469



	3
	17
	0.1049



	4
	9
	0.0555



	5
	1
	0.0062




Since we have counts data and home runs are relatively rare, the Poisson distribution is a natural candidate for modeling these data. If the random variable X denotes the number of home runs in a game, then the probability mass function is given by f(x) = P(X = x) = (λxe−x)/x!, x = 0, 1, 2, …, and parameter λ > 0. Since λ is unknown, we may estimate it by the empirical average number of home runs per game, 224/162 = 1.3827. In Chapter 6, we will see that this is a good choice. Thus, we will model the number of home runs per game with the probability density function P(X = x) = (1.3827xe−1.3827)/x!, x = 0, 1, 2, ··· .3

To assess this model, we consider the following hypotheses:

[image: equation]

We assume that the distribution of home runs is the same for each game and independent between games. Neither of these is exactly true in practice—some opposing pitchers are better than others, and a home run fest in one game might make the opponents pitch more conservatively in the next game—but for the current analysis, we ignore these effects.

Thus, under the null hypothesis, we compute the expected number of games in which there are x home runs, x = 1, 2,… by P(X = x) × 162 = (1.3827xe−1.3827)/x! × 162 to obtain Table 3.9.

TABLE 3.9 Probabilities for Poisson Distribution with λ = 1.3827, and Expected Counts for 162 Games

[image: ]

To test whether the actual counts are significantly different from the expected counts, we will use a chi-square statistic and calculate the P-value using a chi-square approximation. But this approximation is reasonable only if the expected counts are reasonably large, and an expected count of 1.7 does not qualify. The expected counts for 6,7, and more home runs are even smaller, and we need to include them somewhere. To work around this, we combine cells, with the final cell being four or more home runs per game. The observed, expected, and contributions to the chi-square statistic are as shown in Table 3.10.

TABLE 3.10 Chi-Square Test for Poisson Goodness-of-Fit to Home Run Data

[image: ]

The chi-square statistic is 0.84; the P-value is P(χ23 > 0.084) = 0.84. We conclude that the number of home runs per game is consistent with a Poisson distribution.


The degree of freedom for a goodness-of-fit test with k cells and [image: ] parameters estimated from the data is k − [image: ] − 1.



Estimating parameters reduces the degrees of freedom, because estimated parameters tend to “overfit,” making the model fit the data better than the true (unknown) parameters would.


R Note:

> Homeruns <- subset (Phillies, select = Homeruns, drop = T)
> lambda <- mean(Homeruns) # average number home runs/game
> dpois(0:4, lambda) # theoretical model
[1] 0.25089618 0.34691818 0.23984466 0.11054569 0.03821332
> table (Homeruns)
Homeruns
0 1 2 3 4 5
43 52 40 17 9 1
> table (Homeruns)/162 # empirical probabilities
HomeRuns
    0    1    2    3    4    5
0.26543210 0.32098765 0.24691358 0.10493827 0.05555556 0.00617284




3.9 EXERCISES

1. Suppose you conduct an experiment and inject a drug into three mice. Their times for running a maze are 8, 10, and 15 s; the times for two control mice are 5 and 9 s.


(a) Compute the difference in mean times between the treatment group and the control group.

(b) Write out all possible permutations of these times to the two groups and calculate the difference in means.

(c) What proportion of the differences are as large or larger than the observed difference in mean times?

(d) For each permutation, calculate the mean of the treatment group only. What proportion of these means are as large or larger than the observed mean of the treatment group?



2. In the algorithms for conducting a permutation test, why do we add 1 to the number of replications N when calculating the P-value?

3. In the Flight Delays Case Study in Section 1.1,


(a) The data contain flight delays for two airlines, American Airlines and United Airlines. Conduct a two-sided permutation test to see if the mean delay times between the two carriers are statistically significant.

(b) The flight delays occured in May and June of 2009. Conduct a two-sided permutation test to see if the difference in mean delay times between the 2 months is statistically significant.



4. In the Flight Delays Case Study in Section 1.1, the data contain flight delays for two airlines, American Airlines and United Airlines.


(a) Compute the proportion of times that each carrier’s flights was delayed more than 20 min. Conduct a two-sided test to see if the difference in these proportions is statistically significant.

(b) Compute the variance in the flight delay lengths for each carrier. Conduct a test to see if the variance for United Airlines is greater than that of American Airlines.



5. In the Flight Delays Case Study in Section 1.1, repeat Exercise 3 part (a) using three test statistics: (i) the mean of the United Airlines delay times, (ii) the sum of the United Airlines delay times, and (iii) the difference in means, and compare the P-values. Make sure all three test statistics are computed within the same for loop.

6. In the Flight Delays Case Study in Section 1.1,


(a) Find the trimmed mean of the delay times for United Airlines and American Airlines.

(b) Conduct a two-sided test to see if the difference in trimmed means is statistically significant.



