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Foreword

Twenty-five years ago we launched an interesting experiment, ‘The National Demonstration Project for Quality Improvement in Healthcare’. It was a modest experiment bringing together twenty-one healthcare providers with twenty-one top industrial companies to explore whether industrial quality methods would work in healthcare settings. The results of this experiment were published as Curing Health Care: New Strategies for Quality Improvement. The statistical methods used by most of these healthcare providers were fairly basic tools of quality improvement; yet, many of the improvements were significant.

Looking back this many years later, there was no reason to be surprised by these results. Statistical methods had been used in many areas of healthcare for almost as many years as statistical methods had been used by any organization. Florence Nightingale was one of the first honorary members of the American Statistical Association, an organization that celebrated its 150th anniversary twenty-two years ago. Her pioneering work using clear, simple graphical methods to discover causes of death in hospitals during the Crimean War and alter British barracks was well known and celebrated. Basic, simple statistical methods to explore, understand and present data are as effective in healthcare applications as in any other endeavour.

But somehow, the science of quality control and quality improvement had passed healthcare by. Starting with Shewhart's control chart in 1924, statistical quality control had progressed quickly during the Second World War, and had been widely adopted and used by post-war Japan to become a leading producer of high-quality products. It had been rediscovered in the United States in the 1980s, and widely applied throughout the world in the 1980s and 1990s by companies in almost every competitive industry. Healthcare had evolved many methods of quality assurance, risk management and quality measurement, for the most part independent of what was happening in industry.

In some areas of healthcare, particularly in drug and medical device development and production, sophisticated methods had been created and widely used. Researchers in biostatistics, biometrics and clinical trials had developed and employed some of the most advanced statistical methods, and in turn contributed much to the statistical literature. These methods, however, did not seem to translate easily to the practice of continuous quality improvement in hospital-based care or general clinical practice. There was a considerable gap between what we knew how to do and what we were doing.

The National Demonstration Project evolved into the Institute for Healthcare Improvement, and the growing network of healthcare providers became increasingly adept in learning from sources outside of healthcare, adapting these methods to healthcare applications, and sharing encouraging results with each other. It was not only the statistical tools. The healthcare organizations picked up the methods of putting these tools to use in a scientific approach to improvement using PDSA (Plan-Do-Check/Study-Act), Juran's Quality Improvement Steps, Motorola/General Electric's Define-Measure-Analyse-Improve-Control (Six Sigma Quality), and full-scale implementations of the Toyota Production System (Lean).

Healthcare organizations around the world have formed collaboratives, networks and not-for-profit organizations to share these methods and statistical tools. Thousands of doctors, nurses and other practitioners now routinely attend healthcare quality conferences and daily participate in online courses, web-based sharing and local working groups. Organizations such as the Institute for Healthcare Improvement have tried to structure some of this learning through devices such as IHI's Improvement Roadmap and the Open School, but there has not been a simple place to find the statistical tools used in healthcare improvement until now.

Faltin, Kenett and Ruggeri have brought together leading researchers and practitioners in statistical methods to provide a wealth of methods in one place. Starting with some of the most sophisticated methods used in the development of pharmaceutical products and medical devices, and ending with applications to healthcare management, they have managed to cover amazing ground. The chapters on control charts bring together some of the best methods of statistical process control (SPC) in healthcare, and even cover some of the abuses in the use of control charts. The chapter ‘Six Sigma in Healthcare’ gives a remarkably thorough discussion of both Six Sigma and how it is being applied by many healthcare organizations in Europe and the USA.

But this book goes much further than the typical statistics text and addresses serious policy issues such as kidney allocation and offers advanced statistical methods as an approach to this critical problem. Another critical issue in healthcare, vaccine safety evaluation, is also addressed. In this time of crises in healthcare costs, the economics of healthcare is becoming a major issue. Here too, statistical methods have a large part to play.

The core of healthcare is, of course, clinical outcomes. Statistical methods play a critical role in outcomes analysis. Bias in modelling and monitoring health outcomes are addressed in a chapter by Grigg. Biggeri and Catelan discuss disease tracking. Guglielmi, Ieva, Paganoni and Ruggeri address process indicators and outcome measures in an important area, and Negri gives an excellent discussion of the special tool of meta-analysis.

We no longer need to discuss the value of statistical tools and quality improvement methods in healthcare. The value has been demonstrated thousands of times. What is needed is a comprehensive compilation of these tools in one place written by careful, knowledgeable authors. We should all be grateful to Faltin, Kenett and Ruggeri for providing it.

A. Blanton Godfrey

Dean, College of Textiles and Joseph D. Moore Distinguished University Professor

North Carolina State University

and Chair of the Board of Directors (2009–2012)

Institute for Healthcare Improvement





Preface

This book has its origins in the confluence of two realizations. First, that the availability and quality of healthcare is the defining issue of our time. And second, that statistics as a discipline pervades every aspect of the healthcare field.

Statistical Methods in Healthcare illustrates the spectrum of statistical applications to healthcare. From pharmaceuticals to health economics, drug product development to facilities management, clinical outcomes to electronic medical records, risk assessment to organ allocation, statistics has permeated every corner of healthcare. Accordingly, we have assembled here an array of chapters, prepared by a broadly international group of leading authors, which address all of these topics, and many more. Our objective was not to touch upon every area of statistical application in healthcare – that would be impossible. Rather, our purpose has been to span, as best we can, the diverse domains to which statistics has been applied and, thereby, to contribute to the evolution of statistical methods in healthcare applications.

The book consists of 23 chapters organized in five parts:


Part One: Statistics in Development of Pharmaceutical Products

This part consists of chapters dealing with clinical trials, pharmacometrics, risk management in drug product development, statistical aspects in current regulatory guidelines, and future challenges in drug development.

Part Two: Statistics in Outcomes Analysis

The second part deals with monitoring healthcare and diseases, a detailed case study on the treatment of acute myocardial infarction patients, and a chapter dedicated to meta-analysis.

Part Three: Statistical Process Control in Healthcare

Applications of statistical process control in healthcare are gaining widespread acceptance. In this part we present examples from healthcare, clinical studies and applications of Six Sigma in healthcare.

Part Four: Applications to Healthcare Policy and Implementation

This part is focused on aspects of policy and implementation, including healthcare economics, benchmarking, vaccination policy and allocation procedures in kidney transplant surgery.

Part Five: Applications to Healthcare Management

This final part covers various aspects of healthcare delivery as a service, including payment procedures, electronic medical records and facilities management.



Not surprisingly, such an effort has been the work of contributors from many fields. Statistical Methods in Healthcare integrates contributions from statisticians, economists, physicians, epidemiologists, operations researchers, actuaries and managers, among others. The outcome captures perspectives from all of these disciplines, providing an integrated interdisciplinary view reflecting the richness and complexity of healthcare applications.

Our hope and belief is that this collective effort will prove valuable to those in a wide array of professions which in some way touch upon healthcare. Not only statisticians, but researchers, physicians and administrators will find here statistical applications with detailed examples representing a variety of problems, models and methodologies. Students and practitioners alike will discover opportunities to innovate via the use of statistical methods.

We'd like to acknowledge and thank the many people whose contributions have made this work possible. These include, first and foremost, our esteemed colleagues who have contributed chapters to the work, and the outstanding editorial, production and copy-editing teams at Wiley, who followed up our work together on The Encyclopedia of Statistics in Quality and Reliability with another successful outing. And of course, our thanks go especially to our families, for their patience with us while we were preoccupied or otherwise disengaged throughout the duration of this project.

This book includes an accompanying website www.wiley.com/go/statistical_methods_healthcare
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Part One

STATISTICS IN THE DEVELOPMENT OF PHARMACEUTICAL PRODUCTS





1

Statistical aspects in ICH, FDA and EMA guidelines

Allan Sampson1 and Ron S. Kenett2

1Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA

2KPA Ltd, Raanana, Israel

Synopsis

This chapter introduces the regulatory guidelines affecting drug product development and manufacturing that were published by the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and other regulatory agencies such as the Food and Drug Administration (FDA) and the European Medicines Authority (EMA). The focus of the chapter is on statistical aspects of these documents, thereby setting the stage for the whole book. These guidelines, collectively, deal with quality, safety and efficacy issues in clinical and pre-clinical research, chemistry, manufacturing and controls (CMC). In essence, they link patient clinical outcomes, drug product critical quality attributes, process parameters and raw material attributes. Establishing the link between patient, product and process is the most important challenge of biopharmaceutical companies and regulatory agencies for ensuring safe, effective and economic healthcare. This challenge is being addressed by the recent Quality by Design (QbD) initiatives of the FDA and ICH, which are also discussed.

1.1 Introduction

Healthcare is the treatment and prevention of illness. Healthcare delivery requires both innovators and manufacturers of drug products and medical devices, as well as healthcare providers such as hospitals and family medicine. This book, Statistical Methods in Healthcare, covers a wide range of activities where statistics impacts on the quality of healthcare, starting with the development of drug products and medical devices, followed by the handling of clinical trials, surveillance and statistical process control of health-related outcomes, economics of healthcare, and healthcare management. The book consists of five parts:


Part One: Statistics in Development of Pharmaceutical Products

Part Two: Statistics in Outcomes Analysis

Part Three: Statistical Process Control in Healthcare

Part Four: Applications to Healthcare Policy and Implementation

Part Five: Applications to Healthcare Management.



This chapter is about the fundamentals in drug development and manufacturing as defined by the regulatory agencies that determine what can be marketed to healthcare consumers. We begin with a general introduction to the organizations that produce such guidelines and regulations.

The pharmaceutical industry became more global in the 1960s and 1970s in parallel with worldwide development of pharmaceutical regulations. Moreover, contemporaneous with these developments, increased societal concerns were voiced for faster development of new biopharmaceutical compounds and for reduction of costs of healthcare and new drug development. One of the perceived roadblocks for expeditiously and efficiently developed new drugs was the fragmentation of pharmaceutical regulations among the United States, Japan and Europe. In the 1980s, the European Community initiated harmonization of European national drug regulations and demonstrated that harmonization of national regulations is possible.

In 1989, under the sponsorship of the United Nations World Health Organization (WHO), a meeting of the International Conference of Drug Regulatory Authorities was held in Paris to plan the harmonization of regulations among Europe, Japan and the USA. In a subsequent 1990 meeting in Brussels, under the auspices of the International Federation of Pharmaceutical Manufacturers and Associations (IFPMA), the steering committee of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH; http://www.ich.org) was established.

The purpose and terms of reference of the ICH were first declared by the steering committee in 1990, and later revised in 1997and 2000. The terms of reference of the ICH declare its purpose to be (1) to provide a forum for dialogue among industry and regulatory authorities of Europe, Japan and the USA; (2) to contribute to international public health; (3) to monitor and update harmonization documents; (4) to avoid divergent regulations with the development of new therapeutic advances and new technologies; (5) to facilitate adoption of new technologies to safely improve resource utilization; and (6) to foster dissemination and communication about harmonization.

As originally established and currently retained, the steering committee of the ICH consists of two members each from the EU, the European Federation of Pharmaceutical Industries and Associations, the Ministry of Health, Labour and Welfare of Japan, the Japan Pharmaceutical Manufacturers Association, the US Food and Drug Administration (FDA) and the Pharmaceutical Research and Manufacturers of America. The WHO, the European Free Trade Association and Health Canada each contribute one non-voting observer to the Steering Committee. The ICH secretariat, which is housed by the IFPMA, supports the ICH steering committee.

A key decision reached at the first ICH steering committee meeting was to divide the technical topics to be harmonized into three natural groupings: Safety, Quality and Efficacy. A fourth group of Multidisciplinary Topics has since been added. Currently, there are: 9 topics under Safety; 10 topics under Quality; 16 topics under Efficacy; and 5 Multidisciplinary topics. A number of these topics have multiple sub-topics, and several new topics are in their final stages of approval.

The collective impact of these guidelines on the multinational pharmaceutical industry cannot be overstated, particularly in Europe, Japan and the USA. Moreover, any pharmaceutical company that wants to reach these markets needs to pay attention to these guidelines. Individuals working in any aspect of drug development, drug manufacturing or post-marketing monitoring are typically well versed in those guidelines pertinent to their work.

Examples of the guidelines include the Multidisciplinary Guideline M4 and Quality Guideline Q8. Organizations responsible for compiling a new drug application closely follow the format and structure described in M4 concerning the Common Technical Document (CTD). The ICH community recognizes that quality cannot be tested into products and should be built in by design using the information from pharmaceutical development studies as the basis for quality risk management. In that context, the Q8 guideline on ‘Pharmaceutical Development’ highlights the importance of quality by design (QbD) in pharmaceutical development.

Throughout, statisticians are involved in a variety of drug development, drug manufacturing and healthcare delivery activities. As such, they need to know the statistical aspects of all of those guidelines pertinent to their responsibilities (Peterson et al., 2009a).

This chapter highlights statistical concerns in the four sets of ICH guidelines, and other major regulatory documents with strong statistical focus. The intention is to generate awareness of the breadth and depth of the statistical aspects of these guidelines and not be necessarily fully inclusive.

In addition, we briefly review the guidance documents developed by the FDA and European Medicines Authority (EMA). In general, the FDA and EMA guidance documents are more extensive than the ICH guidelines.

The FDA guidance documents, for example, address some specific statistical concerns not currently covered in the ICH guidelines. For example, the FDA has published a draft guidance on Adaptive Design Clinical Trials for Drugs and Biologics; a topic covered in Chapters 2 and 5 of this book.

However, in addition to these particulars, the FDA has also incorporated the ICH guidelines as guidances. While the role of guidance documents and guidelines in national regulatory policies and procedures is generally overlapping, there are differences among regions. The FDA specifically points out that guidance documents and guidelines ‘do not create or confer any rights for or on any person and do not operate to bind FDA or the public’. On the other hand, the Japanese Pharmaceutical Affairs Law includes specifically some of the ICH guidelines (for example, The CTD guideline of M4). The next section provides an overview of the ICH guidelines.

1.2 ICH guidelines overview

The list of topics covered by the ICH guidelines is continuously expanding. New topics or revisions of existing documents can be officially proposed by many forums such as scientific societies or ICH regional guideline workshops. Official requests, however, must be channeled through one of the six parties in the steering committee, or by one of the observers on the committee. The next step is the preparation of a short concept paper which may trigger the steering committee to appoint an official Working Group (WG) to proceed with development of the topic. The WG then works to produce a draft guideline with the help of technical experts and the three regions’ regulatory authorities (the EMA, the Pharmaceutical and Medical Devices Agency, Japan (JPMDA) and the FDA). The draft is published by the three regulatory authorities for further discussion and broad input. Based on the subsequent regulatory input, the WG then moves to prepare a final document which requires sign off from each of the three regions. With this task completed, the steering committee signs off and thus finalizes the new or revised guideline. Should there be disagreements in any part of this multi-step process, there are established procedures for resolving them.

The four sets of ICH Guidelines cover the development of a new biopharmaceutical product: Quality, Safety, Efficacy and Multidisciplinary. The 10 Quality topics focus on chemical and pharmaceutical quality assurance. The 9 Safety topics relate to in vitro and in vivo pre-clinical studies, and the 16 Efficacy topics concern clinical studies in human subjects. The Multidisciplinary topics deal with five issues that do not fall clearly into one of the other three sets of topics. Chapters 2–5 in this book provide in-depth studies of statistical and modeling aspects in pre-clinical and clinical research in the spirit of these guidelines.

The Quality guidelines, designated Q1, … , Q10 are, respectively: (1) stability; (2) analytic validation; (3) impurities; (4) pharmacopoeias; (5) biotechnology quality; (6) specifications; (7) Good Manufacturing Practice (GMP); (8) pharmaceutical development; (9) quality risk management; and (10) pharmaceutical quality systems.

A number of the quality guidelines are multi-part; for example, Q1 has six sub-guidelines. These guidelines and details of their statistical content are discussed in Section 1.4 of this chapter. Due to their impact, the three guidelines Q8, Q9 and Q10 are our primary focus. Guideline Q8 encourages new drug applications to include a design space and risk-based control strategies. The basic idea of Q8 is that drug product developers should study the behavior of critical quality parameters with an impact on critical quality attributes (CQAs) and determine a control strategy in their proposed new products, under variations in the raw material and process control parameters.

The Safety Guidelines, designated S1, … , S9 are, respectively: (1) carcinogenicity studies; (2) genotoxicity studies; (3) toxicokinetics and pharmacokinetics; (4) toxicity testing; (5) reproductive toxicology; (6) biotechnological products; (7) pharmacology studies; and (8) immunotoxicology studies. Topics (1) through (7) correspond to S1 through S7, while topic (8) consists of S8 and S9.

These guidelines are not discussed further in this chapter, and the reader is referred to the ICH website for more details.

