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Preface

This book is intended for use by field biologists and others, including future field biologists who might be in a university course, engaged in the day-to-day study and conservation of vertebrate animals. Our goal is that conservation biologists use this book as a (with apologies to our colleague Evan Cooch) “gentle introduction” to the field of quantitative ecology. We hope to convince readers that the methods and approaches within are not the domain of mathematicians, statisticians, and computer programers, but in fact are essential tools to doing the job of conservation in the twenty-first century.

We intend this book to be used. Read it, mark it up, and take it into the field. Consult it before collecting field data, to motivate and design your monitoring and research programs (Part I), and afterwards to properly analyze and interpret the data that (hopefully) have now been properly gathered (Part II). Especially in Part II we hope that this introduction gives field biologists the basic tools and confidence to tackle the specialized books covering many of the field techniques that we cite in this book.

We draw particular attention to Part III of the book, which deals with structured decision making and adaptive management. We would actually encourage readers to skip ahead to this section and get to grips with the essential ideas of applying models to conservation decisions. Then return to Parts I and II for the details of how to build models and collect and analyze field data. This will help keep the focus where we want it – on the practical application of these methods to solving real conservation problems.

As noted on page ii, we have provided a website for the book and an accompanying CD. The website will be updated (and corrected) periodically as new developments occur and as (inevitably) mistakes are found. The CD contains all the material on the website but cannot, of course, be kept up to date as easily as the website. Both provide ready access to all the worked examples in the boxes in the book, with much more detail than allowed for in the printed book. To that end, we have provided links to software and other resources, most of it freely available on the internet. The website and CD are essential resources for the book, so we strongly encourage readers to use them to repeat for themselves the analyses performed in the book, and as a template for performing analyses of their own data.

Finally, this book is not intended as a substitute for other, more comprehensive books, notably Williams et al. (2002). To keep this book to a reasonable length, and in order to remain accessible to a less mathematically oriented audience, we chose not to cover all the methods available, and have not provided the sort of depth that more advanced references such as Williams et al. (2002) provide. So, for example, we have only briefly described such important approaches as the Pradel temporal symmetry model, Barker/Burnham joint recapture–recover models, and multi-state models (Chapter 12), but have instead provided a context in which readers might assess whether these models could be useful in their applications, and have pointed the reader to the appropriate in-depth background and relevant software. Likewise, we have given only a “barebones” treatment of the Robust Design (Chapter 12), but we have provided an example that should give readers a good idea of just how powerful an approach this is. We have, rather, emphasized practical applications and examples – which is why we again exhort readers to use the CD and website to full advantage.
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Companion website and CD-ROM


We have provided an electronic companion to the book in two formats: hypertext on CD, and a webpage maintained at the University of Georgia available via www.blackwellpublishing.com/conroy

The companion contains the details of all the Box examples in the book, including data input and program output where specialty programs (such as MARK or DISTANCE) are used, or in many simpler cases, spreadsheets in Microsoft Excel format.

All software (except Microsoft and other standard proprietary products) referenced herein can be obtained, usually free of charge, via the internet.

We have provided links to these programs, as well as to other modeling and statistical software that, while not directly referenced, may be useful to readers. Readers should always obtain the most up-to-date versions of these programs.

Finally, we have provided links to advanced undergraduate and graduate courses that we and colleagues have taught at the University of Georgia, as well as to short courses and workshops on topics covered in the book.

We encourage readers to periodically consult the webpage and check for updates to this material, as well as to report to us any errors that they may find.

We trust that readers will find this material useful, and suggest that it is mainly by applying the concepts in the book to real examples that readers will most benefit from this material.







1

Introduction: the role of science in conservation

The impetus for this book began as the result of a rather fortunate convergence of the careers of the authors at the University of Georgia. Although we were educated in traditional wildlife management programs during the 1970s and 1980s, we both developed an interest in what is now better defined as conservation biology. Interestingly, we underwent an evolution in our thinking, leading to similar ideas relative to what we perceived as weaknesses in our own profession and to how the creation of conservation biology as a profession, while addressing some of these weaknesses, fell short in many areas. We have also become increasingly involved in international issues in wildlife conservation, leading to further career intersections with other collaborators. Indeed, we have discovered that our interest in mixing conservation and science transcends political boundaries and sub-disciplines.

Evolution of conservation science

The integration of science and conservation of wildlife has quite a long history and is found in many forms. Game management in Europe and North America is based on the fundamentals of agricultural management and animal husbandry. This form of conservation biology is essentially the treatment of stocks of wild animals as domestic livestock and has evolved over hundreds of years. In both North America and Europe, wildlife management as a profession developed over much of the twentieth century following a somewhat parallel course that focused on particular species or groups of species and their management. The resulting body of literature and understanding of the population dynamics of those species and their management is enormous and some of the best information is available on vertebrates.

A second development occurred during the latter part of the twentieth century as interest and concern for the diversity of wildlife in mainly tropical parts of the world moved to the forefront. Scientists who worked predominantly in the area of ecology theory began several attempts to integrate ecology as a science with biological conservation. Driven in large part by North American and Australian scientists and coming to fruition by the late 1980s, we see the wholesale movement of scientists who traditionally dealt with empirical questions in ecology adopt an additional strategy concerned with the conservation of biological diversity.

The above developments resulted in several scientific disciplines, each with different strengths, converging to form scientific conservation biology. We believe that each discipline brings different strengths to conservation science. For example, wildlife management in North America has an excellent track record of applying scientific research to management and policy making. By contrast, the discipline of conservation biology has generally excelled at integrating ecological principles and conservation. The third important component here is the popularization of conservation among the general public which has resulted in an enormous influence of popular culture and activism on conservation and biodiversity management.

These developments then leave us with two scientific disciplines – wildlife (and/or game) management and its sister profession conservation biology. These disciplines can aptly be described by the general heading applied ecology, and are driven in part by non-scientific goals. This creates an interesting and sometimes complex series of relationships that can affect the ability of professional “applied ecologists” to strive toward their scientific objectives of obtaining reliable knowledge. We encounter several issues that are critically important at this juncture. First, as with any applied or endpoint-driven research, we must be particularly careful that our research does not simply become a series of self-fulfilling prophecies. Just as in theoretical–ecological research, our preconceptions about how systems operate must not cloud our ability to undertake objective research. In many ways the goal objectivity is easier to attain in theoretical research, because the results of theoretical1 research might only involve individual egos and career development, rather than ecological systems and biodiversity that we as individuals and conservation biologists hold dear to us. Over the course of history in scientific endeavors someone who develops some “new” theory would be under some pressure to defend the theory and other scientists might strive to find evidence to falsify it. These traditional scientific tensions are also important in applied research; however, there are now the added pressures created by outside forces from those having a stake in the outcome of research. This is because conservation scientists operate within a socio-economic-political “real world” that includes other values and tradeoffs. Even with a sympathetic public, conservation scientists and managers must act responsibly to allow policy makers to make the best decisions possible, often with limited resources and competing demands.

Conservation advocacy versus science

We distinguish between conservation advocacy – where conservationists become directly involved in promoting policies relative to biological diversity – and conservation science – which uses science to help society make more informed decisions. The latter is the target of this book. We believe that by adopting a scientific approach, not only is science better served, but also in the long-term conservation will be better served. The task is to simultaneously increase our understanding of systems in a dynamic world and to provide decision makers with the necessary information. This is why we believe that modeling approaches and adaptive management are critical components of the conservation research “system.”


Fig. 1.1 Classification of the relationship between data collection and understanding of systems. In theory we would like all of our conservation questions and issues to move into Box 3, where we have good data and good understanding of the system. Box 1 represents poor use of conservation effort and money. Boxes 2 and 4 represent the place where conservation biologists are starting their research on a particular issue.
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In this book we will often use models to summarize how we think a particular population or other resource behaves and might respond to various factors, including management. Our models will involve a combination of (i) our understanding of basic biological processes, and (ii) data available to support the various model components (Figure 1.1, from Williams et al. 2002, p. 112). Typically we will need to increase each of these two factors, as represented by the x and y axes of the graph (Figure 1.1). On the x axis, we wish to move to the right, which represents increasing understanding of the mechanisms driving a particular system. On the y axis, we move vertically as we increase the amount of data available on the system or parts of it. The box itself represents general areas of data quantity and system understanding. Ideally we should be in Box 3, where we have good amounts of empirical data and also good understanding of how particular systems operate. This is why we can use our understanding of gravity, material properties, and other components of physics to build bridges – which generally do not fail. Although this works well in many of the physical sciences, the complexity of combining biological and social/political issues makes this a difficult direction to move in for conservation questions or issues. More likely we are working in Boxes 2 or 4, where we lack data, knowledge, or both. In fact, in dealing with some conservation questions and species outside of the charismatic megafauna or well-studied game species, we are often starting in Box 4 with the proverbial “blank slate.” Making matters worse is the fact that biologists are often in the position where policy and/or management recommendations are expected after a single inadequately funded study. Although never ideal, this is political reality. Beginning in Box 2 is slightly better because we can use our base knowledge of similar systems to hopefully give us a stronger starting point. In both of these scenarios (Boxes 2 and 4) modeling approaches combined with good data collection will be useful. In wildlife conservation and tradition game or wildlife management in North America and Europe we may also be operating in Box 1. We may have high-quality and long-term biological data, but in many cases our understanding of the mechanisms driving systems for issues we are interested in tackling is still lacking. The integration of science in conservation management will ultimately provide the foundation for more informed conservation decisions and management.