7. In the Flight Delays Case Study in Section 1.1,


(a) Compute the proportion of times the flights in May and in June were delayed more than 20 min, and conduct a two-sided test of whether the difference between months is statistically significant.

(b) Compute the variance of the flight delay times in May and June and then conduct a two-sided test of whether the ratio of variances is statistically significantly different from 1.



8. In the Black Spruce Case Study in Section 1.9, seedlings were planted in plots that were either subject to competition (from other plants) or not. Use the data set Spruce to conduct a test to see if the mean difference in how much the seedlings grew over the course of the study under these two treatments is statistically significant.

9. The file Phillies2009 contains data from the 2009 season for the baseball team of the Philadelphia Phillies. Import these data into R.


(a) Compare the empirical distribution functions of the number of strikeouts per game (StrikeOuts) for games played at home and games played away (Location).

(b) Find the mean number of strikeouts per game for the games played at home and games played away from home.

(c) Perform a permutation test to see if the difference in means is statistically significant.



10. Researchers at the University of Nebraska conducted a study to investigate sex differences in dieting trends among a group of midwestern college students (Davy et al. (2006)). Students were recruited from an introductory nutrition course during one term. Below are data from one question asked to 286 participants.



	 
	Tried a Low-Fat Diet?



	Gender
	Yes
	No



	Women
	35
	146



	Men
	8
	97





(a) Write down the appropriate hypothesis to test to see if there is a relationship between gender and diet and then carry out the test.

(b) Can the results be generalized to a population? Explain.



11. A national polling company conducted a survey in 2001 asking a randomly selected group of Americans of 18 years of age or older whether they supported limited use of marijuana for medicinal purposes. Here is a summary of the data:



	 
	Response



	Age
	For
	Against



	18-29 years old
	172
	52



	30-49 years old
	313
	103



	50 years or older
	258
	119




Write down the appropriate hypothesis to test whether there is a relationship between age and support for medicinal marijuana and carry out the test.

12. Two students went to a local supermarket and collected data on cereals; they classified cereals by their target consumer (children versus adults) and the placement of the cereal on the shelf (bottom, middle, and top). The data are given in Cereals.


(a) Create a table to summarize the relationship between age of target consumer and shelf location.

(b) Conduct a chi-square test using R’s chisq. test command.

(c) R returns a warning message. Compute the expected counts for each cell to see why.

(d) Conduct a permutation test for independence, adapting the code on page 56.



13. The California Department of Game and Fish published a report on a study of jack mackerel fish from three different regions off the waters of California: near Guadalupe Island and Cedros Island off Baja California and near San Clemente Island in southern California (Gregory and Tasto (1976)). One characteristic of the fish that they were interested in was the number of rays on the second dorsal fin; in particular, is the number of rays different for fish from the different regions?

[image: ]


(a) Does this setting call for a test of independence or a test of homogeneity?

(b) Write down the appropriate hypothesis and carry out the test.



14. A researcher in Hong Kong conducted a study on children’s perception of advertising and brands on television (Chan (2008)). For one part of the study, she analyzed surveys sent to 1481 children from rural areas of Mainland China and received responses from 726 boys and 755 girls. The responses to the question about their feeling of commercials on TV are summarized below:

[image: ]


(a) Will this be a test of independence or a test of homogeneity?

(b) Conduct the appropriate test to determine the relationship between sex and feelings toward TV commercials.



15. For the Flight Delays Case Study in Section 1.1, conduct a test of homogeneity to determine if there is a relationship between carrier and the number of flights delayed more than 30 min (Delayed30).

16. From the GSS 2002 Case Study in Section 1.6,


(a) Create a table to summarize the relationship between gender and the person’s choice for president in the 2000 election.

(b) Test to see if a person’s choice for president in the 2000 election is independent of gender (use chisq. test in R).

(c) Repeat the test but use the permutation test for independence. Does your conclusion change? (Be sure to remove observations with missing values).



17. From the GSS 2002 Case Study in Section 1.6,


(a) Create a table to summarize the relationship between gender and the person’s general level of happiness (Happy).

(b) Conduct a permutation test to see if gender and level of happiness are independent (Be sure to remove the observations with missing values).



18. From the GSS 2002 Case Study in Section 1.6,


(a) Create a table to summarize the relationship between support for gun laws (GunLaw) and views on government spending on the military (Spend-Military).

(b) Conduct a permutation test to see if support for gun laws and views on government spending on the military are independent (Be sure to remove observations with missing values).



19. For a given r × c contingency table, we have the test statistic C given by Equation 3.1.


(a) What happens to the value of C if every entry in the contingency table is multiplied by the same integer k > 1? Do the marginal probabilities change? Does the degrees of freedom change?

(b) What is the implication of this fact? That is, if the probabilities stay the same, but the actual counts in each cell increase (multiplicatively) by the same amount, what happens to our conclusion from the test?



