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Preface

Survival analysis concerns sequential occurrences of events governed by probabilistic laws. Recent decades have witnessed many applications of survival analysis in various disciplines. The primary objective of this book is to provide an introduction to the many specialized facets on survival analysis. Scope-wise, this book is expected to appeal to a wide variety of disciplinary areas. Given my multidisciplinary background in training and research, this book of survival analysis covers techniques and specifications applied in medicine, biostatistics, demography, mathematical biology, sociology, and epidemiology, with practical examples associated with each of those disciplines. The celebrated Cox model, used in almost all applied areas, is paid special attention to in this book, with three chapters devoted to this innovative perspective. I also describe counting processes and the martingale theory in considerable detail, in view of their flexibility and increasing popularity in survival analysis, particularly in the field of biostatistics. Regression modeling, mathematical simulation, and computing programming, which attach to different phases of survival analysis, are described and applied extensively in this book, so scientists and professors of various disciplines can benefit from using it either as a useful reference book or as a textbook in graduate courses.

In this book, a large number of survival functions, models, and techniques are introduced, described, and discussed with empirical examples. The presentation of those survival perspectives starts with the most basic specifications and ends with some more advanced techniques in the literature of survival analysis. With a considerable volume of empirical illustrations, I attempt to make the transition from the introductory to the advanced levels as coherent and smooth as possible. Almost for every major survival method or model, step-by-step instructions are provided for leading the reader in to learning how to perform the techniques, supplemented by empirical practices, computing programs, and detailed interpretations of analytic results.

Given the focus on application and practice in this book, the audience includes professionals, academics, and graduate students who have some experience in survival analysis. A fair number of illustrations on various topics permits professionals to learn new methods or to improve their professional skills in performing survival analysis. As it covers a wide scope of survival techniques and methods, from the introductory to the advanced, this book can be used as a useful reference book for planners, researchers, and professors who are working in settings involving various lifetime events. Scientists interested in survival analysis should find it a useful guidebook for the incorporation of survival data and methods into their projects.

Graduate students of various disciplines constitute another important component of the audience. Social science students can benefit from the application of survival concepts and methods to the solution of problems in sociology, economics, psychology, geography, and political science. This book provides a useful framework and practical examples of applied social science, especially at a time when more survival-related questions are raised. The accessibility of many observational, longitudinal data in the public domain since the 1980s will facilitate interested students to practice further the methods and techniques learned from this book. Graduates students of biology, medicine, and public health, who are interested in doing research for their future careers, can learn plenty of techniques from this book for performing mathematical simulation, clinical trials, and competing risks analyses on mortality and disease. Survival analysis and some other related courses have long been recognized as essential components for graduate students training in mathematical biology, epidemiology, and some of the biomedical departments. In medical schools, for example, this book can have wide appeal among medical students who want to know how to analyze data of a clinical trial for understanding the effectiveness of a new medical treatment or of a new medicine on disease.

If the reader attempts to understand the entire body of the methods and techniques covered by this book, the prerequisites should include calculus, matrix algebra, and generalized linear modeling. For those not particularly familiar with that required knowledge, they might want to skip detailed mathematical and statistical steps, and place their focus upon empirical illustrations and computer programming skills. By doing so, they can still command how to apply various survival techniques effectively, thereby adding new dimensions to their professional, research, or teaching activities. Therefore, this book can be read selectively by the reader who is not extremely competent with high-level mathematics and statistics.

The reviewers of the proposal and an example chapter for this book were: Kenneth Land, Duke University; David Swanson, University of California, Riverside; and Jichuan Wang, George Washington University. Additionally, a number of other colleagues and friends have enriched, supported and refined the intellectual development of this book, including Lyn Albrecht, Kristie Gore, Albert I. Hermalin, James Edward McCarroll, Robert Ursano, Lois Verbrugge, Anatoli I. Yashin, and Chu Zhang. Sincere thanks are given to Paul T. Savarese of the SAS Institute for letting me use some of his personal SAS programs in Chapters 4 and 8. Part of the work in Chapter 8 was initiated at the Population Studies Center, the Institute for Social Research at the University of Michigan, and the mentorship of Albert I. Hermalin is specially acknowledged.

I owe special thanks to Charles C. Engel, whose consistent support and help has made completion of this book possible. The staff of the Deployment Health Clinical Center, Walter Reed National Military Medical Center, provides tremendous dedication, competence, and excellence in the course of the preparation of this book. Malisa Arnold’s and Phoebe McCutchan’s assistance in editing the text and some of the graphs was vital.

Finally, I would like to thank my wife, Ming Dong, for her support and encouragement throughout the entire period of preparing, writing, and editing this book.

Xian Liu
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Introduction

1.1 What Is Survival Analysis and How Is It Applied?

‘What is survival analysis?’ Before starting discussion on this topic, think about what ‘survives.’ In the cases considered here, we are talking about things that have a life span, those things that are ‘born,’ live, change status while they live, and then die. Therefore, ‘survival’ is the description of a life span or a living process before the occurrence of a status change or, using appropriate jargon, an event.

In terms of ‘survival,’ what we think of first are organisms like various animal species and other life forms. After birth, a living entity grows, goes through an aging process, and then decomposes gradually. All the while, they remain what they are – the same organisms. The gradual changes and developments over a life course reflect the survival process. For human beings in particular, we survive from death, disease, and functional disablement. While biology forms its primary basis, the significance of survival is largely social. At different life stages, we attend school, get married, develop a professional career, and retire when getting old. In the meantime, many of us experience family disruption, become involved in social activities, cultivate personal habits and hobbies, and make adjustments to our daily lives according to physical and mental conditions. These social facets are things that are not organisms but their life span is like that of a living being: things that live, things that have beginnings, transformations, and then deaths. In a larger context, survival can also include such events as an automobile breakdown, the collapse of a political system in a country, or the relocation of a working unit. In cases such as these and in others, existence dictates processes of survival and their status change, indicated by the occurrence of events.

The practice of survival analysis is the use of reason to describe, measure, and analyze features of events for making predictions about not only survival but also ‘time-to-event processes’ – the length of time until the change of status or the occurrence of an event – such as from living to dead, from single to married, or from healthy to sick. Because a life span, genetically, biologically, or mechanically, can be cut short by illness, violence, environment, or other factors, much research in survival analysis involves making comparisons among groups or categories of a population, or examining the variables that influence its survival processes. As they have come to realize the importance of examining the inherent mechanisms, scientists have developed many methods and techniques seeking to capture underlying features of various survival processes. In the academic realm, survival analysis is now widely applied in a long list of applied sciences, owing considerably to the availability of longitudinal data that records histories of various survival processes and the occurrences of various events. At present, the concept of survival no longer simply refers to a biomedical or a demographic event; rather, it expands to indicate a much broader scope of phenomena characterized by time-to-event processes.

In medical research, clinical trials are regularly used to assess the effectiveness of new medicines or treatments of disease. In these settings, researchers apply survival analysis to compare the risk of death or recovery from disease between or among population groups receiving different medications or treatments. The results of such an analysis, in turn, can provide important information with policy implications.

Survival analysis is also applied in biological research. Mathematical biologists have long been interested in evolutionary perspectives of senescence for human populations and other species. By using survival analysis as the underlying means, they delineate the life history for a species’ population and link its survival processes to a collection of physical attributes and behavioral characteristics for examining its responses to its environment.

Survival data are commonly collected and analyzed in social science, with topics ranging widely, from unemployment to drug use recidivism, marital disruption, occupational careers, and other social processes. In demography, in addition to the mortality analysis, researchers are concerned with such survival processes as the initiation of contraceptive use, internal and international migration, and the first live birth intervals.

In the field of public health, survival analysis can be applied to the analysis of health care utilization. Such examination is of special importance for both planners and academics because the health services system reflects the political and economic organization of a society and is concerned with fundamental philosophical issues involving life, death, and the quality of life.

Survival analysis has also seen wide applications in some other disciplines such as engineering, political science, business management, and economics. For example, in engineering, scientists apply survival analysis to perform life tests on the durability of mechanical or electric products. Specifically, they might track a sample of products over their life course for assessing characteristics and materials of the product’s designed life and for predicting product reliability. Results of such studies can be used for the quality improvement of the products.

1.2 The History of Survival Analysis and Its Progress

Originally, survival analysis was used solely for investigations of mortality and morbidity on vital registration statistics. The earliest arithmetical analysis of human survival processes can be traced back to the 17th century, when the English statistician John Graunt published the first life table in 1662 (Graunt, 1939, original edition, 1662). For a long period of time, survival analysis was considered an analytic instrument, particularly in biomedical and demographical studies. At a later stage, it gradually expanded to the domain of engineering to describe/evaluate the course of industrial products. In the past forty years, the scope of survival analysis has grown tremendously as a consequence of rapid developments in computer science, particularly the advancement of powerful statistical software packages. The convenience of using computer software for creating and utilizing complex statistical models has led scientists of many disciplines to begin using survival models.

As applications of survival analysis have grown rapidly, methodological innovation has accelerated at an unprecedented pace over the past several decades. The advent of the Cox model and the partial likelihood perspective in 1972 triggered the advancement of a large number of statistical methods and techniques characterized by regression modeling in the analysis of survival data. The major contribution of the Cox model, given its capability of generating simplified estimating procedures in analyzing survival data, is the provision of a flexible statistical approach to model the complicated survival processes as associated with measurable covariates. More recently, the emergence of the counting processes theory, a unique counting system for the description of survival dynamics, highlights the dawning of a new era in survival analysis due to its tremendous inferential power and high flexibility for modeling repeated events for the same observation and some other complicated survival processes. In particular, this modern perspective combines elements in the large sample theory, the martingale theory, and the stochastic integration theory, providing a new set of statistical procedures and rules in modeling survival data. To date, the counting process system and the martingale theory have been applied by statisticians to develop new theorems and more refined statistical models, thus bringing a new direction in survival analysis.

1.3 General Features of Survival Data Structure

In essence, a survival process describes a life span from a specified starting time to the occurrence of a particular event. Therefore, the primary feature of survival data is the description of a change in status as the underlying outcome measure. More formally, a status change is the occurrence of an event designating the end of a life span or the termination of a survival process. For instance, a status change occurs when a person dies, gets married, or when an automobile breaks down. This feature of a status ‘jump’ makes survival analysis somewhat similar to some more conventional statistical perspectives on qualitative outcome data, such as the logistic or the probit model. Broadly speaking, those traditional models can also be used to examine a status change or the occurrence of a particular event by comparing the status at the beginning and the status at the end of an observation interval. Those statistical approaches, however, ignore the timing of the occurrence of this lifetime event, and thereby do not possess the capability of describing a time-to-event process. A lack of this capability can be detrimental to the quality of analytic results, thereby generating misleading conclusions. The logistic regression, for example, can be applied to estimate the probability of experiencing a particular lifetime event within a limited time period; nevertheless, it does not consider the time when the event occurs and therefore disregards the length of the survival process. Suppose that two population groups have the same rate of experiencing a particular event by the end of an observation period but members in one group are expected to experience the event significantly later than do those in the other. The former population group has an advantaged survival pattern because its average life is extended. Obviously, the logistic regression ignores this timing factor, therefore not providing precise information.

Most survival models account for the timing factor on a status jump. Given this capacity, the second feature of survival data is the description of a time-to-event process. In the literature of survival analysis, time at the occurrence of a particular event is regarded as a random variable, referred to as event time, failure time, or survival time. Compared to statistical techniques focused on structures, the vast majority of survival models are designed to describe a time course from the beginning of a specific time interval to the occurrence of a particular event. Given this feature, data used for survival analysis are also referred to as time-to-event data, which consist of information both about a discrete ‘jump’ in status as well as about the time passed until the occurrence of such a jump.

The third primary feature of survival data structure is censoring. Survival data are generally collected for a time interval in which the occurrences of a particular event are observed. As a result, researchers can only observe those events that occur within a surveillance window between two time limits. Consequently, complete survival times for many units under examination are not observed, with information loss taking place either before the onset or beyond the end of the study interval. Some units may be lost to observation in the middle of an investigation due to various reasons. In survival analysis, such missing status on event times is called censoring, which can be divided into a variety of types. For most censoring types, a section of survival times for censored observations are observable and can be utilized in calculating the risk of experiencing a particular event. In survival analysis, this portion of observed times is referred to as censored survival times. As censoring frequently occurs, the majority of survival analysis literally deals with incomplete survival data, and accordingly scientists have found ways to use such limited information for correctly analyzing the incomplete survival data based on some restrictive assumptions on the distribution of censored survival times. Given the importance of handling censoring in survival analysis, a variety of censoring types are delineated in Section 1.4.

As survival processes essentially vary massively based on basic characteristics of the observations and environmental conditions, a considerable body of survival analysis is conducted by means of censored data regression modeling involving one or more predictor variables. Given the addition of covariates, survival data structure can be viewed as consisting of information about three primary factors, otherwise referred to as a ‘triple:’ survival times, censoring status, and covariates. Given a random sample of n units, the data structure for survival analysis actually contains n such triples. Most survival models, as will be described extensively in later chapters, are built upon such a data structure.

Given different emphases on the variety of features, survival analysis is also known as duration analysis, time-to-event analysis, event histories analysis, or reliability data analysis. In this book, these concepts are used interchangeably.

1.4 Censoring

Methodologically, censoring is defined as the loss of observation on the lifetime variable of interest in the process of an investigation. In survival data, censoring frequently occurs for many reasons. In a clinical trial on the effectiveness of a new medical treatment for disease, for example, patients may be lost to follow-up due to migration or health problems. In a longitudinal observational survey, some baseline respondents may lose interest in participating in subsequent investigations because some of the questions in a previous questionnaire are considered too sensitive.

Censoring is generally divided into several specific types. If an individual has entered a study but is lost to follow-up, the actual event time is placed somewhere to the right of the censored time along the time axis. This type of censoring is called right censoring. As right censoring occurs far more frequently than do other types and its information can be included in the estimation of a survival model, the focus of this section is on the description of right censoring. For analytic convenience, descriptions of right censoring are often based on the assumption that an individual’s censored time is independent of the actual survival time, thereby making right censoring noninformative. While this assumption does not always hold, the issue of informative censoring and the related estimating approaches are described in Chapter 9. Other types of censoring, including left censoring and interval censoring, are also described in this section. Additionally, I briefly discuss the impact of left truncation on survival analysis, a type of missing data that is different from censoring.

1.4.1 Mechanisms of Right Censoring

Right censoring is divided into several categories: Type I censoring, random censoring, and Type II censoring. In Type I censoring, each observation has a fixed censoring time. Type I censoring is usually related to a predetermined observation period defined according to the research design. Generally, a specific length of time is designed with a starting calendar date and an ending date. In most cases, only a portion of observations would experience a particular event of interest during this specified study interval and some others would survive to the endpoint. For those who survive the entire observation period, the only information known to the researcher is that the actual survival time is located to the right of the endpoint of the study period along the time axis, mathematically denoted by T > C, where T is the event time and C is a fixed censored time. Therefore, lifetimes of those survivors are viewed as right censored, with the length of the censored time equaling the length of the observation period.

Right censoring also occurs randomly at any time during a study period, referred to as random censoring. This type of censoring differs essentially from Type I censoring because the censored time is not fixed, but, rather, behaves as a random variable. Some respondents may enter the study after a specified starting date and then are right censored at the end of the study interval. Such observations are also listed in the category of random censoring because their delayed entry is random. Statistically, time for random censoring can be described by a random variable Ci (the subscript i indicates variation in C among randomly censored observations), generally assumed to be independent of survival time Ti. Mathematically, for a sample of n observations, case i (i = 1, 2, … , n) is considered randomly censored if Ci < Ti and Ci < C, where C is the fixed Type I censored time. The censored survival time for random censoring is measured as the time distance from the time of entry into the study to the time when random censoring occurs.

Figure 1.1 graphically displays the occurrences of Type I and random censoring. In this figure, I present data for six individuals who participate in a study of mortality at older ages, noted by, respectively, persons 1, 2, 3, 4, 5, and 6. The study specifies an observation period from ‘start of study’ to ‘end of study.’ The sign ‘×’ denotes the occurrence of a death, whereas the sign ‘+’ represents right censoring.