Good science is cost effective

One of the common issues in conservation biology is the problem of inadequate funding. Outside of a few areas of conservation that can garner large amounts of money, most conservation biologists are faced with enormous questions and tasks, but limited time and financial resources. Even in programs that are relatively well funded, such as game management in North America and Europe, the scale at which many biological questions should be addressed and the resources that are available often are quite disparate. Conservation research competes for limited funding with conservation implementation (“management”). This means that if funding for research increases then funding for management decreases and vice versa. The only way to “win” at this zero-sum game is to improve efficiency. As we will argue in a number of places in this book, bad research is almost worse than no research. It can lead to wrong conclusions and wrong management.

In this book we argue that poorly designed conservation research projects also steal resources from conservation. That is, spending money on bad science not only wastes that money, but also takes money from good science and good management. Thus good science combined with improved efficiency will yield better conservation.

Conservation under fire

More and more frequently we are faced with skeptical and even hostile groups, who demand that conservationists “prove” claims of adverse impacts of desired development, ecological benefits of restrictions of forest logging or other resource consumption, proposed reserve systems, or declaring a species endangered, to name a few. While it can never be possible to “prove” (in the logical sense) such assertions, it is possible to collect and analyze data in such a way that the evidence so provided is repeatable and defensible. Conversely, data collected or analyzed in an unscientific way lead to conclusions that, while perhaps intuitively reasonable, are not repeatable, and will not stand up to scientific scrutiny. Increasingly the opponents of conservation projects are technically informed, and will eagerly reveal conclusions made by the conservation community that are based on flawed approaches. Here we emphasize that ethical, scientific conservation includes the honest reporting of study and data flaws, so that results may be appropriately interpreted. Improper reporting of results, especially to exaggerate certitude of estimates or effects, is both unethical and, in the long term, counter-productive, because when (inevitably) discovered the resulting loss of credibility can be devastating (Beier et al. 2006; Conroy et al. 2006).

Structure of the book

We envision this book as a practical and hands-on resource for field biologists. This book should be analogous to the field identification guides. It is the book you take with you and use all the time, but is not the one where you go to obtain the in-depth theory or mathematical derivations. We hope it complements some recent volumes, such as Williams et al. (2002), in assisting practitioners and students. We also envision the book being used in short courses for field conservationists. In fact, the impetus for this book came as a result of the participation of J.P.C. and M.J.C. in development of a week-long short course following the main conference in each of the last three International Galliformes Symposia.

Part I covers mainly the background we believe all biologists should review when presented with a conservation problem or question and asked to develop a research program. Chapter 2 provides some basic concepts in modeling. This is not “ugly” and complex modeling that most field biologists fear, but practical modeling that assists us in problem solving. Chapter 3 is a review and application of some basic population models. Chapter 4 deals with the issues of applying models to conservation questions. Chapter 5 provides a basic review of study design. Again, this part of the book is setting the stage for couching conservation questions in a way that makes our research more scientifically sound, economically efficient, and defendable.

Part II moves on to those topics of most importance to field biologists in collecting appropriate data in answering conservation questions. In Chapter 6, we begin with the general principles of estimation. Chapter 7 is a basic overview of occupancy studies. We believe that occupancy research is underutilized, but will eventually be viewed as one of the most important techniques in conservation. Chapter 8 covers the estimation of abundance from sample counts, and introduced the importance issue of incomplete detection, a recurrent theme through the book. Chapters 9 covers the basic principles of distance sampling, including line transect and point counts (the latter are also now called point transects). Chapter 10 provides background on mark-recapture (re-sighting) and mark-removal sampling in abundance estimation. Chapter 11 focuses on the estimation of demographic rates using data from radio-telemetry, nesting success, and age distributions. Chapter 12 expands on the issues of demographic parameters by incorporating some aspects of Chapters 10 and 11. Chapter 13 deals with the issue of habitat use and selection. Finally, in Chapter 14 we touch on some sampling and estimation issues for wildlife communities.

In Part III we begin to apply modeling and estimation tools to conservation decision making. In Chapter 15 we describe how conservation goals can be combined with predictive models and used as tools for decision making. In Chapter 16 we deal with issues of uncertainty in research and conservation decision making. We remind readers that in the real world we are faced with profound uncertainties, in part because nature cannot be controlled, but also because of our incomplete understanding of how ecological systems work. This leads on to Chapter 17, in which we show how monitoring information can be integrated into decision making, leading to adaptive management. In Chapter 18 we illustrate many of the principles of the book via an example of conservation of grassland birds in North America. Chapter 19 provides a short summary of the book.

We also provide several appendices that we hope readers will find useful. Because many readers will be familiar with some but not all the terminology we use, in the Glossary we provide a comprehensive list of terms. See p. ii of this book for numerical examples in electronic form with a detailed accompanying narrative. In Appendices A and B we provide links to sites where software and other resources can be obtained, much of it at no cost. In Appendix C we provide a comprehensive explanation and cross-referencing for modeling and statistical notation. Finally, in Appendix D we provide a dichotomous key for abundance and parameter estimation that can be used to assist in identifying appropriate estimation techniques, in much the same way that taxonomic keys are used to aid in animal or plant identification.

We especially hope that the chapters in this book give field conservationists the courage to tackle some new ways of viewing conservation problems. This is where we believe this book is most useful – in taking the fear out of quantitative and modeling approaches to conservation, and making field conservationists realize they are not “black boxes” that are to be relegated to “systems ecologists” locked away in an office somewhere.

1Interestingly, theoretical biologists now find that outside influences are very much invading their realm, including recent debates involving religious organizations in the USA and other countries over evolutionary theory and natural selection.





Part I

Basic concepts in scientific investigations for conservation
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Using models in conservation biology

The word “model” tends to strike fear in the hearts of conservation biologists, who think of models as devices that can only be constructed (and understood) by quantitative specialists – and definitely not by field biologists. In fact, we will now argue that models are part of everyday life, and are used (consciously or not) by virtually everyone to make daily decisions. This is a critical starting point – we all use models all the time, so why are we so afraid of them when applied to conservation issues?

In this chapter, we first endeavor to de-mystify models, with some very simple examples, in which modeling is stripped to its essential elements. We then apply simple graphical and numerical models – most of which can be built using spreadsheets – to investigate population growth (exponential and logistic). More complicated models incorporating age structure and random variability are also considered. We apply simple models to two of the most important problems in conservation, namely that of harvesting (and “overharvest”) and conservation of “small” populations. We extend modeling to populations with spatial structure, critical to the important concepts of source–sink dynamics, habitat fragmentation, and population isolation, and to simple competition and predator–prey models.

We later spend some time discussing the use of “canned” models for investigating population dynamics, particularly population viability analysis (PVA). At this point we strongly warn readers about the dangers of naïve use of these packages, which often rely on numerous (and often not testable) assumptions. These warnings also apply to all statistical packages – generally no matter what you put in the front end of the program it will generate an “answer.” In addition, “canned” models are often designed to fit a wide range of systems – therefore many of these might not be appropriate for specific applications, creating additional problems. We are proponents of simpler, but more transparent, models that will be more informative about the system, and will be easier to evaluate with data. We provide several real examples of population modeling, both with user-developed models and “canned” approaches, to illustrate these ideas.

Types of models

What is a model? Quite simply, a model is an abstraction of something real. Even though models are mysterious and frightening to many, in fact we use them in everyday life. A map is a model – basically a scaled-down, two-dimensional drawing of a part of the Earth’s surface. It is not the Earth itself, nor is it even necessarily very realistic – it simply needs to get us from point A to point B and may do so in a rather artificial way. A very simple sketch of roads from your house to a friend’s house can be crude but extremely useful in meeting your objective of getting to your friend’s house safely. This just emphasizes that there are many kinds of models, and they don’t all live in computers or in lists of complicated equations.

The following is a range of models that the reader should recognize and use, some on a daily basis:

1. Conceptual models are really just ideas about how a system looks, works, or interacts with other systems. Such a model may reside completely in the brain of the person thinking about it – the “conceptualizer,” be represented in flow diagrams, or be formalized mathematically.

2. Physical models are physical representations of a system that work in some way that is analogous to how the system of interest works. For example, Pearson (1960) developed a sort of pinball machine (for those younger than the authors, these are old-fashioned mechanical video games) as an analogy for how birth and death processes work in populations: new balls released represented births, and balls dropping through holes deaths.

3. Graphical models are represented by anything we might show in graph form. For example, plots of average temperature versus rainfall might be very useful in predicting regions of drought.

4. Analytical models turn our ideas into a series of mathematical equations which may then be converted into computer code.

5. Numericalmodels report the quantitative outcome, often of a number of pieced-together predictions calculated by hand, in a spreadsheet, or in a computer program.

6. Empirical or statistical models use data in order to estimate parameters, and then test predictions and other hypotheses, using sample data. It is this type of model and the previous two that often scare and excite conservation biologists and comprise the heart of many useful conservation programs.

It should be clear to the astute reader that the above classification of models is artificial, and that there is much overlap among the categories. At the very least, it is easy to see how development of one type of model can easily lead to another. For example, one might have a purely theoretical idea of a relationship between a biological response and an environmental predictor (conceptual model), which might then be plotted (graphical model). One might even wish to make up some values for the coefficients of the model and generate some predictions (numerical model), or explore the general behavior of the model under a wide range of possible parameter values (analytical model). As good field biologists, however, we should not be happy until we have collected some data, estimated parameters, and tested some predictions of alternative models (statistical models). Closing the loop, the statistical models may reinforce the original conceptual model, or they may challenge it, leading to a revised conceptual model, more graphing, analysis, and prediction, and so on (Figure 2.1).


