

 Testing IT:
An Off-the-Shelf Software Testing Process, 2nd Edition

 Testing IT provides a complete, off-the-shelf software testing process framework for any testing practitioner who is looking to research,
 implement, roll out, adopt, and maintain a software testing process. It covers all aspects of testing for software developed
 or modified in-house, modified or extended legacy systems, and software developed by a third party. Software professionals
 can customize the framework to match the testing requirements of any organization, and six real-world testing case studies
 are provided to show how other organizations have done this. Packed with a series of real-world case studies, the book also
 provides a comprehensive set of downloadable testing document templates, proformas, and checklists to support the process
 of customizing. This new edition demonstrates the role and use of agile testing best practices and includes a specific agile
 case study.

 John Watkins has more than thirty years of experience in the field of software development, with some twenty-five years in the field of
 software testing. During his career, John has been involved at all levels and phases of testing and has provided high-level
 test process consultancy, training, and mentoring to numerous blue chip companies.

 He is both a Chartered IT Professional and a Fellow of the British Computer Society, where he is an active member of the Specialist
 Group in Software Testing (SIGiST), previously serving on committees of the Intellect Testing Group (representing the U.K.
 technology industry) and the SmallTalk User Group.

 He is the author of Agile Testing: How to Succeed in an Extreme Testing Environment and currently works for IBM's software group.

 Simon Mills has more than thirty years of experience in the field of software quality, having transferred into the world of system testing
 from a business role. Simon has been involved in testing software in both business and technical or scientific environments
 from major investment and insurance systems to laser control, cryogenic control, and superconducting applications. He is the
 founder of Ingenuity System Testing Services, the preeminent testing authority in the field of electronically traded insurance
 in the United Kingdom.

 Simon is widely published internationally in conference proceedings, papers, and contributions to books and has presented
 as an invited speaker in the United States, at EuroStar, and at the World Congress for Software Quality.

 Testing IT
An Off-the-Shelf Software Testing Process, 2nd Edition

 John Watkins

 IBM Software Group, U.K.

 Simon Mills

 Ingenuity System Testing Services Ltd., U.K.

 [image: CAMBRIDGE UNIVERSITY PRESS]

 CAMBRIDGE UNIVERSITY PRESS

 Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

 Cambridge University Press

 32 Avenue of the Americas, New York, NY 10013-2473, USA

 www.cambridge.org

 Information on this title: www.cambridge.org/9780521148016

 © John Watkins and Simon Mills 2001, 2011

 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements,
 no reproduction of any part may take place without the written permission of Cambridge University Press.

 First published 2001

 Second edition 2011

 Printed in the United States of America

 A catalog record for this publication is available from the British Library.

 Library of Congress Cataloging in Publication data

 Watkins, John (John Edward)

 Testing IT : an off-the-shelf software testing process / John Watkins, Simon Mills. ′ 2nd ed.

 p. cm.

 Includes index.

 ISBN 978-0-521-14801-6 (pbk.)

 1. Computer software ′ Testing. I. Mills, Simon. II. Title.

 QA76.76.T48W38 2010

 005.1′4–dc22 2010041956

 ISBN 978-0-521-14801-6 Paperback

 Additional resources for this publication at www.cambridge.org/9780521148016

 Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet
 Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate
 or appropriate.

 To Francesca, Julie, and Valerie

 Contents

 Foreword to the Second Edition by Geoff Thompson

 Foreword to the First Edition by Maurice Rosenburgh

 Acknowledgments

 1 Introduction

 1.1 Purpose of the Book

 1.2 Readership

 1.3 How to Read This Book

 1.4 Structure and Content of This Book

 Part 1. The Traditional Testing Process

 2 An Overview of Testing

 2.1 Introduction

 2.2 The Challenge of Testing

 2.3 What Is Testing?

 2.4 Verification and Validation

 2.5 What Is the Cost of Not Testing?

 2.6 Testing – the Bottom Line

 2.7 Additional Information

 3 Testing Techniques

 3.1 Introduction

 3.2 General Testing Techniques

 3.3 Functional Testing Techniques

 3.4 Nonfunctional Testing Techniques

 3.5 Further Reading on Testing Techniques
4 The Management and Planning of Testing

 4.1 Introduction

 4.2 The Organization of Testing

 4.3 Roles and Responsibilities

 4.4 The Testing Phases

 4.5 Role of the V Model in Planning

 4.6 The Management of Test Requirements

 4.7 The Role and Use of Configuration Management

 4.8 The Role and Use of Defect Tracking

 4.9 The Role of Risk in Test Planning and Management

 5 Unit Testing

 5.1 Overview

 5.2 Unit Test Approach

 5.3 Unit Test Data Requirements

 5.4 Roles and Responsibilities

 5.5 Planning and Resources

 5.6 Inputs

 5.7 Testing Techniques for Unit Testing

 5.8 Outputs

 6 Integration Testing

 6.1 Overview

 6.2 Integration Test Approach

 6.3 Integration Test Data Requirements

 6.4 Roles and Responsibilities

 6.5 Planning and Resources

 6.6 Inputs

 6.7 Testing Techniques for Integration Testing

 6.8 Outputs

 7 System Testing

 7.1 Overview

 7.2 System Test Approach

 7.3 System Test Data Requirements

 7.4 Roles and Responsibilities

 7.5 Planning and Resources

 7.6 Inputs

 7.7 Testing Techniques for System Testing

 7.8 Outputs

 8 Systems Integration Testing

 8.1 Overview
 8.2 Systems Integration Test Approach

 8.3 Systems Integration Test Data Requirements

 8.4 Roles and Responsibilities

 8.5 Planning and Resources

 8.6 Inputs

 8.7 Testing Techniques for Systems Integration Testing

 8.8 Outputs

 9 User Acceptance Testing

 9.1 Overview

 9.2 User Acceptance Test Approach

 9.3 User Acceptance Test Data Requirements

 9.4 Roles and Responsibilities

 9.5 Planning and Resources

 9.6 Inputs

 9.7 Testing Techniques for User Acceptance Testing

 9.8 Outputs

 10 Operations Acceptance Testing

 10.1 Overview

 10.2 Operations Acceptance Test Approach

 10.3 Operations Acceptance Test Data Requirements

 10.4 Roles and Responsibilities

 10.5 Planning and Resources

 10.6 Inputs

 10.7 Testing Techniques for Operations Acceptance Testing

 10.8 Outputs

 11 Regression Testing

 11.1 Overview

 11.2 Regression Test Approach

 11.3 Regression Test Data Requirements

 11.4 Roles and Responsibilities

 11.5 Planning and Resources

 11.6 Inputs

 11.7 Testing Techniques for Regression Testing

 11.8 Outputs

 12 Improving the Testing Process

 12.1 Introduction

 12.2 Overview of the Role and Use of Metrics

 12.3 Metrics Typically Used Within the Testing Process

 12.4 Setting Up and Administering a Metrics Program
 12.5 A Proposal for a Simple and Effective Metrics Set

 12.6 Further Reading

 13 Introduction, Adoption, and Maintenance of the Testing Process

 13.1 Introduction

 13.2 Introduction and Adoption of a Testing Process

 13.3 Maintenance of the Testing Process

 13.4 A Proposal for a Quick Start Test Process

 14 Agile Testing

 14.1 Introduction

 14.2 Overview of Agile Testing

 14.3 Agile Quality Management Practices

 14.4 A Proposal for an Effective Subset of Agile Best Practices

 14.5 Conclusion

 Part 2. The Testing Process in the Real World: Illustrative Case Studies

 Case Study 1. The British Library

 Case Study 2. Reuters Product Acceptance Group

 Case Study 3. Crown Quality Assurance Group

 Case Study 4. The Wine Society

 Case Study 5. Automatic Data Processing Limited

 Case Study 6. Confirmit

 Part 3. The Appendices

 Appendix A. Terms of Reference for Testing Staff

 Appendix B. Testing Guides

 Appendix C. Test Plan Document Template

 Appendix D. Test Specification Document Template

 Appendix E. Test Script Template

 Appendix F. Test Result Record Form Template

 Appendix G. Test Log Template

 Appendix H. Test Certificate Template

 Appendix I. Reuse Pack Checklist

 Appendix J. Test Summary Report Template

 Appendix K. Equivalence Partition Example
Appendix L. Boundary Value Analysis Example

 Appendix M. State Transition Example

 Appendix N. Pairwise Testing Example

 Appendix O. Automated Testing Tool Selection Criteria

 Appendix P. Usability Testing Overview

 Appendix Q. Testing Process Health Check

 Appendix R. The Testing of Object-Oriented Software

 Appendix S. Pragmatic Test Process Adoption – a Real-World Example

 References

 Glossary

 Index

 Foreword to the Second Edition
Geoff Thompson

 So what is this testing thing then?

 A question that I and many other aspiring software testing professionals get asked frequently. We try to explain, and watch
 the questioner's eyes glaze over as he or she furtively starts looking around to find a reason to step away or change the
 subject.

 Isn't it strange that this happens? Is it that the explanation is simply incomprehensible by any sane person, or is it that
 software testers themselves need to understand in simple terms what it is they do?

 I can add my own personal perspective on this issue; I help organize the British Computer Society Specialist Group in Software
 Testing (BCS SIGiST), and I am regularly surprised by two things: first, 70% of the attendees have never attended any form
 of networking meeting before, and second (and perhaps more important), none of the attendees read any of the many software
 testing books that exist.

 Having had the opportunity to discuss this with many of the attendees, it is clear that the reason for this is the content
 of the typical testing book – it's just too complex for them to get their teeth into and understand. What is needed is a straightforward,
 simple-to-read, and simple-to-use testing book.

 When the first edition of Testing IT was released in 2001, this changed. For once there was a book that provided a simple overview of what testing was, with straightforward
 guidance for test practitioners, plus a selection of easy-to-use testing templates. Since then I have recommended Testing IT to numerous testers that I have met, as well as providing copies to the testers on projects I have managed, and have received
 positive feedback from them regarding the practical benefits that it provides.

 With the publication of the second edition of Testing IT, John has built on the success of the first edition, revising and bringing it up to date to ensure it continues to be relevant
 for the next ten years and beyond. Having been a champion of the first edition, I was very pleased to have been invited to
 play a part in this process, having used my involvement in the Information Systems Examination Board (ISEB), International
 Software Testing Qualification Board (ISQTB), and the Test Maturity Model Integrated (TMMi) initiatives to ensure the second edition continues to be relevant going forward.

 So, back to my original question – what is this testing thing then? Well, although there is no single simple answer to this
 question, in my humble opinion, John's book goes a long way to helping practitioners involved in test process, test management,
 and testing make a really good stab at answering the question for themselves.

 Foreword to the First Edition
Maurice Rosenburgh

 Why is astronomy considered a science while astrology is considered only a pseudo-science? In other words, how can we prove
 that a theory faithfully describes reality, and that this theory can then be used to predict unknown facts? Karl Popper, the
 well-known philosopher, studied these problems and summarized his conclusions in one phrase: “The criterion of the scientific
 status of a theory is its falsability, or refutability, or testability.”* For Popper, “confirming evidence should not count except when it is the result of a genuine test of the theory.”

 The testing process of a scientific theory is quite similar to the process of providing confirmation either to risky predictions
 or to attempts to falsify that theory. Testing is a complex activity. It has to simultaneously bear in mind the theory and
 the external reality; it has to provide objective answers to complex questions related to our own perceptions of a rational
 reality.

 When developing software, we follow the same thought process, since one builds an abstract model between the external world
 and the user. In our software, we define strict processes that will guide our actions, and we build the data we want to manipulate
 in complex databases and templates.

 Can we test our software with Popper's principles in mind? The answer is definitively yes, because software testing should
 not only be a confirmation that the application is working correctly but also that it will react correctly when unexpected
 conditions occur. This constant and complex relationship between the software one tests and external reality should guide
 testers in their daily work.

 Although testing is usually perceived as a necessity in software development, it is rarely applied as a rigorous activity.
 Within many projects, testing is simply omitted; in others, it is executed with the distinct intent to prove that the application
 performs correctly under test conditions.

 After reading John Watkins's Testing IT you will be convinced that testing is not as complex as it seems and that it can be managed like any other development activity.

The first thing you notice in reading Testing IT is that John puts the accent on testing processes and real-world case studies, which are, in my opinion, the most important
 aspects of software testing, implicitly applying Popper's conclusions.

 Testing IT is divided into three logical, distinct parts: Part 1 focuses on traditional testing processes. Although technology is evolving
 at lightening speed, processes remain. They become even more important because they are at the heart of any activity. You
 will find this part very useful since it presents the testing phases starting from unit testing up to regression testing in
 the order found on all projects. Each phase is presented in the same coherent plan, facilitating access to the information.

 Part 2 gives practical case studies. Five projects are reported, each enhancing a different reality; we have again the confirmation
 that success is always related to a correct adaptation of processes to reality.

 Part 3 presents ready-to-use templates and reference documents that you can adapt to your needs and that you will find very
 useful in your daily testing work.

 Testing IT is not just another book on testing. It is, in addition, a guide for all testers who want to understand what testing is really
 about, and it proves once more that applying easy-to-understand processes is the key to success. In one word: indispensable.

 I’m certain you will enjoy reading this book, as I did, and that you will keep it on your desk to profit in your daily work
 from John's rich experience.

 Maurice Rozenberg
 Paris

 Author of Test Logiciel (1998, Eyrolles)

 * Karl Popper, Conjectures and Refutations. London: Routledge and Kegan Paul, 1963.

 Acknowledgments

 Second Edition Acknowledgments

 I would like to express my gratitude to Dave Evans, Isabel Evans, Pete Kingston, and Jon Tilt for allowing me to cite their
 experiences in agile testing, and for their valuable insights into improving agile communications, revealing how to succeed
 with agile off-shore projects, and describing innovative solutions for visualizing project progress and defect detection (next
 time I see him, I must ask Dave Evans where he buys his lava lamps!). Thanks are also due to 2nd edition reviewers Anne Mills,
 Dave Burgin, and Nathalie Allen for their keen eyes and valuable observations and comments.

 I am very grateful to Peter Quentin for his extensive knowledge of the ISEB and ISQTB syllabuses, and his advice and guidance
 on ensuring the content of the book was in line with current thinking.

 Many thanks to independent testing guru Tom Gilb and Trond Johansen of Confirmit for allowing me to document their fascinating
 real-world agile software development and testing project in the form of a case study. Also, thanks to Gary Schwartz for his
 reviewing efforts on the Confirmit case study.

 I would very much like to thank Geoff Thompson for his insightful, well-observed, and very flattering foreword to the 2nd
 edition (which is likely to cost me a fortune in beer), and for being such a fantastic ambassador and champion of the first
 edition of Testing IT (which I guess will more than cover the cost of the beers).