The sixteen Efficacy guidelines, designated, E1, … , E16 are grouped into sets of related topics. Namely: clinical safety; clinical study reports; dose-response studies; ethnic factors; Good Clinical Practice (GCP); clinical trials; clinical evaluation by therapeutic category; clinical evaluation; and pharmacogenomics. Within some of these groupings there is a single guideline; while in others, there can be as many as four guidelines, and again some of the individual guidelines may be multi-part. For example, Q2 has six sub-topics, one of which has undergone two revisions. Section 1.3 of this chapter delves into the statistical details of many of the Efficacy guidelines.

In addition to these specific ICH guidelines, a substantial literature has developed offering commentary on many of the individual guidelines. As appropriate, some of this literature is noted in this chapter.

The ICH Guidelines are all available on the web at http://www.ich.org/products/guidelines.html, and as such are not individually cited in this chapter.

1.3 ICH guidelines for determining efficacy

The efficacy guidelines that are most focused on statistical issues are E9 and E10. The remaining guidelines deal with various statistical concerns, from suggested designs and inference requirements to statistical reporting.

Guideline E1, entitled ‘Extent of Population Exposure to Assess Clinical Safety for Drugs Intended for Long-term Treatment of Non-life Threatening Conditions’, as its title indicates, discusses the rationale for sample sizes for various studies to characterize adverse drug experience (ADE) rates both in the short term (less than six months from treatment start) and in the longer term. The long-term concern in the guideline is defined to be chronic or repeated intermittent use for longer than six months. Short-term (three to six months) ADE rates of 1% or more are expected to be ‘well characterized’; while rates of 0.1% or less are ‘not expected’ to be characterized. There is a need to examine the time-varying nature of these short-term rates, and E1 notes that ‘usually 300–600 patients should be adequate’. This sample size is also adequate for detecting ADEs in the range of 0.5 to 5.0% that occur following short-term delays. In addition, to guard against ADEs that occur after six months, there is a requirement that at least 100 patients be treated and studied for at least one year.

Guideline E1 notes that, with no occurrences of a serious ADE in one year and based on 100 treated patients, there is ‘reasonable’ assurance that the true incidence is less than 3%. Direct calculation shows that a one-sided exact 95% confidence interval for the probability of a specific serious ADE is less than 0.03 when no events are observed among 100 patients. Overall, E1 expects that at least 1500 patients will be needed during drug development to adequately characterize the ADE concerns.

There are six guidelines that comprise the E2 series, designated E2A, … , E2F. They deal with safety issues for drugs under development, as well as for marketed drugs. Guidelines E2A and E2D deal respectively with pre- and post-approval expedited reporting of adverse events and adverse drug reactions; while E2C and E2F deal with pre- and post-approval periodic safety update reports. Electronic formatting issues are discussed in E2B, and requirements for pharmacovigilance planning are discussed in E2E.

The pharmacovigilance planning is designed to aid sponsors in developing post-marketing safety surveillance plans that could be submitted with a new drug license application (NDA). At a minimum, the plan should describe the routine pharmacovigilance that is conducted for all products, with attention to the regional requirements. In terms of product-specific plans, E2E describes a variety of methods in an attached annex. These methods include designs for passive surveillance, stimulated reporting, active surveillance, comparative observational studies, targeted clinical evaluations and descriptive studies. Collectively these methodologies provide a wide range of approaches to monitor the safety of a new compound after approval, and the pharmacovigilance plan included in the NDA is an integral part of the regulatory review process.

Guideline E3, entitled ‘Structure and Content of Clinical Study Reports’, is a highly detailed guideline. While the context of this guideline is broad, there are several subsections of the report focused on statistics. Section 9.7 of E3 details with planned statistical analyses and justification of the study's sample size, and Section 9.8 addresses changes to the planned analyses that occurred during the study. Interestingly, E3's Section 11.4.2 of the efficacy results presents analytic features that are important for the regulatory statistical review; namely, adjustments for covariates, handling of dropouts and missing data, interim analyses, multiplicity issues and subgroup issues. Annexes III and IV of E3 provide useful approaches to schematically depict study designs and patient disposition.

Guideline E4, entitled ‘Dose-Response Information to Support Drug Registration’, is a relative short document focusing on the importance of obtaining dose-response information based on the totality of studies comprising the licensing application. Other than presenting several designs, there are few specifics on data analysis. In some sense the most compelling statistical statement is that, beyond the individual study analyses, ‘the entire database should be examined intensively for possible dose-response effects’. This suggests that, when a sponsor prepares a clinical plan, there should be focused statistical consideration about how the studies’ data will ultimately be integrated to provide accurate dose-response estimates for both efficacy and safety. Moreover, in light of the perceived high failure rate of Phase III trials (Kola and Landis, 2004), planned cumulative integration of dose-response data during drug development may be a helpful tool to improve this situation. Chapters 3 and 4 deal with phenomenological and physiological modeling, and cover dose-response modeling issues. These chapters cover the relatively new domain of pharmacometrics and fundamental biomathematical systems that combine disease progression models with toxicity, pharmacodynamics and pharmacokinetics to determine optimal treatment regimens and uncover mechanisms of action of the drug compound under investigation.

One of the more conceptually challenging guidelines is E5, entitled ‘Ethnic Factors in the Acceptability of Foreign Clinical Data’. This guideline's purpose is to facilitate the use of ‘foreign’ clinical data obtained in one ICH region to gain approval for the study compound in another ICH region where there are differences between regions in characteristics such as genetics, physiology, culture or environment, which E5 terms collectively ‘ethnic factors’. A bridging data package consists of the relevant information from the approved package and the necessary bridging studies to allow extrapolation to the new region. The guideline suggests a spectrum of ethnic factors ranging from intrinsic (e.g., genetics, gender) to extrinsic (e.g., medical practice, socioeconomic factors, climate), with a range of factors in between. There are general suggestions about the kinds of bridging studies that might be used depending on the study compound's class and sensitivity to ethnic factors and the kind of ethnic differences between the two ICH regions. There are circumstances where no bridging studies seem to be required. In other cases a pharmacodynamic study or dose-response study is required, and in still other cases a new, controlled clinical trial is required.

The need arising from E5 for statistical development is indicated by phrasing such as ‘if the bridging study shows that the dose response, safety and efficacy in the new region are similar, then the study … is capable of “bridging” the foreign data’. Little is explicitly said about what constitutes similar or equivalent evidence. From a statistical viewpoint, the question arises about how methodology that was developed in other settings to handle equivalence and non-inferiority studies might apply in this context.

The implementation of E5 has raised questions, and the ICH subsequently issued a supplement to E5 entitled ‘Ethnic Factors in the Acceptability of Foreign Clinical Data: Questions and Answers’. There have been a number of statistical and design papers written focusing on various aspects of E5; for example, Uyama et al. (2005) or Tsou et al. (2010), as well as a series of four papers by varying authors in an issue of the Journal of Biopharmaceutical Statistics (2002).

Good Clinical Practices are documented in E6 and, as such, have little direct involvement with statistical concerns. The primary sections of this guideline deal with practices for Institutional Review Boards (also called Helsinki Committees), for investigators and for sponsors. Also considered are the structures of the clinical trial protocol and the Investigator's Brochure.

Guidelines for studies in special populations are considered in E7 and in E11. The former deals with geriatric populations and the latter with pediatric populations. Guideline E7 suggests that for compounds prescribed, but not uniquely, to the elderly, a minimum of 100 geriatric patients suffices, and for compounds which are for diseases uncommon in geriatric populations, smaller numbers are sufficient. Clearly for compounds intended for a primarily geriatric population, these patients should be a major portion of the data. Specific studies, such as pharmacokinetic or dose response, can explicitly model the effects of age; while, more broadly, for most compounds the entire clinical database should be examined for age-related effects.

Guideline E11 points out the importance of there being more products available for pediatric populations, and at the same time indicates many of the issues and difficulties in conducting studies in this population. Clearly this is a dynamic population, with substantial physiological, cognitive and developmental differences between the preterm and term newborns and adolescents. Pharmacodynamic and pharmacokinetic studies need to account for age and physiology (e.g., weight) and, if efficacy studies are needed, the sponsor may need to develop and validate endpoint measurements appropriate to the patients’ cognitive development. Overlaying all the usual safety concerns, is the concern that the compound might affect growth and development, which may not be seen until a later age in the patient. (For more on this topic see Chapter 3.)

The ICH guideline E8, ‘General Considerations for Clinical Trials’, is a well-written overview document providing the principles for clinical trials and, more broadly, clinical development plans. While the design and statistical principles described in this guideline are ones many statisticians are aware of, the document as a whole makes excellent reading for a clinician designing a clinical trial or program.

For statisticians, the ICH Efficacy guideline with the most direct impact is E9, ‘Statistical Principles for Clinical Trials’, completed in 1998. The breadth of topics and the soundness of the material encompass much of what a clinical trials statistician faces in developing new drugs. Moreover, the principles considered are equally applicable to many types of clinical trials beyond those in the biopharmaceutical industry.

The introductory material of E9 (section I) espouses two important principles: one being that all trial statistical work is the responsibility of ‘an appropriately qualified and experienced statistician’, and the other being how important it is ‘to evaluate the robustness of the results’ in light of their ‘sensitivity … to various limitations of data assumptions’. This lengthy guideline divides the more technical considerations into five major components: overall clinical development, trial design, trial conduct, data analysis, and safety and tolerability. Due to the extensive nature of the material we can only highlight in this chapter select ideas.

The considerations for clinical development section (II) of E9 focuses on the overall plan, clinical trial purposes, issues concerning and types of response variables, and blinding and randomization. There is a rather complete discussion of the different aspects of handling multiple primary variables when a suitable composite variable cannot be constructed based on them. Guideline E9 notes that ‘it should be clear whether an impact on any of the variables, some minimum number of them, or all of them would be necessary’, and describes the handling of type I error in each case. Regarding randomization, dynamic allocation of patients to treatments is discussed with the warning that ‘the complexity of the logistics and the potential impact should be carefully evaluated when considering dynamic allocation’. The trial designs section (III) of E9, after considering various trial types, discusses fairly comprehensively how to model and analyze multicentre trials. It describes the value of having centers with comparably balanced numbers of patients and also indicates that treatment effect can be obtained from a model without a treatment-by-centre interaction. However, the homogeneity of treatment effect must be examined through, for example, graphical or analytic methods, and, if it is found, the possible causes carefully explained. Equivalence trials and non-inferiority trials are covered, but more complete discussion of many of the statistical issues for these can be found in two later EMA (2000, 2004) Points to Consider documents. The issues concerning switching non-inferiority and superiority objectives in the same trial are not discussed in E9, but in EMA (2000).

The trial conduct section (IV) of E9 considers issues concerning the monitoring of ongoing clinical trials. It basically dichotomizes the types of monitoring that might be considered into those which use only the blinded data and those which use suitably unblinded data. Blinded monitoring may involve modifying the inclusion/exclusion criteria in response to external information or in response to ongoing study results such as accrual rates. Other types of blinded monitoring can lead to adjusting an ongoing trial's sample size based on estimates of a response variance or overall survival rate. As pointed out by E9, blinded adjusted sample size procedures should be documented in the protocol or in an amendment, including a description of what effects there might be on type I error. Unblinded monitoring focuses primarily on group sequential designs, and E9 does not discuss the more recently developed adaptive designs based on unblinded data. The cautions that E9 presents for using group sequential designs equally apply to adaptive designs. The trial conduct section concludes with a discussion of the role of Independent Data Monitoring Committees (IDMCs). Throughout this section is the theme of the importance of preserving the trial's integrity with suitable protection in place if unblinded data are examined during the trial.

Section V of E9 is focused on data analysis and can be seen as a highly abbreviated text of statistical methods for analyzing clinical trials, and only a few of its features are highlighted here. Guideline E9 notes that the main analysis details should be in the study protocol, while the more complete statistical analysis plan may be a separate document (that needs to be completed before the blind is broken). The intention-to-treat and per-protocol analysis sets are discussed and their relative uses compared. Missing data considerations are given with the conclusion that ‘unfortunately, no universally applicable methods of handling missing values can be recommended’. Standard advice is given concerning the careful specification of the primary efficacy variable(s) and the corresponding primary analytic model for them. There is also a short discussion of handling covariates, subgroups and interactions.

In E9, section VI deals with evaluation of safety and tolerability and section VII with reporting. The safety population is usually considered as those who received one dose of a trial compound, and there is the strong recommendation that safety data be collected consistently across all the trials in a clinical program, so as to facilitate an integrated summary of safety and tolerability. In many cases, it is suggested that descriptive statistics and graphics suffice to analyze safety where p-values and confidence intervals for ‘flagging’ and aiding interpretation are used as needed. The reporting section of E9 is intrinsically a shortened version of E3 which describes in detail the clinical report.

The ICH E10 is an intriguing and extensive guideline entitled ‘Choice of Control Group in Clinical Trials’. It discusses a broad array of designs for clinical trials with an emphasis on the control group(s) in a trial. Guideline E10 classifies trials by five types of control groups: placebo, no-treatment concurrent control, dose-response concurrent control, active control and external control (which includes historical controls). Within each category, there is a detailed presentation of their uses, advantages and disadvantages, ethics, and variations of the designs in that category. For example, in the presentation of the modifications of placebo controls, there are discussions of add-on designs, ‘early escape’ designs, limited placebo period designs, and randomized withdrawal designs. Guideline E10 also provides two schematics; one indicating design types based upon trial objectives and the other being a flowchart which helps in choosing the concurrent control. While the designs are well described, little is given about methods for analyzing the various designs (for more on this topic see Chapter 2).

The more recent ICH Efficacy documents deal with specific therapeutic classes and modern topics arising from genetic considerations. Document E12 is termed ‘Principles for Clinical Evaluation of New Antihypertensive Drugs’ and E14 is entitled ‘The Clinical Evaluation of QT/QTc Interval Prolongation and Proarrhythmic Potential for Non-Antiarrhythmic Drugs’. Guidelines E15 and E16 are entitled, respectively, ‘Definitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, Genomic Data and Sample Coding Categories’ and ‘Biomarkers Related to Drug or Biotechnology Product Development: Context, Structure and Format of Qualification Submissions’. Interestingly, the ICH considers E12 a principle document rather than a guideline.

1.4 ICH quality guidelines

The ICH Quality guidelines concern designing and ensuring manufacture and delivery of quality drug products. While Q1–Q7 have impact, we focus on the three quality guidelines which are of substantial impact to the healthcare industry – Q8(R2) Pharmaceutical Development,Q9 Quality Risk Management and Q10 Pharmaceutical Quality System – and a concept paper, Q11 Development and Manufacture of Drug Substances.

The key concept behind these three guidelines is that quality of drug products is determined by their underlying design, development, manufacturing and supply processes. Crucially Q8 notes that ‘it is important to recognize that quality cannot be tested into products; that is, quality should be built in by design’. A process is well understood when all critical sources of variability are identified and explained, variability is proactively managed by the process, and product quality attributes can be accurately and reliably predicted over the space of design parameters.

Processes must meet current good manufacturing practices to ensure that drug products meet safety and efficacy requirements. In the past, this requirement has been met by performing process validation studies on three batches; however, the ICH Quality guidelines recognize that this approach is unlikely to fully represent routine manufacturing and therefore unlikely to cover all potential sources of variability (e.g., raw materials, operators, shifts, reactor vessels). In addition, the FDA has identified this issue as a challenge to the regulatory process and described the traditional approach as a ‘focus on process validation and not process understanding’ (Nasr, 2007). Quality by Design is about changing this approach (Kenett and Kenett, 2008).

Quality by Design (QbD) is a systematic approach to development that begins with predefined objectives, that emphasizes product and process understanding and sets up process control based on sound science and quality risk management. In the traditional approach, product quality and performance is achieved by restricting flexibility in the manufacturing process and by end product testing. Under the QbD paradigm, pharmaceutical quality is assured by understanding and controlling manufacturing and formulation variables. End product testing is used to confirm the quality of the product and is not considered part of the ongoing consistency assurance and/or process control (Yu, 2008). A key element in the QbD paradigm is the design space. A design space is defined by Q8 as ‘the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality’. Q8 further notes that: ‘Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post-approval change process. Design space is proposed by the applicant and is subject to regulatory assessment and approval’.

The determination of a design space requires a combination of experimental data and mechanistic knowledge of chemistry, physics and engineering to model and predict performance. Statistical design of experiments (DOE) is used for setting up a design space. DOE is an efficient method used in industrial statistics for determining impact of multiple parameters and their interactions (Kenett and Zacks, 1998). Setting up a design space also involves scaling up studies to translate operating conditions between different scales or pieces of equipment.

Statistical analysis in product development includes model building. This consists of kinetic models such as rates of reaction or degradation, transport models of movement and mixing of mass or heat, models for manufacturing development including computational fluid dynamics, scale-up correlations and models for process monitoring or control such as chemometric models and control models. Chemometrics is the science of relating measurements made on a chemical system or process to the state of the system via application of mathematical or statistical methods. Measurements are integrated in a process control strategy that involves modeling, multivariate analysis and Statistical Process Control (Kenett and Zacks, 1998; Fuchs and Kenett, 1998). All such models require verification through statistical analysis.