Fig. 2.1 Flow diagram of feedbacks on various types of models that might be used to better understand problems in conservation biology.

[image: c02f001]


Basic principles of modeling

Perhaps the second biggest mistake conservation biologists make about modeling – next to fearing and avoiding the topic – is embarking on a modeling exercise in a haphazard and arbitrary way. Modeling can be very useful, but only if done so methodically, with a purpose in mind, and remembering George Box’s admonition that “all models are wrong, but some may still be useful” (Box 1979).

Defining the objective

As with any approach, it is important to keep the objective of modeling firmly in mind. This will determine such things as the scale or detail of the modeling; what sort of system features need to be included and which do not; and whether the model is purely a “thinking exercise” versus an actual predictive tool. For example, if our objective is to manage a population for sustainable harvest, we should be mainly interested in modeling aspects of population dynamics as they relate to the impacts of harvest. Inclusion of details about individual animal behavior, resource selection, and other features, while interesting, are probably not germane to the issue of sustainable harvest, and should not be included. In fact, these latter components might serve to make understanding the dynamics of harvest much more difficult to tease out of the system, by creating large amounts of noise in our model. Conversely, genetic composition of a population may be critical to a decision we are about to make about conservation. In this case, modeling focused only on abundance and other population-level parameters will be insufficiently detailed for our needs.

Defining parameters, variables, and functional relationships

Most models will involve a variety of inputs, outputs, and functional relationships that specify the biological features we are trying to mimic. Features like population size, age structure, and habitat condition that tend to vary over time and space are typically referred to as state variables (or simply “variables”). Constants that control the rate of change, or otherwise express relationships between variables, are parameters. Examples of parameters include survival and birth rates. Two simple examples illustrate these terms, and the idea of simple model building. First, suppose that we wish to translate the prediction “as amount of habitat increases the abundance of our species of interest increases linearly.” In this example, abundance and habitat are state variables, which we might label as Y (abundance) and X (amount of habitat), respectively. The hypothetical increase in abundance with increasing habitat occurs at a rate b, so our model is simply:

[image: c02e001]

(Something to think about – we could have included a Y -intercept term, rather than the assumed value of “0” in our equation, but any positive value would have resulted in a prediction for positive abundance in the absence of any habitat! Some more observant readers might catch us here and point out that there could be a negative Y intercept. This suggests that there is some level of habitat (X intercept) for which the population drops to “0”.) The actual value of b could be chosen by us arbitrarily; such as a value approximately based on first principles of biology, or estimated statistically (e.g., using linear regression methods).

To take another example, suppose we wish to predict population change over time. Our state variable, abundance, now should be indexed to time (t); we will represent abundance at time t as N (t). A simple model of population growth (which we will explore further in the next section) supposes that birth (b) and death rates (d) are constant over time, leading (in the absence of immigration or emigration) to constant growth r = b – d. These are the model parameters (in this case r alone suffices). Our basic dynamic model is

[image: c02e002]

simply, that next year’s abundance [N (t + 1)] is equal to this year’s abundance times a growth multiplier. Actually, we need one more feature to complete our model: a place for the population to start. This initial condition is the population’s abundance at some initial time t = 0, N(0). Given this value, and a value for r, we have a working model. For example, if we take r = 0.05 and N(0) = 100 we have:

[image: c02e003]

and so on. The result is that a small amount of information about a population can allow us to create a simple and possibly useful model in describing the abundance of some species.

Discrete or continuous models: stochastic or deterministic

There are many mathematical ways to construct models, and the above simple examples represent two types of choices for model construction. If our models are dynamic (meaning that the population or other state changes over time), then we must decide whether to represent time in discrete terms as above, or in continuous form. For most of the modeling in this book we favor discrete-time models, because many of the animals we deal with reproduce seasonally, so discrete time seems appropriate. Also, many population surveys are conducted annually at specific dates, making it easier to think about population change as occurring over intervals [t, t + 1] rather than instantaneously. Finally, the mathematics of continuous-time models can be more difficult, involving differential calculus; discrete-time models are represented by difference equations, somewhat easier to grasp, and also easier to translate into spreadsheets or other computer code. However, continuous-time models are important in much of ecology, so advanced readers are encouraged to study them further in references such as Williams et al. (2002).

Conservation modelers must also decide whether to build models that are deterministic – that is, contain no random elements – or stochastic, containing random elements (and thus predictions that vary from one run to the next). There are advantages and disadvantages of each type of model. It is often a good idea to start with deterministic models and focus on the mathematical behavior of the model, such as equilibrium and sensitivity analysis, without the added distraction of random effects. For example, the relative impact of one parameter versus another on the outcome from your modeling will be much clearer without random variation included. Once the mathematics of the model are well understood then random effects are often added to create additional model realism (since real populations are subject to many different types of random influences!) In the next section we build both deterministic and stochastic population models.

Verification and validation

Hopefully, any model we create is at least a plausible, if not necessarily correct, version of reality. However, it is very important to perform “reality checks” on models that we have built. Model verification is essentially a check to see that the model produces results similar to what we intended and (if data are involved) matches well the data used to build the model. At this step, we may discover that the model produces results that are nonsensical or biologically counterintuitive (e.g., negative population values, or survival rates > 1.0) or that otherwise make no sense. This is the time to discover why these aberrant results are occurring – and to fix them. Of course, just because the model produces results that look right does not mean that they are right. This is where model validation comes in. True validation involves the comparison of model predictions to data collected independently of the model construction (the data were not used to build the model). This is a very strong test of the model, and one that is unfortunately rarely done. We will return to model validation and ways to improve models through time later in this chapter.

Model behavior and sensitivity analysis

It is often very important to have an idea of how models behave over ranges of parameter values, or (for dynamic models) how they perform over time. Model behavior is especially relevant to conservation issues such as sustainable harvest and viability analysis, since we are usually interested in how real populations will behave over long time horizons, or in response to management actions. For dynamic models, it is especially important to determine whether the system will reach equilibrium, and, if so, where it (or they) exists. An equilibrium is simply a state at which the system no longer changes over time; for abundance that is where N (t + 1) = N (t). For many models, it is also important to determine model stability, essentially the tendency of a model to return to an equilibrium following a perturbation.

It is also important to evaluate the model’s sensitivity to variations in parameter values, for a number of reasons. First, some parameters may be controllable by management, and therefore knowledge of how these parameters influence the system (e.g., equilibrium abundance) can be very important to conservation and/or management. Second, most parameters will not be known with certainty, and a knowledge of how much it matters that parameter values are possibly varying from true values can focus priorities on improving these values.

In this chapter we should have accomplished two important things about models. First, and most importantly, we should have shown the reader that models are not to be feared and should be fairly useful to those of us doing conservation science. The second goal is to provide the lead-in for Chapter 3 where we expand our understanding of models to some practical examples.





3

Models of population dynamics

In this chapter, we apply the general ideas of modeling developed in Chapter 2 to the specific problem of modeling population dynamics. Here, our important state variables will usually be summary statistics of some kind, typically abundance of the population at a particular time and location. By dynamics, we simply mean how abundance, age structure, distribution, or other state variables change through time. Our model parameters will then describe the rates at which these state variables change through time, and will include such quantities as birth, death, and movement rates.

Balance equation of population growth

Essentially, dynamic models of population growth start from a very simple idea that comes from accounting: the balance sheet, or in even simpler terms, the act of balancing your personal checking account at the bank. We can view the population size at any given time as our “net balance” which changes through time via credits (additions to the account) and debits (subtractions). With population growth, the “credits” are births and immigrants entering the population, and the “debits” are deaths and emigrants leaving the population. Suppose we know abundance N in a particular year (t) and we wish to account for change until the next year (t + 1). We do so by applying our principles of accounting, namely, adding credits and subtracting debits:

(3.1)[image: c03e001]

In this expression, N(t) is the population size (abundance) that we started with, B(t) and I(t) are additions from birth and immigration, and D(t ) and E(t) are subtractions from death and emigration. This basic balance equation, called the “BIDE” (birth–death–immigration–emigration) model, sets the stage for all of the following population models, which are really either special cases or elaborations of this general model.

The BIDE model easily leads into some of our more general and useful models. Although the BIDE model is often expressed in terms of raw numbers of animals, for our purpose it is often more useful to re-express change in terms of per capita rates . It is also convenient for now to ignore immigration and emigration (essentially we are assuming that the population’s area is so big that these do not matter – they functionally cancel each other out). These modifications are accomplished by changing Equation (3.1) to eliminate I(t) and E(t), and then dividing both sides of the equation by N (t). When we do this we obtain:

[image: c03e002]

or

(3.2)[image: c03e003]

where b(t) and d(t) are now per-capita rates for birth and death, and λ(t) = 1+r(t) is the per-capita rate of population change, also called the finite rate of increase . This equation gets across the idea that per-capita population growth rates can change over time, and that they do so (in the absence of immigration and emigration) as a function of birth rates and death rates. With this simplification, we can rewrite the basic growth equation as

(3.3)[image: c03e004]

Density-independent (geometric) population growth

Our first “formal” population model is actually a simplification of the model in Equations (3.2) and (3.3). Suppose that birth rates and death rates remain constant over time, so that b(t) = b and d(t) = d. Then, we have r(t) = r = b – d, and our population will grow according to

(3.4)[image: c03e005]

that is, the per-capita growth rate remains constant – irrespective of environmental conditions, density, or other factors. Notice that if we start at some arbitrary initial time t = 0 with an initial abundance N(0), Equation (3.4) produces:

[image: c03e006]

After two time steps, the equation produces:

[image: c03e007]

and so on. This leads to a general equation for population size after t time steps of

(3.5)[image: c03e008]

Notice too that if r = 0.0 (i.e., λ = 1.0) the population remains unchanged; if r < 0.0 (λ < 1.0) the population declines exponentially until extinction; and if r > 0.0 (λ > 1.0) the population increases exponentially without limit (Figure 3.1). Because of these features, equilibrium [again, N(t + 1) = N(t)] only occurs when r = 0.0 [so the population stays at N(0)] or when N( t)  = 0 (where it stays stuck!)