 Special thanks to Simon Mills for kindly agreeing to join the Testing IT project, and for adding to and enhancing the quality of the 2nd edition by bringing his pragmatic and extensive experience
 and knowledge of testing and the testing process to the new edition.

 Finally, many thanks to my editor Lauren Cowles and to David Jou for their support, encouragement, and encyclopedic knowledge
 of the publishing process.

First Edition Acknowledgments

 I would very much like to thank the following people for their advice, assistance, and encouragement with the writing of the
 first edition of this book:

 Martin Adcock, Steve Allott, Jo Armitage, Mike Ashton, James Bach, Chris Ball, Bob Bartlett, Clive Bates, Judith Bays, Lesley
 Beasant, Colin Bendall, Duncan Brigginshaw, Miriam Bromnick, Kevin Buchta, Dorothy Buck, Dave Burgin, Trevor J. Collins, Richard
 Coop, Victor Copeland, Chris Cupit, Jim Davies, Steve Dawson, Barbara Eastman, Will Eisner, Isabel Evans, Mark Fewster, Virpi
 Flyktman, Ian Francis, Ian George, Paul Gerrard, Peter Gillespy, Dot Graham, Sam Guckenheimer, Jon Hall, Marion Hampson, Richard
 Hands, Steve Harcombe, Kim Harding, David Hayman, Mark Hirst, Dave Hodgkinson, Alan and Alison Jones, John Kent, Shelagh Kidd,
 Sami Korppi, Shaun Legeyt, Carol Li, Neil Love, Nick Luft, Philip March, Andrew Martin, Peter McConnell, Alec McCutcheon,
 Aidus McVeigh, Simon Mills, Kevin Minier, Eric Nelson, Mike Newton, Tommi Oksanen, David Palfreeman, Richard Pollard, Andy
 Redwood, Susan and Andy Roach, Ranj Sekhon, Darran Shaw, David Shohet, Graham Shore, Michael Summerbell, Peter Terelak, Pete
 Thomas, Andrew Thompson, John Thompson, Richard Tinker, Julie Valentine, Paul Warne, Tony Wells, Martin Whitaker, and Helen
 White.

 I would like to give particular thanks to Dorothy Graham for giving me the benefit of her extensive experience in the testing
 field; Graham Titterington for his comprehensive and informed review comments; Geoff Quentin for his testing insight, encyclopedic
 knowledge of testing standards, and extensive collection of testing references; and James Bach, Paul Gerrard, and Steve Hancock
 for their input and informed discussion regarding risk-based testing issues.

 I would also like to thank the following people for their assistance in writing the case studies in Part 2 of this book, as
 well as for their general help and encouragement with the book and its contents: Morag Atkins, Ken Eves, Paul Goddard, Martin
 Kemble, David Marsh, Annette Philips, and James Toon.

 I am also very grateful to Maurice Rozenberg for finding the time to both write the foreword to the book, and for giving me
 the benefit of his extensive testing expertise in reviewing the chapters, case studies, and appendices.

 And last but certainly not least, I would like to express my appreciation for the insight and experience of my technical reviewer
 Kamesh Pemmaraju, and for the constant “encouragement” and guidance from my editor Lothlorien Homett.

 1 Introduction

 “Hmm, The Wheel you say! Well, I don't wish to belittle your achievement, but I’ve travelled far and wide and I’ve seen a
 great many of these things invented by a great many people in a great many different caves!”

 – Big Ugg, Neander Valley, 35,000

 1.1 Purpose of the Book

 This book provides comprehensive and rigorous guidance to workers in the field of software testing for researching or setting
 up a software testing process within organizations.

 The book provides advice and guidance on all aspects of the testing process, including:

 • The need to test software and the approach to testing

 • Specific details of testing techniques, with examples

 • The planning and management of testing projects

 • Testing roles and responsibilities

 • Comprehensive details of the testing phases

 • Extensive testing document templates, proformas, and checklists

 • Recommendations for testing process improvement and the role and use of metrics

 • The testing challenges facing testers involved in quality assurance tasks on agile projects

 • The testing challenges facing developers of object-oriented and component-based systems

The book covers the testing of software from a number of sources, including software developed or modified in-house, software
 that represents the modification or extension of existing legacy software systems, and software developed on behalf of an
 organization by a third party.

 The book also covers acceptance testing of commercial off-the-shelf (COTS) software procured by an organization, or COTS software that has undergone bespoke development either internally or by a
 third party on behalf of an organization.

 This book should be used in a pragmatic manner, in effect providing a testing framework that can be used by all members of
 staff involved in software development and testing within an organization to improve the quality of the software they deliver and to reduce time scales, effort,
 and cost of testing.

 Alternatively, the testing process described in this book can be customized to match the specific testing requirements of
 any particular organization, and a series of real-world case studies are provided to illustrate how this can be achieved.

 1.2 Readership

 The target audience for this book includes the following people:

 • Technical directors/managers who need to improve the software testing process within their organization (in terms of quality, productivity, cost, and/or
 repeatability of the process)

 • Quality assurance (QA) professionals (such as company QA directors or managers) who need to put in place a formal organization-wide approach to software testing

 • Project managers/leaders who need to save time, effort, and money, and improve quality by adopting a complete, standard, off-the-shelf solution to
 their testing requirements

 • Independent information technology (IT), QA, or management consultants who provide advice and guidance to clients on software testing process, for whom the book will represent a key item in their
 “Consultants Tool Kit”

 • Testing/QA professionals (such as test analysts, testers, or QA representatives) who wish to save time and effort by adopting predefined testing artifacts
 (such as standard templates for test scripts, test plan and test specification documents)

 • IT professionals who need to understand the software testing process (such as developers involved in unit or integration testing)

 • Any staff members who are keen to improve their career prospects by advocating a complete testing solution to their organizations’ software
 testing needs, particularly where there is a need to improve quality or save time, effort, and cost

 • Training managers/trainers who are in the process of writing or amending testing training materials and who need to obtain a pragmatic view of testing
 process and its application

 • Students who need to obtain a pragmatic/real-world view of the application of testing theory and principles of organizational software
 testing requirements, or who have an interest in testing process improvement and the role and use of metrics

 1.3 How to Read This Book

 This book is divided into three parts, all closely linked, but each of which can be read and applied separately.
Part 1 (Chapters 2 to 14) documents the “traditional view” of the components comprising a software testing process. Part 1 provides detailed information
 that can be used as the basis of setting up a testing process framework tailored to the individual requirements of any organization
 involved in software testing.

 Part 2 (Chapters 15 to 20) provides a series of case studies that show how a number of organizations have implemented their own testing process based
 on the “classic view” described in Part 1. These case studies can be read to provide real-world guidance on how an individual
 organization can implement a testing process framework to meet its own particular testing requirements.

 Part 3 (the appendices) contains a set of standard testing document templates, proformas, and checklists, plus a number of
 appendices that expand on topics described in the main body of the book (such as worked examples of specific testing techniques).
 The standard testing document templates, proformas, and checklists are also available from the following link: http://www.cambridge.org/, and can be used immediately without modification or customized to reflect the particular requirements of any organization
 (such as a corporate style, branding, or documentation standard).

 Where terms appear in italics, these terms are more fully defined or expanded on in the glossary.

 1.4 Structure and Content of This Book

 Specifically, the chapters and appendices comprising this book are:

 • Chapter 2, which discusses just how challenging it is to thoroughly test even the most simple software system, reviews a number of
 definitions of testing, provides a brief overview of the approach to software testing, and lists a number of definitive testing
 references for further reading

 • Chapter 3, which describes the principal techniques used in designing effective and efficient tests for testing software systems and,
 where appropriate, provides references to illustrative worked examples in the appendices

 • Chapter 4, which deals with the issues associated with the management and planning of the testing process, provides guidance on the
 organization of testing and testing projects and on the need for thorough planning, describing a number of techniques for
 supporting the planning process

 • Chapters 5 to 11, which provide details on each of the testing phases (from unit testing to acceptance testing and on to regression testing1) and their interrelationships. Each chapter is presented in a standard format and covers:

 • the overall testing approach for that phase

 • test data requirements for that phase

 • the roles and responsibilities associated with that phase

 • any particular planning and resourcing issues for that phase

 • the inputs to and the outputs from that phase

 • a review of the specific testing techniques appropriate to that phase

 • Chapter 12, which discusses the need for process improvement within the testing process and reviews the role of metrics (proposing a
 pragmatic metrics set that can be used effectively within and across testing projects). It also provides references to further
 sources of information on test process improvement

 • Chapter 13, which for organizations adopting the testing process described within this book or using it as the basis of setting up their
 own testing process framework, discusses the process of introducing the testing process into an organization, managing its
 successful adoption, and reviewing the need to maintain that testing process and proposing an approach to satisfy this requirement

 • Chapter 14, which discusses the phenomenon of agile approaches to software development and testing, reviews a number of successful agile
 quality management practices being employed by testing practitioners on real-world projects, and concludes by making a series
 of recommendations about how to implement an effective and efficient agile testing approach

 • Chapters 15 to 20, which provide a series of real-world case studies describing how a number of commercial organizations have implemented their
 own customized view of the testing process described in Chapters 2 to 12. Specifically, the organizations providing case studies are:

 • The British Library

 • Reuters Product Acceptance Group

 • Crown Quality Assurance Group

 • The Wine Society

 • Automatic Data Processing (ADP) Limited

 • Confirmit Agile Development and Testing

 • Appendices A to J, which provide a set of testing document templates, proformas, and checklists:

 • terms of reference for testing staff

 • summary testing guides for each testing phase

 • a test plan document template

 • a test specification document template

 • a test script template

 • a test result record form template

 • a test log template

 • a test certificate template

 • a reuse pack checklist

 • a test summary report template

 • Appendices K to N, which provide a series of worked examples of testing techniques described in Chapter 3

 • Appendices O to S, each of which expand on topics described in passing in the main body of the book, and include:

 • a scheme and set of criteria for evaluating the relative merits of commercially available automated software testing tools

 • an overview of the process of usability testing and its application

 • a scheme and set of criteria for performing an audit of a testing process

 • a discussion of the issues involved in the testing of object-oriented and component-based applications

 • an overview of a real-world example describing how it is possible to adopt a subset of the best practices described in this
 book in order to gain rapid-quality improvements.

 • A list of the references cited in the book

 • A glossary of terms used in this book

 1 Although not strictly speaking a separate testing phase, regression testing is included in this list for the sake of completeness.

 Part one The Traditional Testing Process

 2 An Overview of Testing

 “As we strive to implement the new features of our applications, there is one thing we can say with absolute certainty – that
 at the same time, we also introduce new defects.”

 2.1 Introduction

 This chapter provides an overview of testing to provide an understanding of what testing is and why it is such a challenge.
 It also emphasizes that whenever we test software, the process must be made as efficient and effective as possible.

 Readers familiar with the need for efficient and effective testing may not need to read this chapter.

 2.2 The Challenge of Testing

 So, just how difficult is testing? To help answer this question, consider the following example.

 Imagine we have a requirement to test a simple function, which adds two, thirty-two bit numbers together and returns the result.
 If we assume we can execute 1,000 test cases per second, how long will it take to thoroughly test this function?

 If you guessed seconds, you are way out. If you guessed minutes, you are still cold. If you guessed hours, or days, or even
 weeks you are not even slightly warm. The actual figure is – 585 million years.1

 But surely this is a daft example. Nobody in his or her right mind would test such a function by trying out every single possible
 value! In practice, we would use some formal test design techniques such as boundary value analysis and equivalence partitioning to help us select specimen data for our test cases (see Chapter 3 for details of test design techniques). Using this test data, we would assume that if the function performed satisfactorily
 for these specimen values, it would perform satisfactorily for all similar values, reducing the time needed to test the function
 to an acceptable timescale.

However, as testers we should not start feeling too confident too soon – there are many other issues that can complicate the
 testing of our “simple” function. For example:

 • What if the function needs to interoperate with other functions within the same application?

 • What if the data for the calculation is obtained across a complex client/server system and/or the result is returned across
 the client/server system?

 • What if the calculation is driven via a complex graphical user interface with the user able to type the addition values into
 fields and push the buttons to perform the calculation in any arbitrary order?

 • What if this function has to be delivered on a number of different operating systems, each with slightly different features,
 and what if individual users are able to customize important operating system features?

 • What if this function has to be delivered on a number of different hardware platforms, each of which could have different
 configurations?

 • What if the application that this function belongs in has to interoperate with other applications, and what if the user could
 be running an arbitrary number of other applications simultaneously (such as email or diary software)?

These are all typical requirements for software systems that many testers face every day during their testing careers. They
 make software systems highly complex and make testing an immense challenge!

 2.3 What Is Testing?

 The process of testing is by no means new. The Oxford English Dictionary tells us that the term “test” is derived from the Latin expression – testum, an earthenware pot used by the Romans and their contemporaries in the process of evaluating the quality of materials such
 as precious metal ores.

 Computer programs have undergone testing for almost as long as software has been developed. In the early days of software
 development there was little formal testing, and debugging was seen as essential to developing software.

 As the software development process has matured, with the inception and use of formal methods (such as 6), the approach to testing has also matured, with formal testing methods and techniques (such as 8) being adopted by testing professionals.

 Most workers in the field of modern software development have an intuitive view of testing and its purpose. The most common
 suggestions include:

 • To ensure a program corresponds to its specification

 • To uncover defects in the software

 • To make sure the software doesn't do what it is not supposed to do

 • To have confidence that the system performs adequately

 • To understand how far we can push the system before it fails

 • To understand the risk involved in releasing a system to its users.

Here are some more formal definitions of testing:

 Testing is any activity aimed at evaluating an attribute or capability of a program or system and determining that it meets
 its required results (1).

This definition addresses the traditional testing approach, that is, does the system conform to its stated requirements? This
 appears to be an intuitive view of testing; we have some statements about how the system should behave, and we confirm that
 these requirements are met. This approach is also known as positive testing.

 Here is another view of testing:

 Testing is the process of executing a program or system with the intent of finding defects (2).

This definition is less intuitive and does not, strictly speaking, consider the requirements of the system.2 Instead, it introduces the notion of actively looking for defects outside the scope of the software requirements, which in
 practice could be any problem or defect in the system. This approach is also known as negative testing.

 In practice, testing will combine elements of positive and negative testing – checking that a system meets its requirements
 but also trying to find errors that may compromise the successful operation or usefulness of the system.3

 Most recently, the notion of defining testing in terms of risk has become increasingly popular. In this use, the term “risk”
 relates to the possibility that the application under test (AUT) will fail to be reliable or robust and may cause commercially damaging problems for the users. Here is a definition of testing in terms of risk:

 Testing is the process by which we explore and understand the status of the benefits and risk associated with the release
 of a software system (28).