Figure 1.1 Illustration of Type I and random censoring.
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In Figure 1.1, person 1 enters the study at the beginning of the study and dies within the interval. Therefore, this case is an event, with time-to-event T1 counted as the time elapsed from the start of the study to the time of death. Person 2 also enters the study at the beginning of the study, but at the end of the study, this person is still alive. Therefore, person 2 is a typical case of Type I right censoring, with the censored survival time equaling the full length of the study interval. Persons 3 and 4 both enter the study after the start of the study, with person 3 deceased during the interval and person 4 alive throughout the rest of the interval. Consequently, person 3 has an event whose survival time is the distance from the time of the delayed entry to the time of death, whereas person 4 is a case of random censoring with the censored survival time measured as the length of time between the delayed entry and the end of the study. Entering the study later than expected, person 4 can also be considered a left truncated observation, which will be described in Subsection 1.4.2. Finally, persons 5 and 6 are lost to follow-ups before the termination of the study, with person 5 entering the investigation at the start and person 6 entering during the period of investigation. Both persons are randomly censored. Their censored times, denoted by C5 and C6, respectively, measured as the time elapsed between the starting date of the study and the censored time for person 5, or between the time of the delayed entry and the censored time for person 6. Unlike person 2, censored times for persons 4, 5, and 6 differ from each other and are smaller than C.

Type II right censoring refers to the situation in which a fixed number of events is targeted for a particular study. When the designed number of events is observed, a study would terminate automatically and all individuals whose survival times are beyond the time of termination are right censored. For those individuals, the censored survival time is measured as the distance from the start of observation to the time at which the study terminates. Type II right censoring is not related to a fixed ending time; rather, it is associated with a time determined by a date when a targeted number of events are observed. Given this restriction, surveys or clinical trials associated with Type II right censoring are much rarer than those with other types of right censoring.

1.4.2 Left Censoring, Interval Censoring, and Left Truncation

Left censoring refers to a data point, known to be prior to a certain date but unknown about its exact location. This type of censoring frequently occurs in a study design involving two separate study stages. Individuals who enroll in the first selection process but are not eligible for the second process are viewed as left censored. For example, in a study of the initiation of first contraceptive use after marriage, if a couple marries but has already used contraceptive means prior to marriage, this couple is left censored for further analysis. Another example is a study of first marijuana use among high school students. If a respondent has used marijuana before the study, but does not remember the exact timing of the first use, this observation is left censored. In clinical trials, researchers often specify a recruitment period and a study period. If a patient is recruited into the study but has experienced an event of interest before the study period starts, the case is left censored.

Another type of censoring is interval censoring. In some investigations, actual event times are unknown, and the data point is only known to be located between two known time points. Demographers often use aggregate mortality data for a specific calendar year for constructing a life table and, clearly, such mortality data are interval censored. Interval censoring also occurs frequently in clinical trials and large-scale longitudinal surveys in observational studies. For example, a clinical trial on the effectiveness of a new medicine on posttraumatic stress disorder (PTSD) recruits a sample of patients diagnosed with PTSD, proposing a series of periodic follow-up investigations to examine the rate of resolution of this psychiatric disorder. Some patients with PTSD at a starting time point are observed to have recovered at the next follow-up time point. Here, the exact timing of PTSD resolution is unknown and the only information known to the researcher is the time interval in which the event occurred. As a result, the PTSD time span for those patients who have recovered is interval censored. For analytic convenience, interval-censored survival times are often assumed to be located at a fixed time point, either in the middle of a specific interval (Siegel and Swanson, 2004) or immediately prior to an exact follow-up time (Lawless, 2003; Scharfstein, Rotnitzky, and Robins, 1999). In Chapters 4 and 5, this type of censoring is further discussed and illustrated.

1.4.2.1 Left Truncation

Time-to-event data are also subject to left truncation, a unique type of missing data. A survey respondent who enters the observation process after a given starting date is referred to as a staggered entry or a delayed entry. Such observations are left truncated, with the truncated time measured as the time distance from the time of entry to the occurrence of an event or of right censoring. Compared to various types of censoring, left truncation is a phenomenon often associated with sample selection that leaves individuals out of observation for some time. In a study of marital disruption, for example, some individuals become married after the investigation starts, so their entry into the study is delayed and their survival times are left truncated at the time of marriage. Left truncation can potentially cause serious selection bias in survival analysis because it underestimates the risk of experiencing a particular event; however, there are standard statistical techniques to handle such bias. In Chapter 5, the impact of left truncation on survival analysis and how to use certain statistical methods for handling it is illustrated.

1.5 Time Scale and the Origin of Time

Survival processes describe the length of time measured from some specified starting time point to the occurrence of a life event. According to this specification, the measurement of an event time should start from a well-defined origin of time and ends at the time when a particular event of interest occurs. Therefore, a metric unit at which time is measured must be specified first.

In proposing a study plan, the specification of the time scale must depend on the nature of the study and the targeted length of an observation period. In observational studies, the occurrence of a behavioral event is usually a gradual process. Examples of such gradual life events are recovery from disability among older persons, changes in marital status, and discontinuation of drinking alcohol among heavy drinkers. In following up those processes, the month may be an appropriate choice as the time scale. Clinical research, on the other hand, can be linked with lifetime events, both with rapid changes in status and also with a relatively slow pace. In cancer research, for example, the survival rate within a fixed time period varies significantly for different types of cancer. A study of surgical treatment on lung cancer may examine the improvement of the survival rate for six months. In such research, a day or week is the appropriate time scale. In studies of more gradual processes such as prostate cancer, the survival rate should be observed for a substantially longer period because these patients typically live much longer than those with lung cancer. Thus, a month is a better option for the second study. In health services research, survival data with different service types can be mixed with a variety of time scales. For example, a patient admitted to a short-stay hospital stays there for only a few days, whereas the average length of stay in a nursing home generally exceeds an entire year (Liu et al., 1997). Accordingly, the time scale needs to be specified based on the nature of a particular service type.

Once the metric unit is specified, the starting point (or the origin of time) of the event time must be accurately defined. Without a clear and unambiguous definition of the starting time, the event time can be severely misspecified, thereby resulting in erroneous analytic results. In different situations, the starting time can be defined in various ways. As time proceeds with ordinary calendar time, a standard scale needs to be chosen to align individuals at time 0. In general, the ideal scenario is to follow up lifetimes of one or more birth cohorts of individuals from their births to the date when the last survivor dies. This scenario, however, is utterly unrealistic because the researcher launching such a study would definitely pass away or retire long before the study is ended. In demographic and epidemiologic studies, age is often specified as the time scale, but the use of the period-specific data assumes a hypothetic birth cohort. Here, the true origin of time is actually the starting date of a specific calendar period, rather than birth.

1.5.1 Observational Studies

In observational studies, survival data are usually collected from large-scale longitudinal surveys. In most cases, researchers would set a calendar date as the beginning time of the study and then draw a random sample of individuals according to a specific study plan. Those individuals’ survival status would be followed up for a considerably long period of time (ten years, say). Here, the calendar date for the first interview is used as the origin of time, and all respondents should be aligned on this specific date, with the event time operationally defined as the distance between the date of the first interview and the date of an event. In practice, setting the starting calendar date as the origin of time has some advantages: it is convenient to align respondents for survival analysis and it is a straightforward method to calculate an individual’s event time. This procedure, however, can encounter several selection problems. The survival process is incomplete for a targeted population and the observation is relevant only to a truncated chronological period, in which gradual processes of survival from a particular event cannot be entirely captured (Liu, 2000). Some of those limitations can be substantially mitigated by correctly specifying a causal framework. In a typical longitudinal study, the date of birth itself can be regarded as an explanatory factor, so that the cohort effect on survival processes can be incorporated into a survival model (Clayton, 1978). As age progresses with time, the age at baseline can serve as an important control variable for selection bias from left truncation.

1.5.2 Biomedical Studies

In biomedical studies, survival analysis is generally performed to examine the effectiveness of a new medicine or a new treatment on reducing the rate of mortality or of disease. Given this focus, the origin of time in biomedical research is often specified as the starting date of a new treatment/medication or of exposure to disease. Consider, for example, the study of survival from prostate cancer after the surgical treatment. As the event time is defined as the time elapsed from treatment to death, the origin of time in this context should be the date of surgery performed on the patient. As a result, all patients of this study can be aligned by the time origin regardless of when the surgery is performed. Similarly, in a study of asbestos exposure and lung cancer, the date of first exposure to asbestos on a regular basis is an appropriate choice as the origin of time and all study subjects, no matter when they enter the study, should be aligned by the date of first regular exposure to asbestos. Sometimes, clinical trials use the date of randomization as the origin of time, referred to as the study time. Given a period of recruitment, patients would enter the study on different calendar dates, so that such a calendar time, referred to as the patient time, can differ considerably from the study time (Collett, 2003).

1.5.3 Health Care Utilization

In studies of health care utilization, some mutually exclusive service types – such as nursing home, short-stay hospital, and long-term hospital – are regularly specified for analyzing transitions from one service type to another (Liang et al., 1993, 1996; Liu et al., 1997). Thus, the admission date should be used as the origin of time and the time elapsed from admission to discharge is the event time. With admission episodes used as the primary unit of analysis, repeated visits within a specific observation period are common and the size of censored cases is relatively small.

There are situations in which the true origin of time is difficult to define. Consider a study of liver cirrhosis and mortality by Liestol and Andersen (2002). As is typical in biomedical research, the origin of time in this study should be the date of diagnosis. This medical condition, however, develops gradually with symptoms vague in the early stage and varying significantly among individuals, thus making the time of diagnosis a questionable time origin. Some patients with liver cirrhosis might be diagnosed with the disease later than others and some are never even diagnosed until the time of death. Consequently, patients with liver cirrhosis cannot be aligned appropriately according to the natural progression of disease, implying the origin of time to be a latent random variable representing the degree of delayed entry. Liestol and Andersen (2002) suggest the use of age or calendar time as a surrogate time 0, because age and calendar time are both well defined and serve as strong determinants of disease severity. Given strong variations in physical characteristics, genetic predisposition, and health behaviors among individuals born in the same calendar year, the use of age or calendar time still makes time a strong random effect; accordingly, more complex procedures need to be designed to account for the impact of this latent factor.

1.6 Basic Lifetime Functions

Survival analysis begins with a set of propositions on various aspects of a lifetime event: basic concepts, mathematical functions, and specifications generally applied in survival analysis. The focus is placed upon three most basic functions – the survival function, the probability density function, and the hazard function.

1.6.1 Continuous Lifetime Functions

I start by describing time as a continuous process. Let f(t) be the probability density function (p.d.f.) of event time T. Then, according to probability theory, the cumulative distribution function (c.d.f.) over the time interval (0, t), denoted by F(t), represents the probability the random variable T takes from time 0 to time t (t = 0, 1, … , ∞), given by 

(1.1) [image: c01e001]

Defined as the probability that no event occurs from time 0 to time t, the survival function at time t, denoted by S(t), is simply the complement of the c.d.f.: 

(1.2) [image: c01e002]

By definition, given t → ∞, S(0) = 1 and S(∞) = 0. For analytic convenience, statisticians and demographers sometimes arbitrarily define a finite ending time, denoted by ω, assuming that no one survives beyond this time point. In this specification, we have S(0) = 1 and S(ω) = 0. Empirically, the value of ω can be determined by the maximum life span ever observed, or just by a given very old age beyond which only very few have ever been found to survive, so that the very small value in S(ω) can be ignored (Liu and Witten, 1995).

The p.d.f. of T can be expressed in terms of S(t), given by 
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Equation (1.3) indicates that the slope (the derivative) of the survival function determines the p.d.f. of T. As S(t) is a nonincreasing function, this slope must take the negative sign to derive the nonnegative p.d.f. Strictly speaking, the p.d.f. is not a probability, but a probability rate, which can take values greater than one.

The hazard function at time t is defined as the instantaneous rate of failure at time t, generally denoted by h(t) and mathematically defined by 
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or 
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Equation (1.4) demonstrates that the hazard rate is conceptually a standardized instantaneous rate of failure relative to the survival rate at time t. From another perspective, Equation (1.5) expresses the hazard rate as the ratio of the conditional probability at t (the probability of experiencing a particular event at time t given the condition T ≥ t) over an infinitesimal time change. Because Δt tends to 0, the hazard rate can be literally understood as the conditional probability of failure with respect to the limit of a time interval. With this instantaneous property, the hazard rate is also referred to as the force of mortality, the intensity rate, or the instantaneous risk (Andersen et al., 1993; Kalbfleisch and Prentice, 2002; Liu, 2000; Liu and Witten, 1995). Given standardization and its unique sensitivity to the change in the survival function, the hazard function is considered a preferable indicator for displaying the relative risk of experiencing a particular event in survival analysis.

Given Equation (1.3), the hazard function at time t can also be written by 
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By Equation (1.6), the hazard rate is mathematically defined as the derivative of the log survival probability at time t multiplied by −1. As a survival function is monotonically decreasing, the hazard function is nonnegative but not necessarily smaller than or equal to one. Therefore, as the standardized p.d.f., the hazard rate is a conditional probability rate. It is essential for the reader to comprehend the concept and the underlying properties of the hazard function because most survival models described in later chapters are created on the hazard rate.

The above equations highlight the intimate relationships among f(t), S(t), and h(t). Mathematically, they reflect different profiles of a single lifetime process, with each providing a unique aspect of survival data. Therefore, each of these basic functions can be readily expressed in terms of another. For example, the survival probability S(t) can be expressed as the inverse function of Equation (1.6): 
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where H(t) is the integration of all hazard rates from time 0 to t, defined as the continuous cumulative hazard function at time t.

Similarly, from Equation (1.7), the cumulative hazard function H(t) can be expressed in terms of S(t), given by 
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Furthermore, from Equations (1.4) and (1.7), the probability density function f(t) can be written in terms of the hazard function: 
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From the above basic functions, the expected life remaining at time t, also referred to as life expectancy at t, can be computed. As it represents the unit-based probability surviving at time t, S(t) can be considered the intensity of expected life at t. Let limt→∞ tS(t) = 0; the expected life remaining at time 0, denoted E(T0), can be written by 
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Likewise, the expected life remaining at time t, E(Tt), is 
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where S(t) represents exposure for the expected life remaining at time t.

The expected life between time t and time t + Δt, denoted by E(ΔtTt), is a component in E(Tt), given by 
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In later chapters, a large number of nonparametric, parametric, and semi-parametric lifetime functions will be delineated, analyzed, and discussed. All those more complex models build upon the above basic specifications. In other words, more complicated forms of various survival models are just extensions of the basic functions. No matter how difficult an equation looks, from one function other lifetime indicators can be mathematically defined and estimated.

1.6.2 Discrete Lifetime Functions

If the distribution of event time T is discrete, the length of time axis t can be divided into J time intervals with unit Δt and a discrete time interval (t, t + Δt). Given this, t becomes a discrete random variable denoted by tj (tj = t0, t1, …, tJ). Accordingly, the discrete probability density function is defined by 

(1.13) [image: c01e013]

Given Equations (1.1) and (1.2), the discrete survival function is 
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Likewise, the discrete hazard function can be derived from an extension of Equation (1.4): 
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where S(tj) is the expectation of the survival probability with respect to the discrete time interval tj. Conceptually, S(tj) differs from S(t) because it represents the average survival probability with respect to a discrete time interval, rather than at an instantaneous time point. The deviation of S(tj) from S(t) depends on the interval unit Δt. If Δt → 0, S(tj) = S(t); if Δt does not represent an infinitesimal time unit but is small, S(tj) ≈ S(t), and the difference between the continuous and discrete survival functions is ignorable. If Δt represents a considerable width, such as a week, a month, or even a year, the continuous S(t) is a decreasing function within the interval, so S(tj) < S(t). Roughly, the discrete time hazard function can be considered the approximate conditional probability of failure in (t, t + Δt). There are some conceptual problems in the specification of this approximation because the hazard rate can be greater than 1 in some extreme situations. This issue, however, is not discussed further in this text.

In the counting process theory (Andersen et al., 1993; Fleming and Harrington, 1991), which will be described in Chapter 6, the continuous course of survival is restricted within a limited time interval (0, τ) where τ < ∞ for a population of N where N < ∞ (Aalen, 1975; Andersen and Gill, 1982; Andersen et al., 1993; Fleming and Harrington, 1991). Given such restrictions, it is reasonable to view the hazard rate as the conditional probability if N is large. Consequently, the hazard function and the conditional probability are used interchangeably in verifying the validity of counting processes and the martingale theory.