20. Suppose you randomly draw 75 values from a distribution that your friend claims has pdf f(y) = (1/9)y2,0 < y ≤ 3. If 2 of the values fall in the interval (0, 1.25], 6 fall in the interval (1.25, 1.75], 10 fall in the interval (1.75, 2.25], 32 fall in the interval (2.25, 2.75], and the rest fall in the interval (2.75, 3], perform a goodness-of-fit test to see if your data support his claim.

21. Of a sample of 70 random numbers, 30 fall in the interval [1, 1.5), 18 fall in the interval [1.5, 2), 9 fall in the interval [2, 3), 10 fall in the interval [3, 5), and the rest are greater than 5. Is it plausible that these numbers were drawn from a distribution with pdf f(x) = 2/x3 for x ≥ 1?

22. Suppose you randomly draw 50 values from an unknown distribution.

[image: ]

Could these data have come from the normal distribution N(22, 72)?


(a) Use the qnorm command in R to find 0.2, 0.4, 0.6, and 0.8 quantiles of the normal distribution—that is, those points that mark off equal probabilities (equal areas) of 0.2.

(b) Use these quantiles to determine your intervals and count the number of values that fall in each interval.

(c) Finish the goodness-of-fit test.



23. Suppose you randomly draw 60 values from an unknown distribution.

[image: ]


(a) Conduct a test to see if these data are consistent with a normal distribution with μ = 25, σ = 10.

(b) Suppose you suspect the data are from a normal distribution but do not know μ or σ. Using the sample mean of 30.328 and standard deviation 6.54 as estimates of μ and σ, conduct a goodness-of-fit test.



24. For the Philadelphia Phillies data (Phillies2009), consider the number of doubles hit per game. Model this using a Poisson distribution, and perform a goodness-of-fit test to compare the theoretical model with the empirical data.

25. California, like many states, sponsors lotteries to raise revenue. In one popular game, Fantasy 5, a player tries to match 5 numbers chosen from 1 through 39. For instance, on August 15, 2010, the five winning numbers were 29, 19, 37, 34 and 07. California uses a random mechanism to draw the numbers each day; how good is it? The file Lottery contains the winning numbers for the daily games from May 5, 2010 through August 15, 2010 (from http://www.calottery.com/Games/FantasyFive/). Determine whether or not the winning numbers are randomly drawn.

26. Researchers conduct a pilot study to test the effectiveness of a drug in preventing a certain disease. Of 20 patients in the study, 10 are randomly assigned to receive the drug and 10 to receive a placebo. After 1 year, suppose five patients in the control group contract the disease, while two patients who took the drug contract the disease.



	 
	Response



	Outcome
	Disease
	No Disease



	Drug
	2
	8



	Placebo
	5
	5





(a) For a test of homogeneity, what are the expected cell counts?

(b) If the drug is not effective, then every patient is equally likely to contract the disease. In that case, if 7 patients out of 20 contract the disease, what is the probability that 2 of them are in the treatment group?

(c) In that case, what is the probability that two or fewer of them are in the treatment group?



27. At a university, 15 juniors and 20 seniors volunteer to serve as a special committee that requires 8 members. A lottery is used to select the committee from among the volunteers. Suppose the chosen students consists of six juniors and two seniors.


(a) For a test of homogeneity, what are the expected counts?

(b) If the selection had been random, what is the probability of the committee having exactly two seniors?

(c) If the selection had been random, what is the probability that the committee would have two or fewer seniors?

(d) Is there evidence that the selection was not random?



28. In the sampling version of permutation testing, the one-sided P-value is [image: ] = (X + 1)/(N + 1), where X is the number of permutation test statistics that are as large or larger than the observed test statistic. Suppose the true P-value (for the exhaustive test, conditional on the observed data) is p.


(a) What is the variance of [image: ]?

(b) What is the variance of [image: ]2 for the two-sided test (assuming that p is not close to 0.5, where p is the true one-sided P-value?)



29. Consider a 2 × 2 contingency table. Using the notation of Table 3.6,


(a) Show that (Nij − Ě[Nij])2 has the same value for all i, j.

(b) Using (a), show that C = (n(N11N22 − N12N21)2)/R1R1C1C2.

(c) Verify that (b) yields the same value of C as Equation 3.3 for the 2 × 2 table:





	 
	B1
	B2



	A1
	6
	8



	A2
	10
	12




30. Consider a test for independence of two variables that have the following 2 × 2 table:



	 
	B1
	B2



	A1
	m
	10



	A2
	10
	m




What value(s) of m would lead to a conclusion that the two variables are not independent at the α = 0.05 significance level?

1 In this chapter, “exceeds” generally means ≥ rather than >.

2 There are only 1307 respondents here compared to the total 2765 originally interviewed because many people chose not to respond to the death penalty question. They have been removed from this analysis.

3 We will use the term probability density function (pdf) for both discrete and continuous random variables.




End of sample
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