Within this definition of testing, the role of the tester is to manage or mitigate the risk of failure of the system and the
 undesirable effects this may have on the user.

 Defining testing in terms of risk provides the tester with an additional strategy for approaching testing of the system. Using
 a risk-based approach, the tester is involved in the analysis of the software to identify areas of high risk that need to
 be tested to ensure the threat is not realized during operation of the system. Furthermore, the notion of risk in a project
 management context is well known and understood, and many tools and techniques exist that can be applied to the testing process
 (28, 29, 30).

It may be difficult for the staff involved in planning and design of tests to identify specific risks for a particular AUT
 (especially where they may not be familiar with the domain of operation of the software). In assessing risk, it is essential
 that the following issues be considered:

 • The business, safety, or security criticality of the AUT

 • The commercial/public visibility of the AUT

 • Experience of testing similar or related systems

 • Experience of testing earlier versions of the same AUT

 • The views of the users of the AUT

 • The views of the analysts, designers, and implementers of the AUT.

 The need to analyze risk in the testing process is addressed in Chapter 4 – the Management and Planning of Testing.

 2.4 Verification and Validation

 Two testing terms frequently used but often confused are verification and validation. Reference 40 provides a formal definition of these terms:

 Verification is the process by which it is confirmed by means of examination and provision of objective evidence that specific requirements
 have been fulfilled (during the development of the AUT)

 Validation is the process by which it is confirmed that the particular requirements for a specific intended use (of the AUT) are fulfilled

 Reference 26 provides a succinct and more easily remembered definition of these terms:

 Verification: Are we building the product right?

 Validation: Are we building the right product?

Verification deals with demonstrating that good practice has been employed in the development of the AUT by, for example,
 following a formal development process (8).

 Validation deals with demonstrating that the AUT meets its formal requirements, and in that respect conforms closely to the
 Hetzel (1) definition of testing discussed earlier in this chapter.

 Both verification and validation (also termed V&V) are key to ensuring the quality of the AUT and must be practiced in conjunction with a rigorous approach to requirements
 management. Chapter 4 provides guidance on the role of requirements management and its role within V&V.

2.5 What Is the Cost of Not Testing?

 Many examples exist, particularly those involving safety critical, business critical, or security critical applications, where
 the failure of the system has, either through litigation or loss of public confidence, resulted in the software provider going
 out of business.

 Even where a system does not deal with a critical application, failure of high-profile systems, such as an organization's
 Web site, free shareware, or demonstration software, can still have serious commercial implications for the organization in
 terms of loss of public confidence and prestige.

 Some defects are subtle and can be difficult to detect, but they may still have a significant effect on an organization's
 business. For example, if a system fails and is unavailable for a day before it can be recovered, then the organization may
 lose a day's effort per person affected. If an undetected defect simply causes the performance of a system to degrade, then
 users may not even notice that a problem exists. If, however, the defect causes a loss of productivity of just thirty minutes
 per day per user, then the organization could lose on the order of twenty days effort per person per year!

 2.6 Testing – the Bottom Line

 Phrases like “Zero Defect Software” or “Defect Free Systems” are hyperbole, and at best can only be viewed as desirable but
 unattainable goals.4

 In practice, it is impossible to ensure that even relatively simple programs are free of defects because of the complexity
 of computer systems and the fallibility of the development process and of humans involved in this process.

 In simple terms, it is impossible to perform sufficient testing to be completely certain a given system is defect free. When
 you combine this problem with the fact that testing resources are finite and (more typically) in short supply, then adequate
 testing becomes problematic. Testers must focus on making the testing process as efficient and effective as possible to find
 and correct as many defects as possible.

 Ultimately, testing can only give a measure of confidence that a given software system is acceptable for its intended purpose.
 This level of confidence must be balanced against the role the system is intended for (such as safety critical, business critical,
 secure, confidential, or high-profile applications) and against the risk of the system failing in operation before the decision
 to release or accept software can be made.

 The key to effective testing is making the process as efficient as possible: rigorous planning and project management must
 be employed; testers must use their knowledge of testing techniques and experience to guide them in devising effective tests; reuse must be introduced and managed
 at all stages of the testing process; and organizations need to consider the benefits and role of automated software testing
 tools.

 Each of these issues is considered in detail in the following chapters.

 2.7 Additional Information

 Both the Hetzel and Myers books (1, 2) are excellent general introductions to testing, as well as useful reference documents for more experienced testing practitioners.
 Bach's paper (28) provides a risk-based view of testing and offers guidance on performing testing from a risk-based perspective.

 I also recommend the Fewster and Graham book (17), which although specifically dealing with software test automation, also provides a good general treatment of the subject.

 Other testing books well worth reading include the Gilb and Graham book on software inspection (41), the Kit book (42), and the Beizer text on software testing techniques (43). I also recommend excellent testing books by Lee Copeland and Paul Jorgensen (73, 74) for further guidance on test design and on general testing best practices and principles. Last, I recommend Reference 54
 as an excellent source of information on agile testing topics, as well as on the impact of new software development processes
 on testing and testers.

 The CCTA IT Infrastructure Library series (5), published by the government center for information systems, provides thorough guidelines on setting up and administering
 a testing program within an organization.

 The British Computer Society Specialist Group in Software Testing (BCS SIGiST) is very active in promoting the role of software testing and the use of best practice and process, and it is well worth a
 visit to the BCS Web site at www.bcs.org.uk (then search for SIGiST).

 Other testing Web sites well worth a visit include:

 • The Professional Tester: www.professionaltester.com

 • Software Quality Engineering: www.sqe.com

 • The Open University Faculty of Mathematics and Computing: www.open.ac.uk/courses

 • The Software Testing Institute: www.softwaretestinginstitute.com

 • The Information Systems Examinations Board (ISEB): www.bcs.org

 • The International Software Testing Qualifications Board (ISTQB): www.istqb.org

 • The Test Maturity Model Integrated (TMMi): www.tmmifoundation.org

 Please also visit the Cambridge University Press Web site, where there are further references to testing books as well as links to other Web sites specializing in testing:
 www.cambridge.org

 The following standards are worth obtaining for reference purposes:

 • “IEEE Standard for Software Test Documentation,” IEEE Std 829–2008, IEEE, 2008

 • “International Software Testing Qualifications Board Glossary” – http://www.istqb.org/

 1 The calculation is quite straightforward (with a calculator) – 2(32+32)/1000/60/60/24/365.25 = 584542046 years.

 2 Although a “defect” could be considered a failure of the system to support a particular requirement.

 3 It is possible to argue that in a perfect world of complete requirements and accurate specifications, there would be no need
 for negative testing, because every aspect of the application under test (AUT) would be specified. Unfortunately, the reality
 is somewhat short of perfection, and so testing is always likely to include a degree of negative testing.

 4 Even with mathematically rigorous methods (such as Z and VDM), it is still impossible to say that any but the simplest pieces
 of software will be defect free.

 3 Testing Techniques

 “I am for those means which will give the greatest good to the greatest number.”

 – Abraham Lincoln

 3.1 Introduction

 This chapter describes a number of testing techniques that the test analyst can employ in designing and developing effective test cases.

 This chapter focuses on practical, pragmatic design techniques that test designers can employ in their everyday testing tasks, and does not try to provide an exhaustive list of every possible
 testing technique available (e.g., symbolic testing or other research-oriented testing methods).

 The testing techniques are organized into three main groups:

 • General testing techniques (i.e., high-level approaches to testing that can be applied to the specific testing techniques described in the second and
 third groups in the following), which include:

 • Positive and negative testing

 • White box and black box testing

 • Experienced based testing or error guessing

 • Automated software testing

 • Functional testing techniques (i.e., testing techniques used to confirm that the application under test (AUT) meets its functional requirements), which include:

 • Equivalence partitioning

 • Boundary value analysis

 • Intrusive testing

 • Random testing

 • State transition testing

 • Static testing

 • Thread testing

 • Pairwise testing

 • Nonfunctional testing techniques (i.e., testing techniques used to verify that the (AUT) meets its nonfunctional requirements), which include:

 • Configuration/Installation testing

 • Compatibility and interoperability testing

 • Documentation and help testing

 • Fault recovery testing

 • Performance testing

 • Reliability testing

 • Security testing

 • Stress testing

 • Usability testing

 • Volume testing

Where appropriate, examples illustrating the use of a particular test design technique are provided in the appendices.

 3.2 General Testing Techniques

 3.2.1 Positive and Negative Testing

 Positive and negative testing are complementary testing techniques, and in practice both processes are likely to be used in the testing of a particular
 AUT (see Figure 3.1, for example).

 The process of positive testing is intended to verify that a system conforms to its stated requirements. Typically, test cases
 will be designed by analysis of the requirements specification document for the AUT. The process of positive testing must be performed to determine if the AUT is “fit for purpose,” and where the
 application will be delivered to a customer, the process is likely to be a compulsory aspect of contractual acceptance.

 [image: 3.1]

 3.1 Examples of Positive and Negative Testing

The process of negative testing is intended to demonstrate – “that a system does NOT do what it is not supposed to do.” That
 is, test cases are designed to investigate the behavior of the AUT outside the strict scope of the requirements specification.
 Negative testing is often used to test aspects of the AUT that have not been documented or that have been poorly or incompletely
 documented in the specification.

 Because the requirements for software systems are frequently poorly specified (or possibly missing, such as is the case with
 some legacy systems), it is likely that a certain amount of negative testing of the AUT will be required to provide confidence
 in the operation of the application. This must be balanced against the need to be as effective and efficient as possible in
 testing, because negative testing is an open-ended technique and is not bounded in terms of possible expended effort in the
 same manner as positive testing.

 To illustrate the techniques of positive and negative testing consider the following extract (in Figure 3.1) from the specification for the operation of a compact disk player.

 3.2.2 White Box and Black Box Testing

 White box and black box testing are complementary approaches to testing the AUT that rely on the level of knowledge the test
 analyst has of the internal structure of the software.

 White box tests are designed with the knowledge of how the system under test is constructed. For example, an analyst designing a test
 case for a particular function that validates the input of an integer within a specified range of values may be aware that
 the validation is performed using an “IF-THEN-ELSE” instruction, and so will structure the test to check that the appropriate
 logic has been implemented. It is anticipated that the test analyst will have access to the design documents for the system
 or other implementation documentation or will be familiar with the internal aspects of the system. Other sources of knowledge
 may include familiarity with similar or related systems to the AUT.

 Black box tests are designed without the knowledge of how the system under test is constructed. This is not as unlikely an event as
 it may at first seem. For example, the test analyst may be called upon to design regression tests for extensions to legacy applications where the system documentation has been lost, or to design acceptance tests for commercial-the-shelf (COTS) products or systems implemented by third-party developers. In black box testing, the design of test cases must be based
 on the external behavior of the system. If requirements exist for the system, these must be tested against. Where there are
 no requirements, then user guides or documentation describing how the system should behave can be used as the basis of test
 design.

 The terms behavioral and structural testing (45) are often used synonymously with the terms black box and white box testing. In fact, behavioral test design is slightly different to black box testing, as the knowledge of how the system under test is constructed is not strictly
 prohibited during test design, but is discouraged.

Because knowledge of how the software was constructed is necessary for white box testing, this technique is typically used
 during the early phases of the testing process where the programmer is responsible for designing and executing the tests (such
 as unit testing – see Chapter 5). Black box techniques are typically used during the later phases of the testing process (such as system testing – see Chapter 7), where the test analyst may not have access to information about how the software was constructed or where the software
 has been developed by a third party or brought in as COTS software. In practice, test analysts often use a mixture of black
 and white box techniques in the design of test cases, in effect following a “grey box” or “translucent box” approach.

 3.2.3 Experienced Based Testing

 Experienced based testing is not in itself a testing technique, but rather a skill that can be applied to all of the other testing techniques to produce
 more effective tests (i.e., tests that find defects).

 Also termed error guessing, experienced based testing is the ability to find errors or defects in the AUT by what appears to be intuition. In fact,
 those testers who are effective at error guessing are actually using a range of techniques including:

 • Knowledge about the AUT, such as the design method or implementation technology

 • Knowledge of the results of any earlier testing phases (particularly important in regression testing)

 • Experience of testing similar or related systems (and knowing where defects have arisen previously in those systems)

 • Knowledge of typical implementation errors (such as division by zero errors)

 • General testing rules of thumb or heuristics.

Experienced based testing is a skill that is well worth cultivating because it can make testing much more effective and efficient
 – two extremely important goals in the testing process. As suggested by its title, the skill of experienced based testing
 is obtained through experience, although there are some people who seem to have a natural flair for finding defects in software
 systems.

 3.2.4 Automated Software Testing

 Although strictly speaking not a testing technique, automated testing is included in this section for the sake of completeness.

 The majority of test automation tools1 allow reusable tests to be created by recording the expected behavior of the AUT under its typical operation, then subsequently
 replaying those tests (against a later build or release of the software) to compare the observed behavior against the expected
 behavior (i.e., the originally recorded behavior). Where the observed behavior differs from the expected behavior, the tool logs this event and allows the tester
 to analyze how and why the differences have occurred.

 Automated tools exist that support both the testing of functional and nonfunctional aspects of the AUT, such as testing against
 the functional requirements for the AUT and performance, load, volume, and stress testing (see [23], for example).

 A significant benefit of such tools is their ability to operate unattended (e.g., to run overnight or over the weekend), providing significant gains in productivity for the testing task. Automated
 tools can also provide additional confidence in the AUT by allowing more tests to be executed in the same time as that taken
 for an equivalent manual test.

 The principal use of such tools is in regression testing (see Chapter 11) or retesting of the AUT, where it becomes possible to rerun all of the previously generated tests against the application
 following modification or extension of the software, rather than the typical manual approach of attempting to assess the impact
 of the modifications on the AUT and selecting a “representative” subset of the tests to run. This is of particular benefit
 where an iterative approach to software development (8) has been adopted, because there is typically a demanding requirement to regression test the deliverables from earlier iterations.

 Although these tools have many potential benefits, they will not be appropriate for all testing tasks, and a critical review
 and evaluation of the advantages and disadvantages must be undertaken before their introduction. Appendix O provides both
 a scheme and a set of criteria to support the process of evaluating automated software testing tools.

 Examples of where automated testing tools may be particularly appropriate include:

 • Testing of applications that have a rapid build and release cycle

 • Testing of applications that have to be delivered across diverse platforms

 • Testing of applications with complex GUI and/or client server architectures

 • Testing of applications that require thorough, rigorous, repeatable testing (e.g., safety critical, business critical or security
 critical systems)

 • Where there is a need to reduce testing timescales and effort

 • Where there is a need to do more thorough testing in the same timescales.