In demographic and epidemiologic studies, researchers often calculate the death rate within a time interval of a considerable width (one year or five years) for measuring the force of mortality for a population of interest (Keyfitz, 1985; Schoen, 1988; Siegel and Swanson, 2004). If time t is expressed as a starting exact age and Δt as the unit of an age interval, the discrete death rate in the interval (t, t + Δt), defined as ΔtMt, is written by 
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where Nt is the population at t, Nt+Δt is the population at (t + Δt), and π is some weight assigned to derive an unbiased estimate of exposure for the risk of death. Here, S(tj) is calculated as a weighted average of S(t) and S(t + Δt) because, within a wide time interval, not all individuals surviving to t are at the risk for the entire interval (Teachman, 1983b). As a result, the continuous survival probability is a decreasing function within the interval, thereby leading to the condition S(tj) < S(t). This interval-specific measure for the force of mortality can be conveniently viewed as the discrete realization of the following ratio of two integrals: 
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where the numerator is the cumulative probability densities within the interval between t and (t + Δt) and the denominator is the exposure to the risk of dying. Then, when Δt tends to 0, ΔtMt = f(t)/S(t) = h(t).

From Equations (1.3) and (1.12), the interval-specific force of mortality can be written by 
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where ΔtFt is the cumulative densities in (t, t + Δt) and ΔtTt is the expected life lived within this specific interval. Here, the hazard rate serves as a step function inherent in the interval with S(u) decreasing due to the elimination of deaths, so that ΔtMt can be regarded as an average hazard rate with respect to a specific time interval (Siegel and Swanson, 2004). If h(u), where u ∈ (t, t + Δt), is constant throughout the entire interval, ΔtMt can be regarded as an estimate of h(u).

1.6.3 Basic Likelihood Functions for Right, Left, and Interval Censoring

A likelihood function with survival data describes the probability of a set of parameter values given observed lifetime outcomes. Mathematically, it is either equal to or approximately proportional to the probability of survival data. In this subsection are several simple likelihood functions for right, left, or interval censoring. These likelihoods are basic functions that will serve as a basis for more complicated likelihood functions described in later chapters.

When right censoring occurs, the only information known to the researcher is survival time at the occurrence of censoring. Statisticians utilize this partial information of right censoring when developing a survival model. Specifically, the information of right censored survival times can be well integrated in a likelihood function of survival data.

For a specific observation i, the lifetime process can be described by three random variables: (1) a random variable of event time Ti, (2) a random variable of time ti, given by 
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and (3) a random variable indicating status of surviving or right censoring for ti, specified by 
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where [image: c01ue001] designates whether ti is a lifetime ([image: c01ue002]) or a right censored time ([image: c01ue003]). Given these three random variables, the likelihood function for a Type I right censored sample, in which C is fixed as the time distance between the date of entry and the end of study, can be written as the probability distribution of (ti, [image: c01ue004]). The joint probability density function is given by 
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where f(·) is the probability density function. It follows that, when [image: c01ue005], Equation (1.21) reduces to Pr(Ti > Ci), which is the survival probability at time t, because the first term is 1. Likewise, when [image: c01ue006], Equation (1.21) yields the probability density function f(ti) because the second term is 1. Assuming the lifetimes T1, … , Tn for a sample of n are statistically independent and continuous at ti, the likelihood function for the sample is given by 
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where S(·) is the survival function and θ is the parameter vector to be estimated in the presence of right censoring.

For a sample of random right censoring, C is no longer fixed but behaves as a continuous random variable. As a result, there are actually two survival functions, from failure and from censoring, and two corresponding densities in the probability distribution. In this case, Equation (1.22) still applies because the survival and density functions for random right censoring are not associated with parameters in f(t), so that they can basically be neglected (see Lawless, 2003, pp. 54–55).

In terms of left censored observations, the likelihood function is associated with different censoring mechanisms. As left censoring occurs before the time of observation, the random variable indicating status of surviving or left censoring at ti is defined as 
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where [image: c01ue007] denotes whether ti is a lifetime ([image: c01ue008]) or a left censored time ([image: c01ue009]). Given this, the likelihood function for left censored observations can be written as another joint probability distribution linked with (ti, [image: c01ue010]): 
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where F(ti) is the cumulative distribution function (c.d.f.). It follows that, when [image: c01ue011] (Ti > ti), Equation (1.24) represents the survival probability Si at time ti because the first term is 1; when [image: c01ue012], Equation (1.24) becomes the c.d.f. F(ti) because the second term is 1. Consequently, given a series of lifetimes T1, … , Tn, the likelihood function for a left censored sample is given by 
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As interval censoring is associated with a time range within which a particular event occurs, we have ti−1 < T ≤ ti, and the contribution to the likelihood is simply F(ti) − F(ti−1) or S(ti−1) − S(ti). Accordingly, the overall likelihood function for interval censoring is 
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where [image: c01ue013] is the status indicator for interval censoring (1 = interval censored; 0 = else).

If the survival data are mixed with right, left, and interval censored observations, the total likelihood function is written by 

(1.27) [image: c01e027]

Mathematically, maximizing the above likelihood function yields the maximum likelihood estimate of F(t). In Chapters 4 and 5, more complex likelihood functions will be described for specifying more parameters in θ.

1.7 Organization of the Book and Data Used for Illustrations

The remainder of the book is organized as follows. Chapter 2 is devoted to some descriptive approaches that are largely applied in survival analysis, including the Kaplan–Meier (product-limit) and the Nelson–Aalen estimators, calculation of the variance, the confidence interval, and the confidence bands for the survival function, the life table methods, and several testing techniques for comparing two or more group-specific survival functions. The applicability of these descriptive methods is discussed. Chapter 3 describes some popular parametric distributions of survival times with mathematical details. Chapter 4 focuses on the description of parametric regression models, with covariates involved in the analysis of survival data. General parametric regression modeling and the corresponding statistical inference are presented as a unique statistical approach combining a known parametric distribution of survival times with multivariate regression procedures. Several widely used parametric models are delineated extensively with empirical illustrations. Given its widespread applicability and flexibility, the Weibull regression model is particularly heeded to and discussed.

Chapters 5 through 7 are devoted mainly to the Cox model and its advancements. In particular, Chapter 5 describes basic specifications of the Cox model and partial likelihood. Some advances in estimating the Cox model are also presented and discussed in this chapter, such as the statistical techniques handling tied observations, the creation of a survival function without specifying an underlying hazard function, the hazard model with time-dependent covariates, the stratified proportional hazard model, modeling of left truncated survival data, and the specification of several popular coding schemes for qualitative factors and the statistical inference of local tests in the Cox model. Chapter 6 first introduces basic specifications of counting processes and the martingale theory, with particular relevance to the Cox model. Then I present, in order, five types of residuals used in the Cox model, techniques for the assessment of the proportional hazards assumption, methods of evaluating the functional form for a covariate, and approaches on identification of influential observations in the Cox model. Each of these sections is supplemented by an empirical illustration. Chapter 7 displays statistical techniques for analyzing survival data with competing risks and with repeated events. In addition to a step-by-step presentation on empirical data, the merits and limitations in various statistical techniques in those areas are discussed in this chapter.

Chapter 8 briefly discusses advantages and existing problems in the application of the structural hazard rate models. A simplified structural hazard model is specified with restrictive assumptions, with a detailed example provided for illustrating step-by-step procedures. Chapter 9 concerns several special topics in survival analysis, including informative censoring, bivariate and multivariate survival models, the frailty theory, mortality crossovers and maximum life span, survival convergence and the preceding mortality crossover, and the calculation of sample size required for survival analysis. The strengths and limitations of each of those advanced techniques are discussed. Due to consideration of coherence and conciseness of the text, some supplementary procedures, datasets, and computer programs are presented as appendices.

In this book, data from a large-scale longitudinal study is the major source for illustrating empirical examples. These data come from the Survey of Asset and Health Dynamics among the Oldest Old (AHEAD), a nationally representative investigation of older Americans. This survey, conducted by the Institute for Social Research (ISR), University of Michigan, is funded by the National Institute on Aging as a supplement to the Health and Retirement Study (HRS). The HRS Wave I survey was conducted in 1992, with a sample size of 12 652 persons including selected respondents aged between 40 and 70 years and their spouses, if married, regardless of age. Those respondents have been followed up by telephone every other year, with proxy interviews for those who have deceased prior to follow-up.

As a supplemental survey to the HRS, Wave I of the AHEAD survey was conducted between October 1993 and April 1994. Specifically, a sample of individuals aged 70 or older (born in 1923 or earlier) was identified throughout the HRS screening of an area probability sample of households in the nation. This procedure identified 9473 households and 11 965 individuals in the target area range. Like the HRS, the Wave I respondents have been followed up by telephone every second or third year, with proxy interviewing designed for those deceased between two successive surveys. At present, the AHEAD survey registers nine waves of investigation in 1993, 1995, 1998, 2000, 2002, 2004, 2006, 2008, and 2010. As a longitudinal, multidisciplinary, and US population-based study, AHEAD provides a highly representative and reliable data base for the survival analysis of older Americans aged 70 or older.

AHEAD acquires detailed information on a number of domains, including demographic characteristics, health status, health care use, housing structure, disability, retirement plans, and health and life insurance. Survival information throughout the follow-up waves has been obtained by a link to the data of the National Death Index (NDI). This book uses survival data of the AHEAD survey throughout the first six waves (1993–2004). Given the illustrative nature of using this dataset, I randomly selected 2000 persons from the baseline AHEAD sample for the analysis in the book.

While AHEAD provides a solid and reliable data source for empirical illustrations, this single dataset cannot cover the entire scope of this book. As a result, in addition to the AHEAD longitudinal data, some clinical and simulated data are used when appropriate. In performing empirical analyses, I used the SAS software package for programming a variety of statistical procedures on data management and data analysis.

1.8 Criteria for Performing Survival Analysis

This book introduces, delineates, and summarizes a large number of survival models and techniques. Given the statistical methods and techniques presented here, the reader, after learning how to apply each one of them, might raise more questions about performing survival analysis. Given a topic of interest and the availability of a dataset, what are the criteria for performing survival analysis? In other words, what is the most appropriate perspective for conducting a survival analysis? There are four underlying criteria – relevance to theory, accurate description of data, computational tractability, and interpretability of analytic results. As the focus of this book is on application and practice, these criteria are established with specific regard to the applied phases of survival analysis.

In performing survival analysis, the first criterion is whether a statistical model builds upon an existing theory on a particular event of interest. A lifetime event usually involves complex mechanisms. Whereas one factor can influence some other factors in shaping the risk and frequency of experiencing a particular event, at the same time it may be affected by others, thus constituting a complicated structure of causal linkages in survival processes. Such complexity of causality makes it extremely difficult, if not impossible, to describe a complete set of interrelationships using a single conceptual model. Additionally, there is often a lack of suitable measures for many conceptual factors in the description of event histories. A practical approach to deal with these issues is to link a lifetime process with an explicit theoretical framework that portrays a portion of the causal effects on a particular event. The underlying conceptual framework must be based on a relevant, well-established theory or previous findings. A good theory gives rise to valid theoretical hypotheses, provides direction for specifying interrelationships of conceptual factors, and facilitates selection of measurable variables for explaining the dynamics of a lifetime phenomenon. This strategy can aid in yielding new constructive findings, in turn further solidifying the connotation of the underlying theory. In some sense, creating a survival model without relevance to theory is just like building an edifice without reference to a blueprint.

The second criterion for performing survival analysis is accurate description of data. Except for some special cases, survival models are created and applied for the generation of unbiased parameter estimates, the prediction of trajectories of survival processes, and the derivation of analytic results. Much of survival analysis is based on empirical data from various sources, such as large-scale sample surveys, clinical trials, and vital registration statistics. Given the usual representativeness of such information, it is essential for the scientist to describe the empirical data accurately, with model-based lifetime trajectories agreeable to observed patterns. Considerable deviations of model-derived trajectories from observed data generally indicate the misspecification of an underlying survival model because it fails to describe data correctly by using parameter estimates. In other words, an incorrect description of empirical data suggests failure to reflect the true set of experiences generated by the stochastic processes. Therefore, an accurate description of data is a required condition for making further inference on model fitness and the quality of various parameter estimators.

The third criterion for performing survival analysis is computational tractability. In survival analysis, a statistical model needs to be developed in such a way that the audience can follow what computational procedures are applied and how analytic results are produced, and thus understanding the rationale of the analysis. In particular, specifications of covariates, mathematical functions, and causal relationships among variables must be explicit and unambiguous, and the estimation of an underlying survival model must be based on statistical procedures and steps that are recognizable and applicable. New computational procedures, if necessary, must be fully presented, with methodological inference self-contained, for allowing the audience to understand justifications of the advancement. Exceptionally complicated link functions and reader-unfriendly mathematical expressions need to be avoided whenever possible, and the addition of model parameters should be well justified analytically. Indeed, if not computationally tractable, a survival model cannot be readily accepted by other researchers, thus failing to be disseminated in a timely fashion.

The fourth criterion is interpretability of analytic results. In survival analysis, most analysts’ professional orientations are toward applied areas, and the material described in most survival analysis books is designed to demonstrate the variety of approaches in which survival models can be applied in various disciplines. This nature of applicability points to the importance of generating interpretable and substantively meaningful analytic results when performing survival analysis. Survival outcomes are generally modeled as a nonlinear function of explanatory variables, so that model parameters are sometimes not directly interpretable. Under such circumstances, the researcher needs to convert unexplainable results into interpretable ones by means of techniques of functional transformation. If hard to interpret, analytic results of a survival model cannot translate into useful explanations, in turn obstructing timely spreading of potentially valuable implications.

In all areas of applied science, statistical modeling, survival analysis being no exception, is by no means an easy task. In constructing a useful survival model, both overfitting and underfitting must be avoided while maintaining relevance to a substantive theme. By abiding by these four criteria, the difficulty in creating a good survival model can be considerably mitigated. As Box (1976) asserts, all models are wrong, and scientists cannot obtain a ‘correct’ one by excessive elaboration; nevertheless, if a statistical model correctly describes the essence and the trend of a phenomenon while overlooking ignorable noises, it is a useful perspective for the scientist to apply. Given this principle, many hypotheses and assumptions in statistical modeling are established just for analytic convenience and simplicity: there would rarely be a true normal distribution, there never exists an exactly linear association between two factors, and a conceptual framework can look more like an artifact than a reflection of the real world. All these steps are necessary otherwise a statistical model would become a garbage can. For survival analysis in particular, the performance of a statistical technique is a process of abstraction, rather than a course of mirroring what we see in our daily lives. If a parsimonious model with only a few parameters generates the same statistical power and the same substantive implications as does a more complicated one, the former method is the signature of a good model and the latter a mediocre one (Box, 1976).
2

Descriptive Approaches of Survival Analysis

In this book, inferences of model parameters on survival processes are the main focus. Before proceeding with statistical procedures for such inferences, I would like to portray some descriptive approaches first. In survival analysis, such descriptive methods and techniques are used to summarize main features of raw survival data. Other than numbers, tables, graphs, and some other simple statistics, these approaches include significance tests on group differences in the survival and the hazard functions. Though generally viewed as simplistic ways for recapitulating survival data, the descriptive approaches are sometimes applied for deriving conclusions in biomedical research. In clinical trials, for example, results directly from descriptive approaches are commonly used to generate analytic results, particularly since in those studies the sample size is often too small to consider a large number of parameters and the effects on survival are partially accounted for in the process of randomization.

Many of the descriptive approaches in survival analysis are counting methods on the survival function, from which other lifetime indicators, such as the cumulative hazard function, can be easily computed. This chapter introduces some popular methods in this area used by statisticians, demographers, and other quantitative methodologists in summarizing survival data. Because they rely completely on empirical data without making assumptions on the form of the probability distribution, these approaches are also referred to as nonparametric methods. In particular, I start with the description of the Kaplan–Meier and the Nelson–Aalen estimators, the two related and well-known nonparametric methods used in analyzing the survival probability and the cumulative hazard function. Then I provide a brief introduction of the life table method, initially developed and used by demographers and epidemiologists. Next, I describe a variety of testing techniques for comparing two or more group-wise survival functions. Lastly, a summary of these descriptive approaches is provided.