The following provides more details concerning the ICH Q8, Q9 and Q10 Quality guidelines.

Guideline Q8, entitled Pharmaceutical Development, has been revised twice up to August 2009. The guideline describes the suggested contents for the 3.2.P.2 (Pharmaceutical Development) section of a regulatory submission in the ICH M4 CTD format. This section is first produced for the original marketing application and can be updated to support new knowledge gained over the lifecycle of a product. The pharmaceutical development section is intended to provide a comprehensive understanding of the product and manufacturing process for reviewers and inspectors. The guideline also indicates areas where the demonstration of greater understanding of pharmaceutical and manufacturing sciences can create a basis for flexible regulatory approaches. The degree of regulatory flexibility is predicated on the level of relevant scientific knowledge provided.

The Q8 guideline does not apply to contents of submissions for drug products during the clinical research stages of drug development. However, the principles in this guideline are important to consider during those stages as well.

Changes in formulation and manufacturing processes during development and lifecycle management should be looked upon as opportunities to gain additional knowledge and further support the establishment of the design space. Similarly, inclusion of relevant knowledge gained from experiments giving unexpected results can also be useful.

Guideline Q8 notes that ‘At a minimum, those aspects of drug substances, excipients, container closure systems, and manufacturing processes that are critical to product quality should be determined and control strategies justified. Critical formulation attributes and process parameters are generally identified through an assessment of the extent to which their variation can have impact on the quality of the drug product.’

The elements of pharmaceutical development consist of a quality target product profile (QTPP), critical quality attributes (CQAs), a risk assessment linking material attributes and critical process parameters (CPPs) to drug product CQAs, a design Space and a control Strategy. The definitions of these terms are given in Q8 as follows. QTPP: ‘A prospective summary of the quality characteristics of a drug product that ideally will be achieved to ensure the desired quality, taking into account safety and efficacy of the drug product.’; CQA: ‘A physical, chemical, biological or microbiological property or characteristic that should be within an appropriate limit, range, or distribution to ensure the desired product quality’; and CPP: ‘A process parameter whose variability has an impact on a critical quality attribute and therefore should be monitored or controlled to ensure the process produces the desired quality’.

Document Q9, entitled Quality Risk Management, is designed to offer a systematic approach to quality risk management. It serves as a foundation or resource document that is independent of, yet supports, other ICH Quality documents, and complements existing quality practices, requirements, standards and guidelines within the pharmaceutical industry and regulatory environment. Quality risk management is a systematic process for the assessment, control, communication and review of risks to the quality of the drug (medicinal) product across the product lifecycle. The basic activities concerning risk management include: risk assessment, which consists of the identification of hazards and the analysis and evaluation of risks associated with exposure to those hazards; risk identification, which is a systematic use of information to identify hazards referring to the risk question or problem description (information can include historical data, theoretical analysis, informed opinions and the concerns of stakeholders; risk analysis, which is the estimation of the risk associated with the identified hazards (it is the qualitative or quantitative process of linking the likelihood of occurrence and severity of harms); risk evaluation, which compares the identified and analyzed risk against given risk criteria; risk control, which includes decision making to reduce and/or accept risks (the purpose of risk control is to reduce the risk to an acceptable level); and risk communication, which is the sharing of information about risk and risk management between the decision makers and others. (See Chapter 6 in this book and Kenett and Raanan, 2010.)

Document Q10, entitled Pharmaceutical Quality System, is a comprehensive model for an effective pharmaceutical quality system that is based on International Organization for Standardization (ISO) quality concepts, includes applicable GMP regulations, and complements Q8 and Q9. The ICH Q10 is a model for a pharmaceutical quality system that can be implemented throughout the different stages of a product lifecycle.

The Q10 guideline promotes a lifecycle approach to product quality by focusing on four elements: (1) process performance and product quality monitoring system; (2) corrective action and preventive action (CAPA) system; (3) change management system; and (4) management review of process performance and product quality.

Specifically, CAPA methodology should result in product and process improvements and enhanced product and process understanding. It applies to pharmaceutical development, technology transfer, commercial manufacturing and product discontinuation. Management review should provide assurance that process performance and product quality are managed over the lifecycle. Depending on the size and complexity of the company, management review can be a series of reviews at various levels of management and should include a timely and effective communication and escalation process to raise appropriate quality issues to senior levels of management for review. The management review system should include: (1) the results of regulatory inspections and findings, audits and other assessments, and commitments made to regulatory authorities; (2) periodic quality reviews (that can include (i) measures of customer satisfaction such as product quality complaints and recalls; (ii) conclusions of process performance and product quality monitoring; and (iii)the effectiveness of process and product changes including those arising from corrective action and preventive actions); (3) any follow-up actions from previous management reviews.

The management review system should identify appropriate actions, such as: (1) improvements to manufacturing processes and products; (2) provision, training and/or realignment of resources; and (3) capture and dissemination of knowledge.

The ICH, in the Q8, Q9 and Q10 guidelines, as well as the FDA, have been strongly promoting QbD in an attempt to curb rising development costs and regulatory barriers to innovation and creativity (FDA, 2006). The introduction of QbD offers to statisticians a level of involvement beyond the traditional role of statisticians in clinical trials (Nasr, 2007, 2009; Kenett and Kenett, 2008; Peterson et al., 2009a). Moreover, QbD will certainly have an impact on modern statistical methodology, bringing forth new and challenging problems that require new statistical methodologies. It is patently clear that, in addition to the key roles that statisticians play in drug discovery and development, abundant opportunities exist for statistical involvement in QbD. With QbD, statisticians can now play a key role throughout the life cycle of drug products. These opportunities are expanded upon in Section 1.6.

1.5 Other guidelines

The preceding sections have primarily focused on the ICH Guidelines and in particular their statistical impact and challenges. However, there is an abundance of other guidelines and documents produced by each of the three regulatory regions that deal with design or analysis issues of biopharmaceutical trials, as well as related manufacturing issues. Due to the extent of these guidelines, we only highlight a small fraction of them in this document.

The EMA has published a large number of scientific guidelines categorized in six groupings: quality, biologics, non-clinical, clinical efficacy and safety, multidisciplinary and ICH. To gage a sense of their extensiveness, we note that within the quality topics, there are 11 sub-topics and, for example, in the sub-topic about manufacturing, there are 6 adopted guidelines including process validation, a 2010 concept paper on revisions of process validation, and manufacture of the finished dosage form. Within clinical efficacy, there are 16 sub-topics with multiple guidelines within each of these and all mainly focused on treating specific medical conditions. In addition the EMA has published a number of concept papers in a series called ‘Points to Consider’; some of which have later become EMA CHMP (Committee for Medicinal Products for Human Use) Guidelines. Among those of interest to statisticians are ‘Points to Consider on Missing Data’ (EMA, 2001), which in 2009 has been revised as a draft ‘Guideline on Missing Data in Confirmatory Trials’ (EMA, 2009); ‘Guideline on the Choice of Non-inferiority Margin’ (EMA, 2005; an earlier draft document on this topic is ‘Points to Consider’, EMA, 2004); ‘Points to Consider on Applications with 1. Meta-analyses, 2. One Pivotal Study’ (EMA, 2001); ‘Points to Consider on Switching between Superiority and Non-inferiority’ (EMA, 2000); ‘Points to Consider on Multiplicity Issues in Clinical Trials’ (EMA, 2002); ‘Points to Consider on Adjustment for Baseline Covariates’ (EMA, 2003); and ‘Concept Paper on the Need for a Guideline on the Use of Subgroup Analyses in Randomized Controlled Trials’ (EMA, 2010). While the primary EMA statistical documents are highlighted in the preceding, the many other documents in the ‘Points to Consider’ series and the ‘Guideline’ series, while focusing on other topics, do contain relevant statistical material. Collectively all these many documents are an excellent resource for those working in quality and efficacy aspects of biopharmaceutical development, although obviously with a focus on EU concerns.

The EMA document on missing data (EMA, 2009) has an extensive review of the possible biases and effects that can be caused by ignoring or not properly taking into account missing data. While not espousing any universal approaches, it does provide rules that ‘should be considered’ in dealing with missing data. For example, mortality results should have relatively low missingness, but it recognizes that long-term studies in a psychiatric population may have relatively higher amounts of missing data. Methods for handling missing data need to be pre-specified and well documented in the final report. There is a full discussion of various ways to handle missing data based on modeling an understanding of the missing causes, as well as a discussion of multiple imputation and mixed models as approaches. The document concludes with a discussion of sensitivity analyses to assure that the results of the trial are not sensitive to a specific missing data approach. The EMA document on meta-analysis and one pivotal study (EMA, 2001) is really two documents in one with loose connections between the topics. The meta-analysis component discusses the issues about performing a meta-analysis on the studies included in an NDA. The reasons for doing such an analysis can be varied and include, for example, subgroup analyses or evaluating apparently conflicting study results. The document indicates that the meta-analysis should follow a detailed pre-specified protocol completed before any trial results are known; ideally prepared when developing the clinical development program. In those infrequent cases where the meta-analysis is not anticipated, but is carried out to integrate results from conflicting study results, the document addresses how to try to maintain credibility of the meta-analysis.

The FDA has a series of ‘Guidances’ that represent the FDA's current thinking on a topic. The list of guidance documents is extremely lengthy, with 30 subgroups, again with each subgroup consisting of multiple finalized and draft guidance documents. Three subgroups that directly deal with quality are ‘Current Good Manufacturing Practices (CGMPs)/Compliance’, ‘CMC’ (Chemistry, Manufacturing, and Control), and ‘CMC – Microbiology’. The guidance on Process Validation: General Principles and Practices (FDA, 2011) outlines the general principles and approaches that FDA considers appropriate elements of process validation for the manufacture of human and animal drug and biological products, including active pharmaceutical ingredients. It incorporates principles and approaches that all manufacturers can use to validate manufacturing processes. Process validation is defined as the collection and evaluation of data, from the process design stage through commercial production, which establishes scientific evidence that a process is capable of consistently delivering quality product. In this context, manufacturers should (1) understand the sources of variation, (2) detect the presence and degree of variation, (3) understand the impact of variation on the process and ultimately on product attributes, and (4) control the variation in a manner commensurate with the risk it represents to the process and product.

Guidances of substantial statistical interest concerning drug development can be found under a variety of topics. Illustrative of these guidance documents are ‘Statistical Approaches to Establishing Bioequivalence’ (FDA, 2001); ‘Exposure-Response Relationships – Study Design, Data Analysis, and Implications for Dosing and Labeling’ (FDA, 2003); ‘Non-Inferiority Clinical Trials’ (FDA, 2010a); and ‘Adaptive Design Clinical Trials for Drugs and Biologics’ (FDA, 2010b), where the last two are both in draft form.

The FDA draft guidance document concerning non-inferiority clinical trials is pertinent to such trials under the purvey of either the Center for Drug Evaluation and Research (CDER) or the Center for Biologic Evaluation and Research (CBER). This guidance begins with a general discussion of issues concerning non-inferiority trials, and then follows this section with a more detailed discussion of methodology to establish a non-inferiority margin and a comparison of methods, and ends with a section considering practical advice and an appendix providing examples of successful and unsuccessful non-inferiority trials. The first two sections provide a clear conceptual introduction to the rationale of non-inferiority designs, possible designs and methods, and approaches to obtain M2, the largest clinically acceptable difference. Five interesting examples of non-inferiority trials drawn from public sources are given in the appendix.

The adaptive designs FDA draft guidance document is a major document discussing the important issues facing sponsors who are considering adaptive clinical trials to expedite drug development. Adaptive trials allow the change of the design of a clinical trial at interim points in the trial based on accumulating trials data, and are viewed as ‘learning’ as the trials proceeds. (For a general framework for sample size adaptive designs see Koyama, Sampson and Gleser, 2005a, and for adaptive designs in non-inferiority trials see Koyama, Sampson and Gleser, 2005b). There is a statistical cost for this trial-based gain in knowledge, and this FDA document requires characterizing this cost in a regulatory acceptable way. Besides providing general background and concerns about adaptive designs, the guidance dichotomizes adaptive designs into the two groups ‘generally well-understood adaptive designs’ and ‘adaptive designs whose properties are less well understood’. Examples of the former are designs based on blinded interim analyses and, of the later, designs based on unblinded interim effect size estimates. For the well-understood designs there are valid implementation approaches, and for the less well-understood designs, this draft guidance discusses some relevant statistical considerations. Also discussed are the contents of an adaptive design protocol, as well as an indication of the interactions between a sponsor and the FDA when a sponsor is planning an adaptive design.

The Pharmaceuticals and Medical Devices Agency (PMDA) of Japan has some limited guidance documents in English, especially in terms of manufacturing and quality issues. The most relevant of these are ‘Guideline for Descriptions on Application Forms for Marketing Approval of Drugs’ (PFSB, 2007), which indicates the manufacturing method details to be included on marketing approval applications, and ‘Ministerial Ordinance on Standards for Manufacturing Control and Quality Control for Drugs and Quasi-drugs’ (MHLW, 2004). Other than the ICH Guidelines there are very limited indications about statistical issues in any of the other guidance-type documents.

1.6 Statistical challenges in drug products development and manufacturing

This section highlights some key statistical challenges in the modern pharmaceutical industry. Context to these challenges is provided by the 2004 FDA Report ‘Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New Medical Products’ (FDA, 2004). This report addresses in a clear way the challenges in overcoming the gap between scientific discoveries and their translation into modern medical treatments and also the opportunities to those involved with product development and manufacturing in transforming these processes to overcome this gap. Following the publication of this groundbreaking report, the FDA in 2006 issued a report entitled ‘Critical Path Opportunities List’. The report lists specific examples where there are opportunities for innovation in the sciences and technology of product development. Some of the areas where the challenges clearly relate to statistics are in ‘streamlining clinical trials’, ‘harvesting bioinformatics’ and ‘moving manufacturing into the 21st century’. Illustrative of these areas of statistical opportunities are furthering innovative trial designs concerning which the report focuses on active controlled trials, enrichment designs, integrating prior evidence for designs, adaptive designs, handling missing data, and dealing with multiple endpoints.

The challenges concerning manufacturing described in the ‘Critical Path Opportunities List’ report are grouped into manufacturing biologics, manufacturing devices, manufacturing drugs and dealing with nanotechnologies.

In 2008 the FDA issued an additional report addressing safety monitoring; in particular, monitoring the safety of a product throughout its entire life cycle. The report entitled ‘The Sentinel Initiative: A National Strategy for Monitoring Medical Product Safety’ (FDA, 2008) addresses a breadth of concepts focusing on using modern information technology to identify, in a timely fashion, previously unknown risks of medical products, learn about their patterns of use, and assess the outcomes associated with them. The report discusses FDA activities in the context of risk identification, risk assessment and risk minimization. While statistical opportunities in this initiative are not overtly discussed, there are clearly opportunities for innovative statistical methods to detect and describe safety issues in a timely fashion.

Others, outside the regulatory arena, have also identified the challenges for statisticians. For instance, Peterson et al. (2009b) identified a number of factors that are converging to increase the need for sophisticated, statistics-driven approaches to quality and process understanding in the pharmaceutical industry. These include the following.


1. Regulatory trends: as clearly described in this chapter, a substantial driver is regulatory agencies that require new, more statistically rigorous and risk-based ways of conducting drug development and manufacturing.

2. Inherent characteristics of pharmaceutical manufacturing: in pharmaceuticals it is difficult to tightly connect product specifications to product performance. For example, ‘tablet dissolution’ rates cannot be clearly linked to drug efficacy and safety over a vast array of potential product users, each with different body size, age, lifestyle, genetics and drug metabolism chemistries. Furthermore, pharmaceutical companies must maintain quality in a many-step production process that creates a complex molecule that must have the proper molecular structure and be free of serious chemical impurities or biological contaminants. In addition, up to now, there has been a lack of incentive for continuous improvement in pharmaceutical manufacturing after regulatory approval. This is due primarily to the fact that substantial changes in the manufacturing process or recipe required formal regulatory approval. Recently, QbD guidance has been introduced to provide more flexibility with regard to continuous improvement in manufacturing. However, pharmaceutical manufacturers will have to show clear process understanding and prediction ability in order to be granted such flexibility. To meet all these complex challenges, pharmaceutical companies need more, not less, statistical thinking and practice.

3. Economic pressures: many companies, faced with thin product pipelines, major patent expirations and downward pressure on pricing, attempt to cut their manufacturing costs, improve yield and productivity, and generate bottom-line savings that can be used to drive growth and innovation. Statistically driven improvement methodologies found in QbD are critical for success in these efforts. The same economic pressures drive the need for more efficient and adaptive designs, better ways of integrating and accumulating product performance during development, and innovative use of simulation and computer modeling.

4. Increased need for effective technology transfer: virtually every drug at some stage of its development or manufacture must be transferred from one site to another. Furthermore, mergers, acquisitions, the rise of ‘global’ generics, the ongoing rationalization of manufacturing and other factors have increased the frequency with which pharmaceutical manufacturing organizations must effectively and efficiently transfer products and manufacturing processes from one location to another. Successful transfer requires a degree of understanding of products and processes that can be greatly improved by statistical techniques.