Where automated testing tools are adopted, they must be integrated with the existing testing management process and not just
 “tacked on” to the current process with the expectation that they will provide instant benefits.

 Finally, although it is possible to gain rapid benefits from the introduction of automated tools (see, e.g., [17]), typically the benefits such tools bring will not be realized during their initial use, because the tools will require
 integration into the existing testing process and there will be learning curve issues to overcome. However, it is important
 that organizations persevere with their use, otherwise such tools are likely to quickly become “Shelfware” and the initial investment in the tool and its use will be lost.

 References (22) and (23) provide typical examples of such automated testing tools, whereas case studies in Chapters 17 and 19 provide examples of the successful use of such tools.

 3.3 Functional Testing Techniques

 3.3.1 Equivalence Partitioning

 This technique relies on the fact that inputs and outputs from the AUT (which can include environment variables and logical
 operations) can be grouped or partitioned into coherent groups or classes, and that all instances of these classes will be treated in the same manner by the system.
 The principal assumption of this technique is that testing one instance of the class is equivalent to testing all of them.

 The skill in using this technique lies in identifying the partition of values and selecting representative values from within
 this partition, and in deciding how many values to test.

 There are a number of graphical methods that can be used to support this technique, which involve visualizing the partition
 and tabulating the test cases and their values (Appendix K provides a worked example that demonstrates the technique of equivalence
 partitioning).

 3.3.2 Boundary Value Analysis

 Boundary value analysis is a closely related technique to equivalence partitioning and relies on the same underlying principle – that inputs and
 outputs can be grouped into classes and that all instances of these classes will be treated similarly by the system.

 Where equivalence partition deals with selecting representative values from within the class, boundary value analysis focuses
 on testing values from the boundary of the class. Specifically, the technique will design a test case for the boundary value itself, plus a test case for one significant value on either side of the boundary.

 In practice, boundary value analysis and equivalence partitioning are used together to generate a complete set of test cases
 providing tests of the “edges” of the ranges of values as well as values from the “body” of the range of values.

 As with equivalence partitioning, there are a number of graphical methods that can be used to support boundary value analysis,
 which involve visualizing the boundary (or boundaries) and tabulating the test cases and their values. (Appendix L contains
 a worked example that demonstrates the technique of boundary value analysis.)

 In practice, when using boundary and/or equivalence techniques, the test analysts may face a combinatorial explosion in terms
 of the seemingly infinite number of possible combinations of values when considering the interaction between the different variables within the AUT. One possible
 solution the test analyst can use to control this complexity is the use of pairwise testing (Section 3.3.8).

 3.3.3 Intrusive Testing

 As the name suggests, intrusive testing involves the deliberate modification of the AUT or its behavior for the purposes of testing.

 For example, where the result of a test would not be visible to the tester (such as the modification of the value of a variable
 that would not be displayed to the user during the execution of the AUT), the test analyst may introduce additional statements
 into the application to display the value of the variable. Other examples include directly setting the values of variables
 using symbolic debuggers or deliberately triggering error conditions within the AUT.

 Clearly, any modifications made to the system for the purpose of testing must not be delivered to the customer/user of the
 system. Therefore rigorous change control and configuration management is essential.

 Although this technique can be useful during testing, there is a fundamental objection to this form of testing, which is what
 you deliver after testing is not what you actually tested.

 This technique should be used with extreme caution as there are many examples of systems that have been released containing
 changes introduced during intrusive testing that have manifested themselves during normal operation of the system.

 3.3.4 Random Testing

 Random testing is one of the few techniques for automatically generating test cases. Test tools are used to provide a harness
 for the AUT, and a generator produces random combinations of valid input values, which are input to the AUT. The results generated by each input are logged and the inputs
 and their respective results can be inspected following testing for defects.

 Although it is relatively straightforward to automate the process of providing inputs and stimulating the AUT, it is difficult
 to automate the process of checking the outputs, which can make this a particularly labor-intensive process (as well as introducing
 the likelihood of human error). Depending on the approach employed, it may also be difficult to reproduce the results of a
 particular series of random tests. As a result, random testing is not a commonly used technique, but is one that is particularly
 appropriate to automated testing tool support.

 Where it is used, this technique can be highly effective in identifying obscure defects; however, random testing should not
 be used as a substitute for other systematic testing techniques, but rather it should be considered an adjunct to the more
 rigorous techniques.

3.3.5 State Transition Analysis

 This technique models the AUT in terms of the states the system can be in, the transitions between those states, the actions
 that cause the transitions, and the actions that may result from the transitions.

 In designing test cases, state transition information can be derived from the requirements document, or may be documented in the design for those development methods
 that support state transition notations (such as the Unified Modeling Language or UML [6]).

 Test cases are designed to exercise transitions between states and specify:

 • The initial state

 • The inputs to the system

 • The expected outputs

 • The expected final state.

As well as being useful in positive testing, this technique is particularly useful in negative testing, as the process of
 considering the system states and transitions will often suggest tests covering issues either overlooked or poorly specified
 in the specification document.

 A number of graphical methods can be used to support this technique that involve visualizing the states and their transition.
 (Appendix M contains a worked example that demonstrates the technique of state transition analysis.)

 3.3.6 Static Testing

 As the name implies, static testing does not involve executing or running the AUT, but deals with inspecting the system in isolation.

 There are a number of methods and tools typically used in static testing:

 • Code review and inspection (by members of the development team)

 • Code walk-through (using paper and pen evaluation)

 • Static analysis tools (such as syntax and style checkers – see, e.g., [60])

 • Complexity estimating tools (such as cyclic complexity analysis tools).

Static testing usually takes place early in the testing process, and is particularly appropriate as an adjunct to unit testing.
 See (24) for further information on static testing.

 3.3.7 Thread Testing

 This technique is used to test the business functionality or business logic of the AUT in an end-to-end manner, in much the
 same way a user or an operator might interact with the system during its normal use.

For example, if the AUT is a library system for managing the book lending process, one particular thread to test might be a request for a particular book. The process might involve the following steps:

 • The operator logging onto the system

 • Validation of the operator privileges

 • Entry of the details of the book being requested

 • Validation of the book details

 • Access to the database to verify the availability of the book

 • Modification of the database to show that the book has now been borrowed

 • Printing of the appropriate paperwork to conclude the transaction.

This technique contrasts with earlier testing phases (such as unit and integration testing) where the tester is likely to
 have been more interested in the correct functioning of the object under test rather than on its business logic.

 3.3.8 Pairwise Testing

 As we discussed in Chapter 1, even with tool support it is a virtual impossibility to completely test all of the possible states that even moderately
 simple software can assume.

 Where there are a number of different parameters that can be in a number of different states in a program, it appears that
 the two most effective approaches for finding defects are to change the state of a single parameter or to change the state
 of a pair of parameters (75). The tester sees diminishing returns in executing tests involving three or more parameters; with increasing test effort
 there are decreasing benefits in terms of finding defects.

 The technique of pairwise testing (also termed all-pairs testing) looks to select a subset of all possible pairs of parameters and combinations of values to provide the most effective test
 coverage. Used in combination with the other test design techniques discussed within Section 3.3, pairwise testing provides
 good results in terms of identifying defects. (Appendix N contains a simple worked example that demonstrates the technique
 of pairwise testing).

 In practice, for testing complex applications involving large numbers of parameters and possible states, the technique of
 pairwise testing may become unwieldy for manual test case design. Under such circumstances, there are numerous tools available
 that can be used to support the technique of pairwise testing (e.g., [76]).

 3.4 Nonfunctional Testing Techniques

 3.4.1 Configuration/Installation Testing

 Configuration/Installation testing is used to ensure that hardware and software have been correctly installed, all necessary file and connections have been created, all appropriate data files have been loaded (such as database and/or
 historic information), system defaults have been correctly set, and interfaces to other systems or peripheral devices are all working.

 3.4.2 Compatibility and Interoperability Testing

 Compatibility testing verifies that when the AUT runs in the live environment, its operation does not impact adversely on other systems and vice
 versa. It is often required when a new system replaces an existing system, which had previously interacted with one or more
 other systems.

 Interoperability testing verifies that when the AUT runs in the live environment it is able to communicate successfully with other specified systems
 (such as invoking, passing data to, or receiving data from another system).

 3.4.3 Documentation and Help Testing

 The testing of the documentation and help facilities of the AUT are frequently overlooked aspects of testing the complete system. The testing of these items is often
 omitted from the testing process (because of lack of time or resources), because it is thought to be outside the scope of
 the testing process or through simple carelessness. In fact, these aspects of the AUT may be vital to its successful operation
 and use, particularly for new or naive users of the system.

 User documentation and help system information should be checked for conformance to the requirements specification document.
 Specific testing techniques involve review of the documentation, cross-referencing checks (e.g., against the document contents
 and index sections), and thread testing of typical user help scenarios.

 3.4.4 Fault Recovery Testing

 Fault recovery testing verifies that following an error or exception (such as a system crash caused by loss of power), the AUT can be restored to
 a “normal” state, such as the initial state of the application when it is first executed, and that the AUT can continue to
 perform successfully. Fault recovery testing may also be used to verify the successful rollback and recovery of the data used
 or manipulated by the AUT following an error or exception.

 3.4.5 Performance Testing

 Performance testing is traditionally a problem area because system performance is frequently poorly specified and can be measured using a variety of different criteria, including:

 • User response times

 • System response times

 • External interface response times

 • Central processor unit (CPU) utilization

 • Memory utilization.

In conducting performance testing it is essential to have a “performance model” that specifies what aspect of system performance is being tested, what the performance requirements are, how they can vary
 under typical system usage, and how they will be tested. Once the performance model is established, the test analyst can design
 clearly defined test cases based on this information.

 Another challenge in performance testing is the difficulty in accurately representing the test environment. For example, where
 there are likely to be large numbers of concurrent users and/or large amounts of data, it may be impractical or infeasible
 to set up and conduct realistic performance testing. Furthermore, recreating such a complex test environment to reproduce
 the test results or to rerun the tests against a new build or release of the AUT will be extremely difficult.

 Because of these difficulties, performance (and volume and stress) testing is often conducted using automated testing tool
 support. Examples of such tools include “low-level” performance testing tools (such as [44]) that are able to identify sections of the AUT that are executed frequently and that may need to be optimized to improve
 application performance, or “high-level” tools that can simulate very large numbers of users and their typical tasks to realistically
 exercise the AUT (see [23]).

 3.4.6 Reliability Testing

 Reliability testing involves executing tests to ensure the robustness and reliability of the AUT under typical usage. Reliability
 testing typically includes integrity and structural tests.

 Integrity tests focus on verifying the AUT's robustness (resistance to failure), compliance to language, syntax, and resource usage. For
 example, a particular unit could be executed repeatedly using a test harness to verify that there are no memory leak problems.
 Integrity tests can be designed, implemented, and executed during any testing phase.

 Structure tests focus on verifying the AUT's adherence to its design and formation. For example, a structure test could be designed for Web-enabled
 applications to ensure that all links are connected, appropriate content is displayed, and there is no orphaned content.2

 3.4.7 Security Testing

 Depending on the intended role of the AUT, requirements may exist that specify the need to ensure the confidentiality, availability,
 and integrity of the data and software. Security testing is intended to test whether the features implemented within the AUT provide this required level of protection.

 Security testing is mainly concerned with establishing the degree of traceability from the requirements through implementation,
 and in the validation of those requirements. Where particularly rigorous security testing is necessary, it is typically conducted
 by a dedicated team whose role is to evaluate the conformance of the AUT to the particular security requirements. Such teams
 may also verify that a standard approach or formal process has been followed in the development of the AUT.

 Security tests can be designed, implemented, and executed within any testing phase but are typically conducted at system test
 and rerun during user acceptance testing.

 3.4.8 Stress Testing

 Stress testing (also termed load testing – [45]) examines the ability of the system to perform correctly under instantaneous peak loads with the aim of identifying defects
 that only appear under such adverse conditions. For example, if the specification for the AUT states that the system should
 accept thirty simultaneous users, what happens if a thirty-first user attempts to log on? Similarly, what happens if all thirty
 users attempt to log on simultaneously?

 Simulation is a frequently used method in stress testing. In the previous example, it would be difficult from a planning and resource
 perspective to have thirty real-life users simultaneously logging on at thirty terminals; however, it may be more realistic
 to simulate thirty virtual users performing this activity.

 It is also worth considering tool support for stress testing, and there are several software testing tools that automate the
 process, some of which also incorporate simulation techniques (e.g., [23]).

 3.4.9 Usability Testing

 The topic of software usability is increasingly important, particularly with the increase in popularity of visual programming environments and the use of
 development techniques such as user-centered design (9) and rapid prototyping (12).

 Users themselves are also becoming increasingly sophisticated in their expectations of what a user interface should do for
 them and how it should support their business activities in a consistent and intuitive manner. Conversely, this must always
 be balanced by the inevitable occurrence of users unfamiliar with computer systems but who are still expected to be able to
 use a particular application with little or no guidance or training.

 Specific techniques employed in usability testing include:

 • Conformance checks – testing the application against agreed user interface (UI) standards (such as the Microsoft Windows standards – [10])

 • User-based surveys – psychometric testing techniques to analyze user perceptions of the system (such as that documented in [11])

 • Usability testing – where users are asked to perform a series of specified business tasks with the AUT under controlled conditions
 in order to test the usability goals or requirements of the AUT.

Appendix P describes usability testing in greater detail and provides an overview of one particular approach to usability
 testing. Also see (9) for a definitive treatment of usability.

 3.4.10 Volume Testing

 Volume testing (sometimes also termed “flood testing” – [45]) examines the system's ability to perform correctly using large volumes of data with the aim of identifying defects that
 only appear under such conditions.

 Typically at the lower levels of testing (such as unit and integration testing) a representative sample or copy of the data
 the system will process is used. Only at the higher levels of testing (such as system and acceptance testing) is live data likely to be used. This may be an important issue where a system is expected to process particularly large quantities of
 data, because the ability of the system to function correctly under these circumstances will need to be tested.

 Volume testing may involve rerunning appropriate tests from earlier testing phases (e.g., from the unit or integration reuse
 packs – see Appendix I), in addition to designing new test cases. One particular volume testing technique involves repeatedly
 running the same test while increasing the volume of data involved at each iteration to identify the point at which the system
 fails to cope with the volume of data.

 The terms volume testing and stress testing are frequently confused with each other. Myers in (2) provides a useful typing analogy to help distinguish between these techniques: volume testing will confirm that a
 typist can cope with a very large document; stress testing will confirm that the typist can manage to enter forty words per
 minute.