2.1 The Kaplan–Meier (Product-Limit) and Nelson–Aalen Estimators

The Kaplan–Meier estimator (1958), also known as the product-limit method, provides a simple but effective scheme that calculates a single lifetime indicator, the survival function S(t). As time t is divided into a series of intervals according to observed event or censored times, the Kaplan–Meier survival estimates are calculated by the product of a series of interval-specific conditional probabilities. This method is designed in such a simple way that the censored survival function can be easily computed by hand. The Nelson–Aalen estimator (1972), as an alternative to the Kaplan–Meier approach, calculates the cumulative hazard function using the same rationale. The application of both estimators is based on the assumption that the occurrence of censoring is independent of actual survival times.

2.1.1 Kaplan–Meier Estimating Procedures with or Without Censoring

I start the description of the Kaplan–Meier estimator with a simple example in the absence of censoring. Suppose there are ten older women who have died of breast cancer during a seven-year observation period. Using ‘month’ as the time scale, their survival times are ordered by rank according to the number of months elapsed from time 0 to the occurrence of the event:

Survival times in months: 5, 17, 24, 32, 40, 46, 47, 50, 59, and 74.

Given this series of survival times, the survival rate at time 0 is 1 because all ten older women are alive at the beginning of the observation. The proportion surviving to month 5 is 0.9 as nine out of those ten older women survive beyond month 5. Likewise, by the end of month 17, two women have died in total, so the proportion surviving at this time is 0.8. At month 24 and month 32, the proportions of survival are, respectively, 0.7 and 0.6. The survival rates at the following observed survival times can also be computed easily from the ratio of the number of women still alive at each survival time over value 10. While the above calculation is straightforward, the proportion surviving beyond a given month can be calculated in a different perspective. For example, the survival rate at month 17 can be estimated by the proportion of survivors at month 5 (0.9) multiplied by the proportion surviving between month 5 and month 17. At month 24, the survival probability can be calculated by the survival rate at month 17 times the proportion surviving between month 17 and month 24. Placing the previous step into the calculation, the survival rate at month 24 can be further expressed as the product of three interval-specific conditional proportions of survival. Similarly, the survival rate at month 32 can be estimated as the product of four interval-specific conditional probabilities of survival, the survival rate at month 40 the product of five conditional surviving proportions, and so forth. The survival rate at each survival time thus computed is called the Kaplan–Meier estimate. The logic involved in this estimator is that for an older woman with breast cancer who survives beyond month 40, she must survive through months 5, 17, 24, and 32 first, so that her chance of survival throughout 40 months is composed of a series of interval-specific survival rates.

Below, I take the liberty to summarize the above procedure up to month 48 (four years) in the format of a typical Kaplan–Meier table. Table 2.1 shows the procedure that the survival rate at each month is simply the product of a series of interval-specific conditional probabilities of survival. In the absence of censoring, the survival rate can be more easily obtained from the number of survivors at each observed survival time over the total number of survivors at the beginning of observation. When censoring exists, however, this ratio function does not apply very well because the survival status for a censored case is unknown. Removal of censored cases from the calculation leads to erroneous results due to the neglect of survival times for those lost to observation in the middle of a survival interval. In such situations, the Kaplan–Meier estimator has the capability to account for some types of censored data, particularly right censoring. This property is a major appeal of the Kaplan–Meier estimator, given frequent occurrences of censoring in longitudinal surveys and clinical trials.

Table 2.1 Kaplan–Meier survival estimates for older women with breast cancer.

	Month
	Calculating steps
	Survival rate

	0
	10/10 = 1.0
	1.0

	5
	1.0 × (9/10) = 0.9
	0.9

	17
	1.0 × (9/10) × (8/9) = 0.9
	0.8

	24
	1.0 × (9/10) × (8/9) × (7/8) = 0.7
	0.7

	32
	1.0 × (9/10) × (8/9) × (7/8) × (6/7) = 0.6
	0.6

	40
	1.0 × (9/10) × (8/9) × (7/8) × (6/7) × (5/6) = 0.5
	0.5

	46
	1.0 × (9/10) × (8/9) × (7/8) × (6/7) × (5/6) × (4/5) = 0.4
	0.4

	47
	1.0 × (9/10) × (8/9) × (7/8) × (6/7) × (5/6) × (4/5) × (3/4) = 0.3
	0.3


To demonstrate how the Kaplan–Meier estimator handles right censoring, I extend the previous example by adding two older women with breast cancer who entered the study at the beginning of the investigation but are then lost to observation, one at month 20 and one at month 35. Now, the total number of older women increases to 12, with their survival times given by

Survival times in months: 5, 17, 20+, 24, 32, 35+, 40, 46, 47, 50, 59, and 74,

    where the two censored cases are designated by the sign +. Given these survival and censored times, a revised Kaplan–Meier table is displayed in Table 2.2, which presents the proportions surviving at ten survival times after adding two censored cases. At time 5, the survival rate now increases to 0.92 (11/12) because the two censored patients are known to be alive at month 5 and are thus counted as survivors. Likewise, S(17) is elevated to 0.83 after taking additional survivors into consideration. At month 20, one survivor is lost to observation, but from month 17 to month 20, none of the other survivors is deceased so S(20) is still 0.83. At this time point, nine patients remain exposed to the risk of death. At month 24, another patient is deceased; therefore, with nine survivors at month 20, the proportion of survival at month 24 is computed as (11/12) × (10/11) × (9/9) × (8/9) = 0.74. Similarly, the proportion surviving to month 32 is (11/12) × (10/11) × (9/9) × (8/9) × (7/8) = 0.65. At month 35, another patient is lost to observation and hence there are five patients left exposed to the risk of death and the survival rate at this time is still 0.65. Given the number of survivors at month 35, the proportions surviving to months 40, 46, and 47 are, respectively, 0.54, 0.43, and 0.32, computed by following the Kaplan–Meier estimating procedure. It is worth noting that at each observed survival time the value of the survival rate is higher than the corresponding rate without including censored cases because the survival times for the two censored patients are considered in the counting procedure.

    Table 2.2 Kaplan–Meier survival estimates with right censoring.

	Month
	Calculating steps
	Survival rate

	0
	12/12 = 1.0
	1.00

	5
	1.0 × (11/12) = 0.92
	0.92

	17
	1.0 × (11/12) × (10/11) = 0.83
	0.83

	20+
	1.0 × (11/12) × (10/11) × (9/9) = 0.83
	0.83

	24
	1.0 × (11/12) × (10/11) × (9/9) × (8/9) = 0.74
	0.74

	32
	1.0 × (11/12) × (10/11) × (9/9) × (8/9) × (7/8) = 0.65
	0.65

	35+
	0.65 × (6/6) = 0.65
	0.65

	40
	0.65 × (6/6 ) × (5/6) = 0.54
	0.54

	46
	0.65 × (6/6) × (5/6) × (4/5) = 0.43
	0.43

	47
	0.65 × (6/6) × (5/6) × (4/5) × (3/4) = 0.32
	0.32


    
Using the survival estimates computed in Table 2.2, I generate a plot to highlight that the Kaplan–Meier survival function follows a declining step process, using the following SAS program.


SAS Program 2.1:

data Kaplan_Meier;
    input Months Status@@;
datalines;

5  1 17 1 20 0 24 1 32 1 35 0 40 1 46 1 47 1 50 1
59 1 74 1
;

ods html;
ods graphics on;

proc lifetest data = Kaplan_Meier;
  time Months*Status(0);
run;

ods graphics off;
ods html close;

In SAS Program 2.1, I create a temporary dataset titled ‘Kaplan_Meier,’ containing only two variables: Months (survival time in months) and Status (0 = censored and 1 = not censored). Then the data of survival times and the censoring indicator STATUS are entered in order. The PROC LIFETEST procedure is used to plot the Kaplan–Meier survival function. For this simple analysis without involving other covariates, only the TIME statement is required in the PROC LIFETEST statement. For the graphic display, the ODS GRAPHICS statement is specified.

SAS Program 2.1 generates a plot of the Kaplan–Meier estimates, given in Figure 2.1, which displays the plot of the Kaplan–Meier survival estimates against the time scale, Months. Clearly, the Kaplan–Meier (product-limit) survival estimates follow a step function at survival times. When a death occurs, the survival curve drops vertically to a lower level of survival and then remains constant over time until another death occurs. In the plot, the symbol ‘+’ indicates the horizontal location in months where right censoring occurs. Notice that in a standard Kaplan–Meier plot, the survival function is termed the ‘survival probability,’ rather than the ‘survival rate’ or the ‘proportion surviving,’ as pertaining to the large-sample approximation theory. For analytic convenience, the terms ‘survival probability,’ ‘survival rate,’ and ‘proportion of survival’ are interchangeable in the following text.

Figure 2.1 Plot of Kaplan–Meier estimates.

[image: c02f001]


2.1.2 Formulation of the Kaplan–Meier and Nelson–Aalen Estimators

The example given in Subsection 2.1.1 uses a very small sample of individuals, with each having a unique survival time, censored or not censored. If a large sample is used for calculating the Kaplan–Meier estimates, there may be too many lifetimes to be ranked, arranged, and computed. Additionally, in large-scale longitudinal surveys, some individuals may share the same survival times and some others may be lost to observation at exactly the same time points. In survival analysis, this shared survival time is referred to as the tied observation time, with observations sharing the same survival time, called the tied cases. In the presence of observation ties, the Kaplan–Meier estimator needs to be formulated to fit into various situations.

For a sample of n individuals, there are potentially n survival times until all experience a particular event (e.g., death). These survival times can be ordered by rank as 

[image: c02ue001]

where ti represents the time at which individual i experiences a particular event or right censoring (i = 1, 2, … , n). Because at time ti individuals with actual survival or censored times smaller than ti have already exited, there is a specific number of survivors who remain exposed to the risk of event at ti, denoted by ni, where n1 ≥ n2 ≥ … ≥ nn. As tn here is the lifetime for the last survivor in the rank list, nn = 1. If there are no observation ties, the total number of survival times is equal to the number of observations and, accordingly, survival times are ordered by

[image: c02ue002]

With the existence of tied cases at some of the survival times, however, the total number of recorded times is smaller than n.

Let di be the number of events at time ti (di = 1 if there are no tied cases at ti); then the Kaplan–Meier estimator for the probability of survival at time t is 

(2.1) [image: c02e001]

where [image: c02ue003] is the Kaplan–Meier estimate for the probability of survival at time t. As di can be any number including 1, Equation (2.1) takes into consideration the existence of tied observations. Although censoring is not particularly specified in this equation, its presence does not affect the validity of this formulation. If ti is a censored survival time, for example, di is 0 from ti−1 to ti and ni = ni−1 − 1, so that the conditional probability of survival between ti−1 and ti is 1. If ti indicates a tied censored time with ci being the number of censored observations tied at ti, then ni = ni−1 − ci and the conditional probability of survival between ti−1 and ti is still 1.

Sometimes, specification of censored times is necessary in formalizing the survival function due to reasons of generalization. In such situations, a status indicator for a survival or a censored time, denoted by δti, can be created where δti = 0 if ti is a censored survival time and δti = 1 if ti is an actual survival time. Let [image: c02ue004] if δti = 1 and [image: c02ue005] if δti = 0 (or [image: c02ue006]). Then the Kaplan–Meier estimator can be written by 

(2.2) [image: c02e002]

Clearly, when ti is a censored survival time, δti = 0 and [image: c02ue007]; hence the proportion surviving between ti−1 and ti is 1. In contrast, when ti is an actual survival time, δti = 1 and the term [image: c02ue008] is smaller than 1, thus indicating an actual proportion of survival in the interval (ti−1, ti).

Given Equations (2.1) and (2.2), several scenarios are suggested to deal with various situations. First, if the number of events is small, the data can be arranged in the order of time without grouping and the number of censored cases in the intervening time intervals is also counted, as applied in Subsection 2.1.1. Second, if the above procedure is considered to be time consuming because of a relatively large sample size but the number of censored survival times is relatively small, some of the successive intervals only containing censored times can be combined. Lastly, when the number of events is large, some selected division points need to be specified with events and censored cases counted in corresponding intervals. For such data, a summary table may be created to display the selected time intervals, the number of events, the number of censored cases, and the probability of survival at each of the selected intervals.

From the Kaplan–Meier estimator, other lifetime functions can be readily derived given the intimate associations among various indicators described in Chapter 1. A popular application, for example, is to convert the survival function to the cumulative hazard function. Given the equation H(t) = – log S(t), the cumulative hazard function can be expressed in terms of the Kaplan–Meier survival estimate [image: c02ue009], given by 

(2.3) [image: c02e003]

For small x, log (1 + x) ≈ x. Therefore, Equation (2.3) can be further expanded: 

(2.4) [image: c02e004]

If censored times are not particularly specified in the formulation of the cumulative hazard function, Equation (2.4) becomes 

(2.5) [image: c02e005]

Equation (2.5) is the celebrated Nelson–Aalen estimator, initially proposed by Nelson (1972) and later mathematically formalized and justified by Aalen (1978). Clearly, the Nelson–Aalen estimator, developed independently, is an approximation to the Kaplan–Meier estimate transformation on H(t). As mentioned in Chapter 1, at a single survival time ti, the ratio of the number of events over the number of those exposed to the risk of an event is identical to the hazard rate at ti, and between two survival times in a step function, the hazard rates all take value 0. Consequently, the Nelson–Aalen estimator has a solid theoretical base (Aalen, 1978; Andersen et al., 1993; Fleming and Harrington, 1991). In Chapter 6, I will provide a simple proof for its validity using the martingale central limit theorem.

The cumulative hazard function is frequently used to test the parametric form of the hazard function, given its intimate associations with some of the parametric distributions, as will be described in some of the later chapters. While both approaches are widely used, the Nelson–Aalen estimator on the cumulative hazard function is generally considered to behave better than the Kaplan–Meier estimator for data of small samples.

Given the mathematical association among lifetime indicators, the survival function can be expressed in terms of the Nelson–Aalen estimator, given by 

(2.6) [image: c02e006]

or 

(2.7) [image: c02e007]

In the SAS software package, the Nelson–Aalen estimates of both survival probabilities and the cumulative hazard function can be made. Using the prior example of Table 2.2, here I reformat SAS Program 2.1 by adding the option ‘NELSON’ (or ‘AALEN’) in the PROC LIFETEST statement, requesting SAS to apply the Nelson–Aalen estimator, instead of the Kaplan–Meier method, for computing the probability of survival and the cumulative hazard rate at each survival time. The revised SAS program creates a temporary SAS data file named Nelson_Aalen, as displayed below.

SAS Program 2.2:

……

data Nelson_Aalen;
  input Months Status@@;
datalines;

5  1 17 1 20 0 24 1 32 1 35 0 40 1 46 1 47 1 50 1
59 1 74 1
;

ods html;
ods graphics on;

proc lifetest data = Nelson_Aalen NELSON;
  time Months*Status(0);
run;

ods graphics off;
ods html close;

SAS Program 2.2 generates a plot of the Nelson–Aalen survival estimates that is almost identical to Figure 2.1. From the output data derived from SAS Program 2.2, not presented here, the Nelson–Aalen estimates of survival probabilities are analogous to those reported in Table 2.2.

2.1.3 Variance and Standard Error of the Survival Function

When a population sample is large enough, the Kaplan–Meier estimator approximates the mean of the survival probability, asymptotically normally distributed. Given this property, the variance of this survival estimate, from the theoretical standpoint, can be well specified for assessing the dispersion of the survival probability. Nevertheless, estimation of the variance for [image: c02ue010], denoted by [image: c02ue011], cannot easily be formulated without further inference. The difficulty here is the ambiguity resulting from the fact that the variance estimated from a sample does not depend on all limits of an observation. In survival data, the greatest observed lifetime, denoted t*, is often a censored time, so that [image: c02ue012] and nt*+1 = 0. Therefore, [image: c02ue013] is undefined for t > t*. When the probability of t > t* for a population is sizable, a nonparametric estimate of the variance for S(t) is not highly informative. In such situations, some approximation approaches need to be applied.