Fig. 3.1Density-independent (exponential) population growth. (A) N (0 ) = 1000, r = 0.2. (B) N (0 )= 1000, r = –0.2.

[image: c03f001]


Note that the equivalent, continuous-time model based on differential calculus is

(3.6)[image: c03e009]

where r′ in Equation (3.6) is an instantaneous growth rate (see Williams et al. 2002, Chapter 8, for more details), and is approximately related to λ = r + 1 by

[image: c03e010]

The type of population growth given by Equations (3.4) and (3.5) is sometimes called “geometric” or “exponential” growth. It is also aptly described as density-independent growth because the rate r of growth never depends on population size or density (Figure 3.1, Box 3.1). In the next section we will relax this idea and allow for density to influence population growth.

Density-dependent population growth

Many if not most populations seem to be regulated by some type of density feedback, where the population growth rate is influenced by the size or density of the population. The idea is that at low numbers, there are plenty of resources for animals and little to inhibit population growth. At these low numbers, the population grows at its fastest per capita rate, which we will denote as rmax. As the population increase, competition, predation, disease, and other factors act to suppress birth rates (b) or increase death rates (d), so that these no longer are fixed, but vary in relation to abundance. Growth rates decrease until an upper limit K (often called the carrying capacity ) is reached; at this level of abundance the population is at equilibrium [r(t) = 0.0]. Above this level, the population growth rate is negative (r(t) < 0.0). These ideas are captured by a modification of Equation (3.4) allowing for density effects:

(3.7)[image: c03e011]


Box 3.1 Exponential population growth.

To see that Equations (3.4) and (3.5) produce the same result, let us take a case where initial abundance (N) is 1000 and r = 0.10. This is easy to do in a spreadsheet, for example using a simple spreadsheet program. Enter the values “0” and “1000” under columns labeled “t ” and “ N.” Continue entering values “t = 1,2,..., 10” in the “t” column (or compute these values in the spreadsheet). Now compute the value of N( 1) by multiplying (1 + 0.10) times the value of N(0); this is easier to do, for instance, if a spreadsheet cell equation looks something like:

[image: c03e012]

Then copy this cell down the page till you get to year 10. You should get something that looks like this (here we have rounded calculations to the nearest individual):



	t
	N



	0
	1000



	1
	1100



	2
	1210



	3
	1331



	4
	1464



	5
	1611



	6
	1772



	7
	1949



	8
	2144



	9
	2358



	10
	2594


Now try computing these values again, this time using Equation (3.5). In a spreadsheet, for t = 10 this might look like:

[image: c03e013]

This should give you the identical result as in the table for year 10.

Using Equation (3.4), you have to build up each year from the previous year, so this requires 10 calculations. With Equation (3.5) you can get the same result with a single equation, no matter how many years have elapsed.

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



Notice that Equation (3.7) is obtained from Equation (3.4) by adjusting rmax by an additional term [ 1 – ( N( t)/ K)] , which expresses the “braking” effect of population size on future population growth. This is often called “environmental resistance ” If you look at the two factors that can change in this term, you see as N(t) increases from a very small number to being very close to K that the ratio goes from being a very small number to being equal to 1.0. When you subtract that from 1.0 then you see the value of the result is equal to 0.0. When you multiply this by any value of growth rate (rmax) you always get zero growth. This means we have “braked” to a complete stop.


Fig. 3.2 Density-dependent (logistic) population growth. (A) N (0 ) = 1000, r max  = 0.2, K = 5000. (B) N (0 )= 10000, r max  = 0.2, K = 5000.
[image: c03f002]

This model results in populations that follow the familiar sigmoid (“S”) pattern of growthexhibited in Figure 3.2, in which populations approach K (from below or above) and remain there unless conditions change (e.g., there is an environmental disturbance of some kind). That is, the K represents a stable equilibrium in the logistic model.

The above discussion deals with the situation where increasing population density negatively influences population growth rates. In some instances, we can have a situation where the reverse occurs: at extremely low population numbers population growth rates also decrease. This phenomenon, known as the Allee effect (Allee et al. 1949), may occur, for instance, when an area becomes so thinly populated that individual animals have a difficult time finding mates, thus reducing per-capita birth rates. In some “small population” problems it will be important to consider Allee effects, but in most larger population problems (for instance, sustainable harvest) these effects can be safely ignored.

Finally, we point out that, as useful as the logistic model is for capturing the idea of density dependence, its utility can be limited by the fact that rmax and K are to some extent theoretical values that are difficult to observe in nature. We will discuss some of these points again in Chapter 4, when we apply the logistic and other models to conservation problems (see Box 3.2).

Populations: age-structured growth

Both of the above models assume that either the population is growing at a constant rate or population size is limiting growth uniformly for all individuals. However, many animal populations exhibit age structure, which also influences how the population grows. Typically this happens because birth rates, death rates, or both tend to be different among different age classes. Now also remember that the number of age classes can be quite different depending on the species. For example, for a very short-lived species, such as a northern bobwhite (Colinus virginianus), it might be simply divided into juveniles or adults. For species that survive a number of years, such as some deer (Odocoileus spp., Cervus spp.), the population might be divided into year classes. In very long-lived species, such as African elephants (Loxodonta africana) or whales (Cetacea) – or humans, individuals might be assigned to multiple year age classes.


Box 3.2 Logistic population growth.

You can generate the logistic curve yourself in a spreadsheet with just a slight modification of the example in Box 3.1. As in that example, enter the starting values “0” and “1000” under columns labeled “t ” and “N.” We will need to create about 50 years worth of data, so continue entering values “t = 1,2,..., 50” in the “t” column. Better yet, use the spreadsheet to compute these values; for example, if cell A1 contains 0 (for t = 0) then enter the formula:

[image: c03e014]

in cell A; copy this formula up to t = 50. We “grow” the population given the initial value of 1000 by creating a spreadsheet formula for Equation (3.7). If cell B1 contains 1000 [for N( 0) = 1000] then enter the formula:

[image: c03e015]

to generate logistic growth for rmax = 0.2 and K = 5000. Your results to t = 50 should look like this:

[image: c03t001]

You can make your model more flexible by setting the values for rmax and K as variables in spreadsheet cells, and then referring to these in your equation; Excel lets you easily do this by assigning names to the cells where the values for rmax and K are stored. Then you can use a command like:

[image: c03e016]

to create your model.

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



We can illustrate age stratification by returning to the density-dependent model [Equation (3.4)], but in this case separating the model into age strata (in this example we will use two age classes): a “birth year” class that survives at the rate Sj each year (equivalently, has mortality 1 – Sj ), but does not reproduce, and an “adult” class that survives at the rate Sa. In this simple model, we will assume that adults (if they do not die) stay adults, but juveniles all become adults after one year. We now need two equations to describe growth. For adults, population size at t + 1 is simply the total number of adults and juveniles surviving from the previous year:

[image: c03e017]

We will assume that we’re counting animals immediately after reproduction occurs; therefore the number of juveniles produced this year is calculated by the number of surviving adults and juveniles (now adults) that are now reproducing at the per-capita rate b. This gives us

[image: c03e018]

With a little algebra we can see that the growth rates for adults and juveniles actually are not constant over time, even though the survival and birth rates are constant:

[image: c03e019]


Fig. 3.3 Age-structure and population growth. Sa  = 0.7, Sj  = 0.5, b  = 0.8, Na(0)  = 20, Ny(0)  = 0. (A) Population trajectory, (B) proportion of juveniles, (C) growth rate ( λ ).

[image: c03f003]


The reason is that both growth rates now depend on the relative numbers of juveniles and adults that are in the population, known as the age distribution , and this number itself is potentially changing. Only when the age distribution stops changing over time, a condition known as a stable age distribution , can we reliably calculate a constant growth rate for the population. This situation is illustrated in Figure 3.3, where the population settles down to a steady rate of growth under density independence after about 7 years. How long it takes the population to reach age stability depends to some extent on how far from stability the population was initially. However, regardless of these initial conditions, the population will always reach the same stable age distribution and growth rate as long as the age-specific birth and survival rates remain constant. Populations with many age-classes tend to take longer to reach stability. Techniques for solving for stable age distribution involve matrix operations beyond the scope of this book and are covered in Caswell (2001) and Williams et al. (2002). However, a simple way to demonstrate and understand the concept of the stable age distribution is by computing population growth in a spreadsheet; we provide a simple, three-age example in Box 3.3.

Stochastic (random) effects on population growth

So far, all of the models that we have covered have been deterministic ; therefore there are no random effects, and all future values for the population are exactly determined by


Box 3.3 Age-dependent population growth: an example with three age classes.

Here is a simple three-age example to see how to generate age-specific population growth in a spreadsheet. As suggested in the last box, we will use the “name” convention found in spreadsheet programs to assign labels to our initial population values and parameters: the parameter values and the initial conditions. That is, for a particular set of numbers used as input, and specified model parameters, the model will always give you the same answer – whether you run the model once or a hundred times. For instance, with the age-structured model above, even though the population growth may look random, it is varying simply because the population did not start out at a stable age distribution.