 3.5 Further Reading on Testing Techniques

 The following references provide additional information on testing techniques and their role within the testing process.

 The Beizer book (43) provides extensive information on testing techniques, as does the Kit text (42), although set in a process improvement context.

 The testing unit of M301 (the third-level Open University Software Engineering course – [24]) provides a thorough treatment of testing techniques (and in particular on static analysis and review techniques) within
 the context of a formal engineering approach to software development, test, and deployment.

Reference (46) provides descriptions of the common testing techniques within the context of an end-to-end software development process.

 Reference (45) provides an extensive and thorough coverage of software testing techniques, with particular emphasis on a quality assurance
 approach to validation and verification (V&V) of the AUT.

 1 Other examples of test automation tools include those where the test is created using a simple scripting language such as
 (47).

 2 Orphaned content are those files for which there is no “inbound” link in the current Web site, that is, there is no way to
 access or present the content.

 4 The Management and Planning of Testing

 “Plans are worthless, the process of planning is invaluable”

 – Eisenhower

 4.1 Introduction

 This chapter deals with the issues associated with the organization, management, and high-level planning of the testing process.

 A generic approach to organizing the testing process is described, which can be applied to businesses involved in developing
 and/or testing software. The chapter discusses the implications for the testing process of the size of the business, its prevailing
 quality culture, and (where appropriate) the maturity of its software development process.

 The case studies in Part 2 of this book provide specific examples of how a number of different businesses have customized
 this generic approach in response to their own particular organizational, management, and testing requirements.

 This chapter also considers a number of key requirements that must be considered in implementing a rigorous, effective, and
 efficient testing process: the need for configuration management, defect tracking, and the need to ensure that each of the
 requirements of the application under test (AUT) has been verified. The issues associated with each of these requirements are discussed, and recommendations for supporting
 them are provided.

 The chapter concludes with a discussion of the role of risk-based testing and its use in the management and planning of testing
 projects.

 This chapter is structured as follows:

 • Section 4.2 discusses the high-level organization of the testing process, the roles that are required and their interrelationships,
 and provides a diagram summarizing this information

 • Section 4.3 provides specific details of the roles and responsibilities of the staff involved in a testing program

 • Section 4.4 reviews the individual testing phases that comprise the complete testing cycle from unit testing through acceptance testing, and including regression testing

 • Section 4.5 describes the V Model, its role in the management of testing, and its use in the process of planning the testing activities and in controlling
 risk

 • Sections 4.6, 4.7, and 4.8 consider the need for requirements management, configuration management, and defect tracking in
 the testing process, and make recommendations for supporting these requirements

 • Section 4.9 briefly reviews the role of risk-based testing in the management and planning of testing and provides a number
 of references that provide further information on this subject.

 4.2 The Organization of Testing

 One of the first steps in implementing a testing process is to consider the high-level organization of the staff involved in testing, their relationship to each other, and how the testing process will integrate with the existing
 management structure of the business.

 The guiding principle in establishing the high-level organization is that there are a series of activities common to all testing
 tasks, which must be managed effectively and efficiently to ensure they are completed on time, to budget, and to an acceptable
 level of quality.

 The challenge facing the majority of businesses involved in implementing a testing process is that this task cannot take place
 in isolation; there will be existing departments and groups within the company with which the testing process must integrate,
 and existing staff who will need to participate in the testing process. For example, many businesses incorporate the management
 of the testing process into the existing information technology (IT) group. Alternatively, for those businesses with a well-established
 quality culture, the testing process is often managed from within the quality assurance (QA) group.

 Further issues to be considered include the size and complexity of the business, the geographic distribution of offices, and
 the balance of software developed/extended in-house, developed under contract by a third party, and bought-in as commercial off-the-shelf (COTS) products. All of these factors will affect the size and role of the testing process within a particular business.

 Figure 4.1 provides a generic view of the organization of the testing process. Chapters 15 to 20 provide specific examples of how a number of different businesses have implemented the organization of their testing process
 based on their own particular organizational, management, and testing requirements. The testing roles shown in Figure 4.1 and their specific responsibilities are documented in the following section.

 [image: 4.1]

 4.1 Organization of the Testing Program

 4.3 Roles and Responsibilities

 4.3.1 Overview

 This section describes the roles of the staff involved in the testing process, their individual responsibilities, and their
 requirements for reporting and liaison.

 It is important to note when reading the following paragraphs that it is possible for a single person to assume more than
 one role within any given testing process. For example, in a small organization in which there are few testing staff, a single
 person could assume the roles of both test analyst and tester on a testing project. Similarly, the responsibilities of the test manager and test team leader could be assumed by one person if there was only one testing task or project to manage. The notable exception to this is
 the independent test observer, who must maintain complete independence from the testing project and its progress.

 It is also possible for a single person to assume different roles on different projects. For example, a test analyst on one
 project could perform the role of test team leader on another. Again, this will depend on the size of the business and the
 number of staff involved in testing.

 In addition to the traditional roles described in the following paragraphs, Section 4.3.7 describes a number of additional
 roles it may be beneficial to include in testing projects with particular characteristics or requirements – such as a project
 in which automated testing tools are employed (see [23] for example).

 Concise terms of reference for the traditional testing roles described in this chapter can be found in Appendix A.

4.3.2 Testing Manager

 The testing manager has the authority to administer the organizational aspects of the testing process on a day-to-day basis, and is responsible
 for ensuring that the individual testing projects produce the required products (i.e., the outputs from the testing phases,
 including the fully tested AUT), to the required standard of quality and within the specified constraints of time, resources,
 and cost.

 The testing manager is also responsible for liaising with the development teams to ensure that they follow the unit and integration testing approach documented within the process. The testing manager will also liaise with the independent test observer(s) to receive
 reports on those testing projects that have failed to follow the testing process correctly.

 The testing manager will report to a senior manager or director within the organization, such as the quality assurance (QA)
 manager, chief information officer (CIO), or information technology (IT) director. In larger organizations, and particularly
 those following a formal project management process (such as that described in [3]), the testing manager may report to a testing program board, which is responsible for the overall direction of the project management of the testing program.1 (Appendix A contains details of a typical testing program board.)

 The testing manager may also be called upon to formally represent his or her parent organization during acceptance testing
 of bespoke software developed by a third-party company, or COTS products acquired from a vendor. In this capacity, the testing manager will be expected to represent the interests of his or her organization
 as well as cosigning any acceptance test certificate documentation (see Appendix H).

 The position of testing manager may be implemented as a part-time role, which is given as an additional responsibility to
 an existing senior manager or director (such as the QA manager, CIO, or IT director). This will be particularly likely for
 smaller organizations, where the total number of staff involved in testing is relatively low.

 4.3.3 Test Team Leader

 The test team leader is given the authority to run a testing project. Her or his responsibilities include tasking one or more test analysts and
 testers, monitoring their progress against agreed plans, setting up and maintaining the testing project filing system, and
 ensuring the generation of the testing project artifacts, including:

 • The test plan document, which will be used as the basis of project management control throughout the testing process. (Appendix C contains a specimen
 test plan document template.) This document will be produced by the test team leader and will be approved by the testing manager

 • The test specification document, which will detail the approach to testing the AUT, the resources needed, the testing environment, the evaluation criteria
 and acceptable defect frequencies, halting criteria, etc. (Appendix D contains a specimen test specification document template.)
 Although the test team leader is responsible for ensuring that this document is produced, responsibility for its completion
 may be delegated to a test analyst.

 The test team leader reports to the test manager, and is reported to by one or more test analysts and testers. The test team
 leader will liaise with the independent test observer (e.g., to discuss their availability to attend a particular test), and
 (where appropriate) the development team leader (in order to undertake early planning of the testing project and preliminary
 test design, and to determine the availability of the AUT for testing). During acceptance testing, the test team leader will
 also be responsible for liaising with the user representative and operations representative to obtain one or more users to perform user and/or operations acceptance testing.

 4.3.4 Test Analyst

 The test analyst is responsible for the design and implementation of one or more test scripts (and their associated test cases), which will be used to accomplish the testing of the AUT. (Appendix E contains a specimen test script template, whereas Chapter 3 provides guidance on test case design.)

 The test analyst may also be called upon to assist the test team leader in the generation of the test specification document.

 During the design of the test cases, the test analyst will need to analyze the requirements specification for the AUT to identify specific requirements that must be verified. During this process the test analyst will need to prioritize
 the test cases to reflect the importance of the feature being verified and the risk (see Section 4.9) of the feature failing
 during normal use of the AUT. The approach adopted can be as simple as assigning a high, medium, or low value to each test
 case. This is an important exercise to undertake, because such an approach will assist the test team leader in focusing testing
 effort should time and resources become critical during testing.

 At the completion of the testing project, the test analyst is responsible for the back-up and archival of all testing documentation and materials, as well as the creation of a testing reuse2 pack (Appendix I). These materials will be delivered to the test team leader for filing. The test analyst is also responsible for completing a test summary report briefly describing the key points of the testing project.

 The test analyst reports to the test team leader and liaises with one or more testers to brief them on their tasks before
 testing of the AUT commences.

 4.3.5 Tester

 The tester is primarily responsible for the execution of the test scripts created by the test analyst, and the interpretation and documentation
 of the results of the test cases.

 Prior to the execution of the test scripts, the tester will set up and initialize the test environment, including the test
 data and test hardware, plus any additional software required to support the test (such as simulators and test harnesses).

 During test execution, the tester is responsible for filling in the test result record forms (TRRFs – see Appendix F) to document the observed result of executing each test script, and for cosigning the bottom of each
 TRRF with the independent test observer to confirm that the test script was followed correctly and the observed result recorded
 accurately. In interpreting the results of executing a test script, the tester will make use of the description of the expected
 result recorded on the test script, the test result categories specified in the test specification document, and his or her own personal experience. The tester is also responsible for
 the recovery of the test environment in the event of failure of the system.

 Following test execution, the tester is responsible for the back-up and archival of the test data, any simulator or test harness
 software, and the specification of the hardware used during testing. These materials will be delivered to the test team leader
 for filing. (In practice, much of this material will be provided to the test team leader in electronic format, on digital
 optical disk, or copied to a shared area on a computer server.) The tester will also deliver the completed TRRFs to the test
 team leader.

 The tester reports to the test team leader and liaises with the test analyst and the independent test observer.

 4.3.6 Independent Test Observer

 In general terms, the independent test observer is responsible for providing independent verification that correct procedures (i.e., those specified in the testing process for the organization) are followed during the testing
 of the AUT.

 Specifically during testing, the independent test observer is responsible for ensuring that the tester executes the tests
 according to the instructions provided in the test scripts, that he or she interprets the observed result correctly according
 to the description of the expected result, and where the observed and expected results differ, that the tester records the
 correct test result categories score for the defect (as specified in the test specification document).

In organizations where there is a formal quality assurance group, independent test observers may be drawn from the ranks of
 the quality assurance representatives (QARs). In smaller organizations or where there is not such a strong quality culture, the independent test observer may be a member
 of staff drawn from another group or project within the organization. The key criteria in selecting an independent test observer
 is that she or he must be impartial and objective, that is, he or she must not have any other responsibilities within the
 project, be affected by the progress of the project, and be able to accurately report any failure to follow the testing process
 to the testing manager.

 The independent test observer liaises with the testing manager to report any deviations from the testing process, liaises
 with the test team leader to schedule attendance at the test execution, and liaises with the tester to confirm the result
 of executing an individual test script and to cosign the test result record form. The independent test observer may also be
 invited to review some of the testing project artifacts produced during the testing project, such as the test specification
 document or test script(s) as part of the quality assurance process for the testing project.

 4.3.7 Supplementary Testing Roles

 Depending on the specific testing requirements of a particular testing project, it may be appropriate to include a number
 of additional testing roles.

 In practice, the responsibilities given to each of these supplementary testing roles may be assigned to existing testing roles
 within the project. This will depend on the size of the testing project, the number of testing staff available, the amount
 of testing that is required, and the duration of the testing project. A review of the case studies presented in Part 2 of
 this book will provide additional insights into how organizations and testing teams of varying sizes and with a wide variety
 of testing requirements have organized their roles and responsibilities to support effective and efficient testing.

 The supplementary testing roles covered in this section include: test automation architect, automation analyst, and exploratory tester.

 Test Automation Architect

 The test automation architect has the following responsibilities:

 • Definition of the test automation architecture

 • Specification of all hardware and software configurations needed

 • Assisting the test team leader to plan any programming and set-up tasks needed to install a new automation environment, including
 deploying the testing tools and environment-specific support code.

 The test automation architect reports to the test team leader and liaises with the test analyst (test automation analyst –
 see next section) and testers.

Test Automation Analyst

 The test automation analyst has the following responsibilities:

 • Implementation of automated tests as specified in the test specification document and any supplementary design documents

 • Implementation of test support code required for efficiently executing automated tests

 • Setting up and executing automated tests against the AUT

 • Reviewing the automated test log following testing to identify and report on defects found within the AUT during testing.

 The test automation analyst reports to the test team leader and liaises with the test automation architect.

 Exploratory Tester

 The exploratory tester has the following responsibilities:

 • Autonomous testing of a product without following a specified set of test cases

 • Focusing on finding the highest severity defects in the most important features of the system using a risk-based testing approach.

This role requires a high degree of testing expertise, as well as knowledge about the AUT (such as the design method or implementation
 technology), knowledge of the results of any earlier testing phases (particularly important in regression testing), experience
 of testing similar or related systems (and knowing where defects have arisen previously in those systems), knowledge of typical
 implementation errors (such as division by zero errors), and general testing rules of thumb or heuristics. Although there
 are no detailed test cases to follow, an exploratory tester may follow a specified general strategy based on a combination
 of previously mentioned skills and experience.

 The exploratory tester role is especially useful in testing projects with particularly demanding timescales (such as e-business
 development projects) and testing projects where it is essential to find show-stopping defects before release to the client.

 4.4 The Testing Phases

 4.4.1 Overview

 This section describes the management issues associated with each of the phases of testing that the AUT undergoes during its
 development lifecycle. For each testing phase, the following items are covered:

 • A brief overview of the testing phase

 • A discussion of who is responsible for conducting the testing within that phase

 • A discussion of who is responsible for managing the testing within that phase

 • A discussion of the requirements for independent observation of the results of testing.

Chapters 5 to 11 describe in detail all aspects of each of the testing phases covered in the following sections (including their common synonyms),
 and Appendix B contains a set of one-page testing guides, which can be used to provide summary advice and support to staff
 involved in the various phases of software testing.