A number of techniques have been developed to derive an unbiased estimator for the variance of the Kaplan–Meier survival function (Kalbfleisch and Prentice, 2002; Peto et al., 1977). Originally, Kaplan and Meier (1958) used the well-known Greenwood (1926) formula to yield an estimate of the variance for [image: c02ue014], and this formula remains a popular estimator in the analysis of the nonparametric survival function. Researchers prefer to use the delta method for the derivation of this approximation, as presented in most textbooks on survival analysis. In brief, the delta method is an approximation method involving transformations of random variables. Specifically, let X be a random variable distributed as N(μ, σ2) with p.d.f. f(x) and g(X) be a single-valued and measurable function of X. If g(X) is differentiable, its integral is the expected value of g(X). Although the variance of g(X) is often not directly obtainable, a linear approximation of g(X) in the neighborhood of μ, through some expansion series, leads to the approximation that V[g(X)] ≈ [g′(μ)]2σ2. Appendix A provides a detailed description of this approximation method.

The derivation of the Greenwood formula on the Kaplan–Meier survival function takes several transformation steps. It starts with the estimation for the variance of [image: c02ue015]. Taking the log values of both sides of Equation (2.1) yields 

(2.8) [image: c02e008]

where [image: c02ue016] is the conditional probability of survival in interval (ti−1, ti). As [image: c02ue017] can be expressed as an estimate of a proportion, its variance is 

(2.9) [image: c02e009]

Using the delta method, the variance of [image: c02ue018] can be approximated from the variance of [image: c02ue019]. As the derivative of log(X) is (1/X), the variance of [image: c02ue020] is approximated by 

(2.10) [image: c02e010]

For analytic convenience, both numerator and denominator are multiplied by a common term ni, which leads to 

(2.11) [image: c02e011]

As [image: c02ue021], Equation (2.11) can be written by 

(2.12) [image: c02e012]

Given Equation (2.12), the variance of [image: c02ue022] can be obtained by summing up variances of all [image: c02ue023] values, where ti ≤ t, given by 

(2.13) [image: c02e013]

Lastly, the variance of the survival probability [image: c02ue024] can be approximated by performing a retransformation procedure using the delta method. Because the derivative of exp(X) is still exp(X), exp[log(x)] is X and hence the final equation is 

(2.14) [image: c02e014]

Equation (2.14) is the famous Greenwood formula, widely used in the descriptive analysis of survival data. The square root of this equation yields an estimate of the standard error for [image: c02ue025]. Given the Greenwood formula, once the point estimate of S(t) is obtained, an approximate of its variance can be readily calculated using empirical data of di and ni from a Kaplan–Meier table. Kalbfleisch and Prentice (2002) consider it valid to use a normal approximation of the distribution of [image: c02ue026] with mean S(t) and the variance estimate if censoring is not sizable and the sample size is large. Such validity holds whether the event time T is discrete or continuous or mixed with discrete and continuous components.

With the same rationale, the variance of the cumulative hazard rate at t can be estimated by [image: c02ue027], using the same procedure that derives the Greenwood formula. After some algebra, the variance of the Nelson–Aalen estimator can be written by 

(2.15) [image: c02e015]

In SAS, the PROC LIFETEST procedure not only calculates the Kaplan–Meier survival estimates but it also computes corresponding standard errors using the square root of the Greenwood formula. SAS Program 2.1, used to generate a plot demonstrating the Kaplan–Meier estimates, also derives the probability of survival and its standard error at each survival time, as summarized in Table 2.3. The interested reader might want to practice whether his or her hand calculation agrees with the estimates reported in the table.

Table 2.3 Kaplan–Meier estimates and standard errors from SAS Program 3.1.

	Time (months)
	Probability of survival
	Survival standard error

	0
	1.0000
	0.0000

	5
	0.9167
	0.0798

	17
	0.8333
	0.1076

	20+
	0.8333
	0.1076

	24
	0.7407
	0.1295

	32
	0.6481
	0.1426

	35+
	0.6481
	0.1426

	40
	0.5401
	0.1544

	46
	0.4321
	0.1568

	47
	0.3241
	0.1503

	50
	0.2160
	0.1335

	59
	0.1080
	0.1014

	74
	0.0000
	—


2.1.4 Confidence Intervals and Confidence Bands of the Survival Function

Conventionally, given the estimate of the variance and a significance level α, the confidence interval of an asymptotically normally distributed estimate can be readily computed. For example, for a continuous random variable X distributed as N(μ, σ2), its 95 % confidence interval with α = 0.05 is simply given by [image: c02ue028]. A serious defect, however, arises from using this conventional procedure for estimating the variance of the survival function. Whereas a standard continuous variable has range (−∞, ∞), the probability of survival ranges between 0 and 1. Given this restriction, using the standard equation can yield the value of [image: c02ue029] out of its bounds, thus yielding impossible estimates. Given this concern, the confidence interval of [image: c02ue030] needs to be estimated by some transformation approaches, from which the range of [image: c02ue031] can be restricted.

There are a number of popular transformation functions that can be applied to derive a confidence interval of [image: c02ue032] with range (0, 1). These transformation approaches include the Wilson score method, arcsine–square root transformation, logit transformation, and log–log transformation. The Wilson score method, developed by Edwin B. Wilson (1927), improves the normal approximation interval by imputing a new asymptotic variance based on a new parameter instead of the proportion itself. For the 95 % confidence, the Wilson score method derives a nearly identical interval to that derived from the normal approximation. The arcsine–square root transformation, a widely used method to compute point-wise confidence limits for the survival function, takes the arcsine of the square root of a number with the range (−1, 1). This transformation derives the variance and a confidence interval stabilizing for situations with no censoring. The logit transformation, also widely used, yields the confidence interval for the logit of [image: c02ue033] first and then this logit-based interval is retransformed to the confidence limits of [image: c02ue034]. The reader familiar with generalized linear modeling might remember that the probability linked to a logit function takes a value between 0 and 1.

In survival analysis, the most popular transformation function for the confidence interval of [image: c02ue035] is perhaps the so-called log–log transformation, developed by Kalbfleisch and Prentice (2002). The logic of this transformation method is that the asymptotic normal distribution of [image: c02ue036] should be first transformed to a continuous function with unrestricted bounds. Specifically, they propose first to estimate the variance of the following transformed function: 

(2.16) [image: c02e016]

Equation (2.16) specifies a well-known transformation function in survival analysis, referred to as the log–log survival function. As discussed in Chapter 1, –log S(t) is simply the cumulative hazard rate at time t; therefore the log–log survival function is actually the log transformation of the cumulative hazard function with a range from minus infinity to plus infinity. Given this property, the log–log survival function is also called the log function of the cumulative hazard.

Applying the delta method with respect to the Greenwood formula, the variance of Equation (2.16) can be derived: 

(2.17) [image: c02e017]

Given Equation (2.17), the confidence interval for the log–log survival function is given by 

(2.18) [image: c02e018]

where z1-α/2 is the z-score for the upper α/2 percentile of the standard normal distribution. As the log–log survival function is the log transformation of H(t), the confidence interval for the survival function can be estimated by taking the exponential form of Equation (2.18) twice, which leads to 

(2.19) [image: c02e019]

where 

(2.20) [image: c02e020]

Equations (2.19) and (2.20) yield a confidence interval of [image: c02ue037] ranging between 0 and 1. This retransformed confidence interval is considered to provide the correct coverage probability for a (1 − α) interval, valid even for very small samples with heavy censoring (Borgan and Liestøl, 1990). Given the nonlinearity after retransformation, however, this confidence interval is not symmetric about [image: c02ue038].

As limits of an independent Kaplan–Meier survival estimate, the confidence interval of [image: c02ue039] is not associated with the entire lifetime process; rather, it only covers the true value of S(t) with probability (1 − α) at a single time point. Therefore, the confidence interval of the survival rate is not considered highly informative in survival analysis. For a lifetime process, it is essential statistically to combine a series of confidence intervals for the survival function, thereby constituting a (1 − α) confidence region for the entire survival curve. In statistics, such a confidence region is referred to as the confidence bands. Though closely connected with each other, the confidence bands differ conceptually and mathematically from the point-wise confidence intervals. While a point-wise confidence interval only attaches to the survival estimate at an individual time point, the confidence bands cover the entire survival curve simultaneously, with each point-wise confidence band behaving as an integral element of the whole confidence region. For this reason, confidence bands are also called simultaneous confidence bands or simultaneous confidence intervals. One of the important features in confidence bands is that if each confidence interval individually has probability (1 − α), the simultaneous coverage probability is generally less than (1 − α). Therefore, it is unacceptable to derive confidence bands by connecting the endpoints of all point-wise confidence intervals.

The derivation of confidence bands involves complex mathematical justifications and inferences. In particular, a point-wise confidence band, denoted by [image: c02ue040] with coverage probability (1 − α), satisfies the following condition for each value of t: 

(2.21) [image: c02e021]

where [image: c02ue041] is the confidence width determined by α. The lower and upper limits, [image: c02ue042] and [image: c02ue043], are sometimes denoted by [image: c02ue044] and [image: c02ue045], respectively.

There are two popular methods for calculating the confidence bands with respect to the Kaplan–Meier survival estimates. The first method is proposed by Hall and Wellner (1980), referred to as the Hall–Wellner band. The second approach, developed by Nair (1984), is called the equal precision band. For both methods, the confidence bands are constructed using the confidence coefficients taken from special distributions. These coefficients are provided in some textbooks and academic works (e.g., Klein and Moeschberger, 2003). Both bands can be computed by most statistical software packages including SAS (in PROC LIFETEST). Therefore, I do not include those coefficients tables in this book.

The mathematical inferences and the estimation procedures for both the Hall–Wellner and the equal precision bands are complex; for details of mathematical justifications and inferences, the interested reader is referred to Borgan and Liestøl (1990), Hall and Wellner (1980), Klein and Moeschberger (2003), and Nair (1984). Operationally, the calculation can be performed by taking the following four steps:

Step 1. Pick two time points, tL and tU. If the Hall–Wellner band is used, tL = 0 and tU is the event time just less than the largest observed event time; if the equal precision band is applied, tL is just larger than the first observed event time and tU is the same as above.

Step 2. Calculate the values of two confidence band coefficients, denoted [image: c02ue046] and [image: c02ue047], respectively, given by (2.22) [image: c02e022]
and 
(2.23) [image: c02e023]


Step 3. Using values of [image: c02ue048] and [image: c02ue049], find the third coefficient, denoted either by [image: c02ue050] for the Hall–Wellner band or by [image: c02ue051] for the equal precision band, from the tables for confidence coefficients of 100(1 − α) confidence bands.

Step 4. There are several transformation forms for the confidence bands, as for confidence intervals. With respect to the popular log–log transformation, the confidence band can be expressed as (2.24) [image: c02e024]
where 
(2.25) [image: c02e025]

 (2.26) [image: c02e026]



In Equations (2.25) and (2.26), [image: c02ue052] or [image: c02ue053] is the upper α fractile of the least observed upper bound. In practice, only the intervals for values of t greater than the first observed event time and smaller than the greatest observed event time need to be computed.

The two types of bands differ in several perspectives. The Hall–Wellner confidence bands are not proportional to the point-wise confidence intervals, as their derivation uses some ad hoc formulas. The equal precision method, on the other hand, yields proportional results to point-wise confidence intervals; specifically, the approach applies identical formulas to calculate confidence intervals and confidence bands, and the only difference between the two estimators is that the z-score is used to calculate confidence intervals and a different coefficient to derive confidence bands. Overall, the Hall–Wellner method provides better results than the equal precision when applying the log–log transformation, whereas the equal precision bands are more suitable when the arcsine–square root transformation is used.

To illustrate differences between confidence intervals and confidence bands for the Kaplan–Meier survival estimates, the data of older Americans described in Chapter 1 are used. In particular, I want to examine the two-year survival function among those diagnosed with cancer at baseline. In the AHEAD data, there are 39 survival times observed by the end of the 24th month, 19 actual events (those who died of cancer) and 20 censored cases. The following SAS program is constructed to estimate the survival function, confidence intervals, and confidence bands using lifetime data of those 39 individuals.

SAS Program 2.3:

options ls=80 ps=56 nodate number pageno=1 center;
ods select all;
ods trace off;
ods listing;
title1;
run;

data Kaplan_Meier;
  input Months Status @@;
datalines;

1 0 2 0 3 1 3 1 3 1 4 1 4 1 5 0 5 0 5 0 6 1 6 1 7 1 8 1
8 1 9 1 9 1 9 1 10 0 12 0 12 0 12 0 12 1 13 1 14 1 15 1
19 0 20 0 21 0 21 1 22 0 22 0 22 1 22 1 22 0 23 0 23 0
23 0 23 0
;

ods html;
ods graphics on;

ods select SurvivalPlot;
proc lifetest data=Kaplan_Meier OUTSURV=out1 Confband=HW Conftype=loglog plots=survival(CB=HW); 
  time Months * Status(0);
run;

proc print data=out1;
     title2 "OUTSURV data set";
     title3 "CONFBAND=all, CONFTYPE=Loglog";
run;

ods graphics off;
ods trace off;

In SAS Program 2.3, the input data of 39 survival times and their censoring statuses are saved in the SAS temporary dataset ‘Kaplan_Meier.’ The two variables, ‘Months’ and ‘Status,’ are defined previously in SAS Program 2.1. In the PROC LIFETEST statement, I ask SAS to create a temporary output dataset ‘out1’ containing the survival estimates and then to plot them with graphics using the ODS. To obtain the Hall–Wellner bands in the out = out1 dataset, I specify the CONFBAND = HW option (for a brief illustration, only the Hall–Wellner bands are used in this example; if both the Hall–Wellner and equal precision bands are needed, the CONFBAND = all option needs to specified). The CONFTYPE = LOGLOG option is specified to apply the log–log transformation for calculating the confidence intervals and confidence bands. Lastly, I request SAS to display a specific plot of the Hall–Wellner bands for the survival function. Other commands have been described previously.

SAS Program 2.3 derives Table 2.4, where the second column is the survival time and the third column displays whether a given survival time is an actual or a censored survival time, with 1 = censored. While the fourth column presents the Kaplan–Meier survival probabilities, the fifth and sixth columns are the lower and upper limits of the confidence interval for each survival estimate given α = 0.05. Similarly, the last two columns demonstrate the lower and upper limits of the confidence band derived from the Hall–Wellner method. As evidenced in this table, the confidence band of each survival probability has much wider confidence limits than the corresponding confidence interval. The latter, associated independently with a single time point, seriously underestimates the true variability of the survival function. Therefore, in survival analysis, especially in clinical and epidemiological settings, the confidence bands should be regularly used for demonstrating a true confidence range of the survival function.

Table 2.4 Kaplan–Meier estimates, confidence intervals, and confidence bands.

[image: c02tbl0004ta]

SAS Program 2.3 also yields a plot of the Hall–Wellner confidence bands on the Kaplan–Meier estimates, shown in Figure 2.2. The plot displays the confidence region of the survival probabilities within a two-year observation period. Notice that the Hall–Wellner confidence bands exclude the initial observed survival times because, according to Borgan and Liestøl (1990), anomalous values of the lower confidence band are often detected at the start of the survival process when the log–log or arcsine transformations are used. Consequently, displaying the Hall–Wellner bands in those local regions is not informative.

Figure 2.2 Hall–Wellner confidence bands for the probability of survival.

[image: c02f002]


2.2 Life Table Methods

Other than the Kaplan–Meier and Nelson–Aalen estimators, a popular nonparametric approach in survival analysis is the life table method, which also has some capacity to handle right censoring. Demographers and epidemiologists have a long history of using life tables for analyzing survival data. A typical life table generates the probability of survival at a particular year of age, the life expectancy at birth, and the life expectancy remaining at an exact age, based on the hypothesis of a synthetic cohort. Separate life tables can be created for comparing mortality rates and life expectancies among individuals of different demographic and socioeconomic characteristics. Though originally designed to analyze mortality and survival, the life table method has been extended to calculate actuaries, disability-free life expectancy, geographical mobility, marital status patterns, occupational careers, and multidimensional transitions in health care (Crimmins, Hayward, and Saito, 1996; Hayward and Grady, 1990; Liu et al., 1995, 1997; Rogers, 1975; Rogers, Rogers, and Belanger, 1990; Schoen, 1988; Schoen and Land, 1979; Sullivan, 1971). In a survival analysis, Gehan (1969) provides specifications of the continuous hazard function and the probability density function from discrete estimates of a life table, thereby advancing the life table method to the analysis of event times and survival processes.