	S_0
	0.2



	S_1
	0.3



	S_2
	0.8



	b_1
	1



	b_2
	3



	N_00
	0



	N_01
	5000



	N_02
	0


For the age-specific survival rates, birth rates (b_2 for ages 2 and higher), and three initial population sizes in each age class (0, 1, and 2) we used underscores (S_0, etc.), because otherwise spreadsheet programs would confuse these cell names with cell locations (S1, S2, etc.) Initial values are placed in cells B2, C2, and D2 (t = 0). The population model then creates values at t = 1 for age 0 (cell B3; animals born to surviving age 1, i.e., last year’s juveniles) and age 2 (last year’s age 1 and age 2 animals) as follows:

[image: c03e020]

age 1 (cell C3; surviving juveniles from last year) as:

[image: c03e021]

and age 2 (cell D3; animals surviving age 1 and 2 from last year) as:

[image: c03e022]

We also compute proportion of age 0 and age 1 (p0 and p1; p2 is by subtraction) and population λ  = N(t + 1)/ N( t) .

The projections of the population and demographic parameters look like this:

[image: c03t002]

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



By contrast, stochastic models allow for effects that are not entirely predictable. These might be weather conditions or other factors whose future outcomes are uncertain, but may affect the population in some way. We handle these kinds of effects by modifying our models to allow for chance outcomes. For example, numbers of offspring produced by females of many species in the family Canidae are quite variable depending on the condition of females as a result of environmental conditions. Therefore we might have an average number of offspring produced per female, but with some incorporation of potential variability in this value to take variation into account. This can be done in a number of ways. For example, we can take a deterministic growth model like Equation (3.4) and simply add a random number to it. For example,

[image: c03e023]

where Xt comes from a statistical distribution [e.g., a normal distribution with a mean ([image: xbar]) and standard deviation (SD)]. Another approach (which we tend to prefer) is to model random variation in one or more model parameters. So, we might take:

[image: c03e024]

where rt comes from a normal distribution with [image: xbar] = 0.1 and SD = 0.10. This produces the sort of effect represented in Figure 3.4, where the population is generally increasing, but not in the sort of completely smooth manner as in the deterministic case seen in the smooth solid line or in Figure 3.1. In this model we then see that the same starting conditions and same parameter estimates can provide quite different population trajectories and outcomes. Using the analogy from above, now 100 runs of our model will give us 100 different outcomes. This is obviously quite useful for identifying outcomes such as extinction probability or the impact of hunting on a population or the impact of some type of management (see Box 3.4).


Fig. 3.4 Stochastic population growth. N 0  = 1000. Two stochastic simulations with realized growth drawn from a normal distribution having  [image: c03rbar]= 0.02, SD (r )= 0.05; smooth line in middle is deterministic growth ( r = 0.02).

[image: c03f004]


Spatial structure and population growth

So far we have pretended that the population is a single unit in space, potentially with age (and sex) structure, but otherwise homogenous. Increasingly, conservation biologists are appreciating the importance of spatial variation in populations, and how consideration of space is integral to understanding and managing populations.

To see how space can influence population dynamics, suppose that we have two populations of the same species, isolated enough from each another so that they occupy different habitats, but with occasional exchange (movement of animals between the populations). A classic example of this is populations on different islands of the same archipelago, but the idea transfers to terrestrial habitats as well. Suppose too that the populations on different islands, or habitat patches, at least potentially exhibit different birth rates and death rates, so that growth rates (r1, r2) may be different, and finally suppose that any animals that survive to the next time period either remain in the population they started in or move to the other population. We can modify Equation (3.4) to deal with this more complicated situation, while still assuming density independence, by creating additional parameters π ij, i  = 1,2; j =1,2, representing the expected proportion (or probability ) of movement of animals from population i to population j. Then, the number of animals at t + 1 in population 1 will be the number of animals produced by population 1 between t and t+1 that stay in population 1 plus the number of animals produced between t and t + 1 in population 2 that move from 2 to 1:

[image: c03e025]

Likewise, abundance in population 2 at t + 1 will be the number produced by 2 and remaining, plus the number exported by population 1:

[image: c03e026]

Spatial stratification can lead to interesting and sometimes unexpected results, depending on the relative growth and movement rates. An important special case of this model is source-sink dynamics, in which there are two populations, a source with λ1 = (1 + r1) > 1 and a sink with λ2 = (1 – r2) < 1. Pulliam (1988) solved this model assuming that (i) there is an upper limit [image: c03ie001]to the source population, (ii) all excess “source” animals move to the sink once [image: c03ie001] is reached, and (iii) “sink” animals remain in the sink (or die). Given these assumptions, the equilibrium abundance in the


Box 3.4 Stochastic population growth.

We can illustrate stochastic population growth with a slight modification to the model in Box 3.1, where we now draw r from a random variable distribution. As before, we need columns for t and N; we will create an additional column for storing the random values of r. For the stochastic model, we need the following parameters: N( 0) (the initial population size), and a mean ([image: c03rbar]) and standard deviation (σ) for the normal distribution used to generate values of r. In this example we will use the “name” convention in Excel, assigning labels “N0”, “rbar,” and “SD” to the cells containing values for these parameters. These labels are then used in subsequent computations, below. In our example, N0  = 1000, rbar = 0.10, and SD = 0.05.

To generate a random value for r we used the inverse normal function in Excel, which, given a probability, mean, and standard deviation for the random variable, generates its value from the normal distribution. The probability is simply a uniform (0,1) random variable, and we have already specified [image: c03rbar] and σ . The statement to generate the random values for r is then

[image: c03e027]

and is copied to all the cells up to year 25 in the second (B) column. We will place the population values in the third (C) column. The first of these is simply N0, so we establish this value by entering

[image: c03e028]

in cell C2. We then compute subsequent values of N by entering

[image: c03e029]

in cell C3 and copying this formula down the page. The last value (t = 25) should be

[image: c03e030]

(in this example we used the first row of the spreadsheet for column labels, adding a row to the 26 population values). Notice that if Excel is set for automatically updating formulae, you will get new values each time you open the spreadsheet or make any changes. You can also “refresh” (generate new numbers) by hitting F9.

The complete spreadsheet example for this can be found in the electronic companion to the book (see enclosed CD and website address on p. ii). The syntax will differ a bit for other spreadsheet programs (e.g., Quattro), but this will give you the idea.



sink population is:

[image: c03e031]

and overall abundance is:

(3.8)[image: c03e032]

We will return to spatially stratified models, and source–sink dynamics, when we apply population models to conservation problems in the next section (see Box 3.5).

Models for two or more species

Many conservation problems involve dealing with the dynamics of two or more species that interact with one another, so that one species’ dynamics influence the other’s. The two most basic versions of species-interaction models are the Lotka–Volterra predator– prey models and competition models (Williams et al. 2002). Both types of models have both differential (continuous-time) and difference (discrete-time) forms; we present only the discrete-time forms here:

[image: c03e033]

and

(3.9)[image: c03e034]

In these equations, Nprey (t) and Npred (t) are the abundance of prey and predators at each survey time t. For prey, we assume that population growth occurs at a constant (density-independent) rate rprey in the absence of predation. The coefficient dprey determines that the death rate of the prey will increase linearly as the abundance of predators increases, with the entire term in bracket operating as a growth multiplier on prey. The equation for predators works in more-or-less the opposite fashion, with birth rates (bpred ) of predators presumed to increase as prey abundance increases, but death rates (dpred ) of predators not influenced by prey abundance.

The relationships in Equation (3.9) give rise to some interesting predictions regarding the dynamics for predators and prey. First, equilibrium abundance is predicted to occur at

[image: c03e035]

Second, abundance for each is predicted to oscillate around these equilibrium levels (Figure 3.5). In the discrete-time model, these oscillations increase over time, with populations “overshooting” their maximum and minimum values. This type of model instability is avoided in the continuous-time models, which, however, are a bit more difficult to construct. Finally, density limitation on the predators, prey, or both can be introduced to predator–prey models, analogous to the logistic assumptions for single populations (Williams et al. 2002).


Box 3.5 Spatially stratified population growth with three population strata.

This example has three population strata, initial population sizes of 5000 in each stratum, stratum-specific growth rates of r1 = –0.1, r2 = 0, r3 = 0.2, and movement rates of 7t12 = 7T13 = 0.25,7T21 = 7T23 = 0.3,and7T31 = 0.1,7132 = 0.2 (in all cases, since there areonlythree possible populations to move to, the probability of movement to the last one population (i.e., staying put) is calculated by subtraction from 1, e.g., Ti11 = 1–7112 – 7113 = 1 – 0.25 – 0.25 = 0.5). In the spreadsheet, initial population values are set in cells B2-D2. Then population size at t = 1 is calculated by

[image: c03e036]

for population 1;

[image: c03e037]

for population 2; and

[image: c03e038]

for population 3. As before, these formulae are then copied down the page. Total population size, proportion in each area (area 3 is by subtraction of p1 and p2 from 1), and X are calculated in columns E-H. These initial values and parameters give values for the first 10 years of

[image: c03t003]

You can see from this that the proportion of animals in each population, as well as X, stabilize within about 10 years. So, geographic stratification creates a situation similar to age stratification, in which the population potentially takes several years to settle down to a “stable space distribution” and growth rate (assuming that population-specific growth rates do not change).

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).