 This section concludes with a discussion of an important aspect of the management of testing and of each testing phase, that
 is, when to stop the testing process. The traditional halting criteria are reviewed and a number of practical examples are
 also discussed.

 4.4.2 Unit Testing

 Unit testing (also termed “software component testing”) represents the lowest level of testing that the AUT can undergo, and it is conducted to ensure that reliable program units3 (or software components) are produced that meet their requirements.

 Unit testing is typically conducted by the development team and specifically by the programmer who coded the unit, who is
 responsible for designing and running a series of tests to verify that the unit meets its requirements.

 The development team leader has responsibility for ensuring the unit testing is completed, and will be responsible for incorporating
 the testing task into the overall development plan and monitoring progress against that plan. Because of this, it is unlikely
 that the development team leader will need to produce detailed test plan and test specification documents for unit testing
 (particularly as the testing resources are likely to be provided from within the existing development team).

 The results of unit testing should be formally documented using a test result record form, which will be filed by the development
 team leader. The development team leader may also produce a reuse pack (Appendix I) to allow selected unit tests to be rerun
 during the later phases of testing or during regression testing of the AUT.

 “Independent” observation of the testing process is likely to be performed by the development team leader or by another member
 of the team, who will be expected to countersign the appropriate test result record form to confirm that the correct procedures
 (i.e., those specified in the testing process) were followed during the testing of the AUT. If the organization has a particularly
 well-established quality culture, observation of the testing may be performed by a quality assurance representative assigned
 to assure the quality of the development project.

 Chapter 5 provides comprehensive details of all aspects of unit testing.

4.4.3 Integration Testing

 The objective of integration testing is to demonstrate that the modules that comprise the AUT interface and interact together in a correct, stable, and coherent
 manner.

 The development team typically conducts integration testing, with responsibility for managing the testing falling to the development
 team leader. Occasionally in large organizations with well-established quality and/or mature software development and testing
 processes, integration testing will be conducted by a dedicated testing team, who will be responsible for all aspects of the testing.

 Where the development team is responsible for integration testing, the development team leader has responsibility for ensuring
 the integration testing is completed, and will be responsible for incorporating the testing task into the overall development
 plan and monitoring progress against that plan. Because of this, it is unlikely that the development team leader will need
 to produce detailed test plan and test specification documents (particularly as the testing resources are likely to be provided
 from within the existing development team).

 The results of integration testing should be formally documented using a test result record form, which will be filled by
 the development team leader. The development team leader should also produce a reuse pack (Appendix I) to allow selected integration
 tests to be rerun during the later phases of testing or during regression testing of the AUT.

 During integration testing and the later testing phases, it is increasingly important that truly independent observation of
 the testing process is performed. An independent test observer may be drawn from another development project or, if the organization
 has a particularly well-established quality culture, independent observation may be performed by a quality assurance representative
 assigned to assure the quality of the development project. Even where a dedicated testing team performs the testing, independent
 observation is essential.

 Another key issue to consider is the need to manage the user4 expectations regarding the look and feel, and operation and performance of the AUT. Many applications have successfully reached
 acceptance testing only to encounter difficulties because the user is dissatisfied with some aspect of the AUT (even though
 the software has already demonstrably satisfied its requirements during the earlier testing phases). Similarly, it is also
 possible for the requirements to have been misinterpreted and for the specification to be incorrect. The development team
 leader must consider inviting the user representative to the integration test (and even unit testing) in an informal capacity
 to observe the testing process. In this way, the user representative will be exposed to the AUT prior to formal acceptance
 testing, and any show-stopping issues can be discussed and resolved in a timely manner.

 Chapter 6 provides comprehensive details of all aspects of integration testing.

4.4.4 System Testing

 The fundamental objective of system testing is to establish confidence that the AUT will be accepted by the users (and/or operators), that is, that it will pass its
 acceptance test.

 System testing is typically conducted as an independent testing project by a dedicated testing team, with responsibility for
 managing the testing falling to the test team leader.

 For those small organizations where there are few IT staff, it is possible that the development team will conduct system testing.
 (Where this is the case, it is essential that the development team leader take on all of the responsibilities of the test
 team leader [as described in Section 4.3], and that they nominate appropriately experienced staff from within the development
 team to fulfill the roles of test analyst and tester.)

 During system testing it is essential that truly independent observation of the testing process be performed. The independent
 test observer may be drawn from another development project or, if the organization has a particularly well-established quality culture, independent
 observation may be performed by a quality assurance representative assigned to assure the quality of the testing project.

 As with integration testing, the test team leader should consider inviting the user representative to the system test in an
 informal capacity to observe the testing process in order to manage their expectations of the AUT prior to formal acceptance
 testing.

 Chapter 7 provides comprehensive details of all aspects of system testing.

 4.4.5 Systems Integration Testing

 The objective of systems integration testing is to provide confidence that the AUT is able to successfully interoperate with other specified systems and does not have
 an adverse effect on other systems that may also be present in the live operating environment or vice versa.

 Systems integration testing will only be introduced into the testing process if there is a significant requirement for the
 AUT to interoperate with a number of other software systems (such as the requirement for the British Library IT systems to
 communicate for the purposes of exchanging data – see Chapter 15).

 For many software systems with less rigorous requirements for interoperability, it is more likely that any aspects of systems
 integration testing will be performed during the system test.

 Where systems integration testing does appear as a distinct testing phase, it is typically conducted as an independent testing
 project with responsibility for managing the testing falling to the test team leader.

 During systems integration testing it is essential that independent observation of the testing process be performed. The independent
 test observer may be drawn from another development project or, if the organization has a particularly well-established quality
 culture, independent observation may be performed by a quality assurance representative assigned to assure the quality of
 the testing project.

 Chapter 8 provides comprehensive details of all aspects of systems integration testing.

 4.4.6 Acceptance Testing

 The purpose of acceptance testing is to confirm that the system meets its business requirements and to provide confidence that the system works correctly and
 is usable before it is formally “handed over” to the users. Acceptance testing is often divided into user acceptance testing (involving the business or end users of the AUT) and operations acceptance testing (involving the operations or administrative users of the AUT).

 Acceptance testing is performed by nominated user representatives under the guidance and supervision of the testing team.
 The test team leader will obtain these staff by liaising with the appropriate user and/or operations representative.

 During acceptance testing it is important that independent observation of the testing process be performed, particularly where
 the user representatives are IT-naive business staff. The independent test observer may be drawn from another development
 project or, if the organization has a particularly well-established quality culture, independent observation may be performed
 by a quality assurance representative assigned to assure the quality of the testing project.

 Chapters 9 and 10 provide comprehensive details of all aspects of user acceptance testing and operations acceptance testing.

 4.4.7 Regression Testing

 The purpose of regression testing is to provide confidence that the AUT still functions correctly following modification or extension of the system (such as
 user enhancements or upgrades or following new builds or releases of the software).

 Regression testing is not strictly speaking a testing phase, but it is a testing technique that can be applied to any of the
 other testing phases (e.g., following enhancements to the AUT, it will be necessary to perform a system regression test to
 ensure the existing functionality of the application is unaffected by the changes). Typically regression testing is applied
 to the higher levels of testing and to system and acceptance testing in particular.

 Because of the need for effective and efficient testing, regression testing relies heavily on the reuse of existing test scripts
 and test cases created for previous testing phases such as system and acceptance testing. Similarly, it is unlikely that all
 of the test scripts from previous testing phases will be executed. Instead, the test analyst will consider the scope of changes
 to the AUT, the structure of the AUT, and the manner in which it was developed, and experience of testing the AUT (or related
 software) and select a subset of test scripts to reuse. Clearly, where higher confidence in the quality of the AUT is required (e.g.,
 for safety critical or business critical systems), more elaborate and complete testing will be necessary.

 The responsibility for conducting and managing a particular regression test will be determined by the specific testing phase
 the testing is associated with. Similarly, the need for independent observation will also depend on the observation requirements
 for the associated testing phase.

 Chapter 11 provides comprehensive details of all aspects of regression testing.

 4.4.8 When to Stop Testing

 One of the most difficult decisions the manager responsible for any testing phase has to make is when to stop testing.

 Often, the reason for halting the testing process is completely arbitrary and can include running out of the time allotted for testing, exhausting the allocated testing resources,
 or hitting a fixed milestone such as a contractual delivery date. From a testing perspective, such halting criteria are far
 from ideal and take no account of the quality of the AUT at the instant testing has to stop.

 Where the testing manager is able to influence the planning aspects of the software development and testing process, there
 are a number of additional criteria that can be employed to provide greater confidence in the decision to halt the testing
 process and that provide a much clearer indication of the risk involved in stopping testing. These criteria include:

 • Test requirement coverage – has it been demonstrated that all the requirements for the AUT have been verified? If it has not been possible to test
 all the requirements, have those with the highest risk associated with them been tested? (Section 4.9 discusses the need to
 review the requirements for the AUT and prioritize them according to their impact and likelihood of failure.)

 • Test code coverage – has it been demonstrated that all “parts” of the software have been exercised during testing (including exception handling
 and error handling routines)?

 • Test case metric – how many test cases have been planned, designed, implemented, executed, and passed or failed? This is a useful metric to
 collect to measure the progress of the testing activity

 • Defect detection metric – has the rate of defect detection been plotted, and has the rate of defect detection leveled off? This provides a reasonable
 indication that the majority of defects have been detected (however, caution must be exercised using this approach because
 tester fatigue could also produce similar results).

 There are other, more esoteric methods of estimating the numbers of defects in the AUT, such as seeding the software with
 “known” defects and comparing the ratio of known to unknown defects observed during testing. Mathematically, this ratio can provide an estimate
 of the total number of defects in the AUT, and hence provide an

 [image: 4.2]

 4.2 The V Model

ffective halting criterion. In practice, such methods are difficult to manage, provide imperfect results, and may be hazardous
 (e.g., it is essential that the AUT is delivered without any seeded defects still in place).

 4.5 Role of the V Model in Planning

 Typically, between 25% and 50% of the total costs of developing a software system are spent on test activities (1). This figure is likely to be significantly larger for high reliability, business critical, and safety critical systems.
 Project plans must reflect this issue in their allocation of time, effort, and resources to testing.

 The V Model (see Figure 4.2) is a software development and testing model, which helps to highlight the need to plan and prepare for testing early in
 the development process. The left-hand descending arm of the “V” represents the traditional Waterfall development phases (18), while the ascending right-hand arm of the “V” shows the corresponding testing phase.

 In the V Model, each development phase is linked to a corresponding testing phase. As work proceeds on a particular development
 phase, planning and some preliminary design work are performed for the corresponding testing phase. The benefits of the V
 Model include:

 • The testing phases are given the same level of management attention and commitment as the corresponding development phases
 in terms of planning and resourcing, allowing any risks to be addressed early in the development cycle (e.g., if a highly
 specialized piece of hardware is necessary to perform acceptance testing, which has a long order and delivery time, identifying this requirement early allows the hardware to be ordered in
 a timely manner – mitigating the risk of late delivery of the tested system)

 • The outputs from the development phases (such as specification and design documents) can be reviewed by the testing team to
 ensure their testability (e.g., ensuring that a given requirement has been documented in such a manner that it is easily verifiable)

 • The early planning and preliminary design of tests provides additional review comments on the outputs from the development
 phase (e.g., if there are errors in the initial requirements, they have a greater chance of being detected if the acceptance
 test specification is produced before development proceeds to detailed analysis and design. During this process, it is possible
 to identify duplicated and/or contradictory requirements and feed these back to the analyst for clarification.)

 Although the testing manager is responsible for the timely set-up and initiation of testing for a particular software development
 project, the main responsibility for exploiting the power of the V Model will fall to the test team leader, who will need
 to liaise with the development team leader to ensure early planning and preliminary design tasks are completed.

 Although the V Model is described in terms of the traditional Waterfall view of software development, the principles of forward
 planning and design equally apply to the more modern iterative approaches to development (such as those described in [8] and [12]). In an iterative approach, each iteration can be viewed as a “mini-waterfall” with stages analogous to those seen in the
 Waterfall view of development.

 In practice, the V Model provides a powerful tool for managing and controlling risk within the testing component of a software
 development project. The process of bringing testing planning and design into the development process as early as possible
 enables risks to be identified and strategies for removing or mitigating them to be put in place in a timely manner.

 4.6 The Management of Test Requirements

 In performing effective and efficient testing, it is essential that the test analyst know precisely what the requirements
 of the AUT are. This information is the basis of the formal validation that the AUT meets its requirements. Without access to this information, the test analyst has virtually no formal basis for
 performing the design of the test scripts and test cases.

 Incomplete or poorly maintained requirements may result in the test analyst not designing a test for an important requirement,
 or may cause the test analyst to duplicate testing effort by generating several tests that verify the same requirement.

 The acquisition, maintenance, management, and communication of requirements is a traditional source of quality problems in
 software development and testing projects. Because of the complexity of the task combined with the number of requirements generated for any but the
 most trivial of development projects, the majority of software development projects use requirements management tools.

 However, even where tools are used, the problem is often exacerbated by poor communication between the various roles involved
 in the development and testing process, with analysts, developers, and testers all using different tools to represent requirements,
 design information, and testing data.

 If tool support for requirements management is to be employed on a project, it is essential that analysts, developers, and
 testers all have access to the same tool, and that it is easy to communicate the requirements information between the project
 roles. In this way, the test analyst can examine the most up-to-date copy of the requirements, ensuring complete testing coverage
 of the features of the AUT and avoiding duplication or omission of tests. (Reference [19] provides a typical example of a requirements management tool that satisfies the above requirements.)

 4.7 The Role and Use of Configuration Management

 A major requirement of the management of the testing process is that the results of testing be reproducible, allowing testers
 to recreate the conditions of a previous test and be able to exactly repeat the testing and accurately reproduce the results
 (e.g., it may be necessary to repeat a particular test in response to an observation raised against the tested AUT by the
 users on the live system).

 To support this requirement, it is essential that testing be conducted under strict and effective configuration management
 (CM). The minimum testing artifacts that must be placed under CM control are:

 • The AUT

 • The test plan and test specification

 • The test data

 • Any supporting software (such as test harnesses, simulators, or stimulators)

 • The specification of the test hardware or test rig (if this is not already included in the test specification document)

 • The test scripts and component test cases.

The CM of testing projects is a complex and difficult task, and tool support should be considered (a number of CM tools are
 commercially available, such as [20]).

 4.8 The Role and Use of Defect Tracking

 Effective testing is nothing without an accurate means of reporting defects, monitoring their progress, and managing their
 resolution. A formal approach to defect tracking must be employed to make sure the effort expended on testing is well spent
 by ensuring defects detected during testing are corrected.