In this section, I first describe Gehan’s basic formulations of several continuous lifetime functions based on the theory of large-sample approximations. Next, I briefly introduce some of the advanced life table techniques, such as the multistate life table and the multidimensional Markov processes for events with frequent turnovers. Lastly, an empirical example is provided to display how to construct a life table using empirical survival data.

2.2.1 Life Table Indicators

Like the Kaplan–Meier estimator, a life table is created to calculate the probability of survival and its changes. In demography and epidemiology, however, the survival function in a life table is generally viewed as a function of age, rather than of time, largely due to the fact that survival data used in these fields often come from the age-specific death rates in a specific period. For analytic convenience, the probability of survival is usually multiplied by 100 000 in a conventional life table, yielding a new indicator, denoted by la, where the letter ‘a’ represents an exact age (a = 0, 1, … , ω), referred to as the number of survivors on a radix. As la is simply S(a) × 100 000, in a conventional life table l0 = 100 000 and lω = 0. Using the vital registration statistics or survey data with respect to a specific period, a conventional life table is often constructed by assuming a synthetic birth cohort following current age-specific death rates (Keyfitz, 1985; Siegel and Swanson, 2004). Consequently, survival processes described in a conventional life table do not reflect actual trajectories of survival dynamics because they are derived from current mortality schedules across many population birth cohorts.

In survival analysis, the conventional life table method is extended by counting the actual number of survivors, of censored observations, and of events, from longitudinal data of event histories. Accordingly, observational time, rather than age, is used to define intervals to highlight the dynamic nature of a lifetime event. In many aspects, this modified life table method bears a tremendous resemblance to the Kaplan–Meier and Nelson–Aalen estimators, as will be seen below. To be in line with the focus of this book, therefore, many of the following specifications are based on Gehan (1969) with some minor notational modifications.

Let the survival data be grouped into J + 1 intervals, denoted by (tj−1, tj), where j = 1, 2, … , J + 1, with the unit of interval j defined as [image: c02ue054]. By definition, t0 = 0 and tJ+1 = ∞, and accordingly [image: c02ue055], [image: c02ue056]. Also, nj−1 is the number of individuals entering the interval (tj−1, tj) and dj is the number of events occurring in interval j. In the absence of censoring, the difference between nj−1 and nj yields the number of events in (tj−1, tj) and the ratio of the number of events over nj−1 generates the probability of experiencing a particular event in the interval.

In the presence of censoring, the effective sample size in (tj−1, tj), denoted by [image: c02ue057], is defined and used for calculating the life table measures. Suppose cj, the number of censored cases, falls in (tj−1, tj). The effective sample size at the start of the interval is conventionally given by 

(2.27) [image: c02e027]

where (cj/2) is the adjustment that only half of cj, assumed to be evenly distributed in (tj−1, tj), should be counted in the total number of individuals exposed to the risk of the event. This adjustment is one of the key features in the life table method that counts survival times of censored cases in the estimation procedure. Accordingly, the conditional probability of experiencing the event, denoted by qj, is estimated by 

(2.28) [image: c02e028]

where the denominator represents the unbiased amount of exposure to the risk, given the assumption of a uniform distribution of censored observations.

Given the association that [image: c02ue058], the conditional probability of survival in (tj−1, tj) is 

(2.29) [image: c02e029]

This estimate of the conditional probability is another main feature of the life table method. In the Kaplan–Meier estimator, censored survival times are counted only across intervals, as shown in Table 2.3; in the life table method, nevertheless, censored times are taken into account both across and within intervals.

The variance for the conditional probability of experiencing the event in (tj−1, tj) can be estimated by the conventional approach, given by 

(2.30) [image: c02e030]

The square root of Equation (2.30) gives rise to an estimate of the standard error for [image: c02ue059]. Notice that if nj is small, Equation (2.30) can cause strong inconsistencies in the estimate, thereby affecting the quality of this estimator.

Given the conditional probability of the event, the survival function at the end of (tj−1, tj) is estimated as 

(2.31) [image: c02e031]

As Equation (2.31) demonstrates, the life table estimator of the survival function is actually an approximation of the Kaplan–Meier method, expressed as the product of a series of interval-specific conditional probabilities of survival. When the sample size is large, the two approaches are asymptotically equivalent.

The estimation of the variance for the survival function also bears some resemblance to the estimator described in Section 2.1, given by 

(2.32) [image: c02e032]

The square root of Equation (2.32) yields an estimate for the standard error of the survival function at tj. The reader might want to compare Equation (2.32) with the Greenwood formula (Equation (2.14)). In fact, in the absence of censoring, the variance estimate of the survival function in the life table method approximates the estimate derived from Equation (2.14).

According to Gehan (1969), the probability density function at the midpoint of (tj−1, tj), denoted by tmj, can be approximated straightforwardly: 

(2.33) [image: c02e033]

with the variance estimator 

(2.34) [image: c02e034]

Obviously, the above p.d.f. estimate at the midpoint of a time interval is computed as the total probability of experiencing a particular event for the entire interval divided by the interval width [image: c02ue060]. The validity of Equations (2.33) and (2.34) is based on the assumption that events occurring within a time interval are evenly or linearly distributed.

Likewise, given this hypothesis, the hazard function at tmj can also be estimated in the same fashion: 

(2.35) [image: c02e035]

Notice that in Equation (2.35), only half of dj, the number of events occurring in (tj−1, tj), are counted in the number of individuals exposed to the risk. As mentioned in Chapter 1, if [image: c02ue061] represents a considerably wide unit of a time interval, the continuous S(t) is a decreasing function within the interval, so not all nj−1 individuals are at risk in the entire interval. If events within the interval occur uniformly or linearly, counting half of dj in the denominator yields a reasonable estimate of the hazard rate at the midpoint of the interval. This estimate, however, is an average, not necessarily reflecting an instantaneous rate, especially when events occur irregularly or nonlinearly. As demographers term it, Equation (2.35) essentially provides an estimate of the average hazard function (Siegel and Swanson, 2004).

Gehan (1969) also specifies an estimate for the variance of the estimated hazard rate at tmj. With some notational modifications, it can be written as 

(2.36) [image: c02e036]

The above measures can be used when constructing a life table with the time interval as the basic unit. I would like to emphasize that the above formulas are mostly based on the theory of large-sample approximations, so the life table method is applicable only when the sample size is large enough for every time interval. If the sample size for a given interval is small (less than 20, say), the Kaplan–Meier or Nelson–Aalen estimators are preferable for an efficient nonparametric analysis of survival data. Given this restriction, the life table method is not recommended for a descriptive analysis of survival data obtained from clinical trials.

2.2.2 Multistate Life Tables

In survival analysis, an individual’s event histories are sometimes linked to more than one single event process. At a given time, individuals may be exposed to the risks of several related events, thereby making survival processes attach to a set of competing risks. Examples of such phenomena include transitions in multiple modes of health (Crimmins, Hayward, and Saito, 1996; Land, Guralnik, and Blazer, 1994; Liu et al., 1995), labor force participation (Hayward and Grady, 1990), and multidimensional transitions in health care (Liang et al., 1996; Liu et al., 1997). A number of demographers and statisticians have developed a series of statistical models for the description and analysis of such multidimensional processes in a life table format, generally referred to as the multistate life table. These models are generally associated with one or more states of origin (the state at the beginning of observation) and more than one state of destination (the state at the end of observation), which, combined, constitute a finite space for a set of stochastic and multidimensional survival processes.

To describe a multistate life table more effectively, here I provide a flow chart about transitions in functional status to aid in the interpretation of the mathematical specifications given below. Suppose that at the beginning of a time interval individuals are divided into two groups according to function status, ‘functional independence’ and ‘functional dependence.’ As observed at the origin of time, this functional status is referred to as the state of origin, denoted by [image: c02ue062]. At the end of the observation, there are three possible outcomes in terms of that individual’s functional status: ‘functionally independent,’ ‘functionally dependent,’ and ‘dead,’ referred to as the state of destination and denoted by [image: c02ue063], respectively. Between the two functional states, ‘functional independence’ and ‘functional dependence,’ a transition can occur from either direction within the time interval, and therefore they are called the transient states. The third status at destination, ‘dead,’ is a permanently ending state, and conventionally it is called the absorbing state. The multidimensional transitions between these states are displayed in Figure 2.3, where [image: c02ue064] indicates a transition process from the origin state [image: c02ue065] to the destination state [image: c02ue066]. Given the assumption that only one transition is permitted within a specific time interval, four transition processes can be identified: from functional independence to functional dependence, from functional independence to death, from functional dependence to functional independence, and from functional dependence to death. As defined, individuals can move in and out of the transient states, as shown by the arrowed lines in Figure 2.3.

Figure 2.3 Three-state multistate life table model on transitions in functional status.

[image: c02f003]


Like a conventional life table, the multistate life table estimates the probability of survival at a particular year of age, the life expectancy at birth, and the life expectancy remaining at an exact age. Each of these life table measures, however, needs to be calculated for each state of origin. Descriptively, the multistate life table is generally defined as a time-inhomogeneous and continuous-time Markov process model with finite space Ω. The state space Ω of the stochastic process has [image: x1D4A6_in] + 1 states, where [image: x1D4A6_in] is a positive integer greater than 1 (in terms of the example about transitions in functional status, [image: x1D4A6_in] is 2). The ([image: x1D4A6_in] + 1)th state is the absorbing state. As indicated by Figure 2.3, two-way transitions are allowed between the transient states; that is, while a functionally independent person at the beginning can become functionally dependent within the time interval, an individual is permitted to recover from functional dependence within the period.

On the state space Ω, I define a stochastic process, [[image: c02ue067]], as seen by transition probabilities from the state of origin to the state of destination. The transition probabilities between the [image: x1D4A6_in] + 1 states of [image: c02ue068], assumed to be continuous, are given by 

(2.37) [image: c02e037]

where [image: c02ue069] represents the probability that an individual in state [image: c02ue070] at time t will be in state [image: c02ue071] at time (t + Δt). The corresponding transition force, statistically referred to as the gross flow hazard rate, is 

(2.38) [image: c02e038]

where [image: c02ue072] is the force of decrement for a transition from state [image: c02ue073] to state [image: c02ue074] at time t. As defined in Chapter 1, it is nonnegative but not necessarily smaller than 1.

If persistence in state [image: c02ue075] from time t to time (t + Δt) can be viewed as a special type of transition, its transition probability can be written by 

(2.39) [image: c02e039]

The derivation of Equation (2.39) is based on the constraint that a set of transition probabilities must sum up to 1.

Likewise [image: c02ue076], the force of persistence in [image: c02ue077] at time t, is 

(2.40) [image: c02e040]

where [image: c02ue078], as a counterforce, is always nonpositive, referred to as the force of retention (Schoen, 1988). The transition probabilities and the forces of transition can be conveniently arranged into two ([image: x1D4A6_in] + 1) by ([image: x1D4A6_in] + 1) stochastic matrices, defined as Π(t, Δt) and h(t), respectively. By definition, each row of the Π matrix sums to 1 and each row of the h matrix sums to 0.

Given S(0) = 1, the initial distribution of survival probability in state [image: c02ue079], denoted by [image: c02ue080], is mathematically defined by 

(2.41) [image: c02e041]

with the range (0, 1). Within the context of transitions in functional status, for example, [image: c02ue081] indicates the probability distribution of individuals in the two states of origin at time 0 given that S1(0) + S2(0) = 1. For younger populations, it is likely that no one is functionally dependent, so S1(0) = 1 and S2(0) = 0. Similarly, for individuals beyond a certain old age, everyone may be functionally disabled, so we have S1(0) = 0 and S2(0) = 1. When constructing a multistate life table, this distribution can be obtained from empirical data.

Given Si(0), the survival function at state [image: c02ue082] can be defined as follows 

(2.42) [image: c02e042]

Demographers call [image: c02ue083] the radix of a multistate life table, as the sequence of [image: c02ue084] is the survival function corresponding to the Markov chain. As usually applied, [image: c02ue085] can be multiplied by a value, such as 106, for analytic convenience (Hoem and Jensen, 1982), thereby generating a new life table indicator, termed [image: c02ue086]. In the literature of multistate life table modeling, [image: c02ue087] is referred to as the stationary population corresponding to the Markov process.

The gross flows of the stationary population are specified as the function 

(2.43) [image: c02e043]

where [image: c02ue088] represents the number of individuals in state [image: c02ue089] at time t who are in state [image: c02ue090] at time (t + Δt) with respect to the stationary population. Accordingly, a ([image: x1D4A6_in] + 1) by ([image: x1D4A6_in] + 1) matrix l(t, Δt) can be created containing elements [image: c02ue091], referred to as the matrix of gross flows.

Within the context of event times, the expected life in state [image: c02ue092] between time tj−1 and time tj spent by those in state [image: c02ue093] at time tj−1 can be written as 

(2.44) [image: c02e044]

where the unit (tj − tj−1) represents a discrete interval with width [image: c02ue094], often set at 1 year in demographic and epidemiologic studies. [image: c02ue095] is also called the sojourn time, representing the total person-years lived. These person-years lived at the level of gross flows can be aggregated to the level of net flows, defined by 

(2.45) [image: c02e045]

where [image: c02ue096] is the person-years lived in state [image: c02ue097] between tj−1 and tj without the constraint of being in state [image: c02ue098] at time tj−1.

The above equations summarize basic specifications of a traditional multistate life table. Researchers have developed a variety of estimating algorithms to formalize these functions (Land and Schoen, 1982; Liu et al., 1995; Namboodiri and Suchindran, 1987; Rogers, 1975; Schoen, 1988; Schoen and Land, 1979). Because these accounting procedures are based on varying assumptions on patterns of transitions within a discrete interval (usually one year), there are distinct differences in the results derived from those approaches as well as a general distinction between the underlying stochastic processes of a given event and accounting procedures (Hoem and Jensen, 1982). While some traditional procedures only permit a single transition within a one-year period, several refined methods relax the single-transition assumption, thereby taking into account the return of those who have left a given state at an earlier stage (Schoen, 1988).

These methods, however, may still lead to substantial bias for lifetime events with rapid turnovers because those who have returned to the state of origin may leave there again soon. The pattern of health care use, for example, typifies such rapid processes, given the frequent and intense turnovers of hospitalization and institutionalization over time. Other dynamic processes that occur rapidly over time include adolescent dating behavior, the employment experiences of marginal workers, mental disorders like depression, and the like. Indeed, the traditional accounting procedures are not capable of handling these frequent events, resulting in a characterization of life-cycle experiences at variance with the true set of the stochastic processes.

Theoretically, difficulties in estimating more intense and rapidly unfolding processes can be resolved by using shorter time intervals. If the interval unit is sufficiently short to suit the circumstances of a rapid process, it may be reasonable to assume that the rate of transition from one state to another is constant across all subintervals, thereby retaining the standard ways of estimating interval-specific transition rates. Such a strategy, however, is usually not realistic, given the scarcity of empirical data on frequent transitions. Additionally, the use of survey data from multiple random samples, which is often the case in constructing a multistate life table, would be highly restrictive, given an insufficient sample size for each much shortened subinterval. Hence, it is necessary to adapt the conventional estimation procedures to characterize accurately the phenomena that occur intensely and rapidly over time.

For example, if use of a wide time interval is unavoidable in constructing a multistate life table, the generation of transition probabilities needs to be based on the principle of the Chapman–Kolmogorov relation (Cox and Miller, 1978), given by 

(2.46) [image: c02e046]

where [image: c02ue099] is defined as the probability of being in state [image: c02ue100] at time [image: c02ue101] for those who are at state [image: c02ue102] at time 0, termed the n-step transition probability. Similarly, [image: c02ue103] is an ([image: c02ue104])-step transition probability and [image: c02ue105] is a one-step transition probability. This Markov process equation indicates that, in the presence of repeated transitions within a time interval, the [image: c02ue106]-step transition probability is virtually the outcome of a series of one-step transition probabilities within an interval represented by [image: c02ue107] steps. Other multistate life table indicators need to be adapted as well, according to repeated flows of transitions.