Fig. 3.5 Discrete-time Lotka–Volterra predator–prey model. rprey = 0.2, dprey = 0.01, bpred = 0.005, dpred = 0.5. (A) Nprey (0 )= 101, Nprey (0 )= 22; (B) Nprey (0 )= 105, Nprey (0 )= 15.

[image: c03f005]


Lotka–Volterra models have also been constructed for the dynamics of two competing species. In discrete form these equations predict abundance for two competing species as

[image: c03e039]

and

(3.10)[image: c03e040]

Here the model includes growth rates (r) and carrying capacity (K) for each species, and coefficients a12 and a21 representing the competition effect of one species on the other’s population growth. As with predator–prey models, the values of the model parameters determine how the model behaves, and where equilibrium occurs. Equilibrium occurs at

[image: c03e041]

and

[image: c03e042]

Depending on the sign of the numerators of these equations, the model can either result in a stable coexistence of both populations, competitive exclusion of one or the other, or unstable equilibrium (depending on initial population sizes). Figure 3.6 illustrates the first two of these, along with the case where there is no competition (a12 = a21 = 0).

Both predator–prey and competition models can be extended to interactions of multiple prey and predator species, or three or more competing species. Such models can obviously get enormously complex very rapidly, and thus are beyond the scope of this book (see Box 3.6). However, readers who understand the two-species models should have no problem grasping these more complicated forms (Williams et al. 2002).


Fig. 3.6 Discrete-time Lotka-Volterra competition model. r1  = 0.2, K1 = 1000; r2  = 0.1, K 2 = 600. (A) No competition a 12 = 0.0, a 21 = 0.0. (B) Stable coexistence a 12 = 0.25, a 21 = 0.1. (C) Competitive exclusion a 12 = 0.25, a 21 = 0.75.
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Box 3.6 Two-species modeling: predator-prey and competition.

Here we used spreadsheet programs to calculate two-species models for predation and competition. In the first (predator-prey) Excel worksheet we use Equation (3.9) to produce predictions under the discrete-time Lotka-Volterra model for user-specified values of rprey, dprey , bpred, dpredas well as initial values for abundance Npred(0) and Npred(0). These parameters are specified in column G. The program then calculates equilibrium abundance for prey as
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and for predators as
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Finally, abundance in each year following the first (row 2) is given by

[image: c03e045]

for prey (initial value in B2)

and

[image: c03e046]

for predators (initial value in C2).

In the second (competition) worksheet we perform similar calculations for the discrete-time Lotka-Volterra competition model. The user specifies values for r1, K1, r2,K2, a12, and a21, and initial population values for each species, N1(0),N2(0).

The program calculates equilibrium abundance for species 1 as

[image: c03e047]

and for species 2 as

[image: c03e048]

The numerators of these expressions are evaluated to determine whether the model leads to stable coexistence, competitive exclusion, or instability (cell H27). Finally, the initial abundances (cells B2 and C2) are projected over time as

[image: c03e049]

for species 1 and

[image: c03e050]

for species 2.



In this chapter, we have described how to build basic dynamic population models, and to use these models to explore how populations might behave under various assumptions about parameter values, density dependence, age structure, stochasticity, and other factors. In Chapter 4 we will turn our attention to specific applications of population models to important questions in conservation.





4

Applying population models to conservation

In this chapter we discuss two major types of applications of population models to conservation. First, we cover those situations in which populations are generally large, widely distributed, and often increasing. These populations are often ones for which it is reasonable to extract a harvest, so we will emphasize what is termed sustainable harvest. However, the “large population” problem also occurs in wildlife control, where the objective is to reduce or eradicate populations that are pests, invasive exotics, or simply locally too abundant [for example, beavers (Castor canadensis) or Monk parakeets (Myiopsitta monachus), which cause damage to forestry plantations and agriculture, respectively]. Modeling of these populations tends to emphasize large numbers and achievement of equilibrium conditions. They are particularly useful as “models” for other types of applied questions because these are species and questions where data can and often have been collected in large quantities.

The other type of population includes those that are rare, patchily distributed, decreasing in abundance, and/or otherwise in trouble demographically. Unlike the “large population” case, these populations potentially have a real chance of becoming extinct, at least locally, within the foreseeable future. Modeling of these species tends to emphasize the problems of small numbers, which include chance extinction, isolation, and inbreeding, among others.

Clearly these categories –; “large” versus “small” populations –; are artificial, and many species fall into both categories at different times and other different situations. Our favorite local (Georgia, USA) example is that of the white-tailed deer (Odocoileus virginianus), which in our lifetimes (and we are really not that old!) has gone from being nearly extinct locally, to fully capable of sustaining harvest –; even heavy harvest –; to being “overabundant” (e.g., an economic and safety threat due to agricultural and landscaping damage, and deer–;vehicle collisions).

Harvest models

Some readers at this point may be thinking that they will never have an interest in harvest models, because they only work on “rare” species. We argue here that many of the basic principles are the same in dealing with population dynamics and some of the best examples of integrating models with population dynamics have been done with harvested species.

Now returning to our technical discussion, we begin by looking at our basic population growth equation [Equation (3.3)]:

[image: c04e001]

We can modify this to include a harvest H(t) taken each year:

(4.1)[image: c04e002]

By rearranging this equation slightly, we can discover the conditions under which harvest will result in the population staying at a constant level (equilibrium), which is met when N(t + 1) = N(t):
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or

(4.2)[image: c04e004]

From this, we can easily see that equilibrium is maintained whenever the per-capita harvest rate exactly equals the growth rate r(t):

(4.3)[image: c04e005]

What Equation (4.3) tells us is that if we somehow knew what the population growth rate would be for any year t, we could exactly balance this rate if we could control harvest rates h(t). Equation (4.2) tells us that the size of the harvest we get will also depend on population size.

Any harvest that meets these conditions [Equations (4.2) and (4.3)] is by definition sustainable –; population growth will be exactly balanced by harvest and a stable population maintained (in theory, forever; but see stochastic models and the next section). These relationships are not all that useful, however, because r(t) usually varies over time, and often in unpredictable ways. If growth rates are constant over time, we go back to our density-independent model [Equation (3.4)] and can see that population growth is exactly balanced by h(t) = r. Therefore, if we know what r is we can maintain a constant population by harvesting at a constant rate:
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Of course, the actual size of the harvest will still depend on population size:
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or

[image: c04e008]

when h = r, which means that we will always get a larger harvest under this model (as long as r > 0.0; if r ≤ 0.0, any harvest will deplete the population) by waiting for the population to grow to a larger size.

A more interesting (and useful) situation arises when the harvested population follows the logistic model [Equation (3.7)]. Now we get population equilibrium by satisfying the following:
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which happens when we take a harvest of:

(4.4)[image: c04e010]

Unlike density-independent growth, this equation specifies a parabolic relationship between harvest and population size (Figure 4.1), which reaches a maximum yield


Fig. 4.1 A maximum sustained yield model showing yield (A) and harvest rate (B) as a function of population size. Parameters for this MSY model include rmax = 0.10, K = 1500.
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when N* = K/2 (the * refers to this being an optimal value); the value of this yield is rmaxK/4. At all other population sizes (from 0.0 to K), there is a “mirror image” N that gives the same yield, but all of these yields are lower than the maximum yield obtained at N*, known as maximum sustainable yield (MSY). Also, the per-capita harvest rate that will result in MSY is h* = rmax/2. Putting this another way, if our goal is to obtain MSY, we can do so by maintaining the population at N* = K/2 and taking a harvest of H* = rmaxK/4, at an optimal rate of h* = rmax/2; if we are above or below K/2 and take h*, the population will tend to return to the equilibrium value of N* (because it is actually being harvested at a rate lower or higher than the current population level can tolerate, causing the population to increase or decrease depending on which side of N* the population currently is. A numerical example makes this clearer (Box 4.1).

As attractive as the idea of MSY can be, it is important not to get carried away with this concept as has been done in the past (Larkin 1977). Always remember that


Box 4.1 Calculating MSY using the logistic model.

As we have seen, under the logistic model, harvest yield can be modeled solely as a function of N, given values for the parameters r and K. That is, harvest yield can be modeled as
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This function can be maximized (solved for the value of N that gives maximum yield) by calculus. However, we can use a spreadsheet and graphics to find this maximum, for example in which rmax = 0.1 and K = 1500. In column A of the spreadsheet we have values of N from 0 to 1500 (there is no point in plotting past K since there can be no yield in this range). In column B we compute:

[image: c04e012]

(we previously used spreadsheet naming convention to set the values for r and K as 0.1 and 1500; we can change these if we like). We can also calculate harvest rates in column C:

[image: c04e013]

(note that the first of these is a bit problematic because we are trying to divide by zero!) Finally, we can plot columns B and C versus A. When we see that there is a clear peak to the yield curve. With a little trial and error you can convince yourself that this peak always happens at K/2 and always gives a yield equal to rmaxK/4 (in this example K/2 = 750 and H* = 150/4 = 37.5). The harvest rate associated with this yield is r/2 (in this example, 0.05).