In setting up a defect tracking system, the following facilities must be provided:

 • The ability to register a defect and its characteristics and associate the defect with a unique identifier

 • The ability to associate a severity value with that defect (see test result category in the Glossary)

 • The ability to associate a priority of resolution with that defect

 • A defined workflow in which the details of the defect are provided to the appropriate staff within the organization, and its
 status (such as new, open, closed) is altered as it progresses through the system

 • Defined rights and privileges for the staff involved in the defect tracking process (e.g., in a particular organization, a
 tester may be able to report a defect, but only the testing manager may close a defect following successful retesting)

 • The ability to customize the above attributes of the defect tracking system to more closely match the particular requirements
 of the host organization.

 As with CM, rigorous and effective defect tracking is a complex and difficult task, particularly where there are multiple
 development and testing projects operating simultaneously. The majority of organizations involved in testing employ one of
 the many defect tracking tools that are available (such as [21]) or develop one of their own in-house. The latter approach suffers from a number of problems including reliability, maintenance
 costs, lack of professional support, and possible loss of tool expertise due to career change.

 4.9 The Role of Risk in Test Planning and Management

 The term “risk” has appeared in several places in this chapter, including the planning and design of tests. The management
 of risk and mitigation of risk are popular terms in project management, and particularly in IT project management.

 Chapter 2 showed how testing can be defined in the context of risk, and this leads us to consider the management and planning of testing
 in a risk-based manner as well. In this context, effective management and planning of the testing process provide opportunities
 for identifying risk within the AUT5 in a timely manner and allow such risks to be investigated (by means of testing), removed, or mitigated as quickly as possible.

 The V Model provides the testing manager and test team leader with an effective means of identifying risk as early as possible
 in the software development lifecycle, and allowing the removal or mitigation of the risk. This process can involve all the
 stakeholders in the development process, including the managers (e.g., in terms of the need to modify plans), developers (e.g.,
 in terms of the need to rework some aspect of the AUT), and even the users (e.g., allowing respecification of missing, duplicate, or contradictory requirements).

 Within the testing process, the test analyst must take account of risk during the design of the test cases, ensuring that
 the test cases are prioritized in such a way as to test high-risk aspects of the AUT before less risky aspects of the software.

 Reference (28) provides a high-level view of risk-based testing process:

 • generate a prioritized list of risks

 • perform testing to explore each risk

 • as risks are removed (and new ones are identified), adjust the testing effort to focus on the remaining list of risks.

 There are a number of strategies for achieving this high-level approach to risk-based testing, which are described in Reference
 28, while References 29 and 30 provide further reading on methods and tools that can be used for risk management within testing
 projects.

 1 The term testing program is used by organizations such as the British Library to denote the complete organizational specification
 of their testing process, which is run under the PRINCE project management method (see Chapter 15 for the British Library case study).

 2 Reuse is a key technique in ensuring that the testing process is as effective and efficient as possible. This book promotes
 the philosophy of reuse within the testing process by providing a set of specimen templates, proformas, and checklists that
 staff involved in the testing process can use as the basis of developing their own project artifacts.

 3 Chapter 5 provides a number of possible interpretations of the term “unit.”

 4 Where the user could be the customer representative for a bespoke development or customization of an existing system with
 responsibility for formally accepting the AUT, or could be an “internal” user with responsibility for accepting software developed
 by the IT department of the same organization.

 5 Such as the risk of failure of some key feature during its normal operation following delivery of the software, or the failure
 of the AUT to meet a specific requirement specified by the user.

End of sample

 To search for additional titles please go to

 http://search.overdrive.com.

OEBPS/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/Images/14801figu3.gif
<Clicnt>Test Seri roat sheet)
Project ID
AUT Tide Nersion
Testing Phase Date ol Test
Test T

Purpose of Test

“Test Environment

Test Steps

Expeeted Result

T

OEBPS/Images/14801figu1.gif
Document Information {t <Client> Doc Standard}

Project ID: “Project D> e un'que ID for this tesing projeci
Document Ref: Doc Ref> a unique document reference or 1his document
Testing Phase: Testing Phasc> e resting phase (e.g. unit est)
AUT Title: <AUT Title> the definitive fifle oj the application under test
Dae: <Date> the date this document was completed
Distribution
‘Copy Number Recipient
1 <activity leader= i.e. development ream leader for unit and link
testing, test team fecder for systen test.
2 ZTest Anilyst> 1z he person designing and developing he fest caves
N Troject T
Review & Approval
T i st e s of the document, ¢ g 10
R&A Number: <REA reference> the reference fa the fncl approsing review
Author <nzme of the author
‘Author Signature <signature of authar> the person who wrote this document
Approval (M) <nams of the projest manager>
‘Approval (PM) Signature <sigrature of the projec: manager >
‘Approval (QA) “name of the quality assurance represents

‘Approval (QA) Signature

<Signature of the quality asswrance represeatative>

OEBPS/Images/14801figu2.gif
Document Information {to <Client> Doc Standard }

Project <Project ID> the unigue ID for this testing project
Document Ref: <Doc Ref> a unique document reference for this document
Testing Phase: “Tosting Phase> the festing phase (e.g., wnit ()
AUT Title: <AUT Title> the definitive file of the application nder test
Date: <Date> rhe dare this document was compleied
Distribution
‘Copy Number Recipient
1 ativity leader> i.c., development leam leader for wnit and link
testing. test team leader for sysiem test
2 Tet Analyst> . the persan designing and developing the test
N Project File
Review & Approval
Tssue: issue status> isswe stutus of the document, €., drafi, 1.0
R&A Number: <R&A tefervrice> the reference 10 the final approving review
Author <name of the author>
Author Signature <signature of author> the person who wrote this document
Approval (PM) <name of the project manager>

“Approval (PM) Signature

<sigrature of the project manager

Approval (QA)

<aame of the quality assurance represetative>

Approval (QA) Siguature

Sigrmature of (he quality assus

epresertalive>

OEBPS/Images/14801figa1.gif

OEBPS/Images/14801figa2.gif
eopoiog
Lidern

OEBPS/Images/14801fig20_1.gif
Client Manager

Confirmit AS
Head of R&D

Quality Assurance
Manager

Client User Representatives I

OEBPS/Images/14801fig20_2.gif
Weekly
Tteration

"~ Execute Final Unit Tests
« Complete GUI Tests

* Review Results of Cl process
« Review next weeks test plans.

+ Ieration Planning
« Maistenance & Documestation
« Execute Crash Test

Monday
« Begin Uit Test Design

+ Begin Code Development

« Review Resuls of Cl process
« Compile User Feedback.

Wednesday
« Continue Unit Test Design &
+ Continue Code Development
« Lisise with User Representatives
« Review Resuls of Cl process

Tuesday
« Continue Unit Test Design &
« Continue Code Developmest
« Liaise with User Represertatives
« Review Results of Cl process

OEBPS/Images/14801figa5.gif

OEBPS/Images/14801figa6.gif
Foporing (S Monagement]

Testing Programme
Board

OEBPS/Images/14801figa3.gif
[Rey
Reporting
Lisison

OEBPS/Images/14801figa4.gif
Key
Reporting
Lisison

OEBPS/Images/14801fig19_3.gif
The set of Automated test { | Shell 1 - AUTvL0
scripts and their Far——
verifcation points created =t

to Acceptance Test the
most recent release of the
AuT

ATT Regression Test Shell

Sll 1~ AUT5L0

s

Tas:
st

Test Seript 1
Vesificaton]
Verfcaion2
Verfesionll

S

TestSeript2
Verifiton]

Venfison2 §
Verificaton N i
Test SeriptN p

Verfication] {

Veneson2
Verewont | T

SllN-AUTYNO

OEBPS/Images/14801fig19_1.gif
1T Director

Product Development
Manager

Senior QA Analyst]

OEBPS/Images/14801fig19_2.gif

OEBPS/Images/14801fig16_1.gif
Reuters UK
Operations Manager

Customers

Customer
Representative

OEBPS/Images/14801fig16_2.gif
Prepare Acceptance Tests

OEBPS/Images/14801fig15_2.gif
Prepare Acceptance Tests

Gperations
M Acceptance Testing

User
Acoeptance Testing

Tntegration Testing

Systera Testing.

OEBPS/Images/14801fig17_2.gif
Prepare Acceptance Tests
> [

OEBPS/Images/14801fig18_1.gif
S—
i

[Testng Consultont

User Representative Teser

OEBPS/Images/14801fig16_3.gif
Static Copy of Live Data l l Live Data l

Developers

NCR 5100 NCRS100

Uit Test System and
Link Test Integuation Test Acceptasce Test User Test

R 5100, Phs NCR 5100
PAGLab (40 PC5)

OEBPS/Images/14801fig17_1.gif
Director

Crown Development |

QA
Team | (A Team Manager I

o (Terting Teams
Clent Test Analy(Testr
Representative. Test AnalwtTerer

OEBPS/Images/14801figu13.gif
Client Depurtment Dute of Testing Audit_ | Auditor Name_

Crinerin

et @) | Seore 01y | Ko

Testing £1d he Soflware Develop rent Process

Fomnally Documented S/ Develspment Process
Lest Kequicements at a1 Prases of SW Developmert

Tntcgrated W Desclopmant & Tesing Plans
Guality System 1n $W Development & Lesting

Frocess Improverment in S Developmant & Tesing

Use of Metwcs 1 the Develapment Pocess

Responhiliy for S and Testing Sndords

Mang e of Chinge Requte
Use of CM in SW Deselopaet

The Testing Proces.

S

Formally Gicamenied Tesing Proces

Formally Dosumensed Testing Plans

Tideraning and U5 of the ¥ Mocel n Planning

Standand Tl Documenta o

v iy of Sancord Tesnp Documentarion

ReprodLcibilty of Tesing

Tse of Riporows M in Tesing

Formlly Docurented Test Resul Cegories

Support for Reuse

T of At Testing Tools

“dewai Test Corerage

ot

g Process mprovsment P

Use o Metrics i the Tes

Subicul
ol and Responsibliie:
Formally Documened Roles and Resporibiies
‘Clearly Dered Reporting Liatson Lines
Masagement Resoonsib iy fo Clint Drganizarion
ianagament Responsility wilin Testing Project
Sl
Teting Phises
Formally Documeed Test Phases
et 10 Retse Packs from Previous Tostng Phases
Test Plannic a a1 Prases £ SW Desvelopment
Rete of Tesing Mterfl:
Suboul
Rifcellazeon Tsoes
Subical

Taal S |]

OEBPS/Images/14801figp1.gif
Evaluation Area

Physical -
Barrier -

PC for Analysis.
and Digital
Recorder

Monitor Area

OEBPS/Images/14801fig11_2.gif
Inputs to Regressian Test complete and available:

ALl approgriate Revse Packs, AUT Requrements Specification, AUT
Design documents, Regression Test P, Regession Test Specibetion

ession Testieg Cuide, Regression Test Seapis and Teat Cases, and
Hlank st Resut Record forms

Design NewReuse Old
Test Seripts & Test Cases

Canduct

Regression Test

Analyze Results

Debug & Correct
AUT

Outputs from Regression Test Complete:

Fully Regression Tested AUT, compited Regression Test Centficar,

ied Test Serpts and Test Cases (where cporopriats), archived test
data, completed Test Recult Record forme, Regressin Teat Log
Regression Tes: Reuse Pecl, Rearession Tes: Starmary Report

Regrossion Testing will be considered to be complete when all of the
ahove deliverables are camplete and have been deliversd to the
Test Team Leader to he FilediArckived

OEBPS/Images/14801fig15_1.gif
=
Reporting ——
Lisison

Test Team Leader

Test Observer

Terer [Tot it
Teser Totmint
Teotr | ot prait

OEBPS/Images/cover.jpg
John Watkins o

Simon Mills.

N

CAMBRIDGE

RI ‘more information ~ www.cambridge.org/9780521148016

OEBPS/Images/14801fig10_2.gif
Inputs to Operations Acceptance Test complete and availabl

AUT Recuirements Specificaton, AUT Desizn documenss, Ogeraticns
‘Acceptance Test Plan, Opersions Acceptance Test Specifcation,
Cperators Acceptanc Testng Guide, Cperations Acceptance Test Serigts
and Tes: Cases, blank Test Resuit Record forms, plis any sppropriate
Reuse Packs (such sz the System Test Reuse Pack)

R S
Conduct
Operations
Acceptance Test

Design NewReuse Old
Analyze Hesults Test Scripts & Test Cases

Debug & Correct
AUT andior

Correct Test Seripts

No

Outputs from Operations Acceptance Test Complete

Fully Cperators Acceptance Tested AUT, comgleted_Operations
Accetance Test Cersficate, revised Test Scripis and Test Cases (where
appropriate), archived test data, comgleied Test Resub Reccrd forws,
Operations Acceptance Test Log, Operaions Acceptance Test Reuse
Pack, Operaions Accestence Test Sunmary Regort

Operations Acceptance Testing will be comidered to be complets
when al of the above deliverables are complete and have boen
dsliverod to the Test Team Leadar t be Filod/Archived

OEBPS/Images/14801fig11_1.gif
Acceptance Test

Systems Integration
System Test

Integration Test

R
e
g
r
e
s
s
i
o

Implementation Unit Test

OEBPS/Images/14801fig7_2.gif
Tnputs to System Test complete and availabl

AUT Reqiremments Specification, AUT Desiga documents, System Tes
Plan. System Teat Specificaion, S

tem Testag Guide, System Test
Scrpts and Test Cases, blank Test Resut Record forms, plus any
appeopriate Reuse Packs (ruch as Uit and lotegration Tes: Reute Packs)

Conduet
System Test

Design NewReuse Old
Test Seripts & Test Cases

Analyze Results

Debug & Correct
AUT andor
Correct Test Seripts

YES

o

Outputs from System Test Complete:

Fully System Tested AUT, corpletec System Test Certifcate, revised
Test Scrpts and Test Cases (where cppropriate). archived test Gara.
completed Test Result Record fors, System Test Log, System Test
Reuse Pack System Test Summary Report

System Testing will he considered to be complete when all of the
‘abave deliverables are complets and have been delivered ta the
Test Team Leader to he Filed/Archived

OEBPS/Images/14801tbln1.gif
BEScouamounewn—

Single
Double
Famly
Single
Double
Family
Single
Double.
Famly
Single
Double
Family

OEBPS/Images/14801fig8_1.gif
Systems Integration Test
System Test

Specification

Implementation Unit Test

OEBPS/Images/14801tbln2.gif
@ e w e

Single
Double
Fanily

Single
Double
Fanily

Single
Double
Fanily

Single
Double
Fanily

Single
Double
Fanily

Single
Double
Fanily

Shower
Shower
Shower
Shower
Shower
Shower
Shower
Shower
Bath
Bath
Bath
Bath
Bath
Bath
Bath
Bath
Both
Both
Both
Both
Both
Both
Both
Both