The effects of multinationalism are also seen in the need for innovations in designing and analyzing multinational clinical trials, as well as developing the designs and statistical methods for bridging studies (as elaborated upon in ICH E5) in order to gain approval of a product in a new region based upon approvals in another region.

Peterson et al. (2009a) further note that ‘As these trends continue and converge, the role of statistics and statisticians will only grow larger in the industry.’

1.7 Summary

This chapter reviewed guidelines and guidance documents regarding safety, efficacy and quality of drug products. These guidelines directly affect drug development, clinical research and drug product manufacturing. The Quality by Design initiative is providing an integrated view linking patients, products and processes in order to achieve safety, efficacy and quality in an economic way.

Section 1.3 described in detail the ICH guidelines concerning efficacy. These guidelines, adopted by the three major regulatory regions, directly impact how biopharmaceutical clinical development is conducted. From a statistician's perspective, E9, ‘Statistical Principles for Clinical Trials’ provides a clear discussion of the statistical principles and methods for designing and analyzing pharmaceutical clinical trials. Since its completion in 1998, new analytical issues have arisen for clinical trials that present further challenges to regulators and statisticians. Some of these challenges were highlighted in Section 1.5.

In Section 1.4 we mentioned that a design space of a drug product is the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality. Including a design space in a new drug application is a key element of the Quality by Design initiative. Working within the design space is not considered a change requiring regulatory approval. Movement out of the design space is considered to be a change, and requires a regulatory post-approval change process. This difference has significant impact on the bilateral relationships between industry and the regulator. It requires shifting from a paradigm of ‘Tell’ and ‘Do’, where no preapproved change is allowed, to ‘Do’ and ‘Tell’, where industry has the freedom to improve products and processes, within the boundaries of the knowledge supported by evidence in the drug product application. Statisticians can play a significant role in gaining and documenting such knowledge.

Bayesian methodology is being employed in both development and quality. A Bayesian approach to setting up a design space was proposed by Peterson (2004, 2008). This approach accounts for model parameter uncertainty and correlation among the CQAs. The paper by Stockdale and Cheng (2009) includes examples where this approach is applied to identify a reliable operating range. Fuchs and Kenett (1998, 2007) describe multivariate methods for achieving process control and determining process capability, and Kenett and Kenett (2008) present Bayesian methods for combining information from simulation and physical experiments with expert opinions, in order to derive a comprehensive design space.

Incorporating modern statistical methods in the life cycle of a drug product, from its development to its manufacturing and delivery is what this whole book is about. This first chapter has set the regulatory context that is an essential pillar in the overall system which includes patients, the pharmaceutical industry and regulatory agencies.
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Synopsis

Chapter 1 was an introduction to the regulatory approach for planning, conducting and analyzing outcomes of clinical research. It was focused on statistical aspects in the ICH and FDA guidelines that provide harmonization of regulations among Europe, Japan and the USA. This chapter complements Chapter 1 and provides a comprehensive treatment of statistical methods in drug product and medical device clinical trials. It covers aspects of design and analysis of clinical trials including the definition of endpoints, randomization and study designs, adjustments for covariates, the power of statistical tests, multiplicity, Bayesian inference, handling missing data, propensity scores, adaptive designs and survival analysis.

2.1 Introduction

Although Meinert (1986) defines a clinical trial as ‘a planned experiment designed to assess the efficacy of a treatment in humans by comparing the outcomes in a group of patients treated with the test treatment with those observed in a comparable group of patients receiving a control treatment’, clinical trials in healthcare take on many forms and sizes. Following ‘preclinical trials’, which may involve animals or laboratory testing, the earliest of clinical research involving human subjects may be begun for a new drug or medical device on a small number of subjects. With medical devices, for example, this early clinical research occurs in the form of feasibility or pilot studies, and serves to obtain some measure of treatment effectiveness and variability. These are followed by one or more ‘confirmatory’ or pivotal clinical trials to assess the effectiveness and safety of treatment. Finally, since not all questions can be answered before a treatment comes on the market, there is often a post-approval study to look at long-term effectiveness and/or adverse events. With drug trials, the study stages are labeled Phases I to IV, and these phases are discussed in more detail in Section 2.12, Drugs versus devices.

2.1.1 Claims

There are three types of claims that can be made for a new drug or medical device treatment relative to a comparison treatment: superiority, non-inferiority or equivalence. Each of these claims must be supported by a statistically significant result based on hypothesis testing or confidence intervals. Although a statistically significant result in a superiority trial actually only demonstrates that the treatment difference is not zero (i.e., that there is an effect not due to chance), the study must be sized to detect a clinically meaningful difference as statistically significant. Otherwise, statistically significant differences may be found that are not clinically meaningful, and interpretation is difficult. Similarly, in a non-inferiority study, a non-inferiority margin, (commonly called delta (δ)), must be selected that represents the maximum amount by which a new treatment can be numerically inferior to the standard treatment without being considered clinically inferior. In order to accept a lower effectiveness rate, there should be some benefit to the new treatment over the old, such as a better safety profile. More details about superiority and non-inferiority trials are discussed in Section 2.2.1, Hypothesis testing. A claim of equivalence basically says that the new treatment results are clinically indistinguishable from the comparator in either direction. This is most common with trials for diagnostic devices, such as a glucose monitor.

2.1.2 Endpoints

The primary endpoint, that is, the target outcome of the trial, may be single, multiple or composite. With a single primary endpoint, there is one outcome of interest, and overall study success is dictated by that endpoint. For example, the endpoint may be reduction in tumor size, artery patency at a specific time point, or survival of a patient or a hip implant at 10 years. Alternatively, there can be co-primary endpoints, or even three or more primary endpoints. It must be made clear whether all endpoints have to be met for study success, because the overall significance level is affected. This will be discussed more in Section 2.7.1, Multiplicity. Secondary endpoints can serve multiple purposes. They can be used for the purpose of relaying additional information and may not be statistically compared to a control group. These results can be reported descriptively in drug or device labeling. Alternatively, they can be hypothesis driven, with claims against a comparator. The methods discussed in Section 2.7.1 on multiplicity also apply to multiple secondary endpoints. Whether primary or secondary, multiple endpoints require special handling, or spurious significant findings can result.

One way to avoid multiple primary endpoints is to form a composite endpoint consisting of an aggregate of the multiple endpoints. Each patient would be classified as a success or failure depending on whether he/she met all of the patient-level success criteria defined for each of the endpoints. For example, the patient success criteria for a hip replacement study might be (1) a Harris Hip score ≥80, (2) no revision or re-operation, (3) radiographic success, and (4) no device-related complications. A patient meeting all four of these criteria would be classified a success, and then the success rates in the two treatment groups could be compared. It is not uncommon, then, to look at each of the individual components of a composite endpoint separately as the secondary endpoints. The selection of appropriate endpoints is a crucial part of a good study design.

2.1.3 Types of study designs and controls

Three common types of clinical trial design are the parallel, concurrently controlled design, the paired design and the historically controlled design. The parallel, concurrently controlled trial usually has two treatment arms (an investigational arm and a comparator arm), and is prospective, randomized and masked. This type of trial presents the strongest level of scientific evidence. If the randomization is performed correctly, the treatment groups will tend to be balanced for both the known and unknown factors that could instill bias. In this type of study, the control arm could be another active treatment, or a placebo treatment (either a pill or a sham device). Sometimes a three-arm trial is warranted, where there will be an investigational treatment, active control and placebo control.

In a paired design, each patient serves as his/her own control. With medical devices, a patient may receive both treatments, such as a different type of wrinkle filler on opposite sides of the face. One strength of this design is that patient-to-patient variability is eliminated. A paired study design can also comprise before-and-after assessments, where follow-up results are compared to baseline. With this design, however, it is difficult to rule out a placebo effect. Matching subjects one-to-one on certain characteristics and then randomly assigning treatments to each pair is another way of conducting a paired study. In general, paired designs are very efficient, requiring a smaller sample size relative to a study with parallel groups due to the reduction in variability. However, they are not without their disadvantages. For example, in the wrinkle filler example given above, it would not be possible to attribute any systemic adverse events to a specific treatment.

Historically controlled trial designs seem to be used more in medical device trials than in drug trials. A historically controlled study is essentially a single arm study where the control comes from one or more completed studies. Often the control is an earlier version of the current treatment. Historical controls are problematic in that they are prone to temporal bias. Since the control patients were treated at an earlier point in time, there may have been differences in standard of care, differences in disease stage or prognosis, or differences in patient demographics. Often patient-level data is not available and additional analyses cannot be performed. Sometimes a meta-analysis is performed to derive an ‘objective performance criterion (OPC)’, which is a number or success rate that must be met by the single investigational arm. There must be agreement in the clinical community on the OPC chosen.

There are many other study designs, such as cross-over designs, which will not be discussed here. Regardless of the study design, it is important that systematic error (bias) be controlled, that random variation be reduced, and that precision of estimates be as high as possible. Clinical trials should be multi-centered, and treatment-by-site interaction should be assessed as part of any data analysis.

2.2 Hypothesis testing, significance levels, p-values, power and sample size

In clinical trials, we typically ask questions about the effectiveness of a new treatment on an outcome defined by continuous, dichotomous or time-to-event variables. These questions can be formulated into the framework of statistical hypothesis testing. In this section, we will introduce the general concepts of hypothesis testing and related topics.

2.2.1 Hypothesis testing

Hypothesis testing has played a major role in the design and analysis of clinical trials. It is used to assess the effectiveness and safety of a new treatment by appropriately defining the null hypothesis H0 and the alternative hypothesis H1. A null hypothesis represents the statement that we are trying to reject, and an alternative hypothesis is the claim that we are targeting to prove in clinical trials. A simple example of such hypothesis testing in a controlled clinical trial would be a study of hypertension with active (new treatment) and control (standard treatment) arms. In most studies, the question asked is whether the new treatment is better (superior) than the standard. While superiority trials are most common, non-inferiority trials are also frequently conducted. For example, in cases where the new treatment may be safer, easier to administer or less expensive than the standard treatment, a non-inferiority trial can be designed to demonstrate that the new treatment is non-inferior to the standard. Using the example above to illustrate the differences between these two types of trials, let's denote the mean reduction in blood pressure in the new and standard treatments as T and C, respectively. In a superiority trial, the null and alternative hypotheses could be expressed as: H0 : T − C ≤ Δ; H1: T − C > Δ, where the superiority margin Δ ≥ 0. While in most cases Δ is set as 0 for a superiority test, a Δ > 0 can be used to show that the new treatment is superior by a fixed amount (super superiority). If the observed data show enough evidence to reject the null hypothesis, we claim that the new treatment is better than the standard treatment in treating high blood pressure. In a non-inferiority trial, where the objective is to demonstrate that the new treatment is non-inferior to the standard treatment by a clinically insignificant margin δ, the null and alternative hypotheses are defined as: H0 : C − T ≥ δ; H1: C − T < δ. By rejecting the null hypothesis, we claim that the active treatment is less effective than the control treatment by no more than δ, an amount deemed to be clinically insignificant. The margin δ is one of the key elements in designing a non-inferiority trial. The bigger the margin, the easier it is to reject the null hypothesis. However, from the clinical perspective, we want a margin small enough to be able to ignore the clinical difference. Ideally, the non-inferiority margin should be compensated by the improvement of other aspects (e.g., safety or cost) of the new treatment. The determination of the non-inferiority margin has become a frequently discussed topic in the literature.

2.2.2 Statistical errors, significance levels and p-values

There are two types of statistical errors one can make when conducting a hypothesis test. A type I error, also known as a false positive, is the error of rejecting the null hypothesis when it is actually true. In the example of a superiority test, above, a type I error occurs if we claim superiority for the active treatment when it is not. A type II error, also known as a false negative, is the error of failing to reject the null hypothesis when it is not true. An example of this would be failing to claim superiority for the active treatment when it is actually superior to the control treatment. It is, unfortunately, almost impossible to minimize the probabilities of both types of errors with a fixed sample size. Therefore, the conventional approach is to restrict the type I error rate to a predetermined level (also known as significance level, or [image: inline] level) and, subject to this constraint, try to minimize the type II error rate. The [image: inline] level is the maximum type I error rate that you are willing to tolerate when rejecting the null hypothesis. It serves as a cut-off point for the type I error rate, below which we agree that an effect is statistically significant. In practice, when we say ‘significant at the 0.05 level’, we mean that the probability of making a type I error when rejecting a true null hypothesis is less than 0.05. More precisely, one can report a p-value for the test, say 0.027, which would mean that the test is significant at the 0.027 level. The p-value is the probability of obtaining a result that is at least as extreme as the observed result (towards the alternative hypothesis) assuming that the null hypothesis is true. It quantifies how likely it is that the observed effect is due to chance alone. Thus, the smaller the p-value, the less likely it is to observe the effect due to chance alone; that is, the effect is likely real. In practice, a p-value which is smaller than or equal to the predetermined significance level [image: inline] leads to rejection of the null hypothesis and claim of an effect.

2.2.3 Confidence intervals

Instead of estimating the parameter of interest by a single value, say the observed difference between treatment arm A and treatment arm B, a more informative approach in clinical trials is to calculate the precision of the estimate by a confidence interval (CI). The idea of a confidence interval was developed by Neyman and Pearson. It is calculated as a range around a population parameter (e.g., mean or proportion) at a given confidence level (usually denoted as 100 × (1 − [image: inline])%) to convey the precision of the estimate. When one speaks of a ‘100 × (1 − [image: inline])% confidence interval’, a technical understanding would be that if you repeated your trial many times under exactly the same conditions with identical sample size, 100 × (1 − [image: inline])% of the calculated confidence intervals would contain the true value of the population parameter. Strictly speaking, the confidence level is not a probability that the corresponding confidence interval contains the true parameter value. A confidence interval either does contain the true parameter value or does not. In most cases, confidence intervals are calculated symmetrically around the point estimate of the parameter at a given confidence level. The endpoints of the confidence intervals are called confidence limits, which can be used in hypothesis testing. The concept of a 100 × (1 − [image: inline])% confidence level for an interval corresponds to the concept of a significance level ([image: inline]) for hypothesis testing. For example, if [image: inline] = 0.05, the confidence level would be 95% (i.e., 100 × (1 − 0.05)%). Take the hypertension trial described above as an example. The parameter of interest is the difference in the reduction of blood pressure between the two treatment groups (C − T). Assume that the clinical data gives us a point estimate of −10 for this difference, with a 95% confidence interval of (−18, −2). Superiority can then be claimed for the new treatment at a 95% confidence level (or a 5% significance level), because the upper limit of the confidence interval is less than 0. Generally, in superiority testing, if the upper limit of the 100 × (1 − [image: inline])% confidence interval for (C − T) is less than 0 (or in the case of T − C, the lower limit would need to be greater than 0), we reject the null hypothesis and claim superiority at [image: inline] level. Similarly, in non-inferiority testing, if the upper limit of the 100 × (1 − [image: inline])% confidence interval for (C − T) is less than the non-inferiority margin δ, we reject the null hypothesis and claim non-inferiority at [image: inline] level. Figure 2.1 shows the results of various 95% confidence intervals for (C − T), and their interpretations. Please note that our discussion here is based on favorable outcomes (e.g., decreased death rate, reduction in blood pressure) for which bigger values are better.


Figure 2.1 Results of various 95% confidence intervals for (C − T), and interpretations.

1. Upper limit of the 95% CI for (C − T) is greater than δ, so non-inferiority is not demonstrated; lower limit of the 95% CI for (C − T) is greater than 0, so T is inferior to C.

2. Upper limit of the 95% CI for (C − T) is less than δ, so T is non-inferior to C.

3. Upper limit of the 95% CI for (C − T) is less than δ, so T is non-inferior to C. Lower limit of the 95% CI for (C − T) is greater than 0, so C is superior to T. This outcome would be very unusual and could present interpretive problems.

4. Upper limit of the 95% CI for (C − T) is greater than δ, so non-inferiority is not demonstrated; lower limit of the 95% CI for (C − T) is less than 0, so C is not superior to T. This outcome leads to an inconclusive interpretation about whether T is better, worse or non-inferior to C.