The mathematical algorithms of a multistate life table for events with rapid processes are complex, so I do not describe the detailed procedures further in this text. The interested reader is referred to Liu et al. (1997).

2.2.3 Illustration: Life Table Estimates for Older Americans

In this subsection, I provide an empirical example to demonstrate how to construct a life table using the SAS code. Empirical data come from a random sample of older Americans diagnosed with lung cancer. Event time is measured as the number of months elapsed from the time of diagnosis to the time of death or the time of censoring. Given the information of actual survival and censored times, I first create a dataset containing the number of events and the number of censored cases in each month for a total of 12 months. Below is the SAS program for this study.

SAS Program 2.4:

title 'survival of older persons diagnosed with lung cancer′;

data Life_Table;
   keep Freq Months Censored;
   retain Months -.5;
   input fail withdraw @@;
   Months + 1;
   Censored = 0;
   Freq = fail;
   output;
   Censored = 1;
   Freq = withdraw;
   output;
   datalines;

16 0 22 5 19 3 20 4 27 2 20 11 21 32 38 59 40 61
24 33 18 19 23 36
;
………

In this program, I create three variables for the construction of the life table: Months (defined earlier), Censored (1 = censored, 0 = not censored), and Freq (the frequency variable). From the above program, two types of observations are created for each time interval, one indicating the event observations and the other the censored observations. As displayed, input data are the frequencies of events and censored cases in each month.

The next step is to specify the ODS GRAPHICS ON statement for generating graphics of the survival and hazard curves and invoke the PROC LIFETEST again to calculate various life table estimates. As a result, the remainder of SAS Program 2.4 is given below.

SAS Program 2.4 (continued):

………
ods graphics on;

proc lifetest data = Life_Table method = lt intervals = (0 to 11 by 1)
              plots = (s, ls, lls, h, p); 
  time Months * Censored(1);
  freq Freq;
run;

ods graphics off;

In SAS Program 2.4 (continued), I ask SAS to compute the life table survival estimates by specifying METHOD = LT. The INTERVALS = (0 to 11 by 1) option specifies that estimates for 12 intervals (0 to 11) are computed. The PLOTS = (s, ls, lls, h, p) option requests SAS to display graphs of the life table survival function estimate, negative log of the estimate (the cumulative hazard function), log of the negative log of the estimate (the log–log survival function), estimated density function at the midpoint of each interval, and estimated hazard function.

As a result of SAS Program 2.4, SAS constructs a life table containing the requested survival function estimates and the standard errors (each function is described in Subsection 2.2.1) and five requested lifetime graphs. While the life table thus produced includes a large amount of data, I only display a portion of the estimates in this text, as summarized in Table 2.5. The table shows that among the older persons diagnosed with lung cancer, the survival probability throughout the first month is 0.97 with a standard error of 0.01. As time progresses, the probability of survival declines initially and then accelerates in later stages of the observation period. The five-month probability of survival is about 0.86 (SE = 0.01). In the 10th month, the survival rate is slightly higher than 0.5, suggesting that about half of those older persons are expected to survive throughout 10 months. By the end of the 12th month, the chance of survival is only 0.34 with a standard error of 0.03. This twelve-month survival rate indicates that for older persons diagnosed with lung cancer, only about 35 % are expected to survive beyond a one-year period.

Table 2.5 Life table survival estimates for patients with lung cancer.

[image: c02tbl0005ta]

SAS Program 2.4 also produces many other survival estimates, such as the conditional probability of failure, the median residual lifetime, the probability density function, the hazard rate, and the standard error of each of these life table measures. The interested reader might want to rerun SAS Program 2.4 for viewing more results.

As mentioned above, five graphs are produced from SAS Program 2.4. Here, I select for display the graphs of the survival function and the cumulative hazard function, the two lifetime functions I consider to be most important for the description of survival processes for a population. First, Figure 2.4 displays the plot of the life table survival function estimate. It is interesting to note that in the first seven months or so, the survival function declines linearly; nevertheless, from that time point forward the probability of survival drops more sharply, highlighting the increased mortality acceleration in later months of the observation interval.

Figure 2.4 Life-table survival function for older persons with lung cancer.

[image: c02f004]


The next plot, Figure 2.5, displays the negative log of the survival estimates, the cumulative hazard function, and an accelerated cumulative hazard function over time. As will be discussed in Chapter 3, if the plot of the negative log of the survival function versus survival time approximates a straight line, the hazard function is constant, thereby highlighting an exponential distribution of survival times. If it is not, as shown by the above curve, the hazard function does not tend to be constant within this twelve-month period.

Figure 2.5 Negative log of the estimated survival function (the cumulative Hazard function) for older persons diagnosed with lung cancer.

[image: c02f005]


2.3 Group Comparison of Survival Functions

The Kaplan–Meier estimator can be applied to compare survival functions by adding certain stratification factors. The stratification factors often selected include treatments in clinical trials and such sociodemographic variables as age group, gender, ethnicity, and marital status. In comparing the survival functions between two or more groups, an observed difference can be either the outcome of an actual disparity or a reflection of the sampling error. Therefore, it is essential to perform significance tests for determining whether an observed difference is true.

Significance tests on survival curves of different population groups generally begin with a null hypothesis, denoted by H0, assuming no statistically significant difference. A significance level α, the predetermined critical value in a probability distribution, is regularly used to help determine whether to accept or reject the H0 hypothesis. In particular, if the p-value of an observed difference is less than or equal to α, the difference is considered statistically significant, thereby resulting in the rejection of the underlying null hypothesis. If the p-value is greater than α, the null hypothesis is probably true and a group difference in the survival function may occur merely by chance.

Statisticians use various probability functions for hypothesis testing, the normal and the chi-squared distributions being the most widely applied. In survival analysis, there are a number of methods that can be used to test group differences in the survival function statistically. These techniques include, but are not limited to, the Mantel–Haenszel logrank test (Mantel and Haenszel, 1959), the Peto and Peto logrank test (Peto and Peto, 1972), the Gehan generalized Wilcoxon rank sum test (Gehan, 1967), the Peto and Peto and Prentice generalized Wilcoxon test (Peto and Peto, 1972; Prentice, 1978), and the Tarone and Ware modified Wilcoxon test (Tarone and Ware, 1977). In this section, I describe these methods with empirical illustrations.

2.3.1 Logrank Test for Survival Curves of Two Groups

I start the description of the logrank test by assuming two separate groups in a population of interest, termed G1 and G2, respectively. Each group is described by a different survival function, denoted by S1(t) and S2(t). As specified in Subsection 2.1.2, a sample of n observed survival times is ranked as t1 ≤ t2 ≤ t3 ≤ t4 ≤ … ≤ tn, among whom some may be tied. At each specific survival time ti (i = 1, … , n′), there are di individuals who experience a particular event of interest, among whom d1i are those affiliated with G1 and d2i with G2. If there are no tied cases, di = 1, then either d1i or d2i would take the value 0 and the other takes the value 1, and n′ = n. If there are tied observations, however, the number of observed survival times n′ is smaller than the number of individuals n. The number of survivors exposed to the risk of the event just before ti, denoted by ni, is also divided into n1i for G1 and n2i for G2. Therefore, ni = n1i + n2i and di = d1i + d2i. This classification can be recapitulated by a (2 × 2) contingency table displaying the number of events and the number of nonevents at ti, as classified by G1 and G2 (Table 2.6). Using this table, I first set up the underlying null hypothesis that G1 and G2 have the identical survival function, written by H0: S1(t) = S2(t). If this hypothesis of no association holds, the marginal totals should all be fixed and, consequently, d1i can be viewed as a random variable with parameters ni, n1i, and di following a specific probability distribution called hypergeometric distribution (Peto and Peto, 1972). A detailed description of the hypergeometric distribution is provided in Chapter 3 (Section 3.7).

Table 2.6 Number of events and of nonevents at ti in two groups.

[image: c02tbl0006ta]

Briefly, the hypergeometric probability of having d1i in n1i, given the fixed values of ni, n1i, and di, can be written by 

(2.47) [image: c02e047]

where [image: c02ue108] is the random variable for d1i. Specification of each binomial coefficient in Equation (2.47) is described in Section 3.7.

The hypergeometric random variable d1i, given ni, n1i, and di, is well defined, with the expected value 

(2.48) [image: c02e048]

and variance 

(2.49) [image: c02e049]

As will be further discussed in Chapter 3, the interpretation of Equation (2.48) is straightforward: if the variable d1i is random, its expected value is simply the proportion of ni selected to n1i, then multiplied by the total number of events di. In other words, if the null hypothesis holds, di should be proportionally allocated into G1 and G2. Therefore, from the variability of the observed d1i, the null hypothesis on the association between survival and group can be statistically tested given a value of α.

Mantel and Haenszel (1959) propose to sum the differences between d1i and E(d1i) for all observed survival times, given by 

(2.50) [image: c02e050]

where [image: c02ue109] is the sum of differences between the observed and the expected values of d1i over all the observed survival times. Likewise, the variance of [image: c02ue110] is the sum of the variances of d1i over the total number of survival times: 

(2.51) [image: c02e051]

As [image: c02ue111] tends to be normally distributed with increasing sample size, its standardized form has mean zero and variance 1, written by

[image: c02ue112]

Therefore, a z-score can be derived for testing the independence of survival and group, with the test statistic defined as 

(2.52) [image: c02e052]

Given the standard procedure for the z-test, significance testing on the null hypothesis can be performed: if the z-score is smaller than zα, the null hypothesis that H0: S1(t) = S2(t) should be accepted with the conclusion that survival and group are independent. If z ≤ zα, on the other hand, the H0 hypothesis should be rejected, implying that G1 and G2 are probably subject to two different survival processes.

When the total number of observed events is large, a more plausible statistic for testing the difference in two group-specific survival functions is to convert the standard normal to the chi-square distribution. Statistically, the square of a standard normal random variable has a chi-squared distribution, so a robust and efficient test statistic based on the chi-square distribution, generally denoted by Q, is 

(2.53) [image: c02e053]

where χ2(1) indicates the chi-square distribution with one degree of freedom for two groups. If the Q score is greater than or equal to the score associated with α, the p-value is lower than or equal to α and thus the null hypothesis is to be rejected. If the p-value is lower than α, then the difference in the two survival functions is probably due to sampling error, so H0 is accepted. Generally, the p-values generated from both z-score and Q-score are identical when the sample size is large.

Peto and Peto (1972) and Prentice (1978) mathematically formalize the logrank test developed by Mantel and Haenszel (1959). This formalization includes the derivation of logrank scores for survival data with right censoring, starting with the specification of a real-valued random variable [image: c02ue113] with c.d.f. F(t) and survival curve S(t) = 1 − F(t). Suppose that Sk(ti, θi) is a survival function parameterized by θi, where θi = θ1i for G1 and θi = θ2i for G2, and k = 1, 2. Here, the test on the independence of survival and group can be performed in terms of the parameter θ with the null hypothesis H0: θ1i = θ2i = θi. The parameter θi can be linked to a parametric distribution and estimated from a specific parametric likelihood function, denoted by [image: c02ue114]. By such specifications, the logrank test can be expressed in terms of ordered residuals relative to a parametric distribution (Andersen et al., 1982; Prentice, 1978).

Given a continuous survival function, the hazard rate for Gk(k = 1, 2) at ti, given [image: c02ue115], is given by 

(2.54) [image: c02e054]

Therefore, the cumulative hazard rate for Gk(k = 1, 2) at ti, given [image: c02ue116], is 

(2.55) [image: c02e055]

where the function Sk is known and continuous.

In the presence of censoring and without ties, let υ1i = 0 if d1i is right censored; otherwise υ1i = 1. Assuming θ0 is a fixed form of θi for all t values, the fixed overall parameter θ0, under the null hypothesis, can be estimated by 

(2.56) [image: c02e056]

As S(υ1i) is relative to the occurrence of a single event, the denominator in Equation (2.56) is the expected number of total events from t0 to survival time ti in G1. Alternatively, Equation (2.56) can be mathematically expressed as 

(2.57) [image: c02e057]

Therefore, the estimate of θ0 can be expressed as the Nelson–Aalen estimate over the cumulative hazard function from a continuous distribution.

Given the null hypothesis and letting 

(2.58) [image: c02e058]

Peto and Peto (1972) specify the following equations: 

(2.59) [image: c02e059]

which is regardless of the fixed censoring point of [image: c02ue117].

Let Oki = dki and Eki = eki (i = 1, … , n′; k = 1, 2) in a traditional fashion. Under the null hypothesis, E(Oki − Eki) = 0 and var(Oki − Eki) = E(Eki). As a result, a test statistic can be expressed by  

(2.60) [image: c02e060]

Equation (2.60) agrees with Equation (2.53) using a different expression. According to Equation (2.59), Equation (2.60) further reduces to 

(2.61) [image: c02e061]

Equation (2.61) indicates that the Mantel–Haenszel statistic is basically an approximate to the familiar Pearson chi-square test for equality of two groups. The term ‘logrank test’ actually comes from Peto and Peto’s inference, in which the method uses the log transformation of the survival function to test a series of ranked survival times. In the absence of censoring, as Andersen et al. comment (Andersen et al., 1993, p. 349), the logrank test generates test scores approximately linearly related to the log rank of the observations ordered from the largest to the smallest (the so-called Savage test).

2.3.2 The Wilcoxon Rank Sum Test on Survival Curves of Two Groups

The original Wilcoxon two-sample rank sum test (Wilcoxon, 1945) is perhaps the most popular nonparametric testing technique for two population groups. Traditionally, this test has been widely used as an alternative to the paired t-test when the assumption of normality cannot be satisfied. In particular, the Wilcoxon method is applied to the ordinal or continuous response variables with the null hypothesis that the distribution of a given variable is the same for two population groups. The test is based on the calculation of a statistic, generally called U, whose distribution under the null hypothesis is known.

Gehan (1967) and Breslow (1970) extend the Wilcoxon rank sum test to the context of survival analysis. Before describing the extended approach handling right censoring, I review the Wilcoxon rank sum test for uncensored data for familiarizing the reader with this type of test. Suppose n1 and n2 individuals are allocated randomly into G1 and G2, with n1 + n2 = n. Then the observations are rank ordered by group:

[image: c02ue118]

All the observations are then arranged into a single ranked series, regardless of which group they belong to, given by

[image: c02ue119]

The ranks for observations in G1 are added up: 

(2.62) [image: c02e062]

where R1i′ is the rank of n1i′ in n(i), where i′ = 1, … , n1). R2 can be obtained by adding ranks of n2i″ in n(i), where i″ = 1, … , n2.

Given that the ranked observations are survival times that follow cumulative distribution functions F1(n1) and F2(n2), I specify the null hypothesis that H0: F1(t) = F2(t). The Wilcoxon rank sum test is based on the calculation of the statistic U, whose distribution under the null hypothesis is known, written by 

(2.63) [image: c02e063]

where 

(2.64) [image: c02e064]

and 

(2.65) [image: c02e065]

The U score can be tested according to the distribution specified in Equation (2.63). Specifically, for testing the null hypothesis the following counting process is specified: 

(2.66) [image: c02e066]

The total U score is defined by 

(2.67) [image: c02e067]

As defined by Equation (2.67), U is the cumulative number of observations in G2 whose rank is definitely less than n1i′ minus the number of observations in G2 whose rank is definitely greater than n1i′. Therefore, if the null hypothesis is true, the value of the U-score should be zero.

From the above equations, a close relationship between U and R1 can be identified, given by 

(2.68) [image: c02e068]

As a result, U can be expressed in terms of R1: 

(2.69) [image: c02e069]

Gehan’s approach (1965) adapts Equation (2.67) to survival processes in the presence of right censoring. Let ti′ and ti″ be actual survival times and [image: c02ue120] and [image: c02ue121] censored times for G1 and G2, respectively. Then, Gehan redefines the Ui′i″ score as 

(2.70) [image: c02e070]

In Gehan’s approach, whether a censored observation is counted as 1, 0, or −1 depends on the timing of censoring as compared to survival times of the other group. If censoring occurs to a member of G1 but the censored time is greater than or equal to the actual survival time for a given member of G2, the rank of the actual survival time for the member of G1 is greater than the actual survival time for the member of G2. Consequently, the score should be 1. In contrast, if the actual survival time for the member of G1 is less than or equal to the censored time for the member of G2, the rank of the survival time for the member of G1 is definitely less than the actual survival time for the member of G2. Then the value −1 should be assigned. If censoring occurs to an individual in one group before an event takes place for a matched member in the other group, a comparison of their ranks is difficult, so the score is simply 0.