‘Smoking
‘Smoking
‘Smoking
‘Smoking
Nonsmoking
Nonsmoking
Nonsmoking
Nonsmoking
‘Smoking
‘Smoking
‘Smoking
‘Smoking
Nonsmoking
Nonsmoking
Nonsmoking
Nonsmoking
‘Smoking
‘Smoking
‘Smoking
‘Smoking
Nonsmoking
Nonsmoking
Nonsmoking
Nonsmoking

OEBPS/Images/14801tbll1.gif
Ermor Message
Ermor Message
Ermor Message

oK
oK
oK

[——

OEBPS/Images/14801figm1.gif
Isolated

Y

Valve Closes Valve Opens
v

Ready

A

Stop Pump Start Pump

OEBPS/Images/14801fig9_2.gif
Inputs to User Acceptance Test complete and available:

AUT Requircrents Specificator, AUT Design decurnents, User
Accrptance Test Pla, User Acceptance Test Specibcator, User
‘Acceptance Testa Guie, User Acoeptance Test Scrpte and Toet Cases,
blank Test Resuit Record forms, plis any appropriate Revse Packs (suchas
e Systemm Test Revse Pack)

Conduet.
User Acceptance Test

Design NewReuse Old
Analyze Results Test Seripts & Test Cases

Debug & Correct
AUT andlor
Correct Test Scripts

Outputs from User Acceptance Test Complete:

Fully User Acceptunce Tested AUT, corspleted User Acceptence Test
Certicate, revised Test Scripto and Test Cases (where apprepriate),
srchuved bt data, corpleted Test Resut Recard forms, User Acceptance
Test Log, User Acceprance Test Reuse Pack, User Accepteace Test
Sumemary Report

User Acceptance Testing will be considered to be complete when all
of the above deliverables are complete and kave been delivervd to the
Test Team Leader to he FiledArchived

OEBPS/Images/14801figu11.gif
“Tool Defect Analysis Facilities

Viowing the Tedt Log

Determine Test Procedurs/Test Case Faiure

Examine Failures

Comtext-Semitive Defect Anulysis

ermng Diefect Reports

Tl Tracea ity of Orginal Requements

Updare Vamenance of Tests

Subioal

Tool Docurertaion [sues

e laiion Documentation

Csor Menual

Tuzorial nformation

Ouick Surt Information

Troubleshocting [nfomation

Seripting Lasguage Memal

Robut, Durdble, rd Good Qua ity Documenation

‘Clear, Unambiguous, and Usable Dosumentation
‘Additcnel Copizs of Dosumenation
References to Souwes Meterl

Adsquate Contac Information

Subioul

Tully oterated Requirments Mimagerment

Ty Tegrated with Visus! Moceling Tocl

Tully ntegraiod Defoct Trackin

Tl Ttcgratin with Ot Testing Tools

Tz on wilh Development & Testing Process

Tnepralion wilh Configiration Mansgerment Tool

Subroul

ool Uity e

Urer rte-fes Stondrds

Comtistent Menus ind Toolbar Buons

Siandrd Toolbar [cors berween Integraied Took:

Stancand Toolbar urans Use withn the Tool

Consisien: Shoriout Rey Acoess

Simple, Intuitive, and Basy (o Use

Help Frailives
Tegibic ind Jnrgon-bres Test
Cuntomnise Lovk und Fesl

Trmigmab e User Prferences

God Choice or Colour and Conrast

Aieachve nd Emoyable 0L sc

Subtoml

OEBPS/Images/14801fig10_1.gif
Operations

Requirements

Acceptance Test

OEBPS/Images/14801figu12.gif
Supplier Issues

Financially el Commercially Soud

Tartof Larger IT Compary

Deall Succgsstully with Supplicr in Pas

Supplicr Web Sitc

Help Desc

Multinaional OFF Shored Presence and Suppor.

Sustoal

Trsining and Consullancy Tseues

Install and Introduce Tool
Inroductory Training
Adunnced Training

Tesing Fundunentals Training

Soflvare Development & Testing Process Trainig

Mentoring ard Skills Transfer

Tool Cousultanc

Third-Party Traming Consultancy|

Subtoal

Contractual and Financial [ssues

Estimared Value of Tocl

Pricing Scheme

Multiple Licence Discount

Fixed/Floating Licences

Packaged Fuctionlity

Multiuser Pricing
Cost of Maintenance
Mainterance Feaures

Cost ol Upgrudes

Cost ol Traininy

‘Cost Berefis

Sutoral

Miscellancous [ssues

User Group.

User Group Independence

Vigorous User Group

Documentary Suppor:

Tool Conferencef;|

Sustoal

Totul Score

OEBPS/Images/14801fig8_2.gif
Tnputs to Systems Intogration Tust complote and available

ecificaton, AUT Desgn documents, Systems
tegratin Test Plan, Systems Integration Teet Specificatior, Systems
integration Testing G de, Systems [negration Test Scripts and Tess Casss,
blank Test Resul: Record Eorms, olus any spproprrace Reuse Packs (such a5
Uris, Integranon ard System Tet Reuse Packs)

Conduct

Systems Tutegration
Test

Analyze Results Tost Scripts

/ L
Erors
Detweted?

Debug & Corroct
AUT andior
Correct Test Seripts

O
v

Outputs from Systems Integration Test Complete:

Fully Systems integration Tested AUT, comgleted Systers Inegration
est Certificate, rewsed Test Scrips and Test Cases (where appropm
archived test data, completed Test Reait Record forms, Systems
tegraton Test Log. System Test Reuse Pock Systemns lte raion Tezt

Seramary Report

Systems Integration Testing will be considered to he completa when
all of the above deliverables are complete and have been delivered @
the Test Team Leader to be Filed/Archived

OEBPS/Images/14801tbln3.gif
BES coxmonewn =

Family
Double
Family
Family

Single

Double
Single
Double
Single

fErfresEEEgY

OEBPS/Images/14801fig9_1.gif
Requirements User Acceptance Test

OEBPS/Images/14801figu10.gif
Testing Tool Version

Date of Evaluation

Evaluator Name

Crite

Weighting (0-1)

Score @-1)

Suppor for Testing Types

Functional T

Regression T

Instzllation Testi

Configuration Te:

Msintenance T

Notwork Te

Subtotal

Supoort for Test Management

‘Support for Muliplewsers

Test Planning Facilities

Test Requ rements Facilities

Design of Test Procedures/Test Cases.

Defect Manzgement
Pradefined Reports
Customization/Creation of New Reports

Subtoul

Tool Technical Issies

Revord and Playback F

Fequired Lanpuge Favion

Oject Coniamer Techmlogy Tex

Testing o “Hidden Objects™

Testing Atirbutes of Objects

50 Record ng and Playhack

Tow Level Coordinate Recorcing & Playback

Clarity Simplicity of Sripting Language

Manual Liiing of Seripts

Playbeck in Different Operating Systems Browsers

Trap Unexpected Windows

Teoository-Besed

Tntcgration with Other Tools

Update/Maintcnance of Tests

Cross Plaiform Testing — Meinframe PC

‘Automatic Resovery from GPF/Creshes

Subtotal

OEBPS/Images/14801fig4_2.gif

OEBPS/Images/14801fig4_1.gif
Senior Management

Testing Manager

OEBPS/Images/14801fig5_2.gif
Tnputs to Unit Test complete and available:

AUT Requirements Specificaio, AUT Design documerts, Unit Test Plan

Ut Tes: SpeciSeation, Uné Testag Guids, Uni Test Scipts and Urik Test

Cases, Blask Test Result Record forms, appropriste Reuse Packs

Conduct Unit Test

Design NewReuse Old
Analyze Results
Test Seripts & Tost Cases

Debug & Correct
Unit and/or
Carroct Tost Seript

Outputs Eorn Urit Tezt complete

ully tested unts, Unic Test Certifiate, Revised Test Script and Test
datz, Cougleted Test Resck

Cases {where sppropriaie), Archoved

Record forms, Unit Test Log, Unit Test Reuse Pack brief Unis Test

Sumnary Report

Unit Testing vwill he cansidersd ta he complets wh

deliverables are complete and ave been pravided t the
Development Team Leader to be Filed/Archived.

all of the shove.

OEBPS/Images/14801fig5_1.gif
Tmplementation N/ Unit Test

OEBPS/Images/14801fig6_2.gif
Tnputs to Integration Test complete and availabl

AUT Reguemaens Specification, AUT Design docuneats, loegalin Tes:

Plan, la=graton. Test Specificaion, [ntegraion Testing Guide, Intzgration
Test Secrpls and Test Cases, tlank Test Result Record fo
appeopriate Reuse Pl

us, phis any

Conduet
Integration Test

Design NewReuse Old

Analyze Results Test Scripts & Test Cases

7 Emas Debug & Correct
Detected 2 = AUT andlor
Correct Test Seripts
o

Outputs from Integration Test Complete:

Fully tested and mtegrated modules, completed Integration Tes:

Seate, revised Test Scripts and Test Cases (where sppropriae),
archived test dais, compleied Test Resull Recard foros, Integrtion Test
Log. Iotegration Test Reuse Facis lotegratior Test Suremary Report

Inte gratian Testing vill be considered to he complets when all of the
ahave deliverables are complete and have been delivered to the.
Development Team Leader o be Filed/Archived

OEBPS/Images/14801tblk1.gif
0 < Hotel Charge <= 90
Hotel Charge <=0
Hotel Charge > 90

oK
Eror Message
Enor Message

OEBPS/Images/14801fig6_1.gif
Requirements \cceptance Test

Specification stem Test

Integration Test

Implementation

OEBPS/Images/14801figl1.gif

OEBPS/Images/14801fig7_1.gif
Specification System Test

OEBPS/Images/14801figk1.gif
Hotel Charge <=0 | 0 < Hotel Charge <=90 ' Hotel Charge > 90

OEBPS/Images/14801figu5.gif
<Client> Test Result Record Form (fiont sheet)

Project 1D
AUL Titie AUT Version
Testing Phase Date of Test
[Tt [iweomem

Observed Test Result

Test Result Category
Test Exror Description

Tester Signature
“Test Observer Signature

Page Lof _Pagss

OEBPS/Images/14801figu6.gif
<Clicnt> Test Result Record Form __ (coriinugiion sheet)

FrofetD |

Tt 1D TTimeortes |
Observed Test Resuit

“Test Result Category
Test Error Description

Tester Signature

Test Observer Sige

Page

R

OEBPS/Images/14801figu4.gif
“Client> Test Seript

(contmution shec)

ProjectiD___|

Test 1D,
Purpose of Test

Test Fuviranment

Tent Steps

Expected Result

Pos

of

o

OEBPS/Images/14801fige1.gif
Lime Telecoms Test Script (ront sheet)

ProjectID___| PI23tA
AUT Title Market"Master (M“M) Version Vi1
Testing Phase | User Acceptance Date of Test 31472000
Test 1D PIAAPNE ST
Purpose of Test o ensure that
o M*Mean be un

o theuser can log in successfully.

Test Environment Windows 2000 Siart Up window
No cther applications shoud be running.

Hand crafted “login data” s held in C:\est-cirlogin dat

Test Steps Tivoxe ths MM application using the Windows 2000 Start menu.
Inthe login dialoz bor, the Tester should:
User Narme” fild and enter “estuser”

Password" fild and cater “password”
K" uton.

o leftclick on the

Expected Result G completig 1 above sepn, e MM appliation Swosld arep.

Once started, the M™M "Start Up" screen should be displayed (T'le Bar contains
the legend - “M*M Start Up Sereen.”

Page 1of 1 Page |

OEBPS/Images/14801figu9.gif
Document Information {t <Client> Doc Standard}

Project ID: “Project ID> the unique ID for this tesiing projeci
Document Ref: <Doc Ref> a unique document reference for this document
Testing Phase: Testing Phase> e testing phase (c.g. unit test)
AUT Title: <AUT Title> he definitive fifle of the application under fest
Dite: <Date> the date fhis document was conpleted
Distribution

‘Copy Number Recipient
I <activity manager> .¢. the festing manager
2 <activity leader> i ¢. development tean leader for wnit and link

testing, test leam lecder for system test.

N Froject Tile
Review & Approval

T Sissue status> sswe starus of the documen. e 8. draji, 1.0

R&A Number: <R&A reference> the reference fa the final approving review

Author <neme of the author>

Author Signature <signature ofauther> the person who wrote this document

Approval (PM) <name of the projest manager>

"Approval (PM) Signature <Signature of the project mana

Approval (QA) “name of the quality ssurancs representative>

‘Approval (QA) Signature <sigrature of the quality assurance representative>

OEBPS/Images/14801tblu1.gif
Item Planned Actual
Staff Levels 5 5

Test Design Effort 25 30
Test Execution Effort 35 35
Retest Effort 10 10
Test Management and Reporting | 0.5 075

Etc.

OEBPS/Images/14801fig3_1.gif
“A CompactDisk (CD) Player can be in one of three states: Standby, On or Playing.

When i Standhy mode, the CD Player can be turned on by pressing the Standhy button once (an
indicator light turns from red to green o show the CD Player s On).

‘When the CD Player is On, it can re turn to Standby mode by pressing the Standby bution once (an
indicator light furns from green to red to show the CD Player is in Standhy mode).

When the CD Player is On, pressing the Play button causes the currendly loaded CD 0 play.
Pressing the Siop bution when the CD Player is playing a CD causes the CD Player to siop playing
the disk.”

Examples of positive tests couldinclu

* Verifying that with the CD Player in Standby mode, pressixg the Standby bution cases the
CD Player to turn on and the indicator light changes from red to green

* Verifying that with the CD Player i the On state, pressing the Standby button causes the state
of the CD Player to change fo Standby and the indicator light changes from green to red.”

Examples of negative tests could include:

* Investigating whathappens if the CD Player is playing a CD and the Standby button is pressed

* Investigating what kappens if the CD Player is On and the Play button is pressed without a
CD in the CD Player.

OEBPS/Images/14801figu7.gif
<Client> Test Log (ront sheet)
Project ID
AUT Title AUT Version
Testing Phase Date of Test
Overview
‘Activities and Event Enfries
Thaic iy Fvent

o]

OEBPS/Images/logo.gif
CAMBRIDGE

UNIVERSITY PRESS

OEBPS/Images/14801figu8.gif
Project 1D

<Client> Test Log

(contwnuation sheet)

“Activities and Event Entrics

Dute

Time

Activiiy Event

Page

of Pages