5. Upper limit of the 95% CI for (C − T) is less than 0, so T is superior to C.

[image: ch02fig001.eps]


2.2.4 Statistical power and sample size

Statistical power is defined as the probability of rejecting the null hypothesis when it is not true, and is commonly denoted as 1 − β, where β is the type II error rate. It quantifies the ability of the trial to detect a true effect when it exists. When planning clinical trials, clinicians often ask statisticians how much power the trial has to detect a treatment effect of a specified size. In general, there are five major factors that affect the power of the trial: (1) the variability of outcome measurements, (2) the size of the effect one is trying to detect, (3) the probability risk one can tolerate in claiming an effect is present when it is not (significance level [image: inline]), (4) the power to detect a true effect (1 − β), and (5) the sample size of the trial (n). These factors are all interrelated in that, if any four of them are fixed, the fifth one can be calculated. If one agrees that the variability of measurements can be appropriately estimated (perhaps from a pilot study or historical data), that the targeted effect size can be estimated, and also that common values for the significance level (e.g., 0.05) and power (e.g., 0.8) are to be used, then the only factor left for investigators to manipulate is the sample size of the trial. In a situation where resources are fixed, one may need to adjust other factors, in particular the effect size to be detected or the power, to meet the ‘practical’ sample size requirements. Typically, all other factors being fixed, the larger the sample size, the more powerful the trial if the effect is present. If the sample size is dramatically overestimated, the trial may be judged as clinically or economically unfeasible. If the sample size is badly underestimated, there is a good possibility that the trial will fall short of finding statistical evidence to demonstrate effectiveness, which would result in abandonment of a new treatment that could be beneficial. In general, when the calculated sample size is plausible, it is better to overestimate the size since underestimation could lead to incorrect conclusions due to lack of power. It is, therefore, an important duty for biostatisticians to work together with clinicians in the planning phase to design a properly powered clinical trial with an affordable sample size.

Approximate formulas to express sample sizes as a function of the other four basic factors are well developed for different types of trials. One can refer to existing literature (e.g., Friedman, Furberg and Demets, 1996) for detailed methods and formulas. There are also excellent computer programs available (e.g., PASS 2008) that eliminate the computational burden of sample size calculation. While now computationally trivial, it is well recognized that sample size estimation is one of the most difficult tasks in designing a good clinical trial. There are many factors that need to be estimated or assumed when determining sample size. Sometimes one may have to use a best guess based on existing data and experiences, which introduces many uncertainties to sample size estimation.

A sample size estimation formula is an approximation based on statistical models and an assumed probability distribution for the outcome (e.g., normal distribution). In practice, we don't know the distribution of the outcome variable (if there is one) and the corresponding test statistic in hypothesis testing. For larger sample sizes, however, the normal approximation is rather accurate. Also, the sample size formula involves the true sample standard deviation of the measurement. The problem is that we do not know the true variability until after we have carried out the trial. This adds another dimension of uncertainty to the sample size estimation. Although statisticians try to obtain a reasonable estimate of the variability from previous trials, the assumption that the variability of the current trial is the same as that of historical trials is questionable. A more cautious way to incorporate the uncertainty from this source is to study the robustness of the sample size estimation by assuming a range of reasonable sample standard deviations. This would allow for a more conservative sample size choice. A third factor is that the unknown true treatment effect complicates the estimation of sample size. In practice, clinicians often guess the effect size based on their experiences, and weigh this against practical sample size requirements. Lastly, non-compliance of the subjects during the trial must be considered. Typically, an adjustment would be applied to compensate for loss-to-follow-up and dropouts. As a result, the final sample size will be larger than the calculated one. To conclude, the investigators should take into account the different dimensions of sample size calculations, such as statistical power, variability and clinical perspectives, when obtaining a practical sample size for the trial.

2.3 Bias, randomization and blinding/masking

Error in clinical trials has two components: a purely random error (also referred to as variability) and a systematic error (also referred to as bias). Variability describes the precision of a measurement or estimate. Increasing sample size or repeating the experiment can reduce the variability of the mean of the measurements and increase the accuracy of estimates. Bias describes deviations from true treatment effects due to all causes other than random variation. Bias can occur in several places during a clinical trial, from the design and implementation of the trial to data analysis and the interpretation of results. A good understanding of the causes of bias is very helpful in reducing it and obtaining a reasonable estimate of the treatment effect.

2.3.1 Bias

Important sources of bias in clinical trials include selection bias, assessment bias and bias caused by selectively missing data.


Selection bias arises when individuals in the trial are not representative of the target population. For example, would a sample of NBA basketball players be appropriate to estimate the average height of the American male? Selection bias can happen in the pre-screening of participants, self-selection as to whether or not to participate, selection of historical studies in meta-analysis or even rejection of ‘bad’ data arbitrarily. A randomized controlled trial (RCT) with well-defined inclusion/exclusion criteria can reduce selection bias. The most important advantage of randomization is that it creates balance between study groups with respect to known and unknown characteristics and removes bias in the allocation of treatments. In a properly randomized trial, it is more likely that an observed difference between groups is due to a treatment effect.

Assessment bias can occur when participants, investigators or third party evaluators know the actual treatment assignments. This knowledge may cause subjective behavior in assessing the results. The general solution to this problem is blinding or masking; that is, keeping the participants, investigators or third-party evaluators unaware of the treatment assignments.

Selective missing, also called informative missing, of the outcome data is another cause of biased estimates of treatment effect. Inappropriate exclusion of participants from the analysis could break the experimental paradigm and possibly lead to biased estimation of effects. For example, some participants in the treatment group may be too sick to continue the follow-up and may drop out of the study. In this case, exclusion of these sick people from the final data analysis may overestimate the treatment effect. Similarly, exclusion of patients that are missing because they are doing well can have the opposite effect. Proactive follow-up examinations and detailed documentation of case report forms can help to provide a better understanding of the missing mechanism, which may inform the imputation of the missing data using appropriate statistical methods. In addition, there are other sources of bias that are only relevant in some particular circumstances. For example, in a cross-over design, where each subject receives both treatments sequentially, a carry-over effect might introduce additional bias. A washout or waiting period between treatments can sometimes be used to counteract this effect.



Bias towards the null hypothesis (i.e., no treatment effect) can happen if the investigational group is slightly worse at the beginning of the trial with respect to baseline characteristics that affect the outcome. This bias is generally considered conservative and not of great concern.

For all potential sources of bias, it is important to consider the relative magnitude and direction of the bias when interpreting the observed effects. For example, if the data indicate that the new treatment is effective, but there is a suspicion of bias towards the direction of effectiveness, careful assessment of the relative magnitude of the bias and effect size should be made before conclusions are drawn.

2.3.2 Randomization

Randomization is an effective method to reduce selection bias in a comparative trial. It produces comparable study groups in terms of known and unknown covariates that may be related to outcome. An RCT is considered to be the most reliable and impartial study design used to compare treatments. Some common randomization procedures include simple randomization, blocked randomization, stratified randomization and adaptive randomization.


Simple randomization: simple randomization has no restriction; for example, a single sequence of random allocations. Simple randomization is expected to produce balanced study groups for a large sample trial.

Blocked randomization: blocked randomization (with a block size of b) is a randomization scheme which ensures that for every b participants enrolled in the trial, the number of participants in each treatment group will be equal. It is used to avoid serious imbalance in the number of participants between study groups. However, a known block size b tends to increase the predictability of the assignment. In this case, using a variable block size (a.k.a. permuted random blocks), or determining the size for each block randomly during the randomization process, is recommended.

Stratified randomization: stratified randomization is achieved by performing a separate randomization procedure in each stratum determined by stratification variables, such as age group, or prognostic factors. This randomization scheme assures that there is equal representation of prognostic factors in all treatment groups. For example, a study on wound healing might stratify the randomization by initial wound size, below and above a certain threshold.



These three randomization schemes are classified as fixed allocation procedures. They assign each treatment to participants with a pre-specified probability that remains the same throughout the randomization process. In contrast, adaptive randomization procedures change the allocation probabilities during the course of the study. Two types of adaptive randomization procedures are introduced here.


Baseline adaptive randomization: adjusts the allocation probabilities according to the imbalances in baseline characteristics between the study groups to prevent severe baseline imbalances in important prognostic factors. Biased coin randomization adjusts the allocation probability so that the probability is higher for the group with fewer participants. Another commonly used baseline adaptive randomization scheme is referred to as an urn design, where we imagine an urn filled with m red and m black balls. When a red ball is drawn, assign the participant to group A, then return the ball to the urn and add a black ball; when a black ball is drawn, assign the participant to group B, then return the ball and add a red ball. Both schemes attempt to keep the number of participants in each group balanced as the randomization proceeds.

Response-adaptive randomization: adjusts allocation probabilities according to the responses of participants to assigned treatments. For example, the play-the-winner procedure assigns the next participant to the same treatment if the previous participant turns out to be a success; otherwise, the participant is assigned to the other treatment. Another response-adaptive randomization scheme is called the two-armed bandit method, where allocation probabilities are adjusted in such a way that a higher proportion of future participants would receive the treatment currently deemed ‘better’. Both the play-the-winner procedure and the two-armed bandit method tend to maximize the number of participants that receive the best treatment. These randomization techniques, however, would require that the treatment response is quickly observed.



In a two-arm, controlled trial, one-to-one (1 : 1) randomization is most commonly used, because it produces approximately equal-sized treatment groups and is statistically more powerful than other randomization ratios. However, if much is already known about the control treatment, k-to-one (k : 1, k > 1) randomization can be used to collect more information on the investigational device, particularly for safety.

The actual implementation of the chosen randomization scheme is extremely important in order to maintain the advantages of using randomization to balance known and unknown prognostic factors between groups. Setting up an independent central center to develop the randomization process and allocate the participants to appropriate treatments is recommended.

2.3.3 Blinding or masking

An effective way to eliminate assessment bias in clinical trials is to blind or mask the participants and/or the investigators in such a way that they are not aware of the treatment that is assigned to each participant. Blinding (also called masking) becomes especially important to obtain an unbiased estimate of the treatment effect when the outcome endpoints are subjective (patient self-reports, questionnaires, etc.) or when there is an expectation of better performance for a new treatment effect.


Open-label trial: also called unblinded trial. In this case the assigned treatments are known to both participants and investigators.

Single-blind trial: only the participants are unaware of the assigned treatments.

Double-blind trial: both the participants and the investigators are unaware of the treatment assigned to each participant.

Triple-blind trial: not only the participants and investigators, but also the third party evaluator, if used, is unaware of the treatment assignment.



Blinding success is a fundamental issue in clinical trials. The validity of a trial may be questioned if blinding is not assured. Assessment of the degree of blinding after the completion of a trial is usually achieved by asking the participants and the investigators to guess the treatment assignments. In an equal-sized, two-arm study with an active control, the guesses would be correct approximately 50% of the time if the trial is well blinded. Substantial deviation from 50% may imply that some participants and/or investigators may be aware of treatment assignments. Ideally, a double-blind trial should be designed to avoid potential assessment bias. In cases when a double-blind trial is impossible, a single-blind trial and the use of other measures to reduce bias are recommended. For example, photographs are often used for assessments of treatment effectiveness for devices with aesthetic outcomes, such as wrinkle fillers. This keeps the evaluator masked as to the treatment timeline.

Table 2.1 Total population (n = 160).

[image: Table 2-1]

2.4 Covariate adjustment and Simpson's paradox

A covariate is defined as a secondary variable or factor that could affect the relationship between the dependent variables (e.g., primary endpoints) and other independent variables (e.g., treatment effect). The terms ‘covariates’, ‘prognostic variables’ and ‘independent variables’ are used interchangeably to refer to predictors. There are several reasons why covariate adjustment is useful and important in the analysis of clinical trials. One reason for studying covariates is to explore the relationship between important prognostic variables that can affect the primary outcome measures. If the covariate is strongly associated with the disease outcome (e.g., the stage of cancer is strongly associated with survival), adjustment for the covariate effect could yield stronger and more precise evidence in favor of or against the treatment. In addition, important interaction between the treatment and covariates or between the covariates themselves can be detected through including covariates into statistical models. A second important reason for studying covariates is to improve the comparability between treatment groups and reduce the bias in estimating the treatment effect. In randomized trials, knowledge of prognostic variables can improve the study design. For example, in cancer trials, the stage of cancer is strongly associated with survival, and one might consider a randomization stratified on the baseline severity of cancer patients to improve balance and comparability between treatment groups. In non-randomized clinical trials where treatment groups might be heavily imbalanced in certain important prognostic variables, adjustment for these variables can reduce the bias of the estimated treatment effect. The adjustment for important prognostic variables in the analysis of clinical trials can produce a more credible and precise conclusion. Failure to adjust might lead one to a conclusion in the opposite direction. A classic example is Simpson's paradox, which provides an insightful illustration of the importance of covariate adjustment.

2.4.1 Simpson's paradox

In an article published in 1952, E. H. Simpson pointed out a simple fact about fractions that has important applications. In clinical studies, Simpson's paradox (or the Yule–Simpson effect) arises when a prognostic variable is overlooked at the design phase. In that case, the success rates in the groups determined by different values of the prognostic variable seem to be reversed when the groups are combined. This fact is best illustrated by an example.

Suppose a clinical study is conducted to compare a new intervention with standard of care for a particular disease. One hundred and sixty patients are randomized, with 80 assigned to the new intervention and 80 assigned to standard of care. The results of the study can be displayed as in Table 2.1.

Based on these results, the new intervention appears inferior to standard of care. However, the clinical investigators know that age is an important prognostic variable and decide to stratify the analysis according to the age of the patients: young patients (less than 40 years old) and senior patients (above 40 years old). Splitting the overall data into two disjoint subgroups of the population is called disaggregation. The results in each subgroup can be displayed as in Tables 2.2 and 2.3.

Table 2.2 Young patients (n = 80).

[image: Table 2-2]

Table 2.3 Senior patients (n = 80).

[image: Table 2-3]

Note that when the results of Tables 2.2 and 2.3 are combined, we obtain the original aggregated data found in Table 2.1. However, the new intervention appears to be superior to standard of care both for young and for senior patients when analyzed separately. One may be surprised by these results, and here is the source of Simpson's paradox. According to Table 2.1, the new intervention is inferior to standard of care when all subjects are combined. However, after stratifying by patient age (see Tables 2.2 and 2.3), the new intervention is superior to standard of care both for young and senior patients. Clearly, this seeming paradox stems from the fact that young patients have a higher rate of success than senior patients, regardless of whether they receive standard of care or the new intervention. Although the numbers of young and senior patients in the study were the same, the randomization of treatments was not stratified by age, and more young patients than senior patients were randomized to the standard of care arm. As a consequence, the number of young patients that received the new intervention (20) was much smaller than the number of senior patients (60). Since the young patients have a higher rate of success regardless of treatment, it is found in Table 2.1 that the standard of care shows a higher rate of success than the new intervention.

To ensure that this phenomenon does not occur, it is important that the proportion of young and old patients that receive the new intervention be approximately the same. That can be achieved via stratifying the randomization of treatment assignments by the age subgroups (i.e., young and senior patients). In other words, in a well-designed study, the randomization should be stratified by all demographic/prognostic variables that are believed to have a significant association with treatment outcome, or covariate adjustments need to be made at the time of the statistical analysis.

2.4.2 Statistical methods for covariate adjustment

For a single discrete covariate, the covariate adjustment could be simplified to a stratified analysis, which directly compares treatment groups within each subdivided stratum and then averages the results across all strata to get an overall covariate-adjusted estimate. However, in clinical trials, often several prognostic variables are believed to be associated with the outcome variables, and investigators are interested in assessing the effects of all variables together. A statistical model is one of the most powerful and flexible tools to assess the effects of multiple covariates on the outcome variable simultaneously. These models combine theoretical knowledge (e.g., hypotheses) with empirical knowledge (observed data) to describe a plausible relationship between the covariates and the outcome variable in terms of one or more parameters which have useful clinical interpretations. To illustrate the use of such models, let's denote Y as the outcome variable, Z as the indicator variable representing the treatment groups (Z = 1, treatment group; Z = 0, control group), X = (X1, … , Xk)as the covariate vector, [image: inline] as the treatment-effect coefficient, and β = (β1, …, βk) as the covariate coefficient. The specific adjustment models depend on the type of outcome variables being analyzed. This section will briefly introduce several of the most commonly used models in clinical trials. More complicated models can be found in the statistical literature.


	If the outcome variable is continuous (e.g., blood pressure), a linear regression model can be used: [image: inline].

	If the outcome variable is binary (e.g., Y = 1 refers to the occurrence of an event), a logistic regression model could be built:

[image: Unnumbered Display Equation]

where p is the probability of the event; that is, p = Pr (Y = 1).

	If the outcome variable is time-to-event, then survival analysis models are used. One of the popular models is the Cox proportional-hazards model: [image: inline] [image: inline], where h(t) and h0(t) are the hazard rate of interest and hazard rate at baseline, respectively. The details of survival model building are described in Section 2.8.



These statistical models can be used not only to study the main effects of a covariate, but also to assess interactions between these covariates and treatment groups by including second-order covariates (e.g., X1X2) in the models. When estimating interaction effects, it is important to always include the main effects or lower-order terms in the model.