A summary statistic for observation i′ (i′ = 1, … , n1), denoted by Wi′, is defined by 

(2.71) [image: c02e071]

Equation (2.71) indicates that for an individual of G1 with event time i′, Wi′ is the number of observations in G2 whose lifetimes are definitely less than ti′ minus the number whose survival times are definitely greater than ti′, taking into account the occurrence of right censoring. If survival is truly independent of group, survival times should be randomly distributed; then the expected value of Wi′ is 0. Given this rationale, the Gehan statistic, denoted by W, is 

(2.72) [image: c02e072]

where the sum is over all n1-versus-n2 comparisons.

If the null hypothesis holds, the statistic W has the properties 

(2.73) [image: c02e073]

 (2.74) [image: c02e074]

Finally, the null hypothesis that S1(t) = S2(t) can be tested by the Q test, given by 

(2.75) [image: c02e075]

Therefore, given the value of α, the equality of survival curves between G1 and G2 can be statistically tested by the p-value of the above chi-square distributed statistic. This method is the so-called generalized Wilcoxon test in survival analysis. From Equation (2.75), the reader might notice its striking similarity to the logrank test.

As the number of individuals exposed to the risk of a particular event decreases with the rank of survival times, the generalized Wilcoxon rank sum test implicitly uses the number of exposures just before a survival time as weight for the derivation of the statistic. This implied feature is the major difference between the generalized Wilcoxon test and the logrank test. As more weights are given to differences in the survival function at smaller t values, Tarone and Ware (1977) suggest the use of the square root of ni as the weight to perform the generalized Wilcoxon test, so that a more balanced Q statistic can be derived.

Peto and Peto (1972) and Prentice (1978) advocate a different scoring method in the presence of censoring, using the Kaplan–Meier survival estimates. Here, the status indicator is used for a survival or a censored time, defined as δti′, where δti′ = 0 if ti′ is a censored survival time and δti′ = 1 if ti′ is an actual survival time. Then the Wi′ is redefined as 

(2.76) [image: c02e076]

Accordingly, the overall test score, W, is redefined as the sum of the scores generated by performing Equation (2.76) for G1. In the presence of tied cases, this test score is reformulated by 

(2.77) [image: c02e077]

The Peto and Peto (1972) and Prentice (1978) generalization of the Wilcoxon test is considered to be preferable to Gehan’s approach because their generalized scores are consistent for an exact observation in the presence of right censoring. In Gehan’s method, scores at particular survival times vary according to the pattern of censoring imposed on the observations, so that differences in the pattern of censoring between G1 and G2 can somewhat affect the quality of a test (Andersen et al., 1993; Peto and Peto, 1972).

In general, compared to the logrank test, the generalized Wilcoxon rank sum test is sensitive to early differences between two survival curves, given the assignment of weight to each observation. Tarone and Ware (1977) argue that these two popular approaches can be unified by a general counting system in which they differ only in the choice of weight. This characterization enables statisticians to develop generalized procedures with choices of weight, as described in Subsection 2.3.3.

2.3.3 Comparison of Survival Functions for More Than Two Groups

In empirical analyses, researchers often need to compare survival processes among more than two population groups. In biomedical studies, for example, there are frequently more than two treatments or testing groups in clinical trials. In survey data analysis, scientists are often interested in whether or not the occurrence of a particular event differs among several socioeconomic and demographic groups for gaining important information with policy implications. Given survival data allocated into more than two population groups, the theoretical question is whether any of those population subgroups differs from any others in the survival function.

Technically, tests on survival curves of more than two groups are simply the extension of the two-sample perspectives described above. Suppose there are K different groups, where K > 2, denoted by G1, G2, … , GK, respectively. In the presence of right censoring, the survival data from group k (k = 1, … , K) is

[image: c02ue122]

where δki is the censoring status indicator defined earlier. In this survival data structure, at each survival time ti (i = 1, … , n′) the sample ni is allocated into K groups, given by n1i, n2i, … , nKi. Likewise, di is divided into d1i, d2i, … , dKi, where dki is defined as the number of individuals in Gk who experience a particular event of interest at survival time ti. Therefore, ni = n1i + n2i + … + nKi and di = d1i + d2i + … + dKi. If there are no tied observations, one of the dki takes the value 1 and the others take the value 0. This classification can be illustrated by a (K × 2) contingency table displaying the number of events and the number of nonevents at ti, as classified by K groups (Table 2.7). Using this table, the null hypothesis to be tested is that all K groups are subject to an identical survival function, written by H0: S1(t) = S2(t) = … = SK(t). This null hypothesis is to be rejected if one of the Sk(t) values deviates significantly from any of the others. A χ2(K − 1) test can be performed by comparing the observed and the expected values of events, by extending the methods described in Subsections 2.3.1 and 2.3.2.

    
    
    Table 2.7 Number of events and of exposures at ti in K groups.

[image: c02tbl0007ta]

    
With K groups involved in a comparison, a matrix expression of mathematical equations is more convenient. Let Oi = [d1i, … , d(K−1)i] be a vector for the observed number of events in group 1 to group (K − 1) at event time ti. Given a series of numbers of exposure, denoted n1i, n2i, … , nKi, the distribution of counts in Oi is assumed to follow a multivariate hypergeometric function, conditional on both the row and the column totals (a detailed description of the hypergeometric distribution is provided in Chapter 3). This multivariate hypergeometric distribution, under the null hypothesis, is associated with a mean vector 

    
   
(2.78) [image: c02e078]

and a variance–covariance matrix  

(2.79) [image: c02e079]


    
    In the standard logrank test, the kth diagonal element in Vi is defined as 

(2.80) [image: c02e080]

and the kιth off-diagonal element is 

(2.81) [image: c02e081]

where k ≠ ι.

With (K − 1) degrees of freedom, the Q score for the logrank test of the (K × 1) table can be written as 

(2.82) [image: c02e082]

where

[image: c02ue123]

It is recognizable that the procedures of comparing survival curves for more than two groups, as formulated by Equations (2.78) through (2.82), are simply the expansion of the logrank test on two groups described in Subsection 2.3.1. The logrank test, however, does not consider group weight in calculating the test statistic. This procedure may not cause serious bias when comparing two population samples, given relatively similar numbers of individuals. In comparing more than two survival curves, however, this problem can be serious because the number of individuals is usually unevenly allocated. Using weights can reduce sensitivity to early or late departures in testing the relationship among multiple samples (Klein and Moeschberger, 2003). As a result, some other techniques in this area, like the generalized Wilcoxon sum rank test and its modified version, may be used as alternatives.

As indicated earlier, some scientists (Klein and Moeschberger, 2003; Tarone and Ware, 1977) suggest that the logrank test and the modified Wilcoxon rank sum statistic can be specified in a way that they differ only in the choice of weight. This clarification results in the standardization of various techniques for comparing survival data of different population groups. Specifically, this unification is conducted by defining a weight function wk(t), given the property that wk(t) = 0 whenever nki is 0.

Let t1 ≤ t2 ≤ t3 ≤ t4 ≤ … ≤ tn be the distinct survival times in a combined sample and w(ti) be a positive weight function at event time ti. Then the rank test statistic for comparing survival functions of K groups have the form of a K-dimensioned vector [image: c02ue124] with [image: c02ue125],given by 

(2.83) [image: c02e083]

The estimated variance–covariance matrix of [image: c02ue126], V = (Vkι), is defined as 

(2.84) [image: c02e084]

where δkι is 1 if k = ι and 0 otherwise. The term [image: c02ue127] is a weighted sum of observed minus expected numbers of events under the null hypothesis of identical survival curves. Given the standardization, the overall test statistic, denoted by Qstandard, is generally written as a multivariate sandwich equation [image: c02ue128]. To spread it out with consideration of weights, the equation is 

(2.85) [image: c02e085]

where wi = diag(wi) for a (K − 1) by (K − 1) diagonal matrix.

Equation (2.85) is used as a generalized formula for testing survival curves of K groups, in which several models of this sort are reflected with differences only in the choice of weight. As a standardized expression, Equation (2.85) can also be applied to a two-group comparison as a special case with K = 2.

Given a unified specification, differences in various methods can be evaluated by examining the specification of weight for each testing method. The logrank test is based on the comparison between the observed and the expected numbers of events at each event time regardless of the distribution of n, so that wi is an identity matrix over all event times for this test. Gehan’s Wilcoxon rank sum test takes into account the distribution of sample size across all ti values and, therefore, in this test wi = diag(ni). Tarone and Ware (1977) suggest, as mentioned previously, that more weight should be assigned to later differences between the observed and the expected numbers of events, so that, in this method, wi = diag(ni)1/2. In the Peto–Peto Wilcoxon test, on the other hand, the Kaplan–Meier estimate for the pooled sample, [image: c02ue129], is used as the weight. Based on the survival function of a pooled sample, instead of survival times and censoring distributions, the Peto–Peto weight specification is believed to have the capacity of generating more reliable results when censoring patterns differ over individual samples (Prentice and Marek, 1979).

Prentice (1978) and Andersen et al. (1982) propose a method to modify the weight used by the Peto–Peto method. They contend that in the Peto–Peto test, the Kaplan–Meier estimator for S(t) should be replaced by the following estimator: 

(2.86) [image: c02e086]

According to Prentice (1978) and Andersen et al. (1982), Equation (2.86) provides a consistent estimator of S(t) under mild conditions on censoring. The test with such a weight is called the modified Peto–Peto test. When n is large, however, the modified Peto–Peto test generates very close or even identical results to those derived from the test originally proposed by Peto and Peto (1972).

There are some other tests on survival curves of different population groups dealing with other lifetime situations, such as the stratified and logrank tests for trend. For those additional testing techniques, the interested reader can refer to Collett (2003), Lawless (2003), and Klein and Moeschberger (2003).

2.3.4 Illustration: Comparison of Survival Curves between Married and Unmarried Persons

To display how to perform various statistical tests on differences in the survival function between two or more population groups, I provide an empirical example about marital status and the probability of survival among older Americans. In particular, I want to estimate the five-year survival function among currently married and currently not married persons separately, and then assess whether or not the two survival curves differ significantly. In the survival data of older Americans, there is a variable called ‘Married,’ with 1 = ‘currently married’ and 0 = else, used for stratifying the survival data. The null hypothesis is that the survival curve for the individuals who are ‘currently married’ does not differ distinctively from the survival curve among the ‘currently not married,’ written by H0: (S1(t) = S2(t). I propose to use the above-mentioned five methods to test this hypothesis.

The SAS program for performing the five tests largely assembles SAS Program 2.1, with the addition of the variable ‘Married’ in the PROC LIFETEST statement as the stratification factor, shown below.

SAS Program 2.5:

…………

proc format;
  value Rx 1 = ′Married′ 0 = ′Not married′;

………
ODS graphics on;

proc lifetest data = new plots = survival(atrisk = 0 to 60 by 10); 
  time Months * Status(0);
  strata married  / test = all;
run;

ODS graphics off;

Compared to SAS Program 2.1, this program adds the stratification factor ‘Married,’ a PROC FORMAT statement that specifies values of that factor, and a STRATA option in the PROC LIFETEST statement. The PLOTS = survival option requests SAS to plot the survival curves and the ‘ATRISK =’ option specifies the time points at which the numbers exposed to the risk of death are displayed. In the STRATA statement, the TEST = all option specifies that all the nonparametric test scores are calculated.

SAS Program 2.5 yields a large quantity of output data. Therefore, I select to display the basic descriptive information and the results of the five tests in the following table.

SAS Program Output 2.1:

    [image: c02uf001]

The first part of SAS Program Output 2.1 presents the distribution of the total sample, of the number of events, and of the number of censored observations, classified by marital status. Of 1982 individuals, 1090 are currently married and 892 currently not married. There are 399 persons who are deceased by the end of the 60th month, among whom 181 are currently married and 218 are currently not married. Additionally, 1583 older persons are right censored: 909 ‘currently married’ and 674 ‘currently not married.’

The second section of the output table displays the test scores, varying over different methods as anticipated. The final section demonstrates the test results on the five methods described previously. Those tests generate very close chi-square statistics assuming a χ2(1) distribution, especially those generated from the Peto–Peto and the modified Peto–Peto tests. With a negligible difference (19.6290 versus 19.6285), the modified Peto–Peto test is not shown to improve the original estimate significantly in this example. Each of the test scores attaches to a p-value, all smaller than 0.0001. Given the consistency of the test scores and the corresponding p-values, it can be concluded that the null hypothesis should be rejected; that is, the survival curve for currently married persons differs significantly from the survival curve among their unmarried counterparts.

In SAS Program 2.5, the PLOT = SURVIIVAL option requests SAS to produce two survival curves, one for currently married and one for currently not married. The graph in Figure 2.6 is the resulting plot, where the survival curves for the two groups, currently married and currently not married, are displayed, along with the number of older persons exposed to the risk of death at month 0, 10, 20, 30, 40, and 50. The dominance of the survival curve among currently married older persons is obvious as the probability of survival declines at a much slower pace than does the curve among the ‘currently not married.’ The two survival curves start to separate after month 0, then the separation widens consistently over time. According to the results of the five tests, the separation between the two survival curves is statistically significant, demonstrating that older Americans who are currently married are expected to live longer than those currently not married.

Figure 2.6 Plot of survival curves for currently married and currently not married persons.

[image: c02f006]


2.4 Summary

This chapter describes some widely used descriptive approaches in survival analysis. Both the Kaplan–Meier and Nelson–Aalen estimators are described extensively, including the derivation of variances, confidence intervals, and confidence bands for the survival function. As most lifetime indicators are intimately associated, the Kaplan–Meier and Nelson–Aalen estimators can be applied to estimate other lifetime measures, given relevant formulas described in Chapter 1. Additionally, I provide a brief introduction about the life table method. While a life table accounts for survival times of censored observations both across and within fixed intervals, in many aspects the life table estimates approximate those generated from the Kaplan–Meier and the Nelson–Aalen approaches. One distinct advantage of using the Kaplan–Meier and Nelson–Aalen estimators over the life table method is the flexibility of using data with a small sample size, which is perhaps the reason why the life table method is rarely applied in biomedical studies.

In this chapter, I also describe several popular methods for testing survival functions of two or more population groups statistically, including the logrank test, Gehan’s generalized Wilcoxon rank sum test, the Peto–Peto logrank and Wilcoxon methods, and the Tarone and Ware modified test. All these methods can be articulated by a unified formula in which they differ only in the choice of weight. This characterization facilitates the development of computer software procedures that program all those methods within an integrated estimating process, as exemplified by the programmed options in SAS PROC LIFETEST. While all these techniques often generate very close and even identical testing results, the logrank and Gehan’s generalized Wilcoxon rank sum tests are the most widely used approaches to compare two or more group-specific survival curves.

As a stratification factor can be causally associated with some other explanatory factors, there are potentially conflicting possibilities for a bivariate relationship between a single covariate and survival outcomes. Methodologically, one of the potential possibilities is a spurious association, defined as a mathematical relationship in which two factors have no actual causal connection but look correlated due to the existence of one or more ‘lurking’ or confounding variables. A good example is found in a study of the relationship between education and smoking behavior among older Taiwanese (Liu, Hermalin, and Chuang, 1998). In the traditional Chinese culture, the majority of older Taiwanese women are illiterates, but, at the same time, they are less likely to smoke cigarettes and more likely to survive than older men. Consequently, a descriptive analysis displays a strong positive association between education and smoking cigarettes among older Taiwanese, a phenomenon contrary to what is expected. This observed association is obviously spurious because most lowly educated Taiwanese women do not smoke, thereby confounding the actual association between education and smoking behavior. After the lurking variable ‘gender’ is controlled, the association between education and smoking behavior among older Taiwanese becomes significantly negative. Therefore, caution must apply when performing the descriptive approaches described in this chapter. These methods only have the capability to provide tentative results in survival analysis. There are some exceptions in this regard, including some of the clinical trials in which the potential confounding effects are taken into account in the process of randomization.
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