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



MSY completely depends on the assumptions of the logistic model [Equation (3.7)]. Among other things, MSY applications typically assume that the values rmax and K are known exactly, and that these do not change over time. This in turn rules out (at least in this simple form) stochastic effects on the environmental carrying capacity or demographic rates, or variation in growth due to age instability. Obviously, if MSY is used even as an approximation for yield determination, the logistic model must have empirical support as a credible model, and not be taken on blind faith, since even mild deviation from an assumed model or parameter values could have enormous consequences for harvest decisions. For example, the models outlined here have not included any age structuring, although this has been done in fish exploitation using Beverton–;Holt models (Beverton and Holt 1957). We especially are skeptical of some of the applications of MSY ideas to the population dynamics of vertebrates in tropical conservation biology, where broad claims are made for “sustainable” harvest levels with little or no empirical data (e.g., Robinson and Redford 1991). At a minimum, biologists should be willing to entertain a plausible range of model forms and parameter values, and explore the implications of uncertainty among these in decision making. In the following example we show how one model of harvest (with an assumption of logistic growth) can yield quite different results from another model (where we assume that growth rate is density independent, but has a mean value and varies randomly around that mean –; random walk). In both cases the basic model inputs of rmax and K are the same (Box 4.2).


Box 4.2 Exploring model uncertainty: an example of harvest under logistic versus “random walk” growth.

As we keep trying to emphasize, models are only abstractions of reality –; they are not reality. Furthermore, different models can lead to very different conclusions regarding management. In this spreadsheet we have got predictions of population growth under two different models, one (in columns B through D) under logistic growth (r = 0.1, K = 1500), the other (columns F through H) under density-independent, random growth (average of r = 0.1, SD = 0.05). We can explore different harvest rates (in the spreadsheet the decision is a constant rate h each year; if we want to get really complicated we can explore different rates for each year). For example, a harvest rate of 0.05 will under the logistic model result in the population stabilizing at about K/2, but under the “random walk” model the population will continue to increase. Increasing the harvest rate to 0.10 will roughly stabilize the population under the random walk model, but will result in the population under the logistic model declining. The spreadsheet also keeps track of cumulative harvest, in this case for 100 years. Under “sustainable harvest” we should try to maximize this cumulative harvest over the long term. Clearly this cannot be done while the population is declining!

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



Small population models

As suggested earlier, a dominant “theme” of small population conservation is the concern that the population will go extinct, at least locally, over the foreseeable future. Of course all populations (and species) will eventually go extinct with certainty. In a practical sense we are actually more concerned with extinctions over reasonable periods in the future, typically in the 100- to 500-year range. As conservation biologists we are also principally concerned with extinction events that are driven by human actions, such as habitat destruction or over-harvesting. Naturally, if an asteroid were to impact the Earth, we would miss the species extirpated (assuming that we were among the humans to escape “Armageddon”). However, we suspect there is little that we could do about it (Hollywood films, starring Bruce Willis, to the contrary).

Stochastic, birth–;death process models have been developed to study the mathematical conditions leading to extinction. These models tend to be rather complicated, so we will not repeat them here (see Williams et al. 2002, Chapter 11, for more details), but rather we will focus on some key elements. Under some simplifying assumptions (such as constant birth and death rates, and no sources of randomness except for the birth–;death process) we can write a general prediction for the probability of extinction by time t:

(4.5)[image: c04e014]

where d and b are constant, instantaneous death and birth rates and N0 is initial abundance (typically taken as the current population level). We can use this expression (and the mathematical idea of limits) to evaluate the probability of eventual extinction (t → ∞) for two situations. First, if death rates exceed birth rates (d > b) we get
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Therefore we have a 100% probability that the population will go extinct eventually (again, we are talking mathematically here: all populations go extinct eventually). Conversely if b > d:
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which we can see is a fraction with a value always less than 1 and this value becomes smaller as N0 gets bigger. This brings out one of the essential ideas of “small population” biology: small populations are at greater risk of extinction than large populations, and extinction risk (due to random demographic events) rapidly decreases as abundance increases (Figure 4.2). Interestingly, if we make b = d then our resulting probability of extinction is also 1 (Box 4.3).


Fig. 4.2 Example of the probability of extinction as a function of birth, death, and initial population size (NB0B). b = 0.4, d = 0.39.
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The same ideas (but a slightly different mathematical model) can be used to ask the question “What is the average (expected) time to extinction if birth rates and death rates are constant?” This leads to the formula:

(4.6)[image: c04e017]

where Nmax is maximum abundance (e.g., carrying capacity). Just as the probability of extinction decreases, expected time to extinction TE rapidly increases as Nmax gets larger (Figure 4.3). Because this number quickly exceeds several thousand years for any reasonably healthy (births exceeding deaths) population, this has led to the idea of a viable or “minimum viable population,” above which the risk of extinction is substantially reduced or, conversely, postponed until the very distant future. However, there are several things to keep in mind here before getting caught up with arbitrary viability rules. First, these are only models, and thus they are abstractions: real populations are much more complicated. Even assuming that the models are reasonably good approximations of the real world, they require estimates of b, d, Nmax, or other parameters, and these estimates may be very poor –; often not much more than simple guesses. Finally, several authors have pointed out that Equation (??) captures only demographic uncertainty –; not uncertainty due to environmental variation, and definitely not the risk of a catastrophic event (yes, the asteroid impact has a more than 0.0 probability of happening: the probability of this happening in our lifetime is quite small, but it is still not 0.0). It also does not include the effects of factors that may be predictably increasing over time, such as human population increase and resulting habitat degradation. If we include some of these sources, then we can see that just increasing Nmax alone does not necessarily postpone extinction indefinitely (Figure 4.3).


Box 4.3 Single small-population model.

Here we construct population models for a “small” population under two types of assumptions: (i) density-independent growth with random r, and (ii) density-dependent growth with random r and K.

This example just combines ideas from previous examples (Boxes 3.1, 3.2, and 3.4), incorporating exponential growth, logistic growth, and random effects. We have added a couple of features to accommodate very small populations. Under ‘density-independent’ (columns B–;D):

Column B calculates random r

[image: c04e018]

Column C (starting in row 3) is initialized to NN0

We have added code to deal with a common problem in modeling small populations, in which the model can be still numerically “extant” but biologically extinct. Unless we fix this, in the model the population can decline below 2 (or 1 for an asexual organism) and still “recover” mathematically. If this ever happens for a real population it is doomed. We handle this be creating an additional column D, which checks to see if column C falls below 2. If it does it assigns the value 0 to column D; otherwise it keeps the computed value:

[image: c04e019]

Finally, the new population value in column D now becomes the basis for projecting next year’s population as:

[image: c04e020]

We have used a similar device to compute logistic, random growth (columns F–;I); note that the r values are computed independently of those for exponential growth.

Try running this model with small starting populations (NN0 < 10) and low growth rates (r = 0.01). Click F9 repeatedly to see how many of these go extinct before 100 years. Try increasing NN0 and r and varying SD_r and SD_K to see how initial abundance, growth, and growth variation affect extinction (see enclosed CD and website address on p. ii).

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



This last point leads to a very important contribution of theoretical ecology to conservation biology, that of island biogeography. Very simply, whether we are talking about actual oceanic islands or “islands” of habitat, individuals in local populations tend to interact more with other locals than they do with distant or even relatively nearby neighbors, especially when there is a degree of fragmentation or other barriers to movement. However, individuals do occasionally disperse from local populations and settle in neighboring islands. Sometimes these islands are vacant, so actual colonization (and even range expansion) occurs. Sometimes the islands had been populated in the past, but the population disappeared for some reason: perhaps it was wiped out by disease or an exotic predator, or perhaps it hit a population bottleneck and went extinct by chance (see above). Unless this was the only island where the species occurs, “extinction” in these cases is local, not global, and colonization from a neighbor represents a second chance.


Fig. 4.3 Expected times to extinction, including several types of stochasticity. (a ––) Demographic stochasticity only, (b ······ ) demographic plus environmental stochasticity, (c –; –; –;) demographic plus environmental stochasticity plus catastrophic events.
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We can see this by considering a metapopulation (a “population of populations”) comprised of three population “islands.” Overall abundance is given simply as the sum of the abundances on the three islands; therefore,

[image: c04e021]

Obviously, this population will only be extinct if all three populations go extinct. Under our simple extinction model we know that
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where i = 1, 2, 3 indexes the birth rates, death rates, and initial abundance for each island. Even if there is no interchange among the islands, global extinction requires all three populations to go extinct. In the simple case where extinction on each island is independent of what happens on the other islands, but assuming that birth rates and death rates are the same among islands, we get:
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which is just the same as:
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In other words, each island adds to the metapopulation’s overall probability of persistence, with the overall effect the same as pooling all three populations.

Of course, real situations will be more complicated, and require more realistic modeling. For example, islands that are closer to one another are likely to experience similar weather and other environmental conditions, but may have different habitats. Thus, one would expect the birth rates to be different but correlated, and more realistic modeling would allow for this type of situation. Also, islands that are near to one another likely exchange more individuals than distant islands, so distance or barriers between islands (or habitat patches) need to be included. Spatially stratified models like the ones considered in the previous section could be useful here. Naturally, the more complicated these models become, the more parameters have to be specified. Mark-recapture methods can be used to estimate parameters such as population-specific survival and movement rates (see Williams et al. 2002, Chapter 17, for some examples). We present a simple three-population metapopulation example in Box 4.4.

The main idea, however, is that as long as population “islands” have some degree of connectivity, local extinction is “not forever”: there is always the potential of rescuing colonization from one of the extant populations. This also relates to the commonsensical notion of “not putting all of one’s eggs in the same basket.” No matter how abundant a local population is, it is always at risk of local extinction. If it is the only population in the world, extinction is now global. Thus, species that have widespread geographic range are automatically more resistant to extinction than, say, island endemics. These ideas also come into play when trying to maintain and restore populations via reserve networks. The “single large versus several small” (SLOSS) controversy still rages, and probably cannot be settled universally (since animals are so different in their dispersal abilities). Keeping these ideas in mind –; but remaining open to contrary views and evidence –; will be key to objective, scientific conservation.