After choosing the mathematical formula to describe the relationship between the outcome variable and covariates, the next step is to build a parsimonious model with the appropriate variables. Although there are software packages (such as SAS) available that have tools for automated model selections, constructing a statistically parsimonious and clinically useful model is, nevertheless, not a simple automated process. Statistical model building techniques as well as clinical judgments are involved. One of the difficulties in model building is that there may be some correlation among variables (i.e., collinearity). Strong collinearity in covariates can cause problems in the statistical estimation process and in interpretation of parameter estimates. For example, with two correlated covariates, including either one of them in the model could significantly improve the model prediction. However, if both variables are included, then both may appear unimportant. Another difficulty arises from the large number of possible covariates and associated higher-order terms. Including all available covariates and interaction terms in the model could cause an identifiability problem in estimation. Also, including all of the measured covariates in the model may make the clinical interpretation difficult. Therefore, selecting appropriate variables is a critical step in model building. It is usually unrealistic to expect one regression model to be clearly superior to all others, and models cannot always be distinguished in terms of statistical evidence. A feasible way of building a good statistical model is for the clinicians who have expert knowledge about the prognostic variables to work closely with the statisticians. Clear clinical interpretation of a prognostic variable should be considered while building the model. Even if a particular variable seems to yield a slight statistical improvement in model prediction over another more clinically important variable, one should choose to include the latter in the model. Clinical expertise, pre-clinical data and observations about the trial data could provide important guidance when choosing which covariates should be adjusted for in the analysis. Generally, variables that are strongly unbalanced between treatment groups, and variables that are believed to be strongly associated with the outcome variable, should be adjusted for in the analysis.

2.5 Meta-analysis, pooling and interaction

2.5.1 Meta-analysis

Meta-analysis is a systematic method that uses statistical analysis to integrate data from a group of independent studies that address a set of related research questions. Often, for a particular clinical research question, several independent studies have been conducted at different times. Some of these studies may be large multi-center trials; while others may be too small to yield a valid conclusion on their own. One of the most important uses of meta-analysis is to synthesize results when individual studies are too small to be conclusive. It can increase the precision of effect estimates and produce more powerful conclusions than any individual study. Frequently, researchers are interested in small treatment effects in common diseases where even modest treatment benefits can have a big impact on public health (e.g., cancers). Through combining large amounts of data from a number of studies, meta-analysis can detect small treatment effects with high statistical power, providing a higher level of evidence that the effect, although modest, exists. Meta-analysis could also be used to construct a historical control rate such as an objective performance criterion (OPC) or performance goal to help design a new clinical trial.

There are generally four steps in a meta-analysis. The first step is a literature search for identifying relevant studies; the second step is the definition of the eligibility criteria for inclusion and exclusion of the studies; the third step is to decide on the summary measurements and data to be abstracted from the studies; and the fourth step is to perform statistical analysis to draw conclusions from the abstracted data.


Literature search: the development of a systematic and explicit procedure to identify studies with relevant data is critical in meta-analysis. Usually a large number of published studies can be found by computerized search of literature databases, such as MEDLINE. The reference lists from selected articles are then reviewed as important additional resources for identifying relevant data. In addition, personal knowledge and subject matter experts are important resources from which to gather information about studies that have not yet appeared in the traditional media, such as unpublished studies and institutional research.

Eligibility criteria for studies: the purpose of defining eligibility criteria for studies to be included in a meta-analysis is to reduce selection bias (e.g., choosing only the most favorable studies) and to increase the reproducibility of the analysis. Just as not all subjects are eligible to enter a clinical trial, not all studies should be included in a meta-analysis. To select a study for the meta-analysis, researchers must consider the specific treatment in the study and justify that the study is similar in design to other selected studies. The studies selected for the meta-analysis should have similar participants with similar protocols (e.g., similar endpoints).

Abstraction of data from studies: this procedure should be pre-planned to ensure reliability. A pretested data abstraction form should be used to organize and collect the information from each study to help control the selection and removal of participants from the analysis, to determine the relevant outcome and to identify information on important prognostic factors.

Statistical analyses: after obtaining the abstracted data from all studies, the last step of meta-analysis is to perform the statistical analysis. The main issues in statistical analysis include choosing an effect estimate, such as mean differences (continuous data), risk differences (binary data) and hazard ratios (survival data); deciding on the analysis unit (trial versus individual patient); weighting the quality of each study and selecting statistical models to combine the results from all studies. One frequently used meta-analysis approach in healthcare research is referred to as the ‘inverse variance method’, which averages the effect estimate using a weighted mean, whereby the weight is the inverse variance of each study's effect estimator. Larger studies with smaller variations are given greater weights than smaller studies with larger variations. Other commonly used methods include the Mantel–Haenszel method and the Peto method. In any case, the overall effect estimate can be adjusted for prognostic factors using statistical models. Generally, three types of statistical models are applied in meta-analysis: simple regression where neither within-study variation nor between-study variations is included; fixed-effects meta-regression where within-study variation is specified, but between-study variation is ignored; and random-effects meta-regression where both within-study variation and between-study variations are taken into consideration. Bayesian hierarchical modeling is a modern statistical technique used in meta-analysis (see Section 2.10). The idea is to ‘borrow strength’ among the studies to be meta-analyzed with the goal of obtaining overall ‘shrunken’ estimates. Intuitively, there is more shrinkage if the variability among studies is similar to the variability within studies. The borrowing among studies decreases as the variability among studies increases as compared with the variability within the studies. Like individual studies, meta-analysis also suffers from the missing-data problem and requires pre-planning of subgroup analyses.



The appeal of meta-analysis is to reduce the uncertainty about the effect estimates, to generalize the findings to a group of different studies and to control between-study variations. However, meta-analysis suffers from some theoretical and practical limitations. Not all researchers agree on the theoretical validity of meta-analysis and its practical interpretation. The selection of studies and the methods used to synthesize the results can cause potential bias in the results. Researchers should keep in mind that no meta-analysis can effectively validate evidence from flawed studies. Therefore, clinical investigators are not encouraged to conduct under-powered studies with the hope of combining them later in a meta-analysis.

2.5.2 Pooling and interaction

While a meta-analysis combines a large collection of results from the analysis of independent studies for the purpose of integrating the findings, the issue of poolability also comes up in all clinical trials which involve more than one investigational site. It is generally assumed that, in a multi-centered clinical trial, all patients are treated under the same protocol with the same endpoints and with the same inclusion/exclusion criteria. Patients are simply pooled together so that statistical power is increased, the trial can be completed in shorter time, and so that it is easier to summarize the results and generalize the findings. This assumes all patients are the same with respect to the prognostic variables. This assumption can be checked by assessing baseline characteristics, particularly those that could be related to outcome. If the patients are not the same, important differences will be missed that could change the study results. Not only could there be differences among the investigational sites, such as differences in standard of care, but there could be differences in other covariates such as gender or age that may affect the results as well. There could be what is known as the presence of an interaction. Interaction is a statistical term that means the treatment effect is not the same for all groups defined by some covariate. It is often broken down into two types: quantitative and qualitative. With a quantitative interaction, the effect has the same direction across all groups, but differs by amount. For example, in a 20-center study, the investigational group may have performed 20% better than the control group at 10 centers and 50% better at the other 10 centers. With a qualitative interaction, the effect differs by direction; for example, the investigational product may have been superior at 12 centers while the control product may have been superior at the other 8 centers. Sometimes the overall result is in favor of one treatment, but there is a significant treatment-by-center interaction that must be further explored. It can be due to differences in physician training, familiarity with the treatment, or differences in baseline characteristics such as geographic region or indication.

Interactions can be detected by a formal statistical test which includes the interaction term in the model. However, this generally has low power since studies are not sized to assess interaction. A non-significant interaction term does not prove there was no interaction. For this reason, it is helpful to also assess outcomes broken down by the relevant groups using descriptive statistics to determine if anything looks odd or unusual. Clinical input should be called upon, as assessing a possible interaction is not solely a statistical decision.

If the data are not deemed poolable, one option is to combine the data but adjust for the variable that might explain the difference. An example would be to include a center effect in the model that should adjust for differences in effects that are due to the centers and not to the treatment. Another option would be a stratified or subgroup analysis, with the strata defined by site or gender, for example. It is important to pre-specify subgroup analyses so that they are not considered exploratory. Otherwise, a confirmatory study or altered indication could be required.

Pooling involves assumptions such as that the same protocol was followed at each site and that the patients are ‘exchangeable’. These should be validated by showing comparability of patients and study outcomes across subgroups, whether it is investigational site, gender, age or other relevant covariates. Often foreign data are used to support clinical trials within the USA. Pooling across countries may be justified similarly to pooling across sites within a country. Pooling is best addressed prospectively by limiting the number of centers. It is recommended not to let any one center be too large (preferably <20% of subjects) or too small. If there are a number of centers that have only a few patients, these can be pooled into a ‘pseudo-center’ for the purpose of statistical analysis. Although the assessment of poolability usually focuses on the investigational sites, other clinically relevant covariates should not be overlooked.

2.6 Missing data, intent-to-treat and other analyses cohorts

2.6.1 Missing data

Missing data in clinical trial conduct and analysis is, unfortunately, a common problem that is difficult to avoid. Patients drop out, or become lost to follow-up, in which case all subsequent data points are lost. In other cases, a component of a composite clinical success criterion may be missing, such as a radiograph, lab report, or functional score, which makes it difficult, if not impossible, to classify that subject as a success or failure. The analysis can be biased if subjects with missing data are simply excluded. The protocol for any clinical trial should pre-specify how the missing data are to be handled. As a rule of thumb, a study should not have more than 15% loss to follow-up in order to preserve the interpretability of the results. Both the pattern and the balance of missing observations are important. For example, if more controls are missing (i.e., unbalanced missing), and the study was not blinded, the controls may have dropped out because they either were disappointed to receive the control treatment or believed their treatment was not working. This is called non-ignorable missing. If more patients with a particular indication or baseline characteristic (e.g., age) drop out, this would be an example of a missing pattern that requires more evaluation. As a consequence, there are formal definitions of three types of missing data:


missing completely at random 
(MCAR): missing data are independent of both the observed values and the unobserved (missed) values;

missing at random (MAR): missing data are independent of the missed values but depend on observed values (or covariates);

missing not at random (MNAR): missing data are not independent of the treatment effect (non-ignorable missing);



There are several methods used to handle missing data in the analysis of clinical trial data. Simple imputation imputes a single value for the missing value. It might be obtained from a regression equation, or the mean of two adjacent values. It is not recommended to use the treatment group mean as the imputed value since this reduces the perceived variance and therefore increase chances of spurious significance. A commonly used approach is to impute all missing values as failures (or all missing = success). A ‘best case imputation’ would be described as imputing missing outcomes for treated patients as successes and missing outcomes for control patients as failures. Handling missing data this way, however, biases the results in favor of the study intervention. A ‘worst case imputation’ is described as imputing the missing treated as failures and the missing controls as successes. This procedure is biased against the study intervention. Often when an intermediate value is missing, rollback imputation is used. This would be, for example, rolling back an observed 30-month follow-up to a missing 24-month follow-up. In the case of outcomes such as implant survival, this approach is generally acceptable.

Multiple imputation is often the preferred method of imputation. This method imputes a range of values from a selection of probable values weighted by a probability distribution, thus accounting for the variability of missing values. This method requires the assumption that the data are either MAR or MCAR.

Last observation carried forward (LOCF) is another common method used to impute missing values. It is generally not well received for a number of reasons. It assumes the patient or the treatment effect is stable over time, which is not often the case. It is particularly not advisable when the treatment effect deteriorates over time, such as with a cosmetic wrinkle filler. It underestimates the variance, which gives more chance for a spurious statistically significant result. Only in the case where patients are expected to improve over time would this method be considered conservative.

Sensitivity analysis is very helpful in determining the robustness, or tenacity of the study results. This involves performing several sets of analyses under different scenarios for handling missing values, such as those mentioned above. If there is broad agreement in the results obtained using several methods, this provides some assurance that the results are robust to missing-data assumptions. A tipping point analysis is a special case of sensitivity analysis. This essentially explores, at a minimum, how many treated successes would need to be switched to failures or control failures switched to successes for the statistical significance to be lost.

Though all these techniques are available to handle missing data, the best approach is to minimize ‘missingness’ through better trial design and rigorous follow-up methods. For a general introduction to the handling of missing data, see Fuchs and Kenett (2007).

2.6.2 Intent-to-treat (ITT) and other analysis cohorts

The Intent-to-Treat principle is the method of analysis in clinical trials that groups each participant according to the treatment arm to which they were initially assigned (e.g., experimental therapy, standard therapy, placebo), regardless of whether they actually received that treatment or remained in that arm for the duration of the study. The main advantages are that it preserves the balance of randomization, avoids some biases and optimizes power. The disadvantages include diluting the treatment difference because patients may be analyzed in a group for which they did not receive that treatment, including major protocol violations, and requiring imputation of missing values.

The effect of using an ITT analysis actually varies depending on the type of trial. For a superiority trial, where the goal is to show a large treatment difference, performing an ITT analysis where missing values are imputed similarly for both treatment groups 
(e.g., missing = failure), would render the groups more similar and less likely to show a difference. This type of analysis is considered conservative, but also may result in a false negative (concluding there is no difference when one really exists). On the other hand, in a non-inferiority trial, where the goal is to show similarity of treatments, one is more likely to meet that goal when using an ITT analysis because it renders the groups more similar. This is considered ‘anti-conservative’ and may produce a false positive (i.e., concluding non-inferiority when, in fact, the investigational product is actually inferior). All this depends, however, on how much data are actually missing.

A per-protocol analysis is a method of analysis that groups participants according to the treatment they actually received and excludes major protocol violators. The main advantage is that it may reflect the actual performance of the device outside the trial (assuming the numbers of exclusions and mis-randomizations are small). The disadvantages are that the exclusion of patients can render the treatment groups unbalanced with respect to important characteristics (i.e., covariates); that this analysis may be biased if the investigator changes treatment assignment after randomization; and that there can be a loss of power due to exclusion of patients. For patients who have no major protocol violations but have missing data points, one can consider imputation. For a valid per-protocol analysis, one would need a reason to assume the missing data were ignorable, especially if missing data are imputed. Performing both an ITT and per-protocol analysis is one way to check the robustness of the study results.

A completed cases analysis groups each participant according to the treatment actually received and only includes the completed cases, disregarding the ‘drop outs’. This is one of the riskiest types of analyses. It is biased when missing is not completely at random; that is, the ‘missingness’ is related to outcome, perhaps due to an adverse event or failed treatment benefit. It disregards information by exclusion of subjects, which sometimes is a considerable proportion of the study sample, and it includes the major protocol violators. Similarly to the per protocol analysis, the completed cases analysis also can compromise the balance of the randomization by analyzing subjects in treatment groups to which they were not randomized.

Another type of analysis cohort falls under the term modified ITT analysis. Examples of this would be to exclude patients who were not treated, even if they were randomized; to analyze patients according to treatment received even if there were major protocol violations (i.e., as treated); or to analyze patients according to treatment received provided there was at least one, or some other specified number of follow-up visits (i.e., all ‘evaluable’ patients). Regardless, it is very important that the analysis cohort be pre-specified in the investigational plan so that the analyses are not considered exploratory.

2.7 Multiplicity, subgroup and interim analyses

2.7.1 Multiplicity

Just as the Sphinx winks if you look at it too long, so, if you perform enough significance tests you are sure to find significance even when none exists. Jerome Cornfield (1976)

Multiplicity considerations arise in experimental research when it is desired to make inferences about several aspects of a problem from a single study. In clinical studies, these aspects could be: multiple endpoints (primary or secondary), multiple testing of the same endpoint at different time points, multiple treatment comparisons (e.g., three arm study), multiple analyses on the same data, or multiple subgroup testing. Attempting to interpret the results of numerous tests becomes problematic because 5% of the tests (or 1 in 20) will reject the null hypothesis by chance alone if all tests are performed at the 5% significance level; thus resulting in ‘spurious significances’ (false positives). In other words, one would expect that, on average, if there are 20 null hypotheses rejected, 1 rejection will be a mistake. As a consequence, steps must be taken to adjust the individual significance levels ([image: inline]), or employ other testing procedures to preserve the overall type I error rate. These will be discussed further below.

One simple method of significance level adjustment is to divide the desired ‘experiment-wise’ error rate (e.g., 5%) by the number of significance tests performed and use the quotient as the adjusted significance level. This is called the Bonferroni method. For example, if five tests were being performed on the same data and the desired experiment-wise error rate is 5%, one would perform each test at the 1% level. This method can be considered overly conservative because it does not take into account the dependence among the tests. If the number of tests is large, the significance threshold can become quite small and difficult to attain. The Bonferroni method, as well as the following methods, is most often used to assess a set of secondary endpoints, as the primary endpoint is usually singularly defined. Another method would be a hierarchical testing procedure, which orders the endpoints in order of clinical importance and tests each one at the 5% level. The testing stops when the first non-significant endpoint is found. Two other popular methods are the Holm's Step Down procedure and the Hochberg Step Up procedure. Rather than adjusting the significance levels, the Holm's method orders the p-values from smallest to largest, and then only those p-values smaller than the pre-specified overall significance level (e.g., 5%) are considered significant. With the Hochberg procedure, the p-values are ordered from largest to smallest. If the largest p-value is significant at the pre-specified overall [image: inline] level (e.g., 5%), all subsequent (smaller) p-values would also be significant. If it fails, then the next largest p-value is compared to [image: inline]/2. If significant, all subsequent (smaller) p-values would also be significant. If not, the next largest p-value is compared to [image: inline]/3 and so forth. If the last, let's say ‘mth’, p-value fails at the level [image: inline]/m, then all comparisons are declared not statistically significant.

Adjustment of the significance level for multiplicity is not always necessary. If there is more than one primary endpoint (e.g., co-primary endpoints) and both have to be met for study success, then each one can be tested at the desired overall significance level (e.g., 5%). If the purpose of an interim analysis is to stop the study early for futility, but not effectiveness, or to re-evaluate the sample size, then adjustment may not be necessary. Adjustment is also not necessary for tests of nested hypotheses (i.e., following a Gatekeeper strategy), such as first testing for non-inferiority, and, if met, then testing for superiority. Multiplicity adjustment is not typically done when testing safety endpoints because the adjustment would make it more difficult to detect significances, and would thus be considered anti-conservative.

Analysis of multiple endpoints requires careful planning in terms of the number of endpoints, the study success criteria, the experiment-wise error rate, and the testing procedure for determining statistical significance. Some statistical methods, such as longitudinal data analysis techniques or generalized estimating equations (GEE), can be used for data with repeated measurements over time, or with correlated data. However, it is prudent to design a study so as to avoid multiplicity whenever possible.

2.7.2 Subgroup analyses

Subgroup analysis, in the context of the design and analysis of experiments, refers to testing for a statistically significant association or treatment effect in a subset of patients who share a common characteristic. This generally is a baseline characteristic, for example age, gender, disease severity or indication. The researcher might want to know if the treatment effect varies among the different levels of the baseline factor. For example, does the treatment work differently in males versus females, old versus young, NYHA (New York Heart Association) categories, or perhaps rheumatoid arthritis versus osteoarthritis? Labeling for a drug or medical device can be specific to a subgroup, and the claims have to be validated by proper subgroup analyses.

There are several problems associated with subgroup analyses. Multiplicity or multiple testing naturally occurs in subgroup analyses since the analyses usually involve factors with many levels, such as age group or race. This increases the overall probability of a type I error. For example, if four independent subgroups are tested each at the 5% level, there is a 20% chance of falsely finding a significant subgroup. Another problem with subgroup analyses is the phenomenon of regression to the mean. If a subgroup of only patients with extreme values prior to treatment is selected, the mean of their measurements after treatment will be closer to the mean of the whole population due to natural clustering around the mean in the normal distribution. This change should not be interpreted as showing a treatment effect. Statistical power is a third issue with subgroup analysis, as most studies enroll just enough patients to test the primary hypothesis. Therefore, statistical tests on subgroups will only have sufficient power to detect larger effects. By the same token, genuine differences in treatment effect across subgroups may go undetected due to insufficient power.

In order to mitigate the problems inherent in subgroup analyses, it is important to pre-specify the subgroups at the design phase. Otherwise, the subgroup analyses can be considered exploratory and should be validated with a confirmatory study. Sometimes trials are sized for the subgroup analysis. If several subgroups will be tested, the adjustment for multiplicity should also be pre-planned, as should tests for treatment-by-subgroup interactions.

Post-hoc subgroup analyses refer to choosing subgroups after looking at the data. This relates back to the ‘seek and ye shall find’ problem of multiplicity, and they are often done when there is no evidence of an overall effect, in an attempt to salvage a failed study. Some subgroups picked among many will be significant by chance alone. Post-hoc subgroup analysis can be akin to data dredging or data mining. If there is no overall treatment effect, subgroup analyses are risky and should be avoided.

2.7.3 Interim analyses

An interim analysis is the evaluation of the data prior to the end of the study for the purpose of assessing the treatment effect, site-to-site variability, quality of the data collected, or even for the purpose of sample size re-estimation. It can be done during the enrollment or follow-up phases of the study. The purpose can vary, from wanting to stop the trial early for efficacy, stop for futility, or just to re-assess the assumptions that went into the sample size calculation, such as the expected size of the treatment effect or variability. If the initial assumptions were inaccurate, there is a possibility for sample size re-estimation. To ensure the integrity of trial results, the blind should not be broken and results of the interim analysis should not be disseminated to investigators or patients. A well-designed trial will often have a Data Safety Monitoring Board (DSMB) independent of the study investigators. The DSMB will monitor the occurrence of adverse events.

Because interim analyses involve two or more looks at the data during the course of the study, the problem of multiplicity applies. The experiment-wise type I error rate could be inflated with multiple looks for efficacy, because there will be multiple chances of stopping the trial for success. Taken to the extreme, if one theoretically looked at the data after every patient, there is a very high chance that at some point, due to random variation, there will be a statistically significant effect in favor of the new treatment. That is why any interim analyses must be pre-specified and the type I error rate should be controlled. An interim analysis may be planned for when a pre-specified proportion of the study population reaches the final follow-up, such as when 100 of 200 enrolled patients reach the final follow-up evaluation (end of study). Or, it may be planned when the entire study cohort reaches an intermediate time point, such as when all 200 patients complete one year of follow-up in a two-year study. If the object of the interim analysis is to stop the study early and declare success, then the significance level must be adjusted for multiplicity. If an investigator has no intention of stopping a study early, but just wants an interim analysis to see if the sample size assumptions were on track, then it is not necessary to adjust the significance level. However, if the study was planned as an adaptive design with a possible increase in sample size after the interim analysis, then adjustment may be necessary.

In summary, subgroup and interim analyses are both subject to the problems of multiplicity because they entail multiple looks at the data. Pre-specifying the subgroups and the timing of interim analyses at the design phase along with the pre-planned multiplicity adjustment is necessary for most commonly used study designs.

2.8 Survival analyses

In clinical trials assessing therapeutic effectiveness, the ultimate measure of success is patient survival over the study period, or recurrence of morbid events like the relapse of cancer or the rejection of a hip transplant. Often in these trials, the primary endpoints are selected as the event rates of mortality or morbidity, with each patient being recorded as ‘success or failure’ using a dichotomous variable. The comparison of such event rates of the new treatment to a control treatment could involve statistical methods for two proportions; for example, the two-sample exact binomial test. However, such a simple comparison of whether or not the events happen over the study period ignores the time effect in the treatment process, since the length of observation and the follow-up experience for each subject often differ. For example, in a five-year study for cancer, the primary interest is whether subjects in the new treatment group have higher survival rates than subjects in the control group. A subject who died after one month of receiving the treatment had a much shorter survival time than a subject who died at the five-year endpoint. However, the simple five-year survival proportion comparison will treat both of them exactly the same; that is, as a ‘failure’. Furthermore, even though the five-year survival rates of two treatments are the same, the survival experiences for two groups of subjects during the five-year follow-up period can be very different. 
Figure 2.2 illustrates the survival experiences for the treatment group and control group. Although the survival rates at five years are the same, the treatment group showed a steady decline in survival over the follow-up period, while the control group's survival rate only decreased between years two and three. Therefore, a simple comparison of proportions for the event rates at five years cannot show that the two treatments are comparable. Survival analysis is an effective way to assess the entire ‘survival’ experience during the follow-up period and can be applied to any time-to-event variable, such as time to death or time to failure of a transplanted organ.


Figure 2.2 Survival experiences for two groups.

[image: ch02fig002.eps]


Time to event (usually denoted as T) is defined as the length of time from entry into the study to the occurrence of an event. In a trial where subjects are entered over a period of time and have varying lengths of observation windows, the time-to-event variable is a more informative way to record the whole follow-up throughout the study than a simple dichotomous variable at one specific time point. In clinical trials with time-to-event endpoints, the situation where a substantial fraction of subjects remain free of events at the end the study could introduce various degrees of incomplete data and make the analysis even more complicated. This type of incomplete information is referred to as censoring (or right censoring since the true time-to-event exceeds the observed time), and the measured endpoint for those subjects is defined as time to censoring. Another type of incomplete data is called truncation, when the subject's event time exceeds a known time (left truncation) or less than a known time (right truncation). Time to event, time to censoring and time to truncation are treated differently in survival analysis. The primary interest is the survival function, S(t), defined as the probability that the time to event exceeds a specified time, t.

The research on survival analysis emerged in the twentieth century and there have been some enormous achievements over the past century. The developments of the non-parametric Kaplan–Meier estimator for estimating a survival curve, the parametric Cox proportional-hazards model to account for the effects of covariates in the survival analysis, and the log-rank test statistic for comparing two survival experiences have had a most profound impact on clinical trials. A complete and technical review of survival analysis can be found in the recommended Further reading listed at the end of the chapter. This section will briefly introduce some of the most commonly used methods to estimate the survival functions and tests to compare two survival distributions in clinical trials.

2.8.1 Estimating survival functions

With the tremendous growth in the field of survival analysis, many complicated methods for estimating survival functions were developed in order to account for different factors, such as continuous covariates, time-dependent variables, multiple events (i.e., competing risks) and random effects. In this section, we will only discuss the two most frequently used methods in clinical trials: the Kaplan–Meier estimator and Cox proportional-hazards model.

Kaplan–Meier estimator: also known as the product-limit estimator. In this method, the follow-up time period is divided into small intervals using, for example, the ordered event times as the interval endpoints. For each interval, the probability of surviving through that interval, given that the subject has survived the previous interval, is calculated based on the number of subjects ‘at risk’ (i.e., alive) at the beginning of the interval and the number of subjects having the event in the interval. Censored subjects in the interval are considered ‘at risk’, but are excluded from the ‘at risk’ set in the following intervals. The overall survival is the product of the interval survival probabilities. A major advantage of the Kaplan–Meier estimator is that it takes into account certain types of survival data (e.g., left-truncated and right-censored data) in the calculation of the survival-function estimate. A graphical presentation of the Kaplan–Meier estimator is a series of horizontal steps of declining magnitude which, when a large number of subjects are sampled, approaches the true survival function.

Cox proportional-hazards model: if some baseline characteristics such as gender or age differ between groups, investigators may be concerned that the survival functions in each group could be affected by those differences. One way to adjust for these covariate differences is to conduct a stratified survival analysis. For example, for simple stratification with an appropriate number of strata, one could use Kaplan–Meier methods to incorporate the effect of the covariates. However, in cases when there are many covariates, each with several levels, or if the covariates are continuous, a stratified analysis may not be appropriate. There will be too many strata and too few subjects in each stratum. For such cases, Cox proposed a regression model to analyze censored survival data that adjusts for both continuous and discrete covariates in estimating the survival function. Define the hazard rate h(t) as the instantaneous rate of failure (e.g., death or some event) at time t. In the Cox model, the hazard rate h(t) is expressed through regression: [image: inline], where Z is the indicator variable representing treatment groups; X1, … , Xk are covariates that may affect the survival (e.g., gender, age); and β1, …, βk are the corresponding regression coefficients. The survival function can then be expressed as

[image: Unnumbered Display Equation]

The Cox model is also called the Cox proportional-hazards model since the key assumption for this model is that the hazard rate h(t) is proportional to a baseline hazard rate h0(t) by a constant factor (i.e., a factor independent of time t). This means that deaths or events are assumed not to be clustered, so that failures would not be more prevalent in the early years, for example. This assumption needs to be checked and sometimes may not be valid when some of the covariates (e.g., age) change over time. There are more complicated models that account for time-dependent covariates, which will not be discussed here (see the Further reading section).

2.8.2 Comparison of survival functions

We have discussed above how to estimate the survival function for each group. The other central question to ask is whether the two survival functions for a new treatment and a control are statistically different. This question can be assessed by comparing the two estimated survival functions. There are many ways to compare the results depending on different interests. For example, one could conduct a point-by-point comparison if there are some important time points that are clinically meaningful (e.g., five-year survival in cancer trials). Test statistics are developed for point survival comparison, such as a z-test. The problems with point-by-point comparisons lie in the multiplicity introduced by multiple looks and interpretation. Take Figure 2.2 as an example. What conclusion should one draw about the new treatment?

Due to the limitations of point comparisons, global comparison methods to test differences between two survival functions were originally proposed by Gehan and Mantel, and have been widely used in clinical trials since. Both the Wilcoxon and log-rank statistics test the hypothesis of whether one survival function is consistently better or worse than the other throughout the follow-up time period. These tests have the most power when the two survival functions are monotonic (i.e., one is greater than the other at all times). Caution should be taken in the interpretation of these tests if the two survival functions cross. Both test statistics can be viewed as a weighted sum of the differences between the observed and expected number of events at all unique event times. There are other test statistics developed to compare two survival functions and they can be found in some text books in the Further reading section at the end of the chapter.

2.9 Propensity score

Investigators often aim to make inferences about the causal effects of a new treatment exposure from clinical studies. In randomized studies, it is expected that all observed and unobserved covariates are balanced between treatment groups by the randomization, and that the differences between groups are only due to the treatment effects. However, in observational studies, investigators have no control over the treatment assignments. As a result, treatment groups may be imbalanced with respect to some observed covariates (e.g., age, gender) which may be associated with the treatment assignment and, therefore, may not be directly comparable. A direct comparison between imbalanced groups may result in biased estimation of treatment effects. For example, in an observational study comparing the mortality rate between cigarette smokers and cigar/pipe smokers, a naïve direct comparison between the two groups showed that the mean mortality rate for cigarette smokers is lower than for cigar/pipe smokers (13.5 vs. 17.4 per 1000 person-year). Investigators found that age is associated with both smoking behavior and mortality rate. The mean age in the cigar/pipe group is higher than that in the cigarette group (59.7 vs. 53.2) and the data analysis needs to be adjusted for the confounding of covariate ‘age’ with mortality. One frequently used method of controlling for covariates is subclassification; that is, grouping subjects into subclasses based on observed covariates, and then directly comparing the treatment groups within each subclass. However, the number of subclasses increases exponentially as the number of covariates increases. Thus, if there are k variables, even if they are all binary there would be a total of 2k subclasses. When k is large, some subclasses would contain few or no subjects, and some may only contain subjects from one treatment group, making it unfeasible to compare treatment effects within certain subclasses.

In 1983, Rosenbaum and Rubin introduced the propensity score as a function of the covariates which aims to balance the distribution of all observed covariates between groups with a single scalar score. For subject i with a vector of covariates (xi), the conditional probability of assigning the subject to a treatment (Zi = 1) versus a control (Zi = 0) is given by the propensity score [image: inline]. A logistic regression model is usually used to estimate the propensity score. Intuitively, the propensity score is a measure of the likelihood that a subject would have been assigned to the investigational treatment group based solely on the subject covariates. In a controlled study with a randomization ratio of 1 : 1, the likelihood of a subject being treated is 50%. In an observational study, if a treatment-group subject and a control-group subject have the same propensity score, we could imagine that these two subjects are ‘randomly’ assigned to each group and have the same distribution of covariates.

A treatment assignment is ‘strongly ignorable’ if the treatment assignment and the response variable are conditionally independent given the covariates; that is, the relationship between the treatment assignment and the response variable does not depend on the covariates. Rosenbaum and Rubin showed that under a ‘strongly ignorable’ treatment assignment, if the treatment group and control group have the same propensity score, the difference in means between the two groups is an unbiased estimate of the average treatment effect at that particular propensity score. Because of this property, propensity scores can be used to balance covariates between groups and reduce bias in the estimate of the treatment effect in observational studies.

The rest of this section assumes that the treatment assignment is ‘strongly ignorable’. The three most commonly used techniques with propensity scores are matching, subclassification and regression adjustment.


Matching: in studies where there are a limited number of treated subjects and a much larger number of potential control subjects, matching is a commonly used sampling technique to produce a control group to ‘match’ the treated group via similar distributions of covariates. Ideally, matched treated and control pairs would have exactly the same covariates so that their distributions of covariates are identical. When there are many covariates, it is almost impossible to obtain an exact match for each set of covariates. Fortunately, propensity score matching allows the investigator to simultaneously control for all observed covariates through matching subjects on a single scalar balancing score. Rosenbaum and Rubin proved that exact matching on the propensity score guarantees the same probability distribution of covariates for treated and control subjects in matched samples and leads to an unbiased estimate of the average treatment effect. However, even for one scalar score, exact matching is usually not feasible, so an approximate matching, such as ‘nearest available matching on the estimated propensity score’ must be used.

Subclassification (also referred to as stratification): this is another commonly used method to control for differences in covariates between control and treated groups in observational studies. All subjects are grouped into several strata defined by observed covariates. After the strata are formed, treated and control subjects who are in the same stratum are compared directly and an average treatment effect across strata is summarized. Traditional subclassification defines strata using all covariates that are believed relevant, which may result in too many strata when the number of stratifying covariates is large. Again, the propensity score is a very useful tool in such cases. Rosenbaum and Rubin showed that subclassification on the propensity score alone can produce strata where the distribution of all observed covariates in the treated and control groups within strata are balanced and lead to unbiased average treatment effects within strata. Based on Cochran's observation, stratifying on five subclasses can remove at least 90% of the bias. Rosenbaum and Rubin state that Cochran's result applies to propensity score subclassification; that is, creating five subclasses determined by the quintiles of the estimated propensity score can remove at least 90% of the bias in each covariate used to estimate the propensity score.