Box 4.4 Three-population metapopulation model.

Here we return to the three-population example in Box 3.5, now adapted as a “small population” problem. This is accomplished by two modifications. First, rather than assuming constant population-specific growth rates of r1 = – 0.1, r2 = 0, r3 = 0.2, these are used as the means for selection of random growth rates each year, with the amount of variation controlled by standard deviations for each population. This results in three columns of random growth rates (columns H–;J). Second, as with Box 4.3, we have programmed the spreadsheet to force populations that fall below 2 to zero. Of course, with movement between populations, even if this happens the population may recover, but this prevents the nonsensical situation of 1 (or fewer) animals in the total population. The adjusted population values are displayed in columns E–;G.

The spreadsheet displays population growth for 50 years. Try running this with small initial populations (<10) in each population, or even 0 for some. Increase or decrease the growth rates and standard errors. Change the movement rates: notice what happens when there is no movement, lots of random variation, and small initial values.

In this example, we kept things relatively simple by assuming that movement rates were constant over time, and that growth rates, while variable, varied independently among the populations. In reality, movement rates likely would vary over time, and growth rates would probably be at least somewhat correlated, requiring more complex modeling.

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



Modeling genetic effects

Much attention in conservation biology has focused on the genetic aspects of small population biology. Populations that experience low numbers are at higher risk of experiencing loss of genetic diversity, due to random mutations and genetic drift. Also, individuals in small populations have fewer choices for mates, leading to inbreeding, the mating of individuals who are closely related (and thus genetically similar), not to mention the Allee effect noted earlier. In extreme cases inbreeding leads to a phenomenon known as inbreeding depression, in which the reproduction rates, survivorship, or both of offspring are impaired. Classic examples of this have occurred in extremely small (less than 100 individuals) populations, for instance some of the big cats like Asian tigers (Panthera tigris) and the Florida panther (Puma concolor coryi).

Coverage of population genetics and genetic impacts on demography is beyond the scope of this book. A few points are worth keeping in mind, however. First, the issue of genetics is, from a species survival point of view, an issue of population impacts. Regardless of the interesting or even bizarre genetic outcomes that may occur among individuals, it is only the degree to which these affect birth rates or death rates that is relevant to conservation biology. Thus, the claim that low abundance leads to genetic “defects” must be taken a step further: these “defects” must be shown to affect demographic rates. Second, even where such impacts have been demonstrated, the role of genetics in conservation must always be kept in perspective. It seems obvious to us that populations that are at such low levels that inbreeding and drift are occurring are already critically imperiled, probably due to habitat loss or overexploitation, or a host of other reasons. Focusing solely on genetics in conservation is a bit like treating a terminal cancer patient’s blood pressure. It may keep the patient from dying right away, but the main problem is still there. By removing or mitigating the “ultimate” causes of population demise, we will have solved the “proximate” problems of genetic abnormalities. Of course, if populations have already declined to the critical stage, genetics probably will need to be managed by captive breeding, reintroductions, or other methods, but the ultimate salvation for the population lies elsewhere.

Including habitat or other factors in models

Wildlife managers have recognized for years that habitat is a key requisite for the sustenance of animal populations. By definition, habitat provides food, shelter from predators, structures for denning or nesting, or other life requirements, and therefore presumably influences survival rates, reproductive rates, or carry capacity of populations. Therefore, it makes sense to incorporate habitat into population models, particularly if management decisions may influence habitat in ways that alter population dynamics.

We can start with the simple, density-independent model of population growth in Equation (3.4). To incorporate habitat (X) we could redefine this equation as:
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where r(X) defines growth rates as a function of habitat X. This might be as simple as expressing a linear relationship between r and X, for instance:

[image: c04e026]

If data are available, it might be possible to develop relationships between X and the components of growth rate, birth (b) and death (d) rates, keeping in mind that both of these rates are logically constrained to be in certain ranges (b ≥ 0; 0 ≤ d ≤ 1). Again we provide a simple spreadsheet example in Box 4.5.

The same kind of ideas can be extended to the logistic model [Equation (3.7)]. Here, it might make sense to view habitat as principally influencing carrying capacity (K). We could then modify Equation (3.7) as
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where again K (X) specifies that K is a function of habitat (see Box 4.5 for an example). A similar approach could be taken with the source–;sink model, where N1* (carrying capacity in the source) might be raised or lowered, depending on habitat management (Box 4.6).

Use of “canned” modeling software

In the last few decades, several computer packages have increasingly been used by conservation biologists to conduct population modeling for conservation. These have been especially prevalent in the area of population viability analysis for small populations. Notable examples include VORTEX (Lacy and Kreeger 1992), RAMAS (Akçakaya et al. 1999), and WALEX (Possingham and Davies 1995), but there are many others. These programs typically are reasonably “user-friendly” in that they provide menus or graphical user interfaces, enabling users who are not particularly computer savvy to provide inputs with relatively little pain.


Box 4.5 Building a model to predict population growth from habitat conditions.

A very basic idea in wildlife management is that management of habitat translates into an increased potential for a population to sustain individuals. If we assume that the population operates under the logistic model (Box 3.2), habitat improvements can translate into either increased growth potential rmax, or, perhaps more reasonably, increases in the maximum numbers that the population can support (carrying capacity, K). In fact, K is often referred to as “habitat carrying capacity,” even though the logistic model itself says nothing directly about habitat (only that there is an upper limit to growth).

To include habitat as a factor influencing the population, we need an explicit model relating habitat (X) to a parameter in the population model. In this example we have chosen to specify that relationship via a simple linear model:

[image: c04e028]

where K(X) indicates that the parameter K is now a function of habitat X, which in this case we take as acres of habitat added to (+) or subtracted from (–) the present habitat level (0). The parameters b0 and b1 determine the intercept and slope of the linear relationship. For example, b0 = 5000 and b1 = 0.5 determine that K will be 5000 with no additional habitat, and will increase (decrease) by 50 animals for every 100 additional acres added (lost).

Of course, it is one thing to propose a model relating habitat to carrying capacity, and a far different thing to demonstrate the relationship empirically. For now we leave the empirical issue aside, noting that, for instance, simply demonstrating that abundance is higher or lower in some habitat than another does not make the case (see source–;sink and the next example).

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



We admire the creativity of the developers of these programs in rendering fairly complicated mathematics accessible to those who would normally be frightened away from simulation modeling. Indeed, we have used programs such as WALEX and VORTEX as teaching tools in undergraduate and graduate courses on population modeling. Our quarrel is not with these programs per se, but rather with the fact that they can foster a rather blind, and we think, naïve approach to applied population modeling. Often, these programs provide little in the way of understanding of underlying model assumptions; indeed, they typically make a large number of critical assumptions “by default.” In some cases, marketers of some of this software seemingly encourage uncritical use of the packages, in ways that we think are counterproductive to scientific conservation (Conroy 1992).

In many if not most cases, we believe that the complexity of “canned” computer packages for conservation modeling far outstrips the reliability of data to determine parameter values, while hiding critical assumptions within the proverbial “black box.” We are firmly convinced that most conservation biologists would be far better served by constructing simple, understandable models, whose assumptions (and deficiencies) are transparent. If a biologist builds a model, even a simple spreadsheet model of the types demonstrated in this chapter, that model will capture the biologist’s understanding of the system. More importantly, the biologist will be in a position to critically evaluate the assumptions used to build the model and, if possible, to collect data appropriate for the proper model parameterization. If, at a later point, the biologist wishes to use one of the more “sophisticated” modeling programs, he or she will be doing so with at least a kernel of understanding of the underlying assumptions involved –; and, we hope, with a critical eye toward testing model assumptions.


Box 4.6 A simple model demonstrating source–;sink dynamics.

Under source–;sink dynamics, populations in source populations (by definition where A.1 > 1) grow exponentially up to a limit [image: c04ie001]; beyond this limit excess individuals disperse to sink habitats (by definition where λ2 < 1). Conversely, in the absence of source animals, sink populations decline exponentially (to extinction, eventually).

We have constructed a spreadsheet model that allows investigation of source-sink dynamics. The user specifies λ1, λ2, and [image: c04ie001] and initial values for the source and sink abundances. Initial values are stored in cells B2 and C2 for source and sink. The next year’s source population is then calculated as:

[image: c04e029]

and sink population as:

[image: c04e030]

(this requires some familiarity with branching “IF” statements in Excel). In the example spreadsheet we specified λ1 = 1.3, λ2 = 0.85, [image: c04ie001] = 1000 and initial values in each habitat of 10. Columns B and C project from this abundance to equilibrium levels in less than 20 years. A direct solution to equilibrium is also provided in cells J9–;J11 from Equation (3.8)

[image: c04e031]

by definition for the source and

[image: c04e032]

for the sink.

Try a range of values for λ1, λ2, and [image: c04ie001] and initial values. See how the sink population can equilibrate above –; or below –; the source population, and how fast equilibration occurs. Be sure though not to allow λ1, < λ2, λ1 ≤ 1, or λ2 ≥ 1 (any of which would violate source–;sink assumptions).

The complete spreadsheet example can be found in the electronic companion to the book (see enclosed CD and website address on p. ii).



In this chapter we outlined some fairly simple models using contrived data. As conservation biologists we are much more interested in moving away from theory and toward creating models that will be useful for describing real processes. Therefore in Chapter 5 we discuss the design of sampling strategies that allow us to collect data in the most practical and useful manner.
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