Regression adjustment: this is a third adjustment for confounding covariates in observational studies. The propensity score is a useful variable and can be incorporated into a regression adjustment in simple or multivariate regression models. In the simple regression model, one only needs to adjust the propensity score for the final estimate of the treatment effect. In the multivariate regression model, one first uses all covariates to estimate the propensity score, but then includes only a subset of these covariates and the propensity score in the regression model. One advantage of using the propensity score as a variable in the regression model is that one can use as many covariates as desired to estimate the propensity score without worrying about model over-fitting, instead of building a large model with too many covariates. This smaller model allows the investigator to perform model fit checks more reliably. Under some conditions when the covariance matrices in the treated and control groups are unequal, Rubin showed that regression adjustment may, in fact, increase the expected squared bias. Therefore, one may consider using propensity scores for matching and subclassification, while using regression adjustment with caution.



The propensity score has gained more use in the research of applied medicine, since more investigators turn to observational studies due to increased costs of randomized clinical trials. Propensity score methods work well when there are large numbers of subjects, especially in the control group, and many important covariates are measured. However, propensity score methods can only adjust for observed confounding covariates and have no control over unobserved confounding covariates. Consequently, results can be seriously degraded when important covariates influencing treatment assignment are not included in estimating the propensity score. Propensity score methods lack the discipline and rigor of randomized trials, and do not provide results as reliable as the ones provided by randomized trials. Therefore, randomized trials are still considered as the highest level of evidence for treatment comparison and should be encouraged whenever possible. Propensity score methods should only be thought of as an additional tool to estimate the treatment effects when randomized trials are not available.

2.10 Bayesian versus frequentist approaches to clinical trials

Bayesian statistics is a rigorous mathematical approach for learning from evidence as it accumulates. The traditional statistical approach to clinical trials, also called frequentist, may use information from previous studies only at the design stage. Then, at the data analysis stage, the information from previous studies is not part of the formal statistical analysis, although it may be used informally. In contrast, the Bayesian approach uses Bayes’ theorem to mathematically combine prior information, possibly from other trials, with current information on the parameter of interest (i.e., effect of a medical treatment). The Bayesian idea is to continuously update prior information with information obtained from the current trial as part of a continual data stream, in which inferences are being updated each time new data become available.

There are several differences between the Bayesian and frequentist approaches:


1. Interpretations of probability

Bayesians interpret probability as the measure of one's uncertainty about an unknown state of nature (i.e., parameter). An example of an unknown state of nature (parameter) is the difference in effectiveness between A and B. Consequently, it is natural that probabilities for the same unknown state of nature vary from person to person. For Bayesians, the probability of a parameter changes as information accrues via Bayes’ theorem.

Frequentists interpret the probability of an event as the long-run number of times the event happens relative to the total number of observations. In the case of a clinical trial comparing treatments A and B, the probability of A being more effective than B would be interpreted based on numerous repetitions of identical clinical trials comparing A to B. The probability that A is more effective than B is construed as the long-run relative frequency of times in which A performed better than B.

2. Exchangeability in clinical trials

Exchangeability is a fundamental concept in Bayesian inference. In the case of clinical trials, one may have exchangeability of patients or exchangeability of trials.

Exchangeability of patients: in a clinical trial, patients within the trial are usually assumed to be exchangeable or, in lay words, very similar. Under exchangeability, patient outcomes are not expected to depend on the order in which the patients were enrolled or the order in which the outcomes are observed. If patients in the trial are exchangeable with patients in the population from which they were sampled (e.g., the intended-use population), then inferences can be made about the population on the basis of data observed on the trial patients. Thus, the concept of a representative sample can be expressed in terms of exchangeability.

Exchangeability of trials: a Bayesian clinical trial can be assumed to be exchangeable with other trials when the other trials are similar enough in design and execution to the current trial. The assumption of trial exchangeability enables the current trial to ‘borrow strength’ from the previous trials, while acknowledging that the trials are not identical in all respects. Exchangeable trials can be thought of as a representative sample of some super-population of clinical trials.

3. Use of prior information

Bayesians use available prior information and update it with new information using Bayes’ theorem. In other words, Bayesians may ‘borrow strength’ from other clinical studies. A control group may use information from a historical control, a new treatment may use information from similar treatments or, in the case of multi-center trials, information may be borrowed across different centers. When there is exchangeability of patients across different trials, prior information may be used completely through a straightforward use of Bayes’ theorem. Whenever patients across trials are not exchangeable, but the trials are exchangeable, prior information is used partially via Bayesian hierarchical models.

Frequentists start everything de novo and do not use prior information at the analysis stage.

4. Inferences

Bayesian inferences are based on the posterior distribution of the parameter of interest. The posterior distribution is obtained from the prior distribution and the data from the clinical trial, via Bayes’ theorem. From the posterior distribution one can obtain the posterior mean, mode, median and a credible interval. A 95% credible interval is an interval that contains the unknown state of nature (i.e., parameter) with 95% probability.

Frequentist inferences are based on p-values, and confidence intervals. A p-value is a product of hypothesis testing. It gives the probability of obtaining the results at least as extreme as those obtained in the clinical trial, assuming that the null hypothesis is true (e.g., treatment is not effective). A small p-value indicates that the probability of obtaining the results that were actually obtained, if the treatment were not effective, is small. When the p-value is small, one may conclude that the hypothesis that the treatment is not effective should be rejected (see Section 2.2). The interpretation of the 95% confidence interval is different from the interpretation of the 95% credible interval. If the clinical trial is repeated numerous times, the resulting confidence intervals will contain the value of the true parameter 95% of the time and will miss it 5% of the time.

5. Sample size determination

Bayesians usually use adaptive designs and the sample size is determined as information accrues (see Section 2.11). Data are collected until the investigator knows enough in order to make a decision (i.e., until the width of the credible interval is small enough). If the variability is small, the sample size will be smaller. If the effect size is large, the sample size will be smaller.

Frequentists guess the variability and the effect size at the design stage, usually based on pilot studies. The sample size is pre-determined based on the guessed variability, effect size, significance level and desired power. It is more difficult, yet possible (see Section 2.11), to modify the sample size in the midcourse of a trial.

6. Modifications of trials in midcourse (adaptive designs – see Section 2.11)

Bayesians follow the likelihood principle (Berger and Wolpert, 1988), and modifications of trials in midcourse are natural. If there is a need to control type I error rate for regulatory purposes, or to assess the operating characteristics (type I error rate and power) of the experimental design, this is done through simulations. Bayesians will use posterior distributions or predictive distributions to make decisions about modifications of trials in midcourse.

Frequentists use statistical techniques to penalize interim looks and use modifications such as O’Brian–Fleming boundaries or [image: inline]-spending functions in order to control type I error rates.

7. Decision analysis

Bayesian posterior and predictive distributions are tailored to perform decision analysis, which does not happen with the frequentist p-values.



2.11 Adaptive designs

In practice, there is a great deal of uncertainty at the design phase of a clinical trial. The effect size is a conjecture, the variability is unknown and the compliance with the therapy is uncertain. In the case of a long-term study, medical practice may change and such changes may affect the relevant parameters that were used for the study design. As a consequence, investigators may opt for an adaptive or flexible design that allows for learning as the study goes along. An adaptive trial design is a multistage study design that uses accumulating data to decide how to modify aspects of the study without undermining its validity or integrity. Such adaptations should be pre-planned; that is, an adaptive design should be adaptive ‘by design’ since ad-hoc changes to the trial conduct or analysis could challenge the validity of the results. This section provides an introduction to adaptive design; whereas Chapter 5 is a comprehensive treatment of the subject by Shelley Zacks, who was one of it pioneers. See also Zacks (2009).

2.11.1 Sequential designs

The most common type of adaptive design, the sequential design, is a method which consists of several interim analyses. At each interim analysis, the following modifications may occur.


Sample size re-estimation: investigators could decide to re-estimate the sample size (increase or decrease) or to increase the length of follow-up of the trial in response to interim estimates of either the variability or the effect size. Designs that allow for such changes are called internal pilot designs. During the design phase, one should identify the parameters with greatest uncertainty and select midcourse changes specifically to address those uncertainties.

Stopping early: a trial may stop early either for futility or for success. The benefits of stopping early are both ethical and economical. In order to stop early, the probability that the new intervention will or will not show benefit must be computed at an interim look. This probability may be computed through a Bayesian predictive probability or through stochastic curtailment. The Bayesian predictive probability is the probability of trial success (or failure) given the interim data. Stochastic curtailment will provide the probability of trial success (or failure) conditional on the interim data and on the null or alternative hypothesis.
1. Stopping early for futility: this happens when the probability that the new intervention will show benefit at the end of the trial is low.

2. Stopping early for success: this happens when the probability that the new intervention will show benefit at the end of the trial is so high that it becomes unethical to continue the trial due to lack of equipoise. Both the patients in the trial and in the public should be able to benefit from the best treatment as soon as possible. Stopping a trial early may allow declaration of success for the primary endpoints, but information on the secondary endpoints may be compromised. This may be problematic particularly when the secondary endpoints are safety endpoints. In that case, stopping the trial early for success may not be possible.





Group sequential methods are frequentist methods that deal with the dilemma of repeated interim analyses of the accumulating data by addressing the issue of inflation of the type I error rate due to the multiple looks. These methods consist of several interim analyses with the possibility of stopping for either success or futility. However, each interim analysis will have a nominal significance level for successful stopping that is less than 5% (or other chosen overall significance level), such that the overall nominal significance level will add up to no more than 5%. Bayesians handle the inflation of type I error rate by performing simulations of the trial at the design stage. Based on the simulations, adjustments are made to the stopping criteria for success at each interim look in such a way that the overall type I error rate does not exceed 5%. In other words, for regulatory purposes, the operating characteristics (i.e., type I error rate and power) of the adaptive design should be assessed when either frequentist or Bayesian approaches are adopted.

Sequential designs may be perceived as less efficient than the standard fixed-sample design because penalties are paid for multiple looks. However, such small losses in efficiency could be more than compensated for by the benefit of adapting the trial to obtain the maximum amount of information without having to re-start a brand new trial. Such trials may provide a hedge against having poor estimates of effect size or variability at the design stage.

The monitoring of a sequential clinical trial is best viewed as part of the design phase. It provides a flexible sample size calculation that avoids unnecessary sampling while guaranteeing the desired power. Sequential methods are currently widely used in practice, especially in large-scale studies for serious and life-threatening diseases, for which finding the best treatment as soon as possible is of foremost importance.

Several other types of adaptations are also possible:


	changing the allocation or randomization rate (e.g., play-the-winner or drop-the-loser): this aims to increase the probability of assigning the best treatment to most participants of the trial;

	adaptation to incorporate both dose-finding and confirmatory phases in the same study;

	dropping an arm during the course of the study;

	changing or redefining endpoints (primary or secondary) during the course of a study;

	modifying the inclusion/exclusion criteria (i.e., changing the study population);

	switching from a superiority study to a non-inferiority study;

	changing multiplicity adjustment methods for primary or secondary endpoints.



All adaptive studies must be carefully designed and conducted in order to mitigate operational bias. The operating procedures should be well documented, and the details that may reveal evolving treatment differences should be kept unknown to investigators and participants. The interim analyses may generate operational biases that could affect trial integrity and the validity of the results. Such interim looks may introduce:


	selection bias: the investigator may decide to assign the current best treatment to his patient independently of the randomization;

	investigator bias: the investigator may record the patient as a success if he knows the patient is receiving the treatment that, at the time, is performing better;

	patient bias: the patient may believe he is doing better just because he is receiving the treatment that is currently performing better (placebo effect).



In order to avoid operational biases, the clinical study should have third-party investigators perform interim analyses and make sure that firewalls are implemented.

2.12 Drugs versus devices

Medical device and drug trials have their differences, despite sharing many common elements that go along with good clinical trial design and analysis practices. Drug trials have four formal phases that follow preclinical research: Phase I – a small group (∼10–50) of (usually) healthy human subjects to determine dose range, tolerability and safety of the drug; Phase II – a medium-sized (>50) study on diseased subjects to determine optimal dosing schedule and evidence of safety and effectiveness; Phase III – pivotal trials (two or more), usually controlled, randomized and blinded, involving a large number (>1000) of diseased subjects to confirm the efficacy observed in Phase II and compare it to standard treatment; and Phase IV – to determine how the drug works in the general population and to observe long-term side effects, safety, efficacy and benefits of the drug outside of the restrictive sample of the clinical trials.

Medical device trials also have multiple phases, although not so formally labeled. For therapeutic devices, following preclinical bench or animal testing, there will sometimes be a feasibility or pilot study on a small number (<30) of diseased subjects to gain information on device safety, size of effect and variability, so that a pivotal study can be better designed and powered. Medical device pilot studies are usually uncontrolled. Following a successful pilot study, a sponsor will usually perform only one pivotal study. Sample sizes are often in the range of 100–500 subjects. As a condition of FDA approval, there may be a post-approval study required for generally the same reasons as drug licensing requires a Phase IV study. A post-approval study may last for 10 years or more, as they have with breast implants, for example.

Medical device trials have unique challenges that are not found with drug trials. For some devices, such as breast implants for augmentation or reconstruction, randomization is not possible. Sometimes blinding is not possible, for example if one treatment arm is surgical and the other is medical therapy. Further, doctors can see devices on x-rays, and patients can sometimes feel stimulation or pain that would alert them to their treatment group assignment. For this reason, third-party evaluators are often used. Sometimes there is no suitable control, as a sham (or placebo) surgery is not likely to be approved by an Investigational Review Board (IRB) due to ethical reasons. In the case of a drug trial, a placebo pill can always be used. Historical controls are used in medical device trials, but this is not without bias. There can be differences in the patient populations with respect to demographics, diagnostic or prognostic factors. There can be a temporal bias in that the standard of care has changed over time. Historical controls often lack patient-level data, which limits the capabilities for statistical analysis. The preference is for a randomized, concurrently controlled and blinded study, but this is not always possible with medical device trials.

When medical device trials involve a surgical procedure, there can be a physician learning curve, from the administration of a wrinkle filler to a complicated neurosurgical technique. It is not uncommon to have one or two training cases at each site. Physician skill can also differ across investigational sites. Investigational site effect must be dealt with in the analysis of the data. Patient compliance to treatment regimen is also an issue, and this can result in a lot of missing data. Some medical device trials require frequent trips to the doctor or hospital for administration of the treatment. Even when a device treatment can be administered at home, it is much easier just to take a pill. When dealing with medical device trials, one must balance what is statistically ideal with what is feasible in real life. Fortunately, statistical techniques often allow for controlling or adjusting factors that cannot be controlled in the clinical setting.
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Our elaboration from Catelan, Biggeri and Lagazio (2009). Details of the models and other alternatives

for the clustering component can be found there.

This example underlines that, in the presence of strong assciation between the covariate spatial
pattern and the clustering random effects, estimates of the ecological regression coefficient can be very
unstable — we can even observe a change in sign of the association. The ICAR model assumes a strong
spatial interaction: the parameter p is set to its maximum value of 1.
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antigens — number of HLA-A antigens; B antigens — number of HLA-B antigens; DR antigens — number
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Genetic Infected Probability Geneic trait assumed
Hospital® trait organ® of death’  Result of simulation® unknown”

No. No.
Mortality? n  dead” Mortality' n dead

0060 100 6 0227 300 68
0310 200 62
No Yes p=0300 0300 200 60 049 700 347
Yes  Yes p=0600 0574 500 287

p=0100 009 700 67 0.31 840 110
Yes No p=0300 0307 140 43
No Yes p=0300 0233 120 28 0381 160 6l
Yes  Yes p=0600 0825 40 33

“It is assumed that the quality of treatment and care is the same at the two hospitals.
PThe presence of the genetic trait influences the probability of death (see parameters of simulation
model in column 4).

“The presence of infection of the organ operated on influences the probability of death (see parameters
of simulation model in column 4).

“The parameter value of the simulation model generating the data. For instance when the genetic trait
is present and the organ is infected the probability of death is 0.600.

“Column 5, 6 and 7 show the result of the simulation for each combination of risk factors in each
hospital.

fColumn 8, 9 and 10 show how the results would have been classified had the information of the genetic
trait been unknown to the medical community. For instance the results of the two first set of experiments
would have been pooled and classified as data from patients without organ infection, and so on.

#The mortality observed in each of the § sets of simulation experiments. When compared to the value
in column 4 one may appreciate the effect of the random variation.

"No. of dead is the number of fatal outcomes occurring during the  simulations. n is the number of
independent simulations done for each type of patient in each hospital. n has been varied between the
hospitals to imitate difference between the case mix of the two hospitals.

iUsing the same data that were generated by the simulation. For given value of ‘infected organ’ and
given hospital, the data have been pooled imitating the situation where the risk factor ‘genetic trait s
unknown to the medical community.
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